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ABSTRACT

Motivated by applications in power systems and problems arising in simu-
lation of large scale complex system optimizations, this work is concerned
with controlled stochastic switching systems. The system of interest dis-
plays a multi-time scale structure. In contrast to the so-called singularly
perturbed diffusions andmulti-scaleMarkov decision processes, controlled
non-Markov processes (also known as non-Markov decision processes) are
treated. The novelty of our work is the treatment of the non-Markov con-
trolled processes and the time-scale used. The fast and slow processes
are coupled through a stochastic differential equation. Using averaging,
it is first shown that the non-Markov switching process has a weak limit
that is a Markov decision process. Then asymptotic optimal control of the
non-Markov process is obtained by using the limit process.
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1. Introduction

This work is largelymotivated by applications in optimization and control of complex systems such as
those arising in power systems. Modern power systems (MPS) employ advanced control methodolo-
gies in achieving stability, performance, reliability, robustness, and safety. MPS are complex network
systems that consist of diversified electrical generators and loads, and include large numbers of buses,
renewable energy sources, users, and controllable loads. When dynamic system models for subsys-
tems are all included, a common microgrid can have thousands of state variables. Such large-scale
complex systems encounter substantial complexity issues in their state estimation, control design,
monitoring, and optimization. These complexity issues lead to extremely high computational com-
plexity, high data flow rates, large memory space, complicated control design, among many other
practical constraints and system costs. As a result, complexity reduction becomes a critical task in
MPS management.

MPS control and management tasks are naturally time-scale separated. Some tasks are in the
millisecond scale such as contingency detection and surging protection, some in the scale of sec-
onds such as primary frequency regulations, followed by slower secondary frequency regulations
and regional power dispatch. Such time-scale divisions have provided an important opportunity in
treating systems in a hierarchical time structure so that fast subsystems can be grouped and treated
together and whose averaging behavior becomes the relevant variables in slower dynamic systems
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with much reduced model orders. This modeling idea stems from the approach of singular pertur-
bations. In a typical deterministic framework, the idea of singular perturbations has been applied to
power systems; see [1–10]. Nevertheless, stochastic properties that can be used to facilitate complex-
ity reduction have not been used in power systems. This paper aims to introduce such a fundamental
framework with key properties for potential usage in MPS. However, specific applications in MPS
will be considered elsewhere.

Similar to many complex systems, large and complex power networks normally include a number
of subsystems, and subsystems consist of numerous components. The complexity makes the analysis
of such systems difficult. There is a long history of research on reduction of computational complexity
by means of multi-scale formulations. We refer the reader to [1] and colleagues for the formulation
using time-scale separation and singular perturbationmethods.We also cite the related references on
Kokotovic and colleagues as mentioned in the above paragraphs. While these references are interest-
ing, theirmain focus has been placed on deterministic systems. On the other hand, from the literature
of stochastic systems, there has been continuing effort of modeling, analysis, and computation for
treating large and complex systems with multi-scales. Not only have deterministic systems been dealt
with, but also stochastic systems have been analyzed for various models such as diffusions, Markov
chains, jump systems, and various combinations of these.

Two-time-scale or multi-time-scale systems also appear in Monte-Carlo simulations of large and
complex systems. In such problems, one uses time-scale separation to facilitate complex optimiza-
tion problems. With the motivation mentioned above, this paper investigates a related optimization
problemof a complex system fromamathematical perspective. In optimization,Markov decision pro-
cesses have been studied extensively and applied to numerous scenarios. Here we propose to analyze
a system that is non-Markovian in continuous time. The non-Markovian settingmakes the analysis of
such systems difficult. Directly using the techniques ofMarkov decision processes is not possible. Pro-
cesses involving randomperturbationswere pioneered in thework ofKhasminskii [11]. Such an effort
was much extended to involve wideband noise processes by Kushner [12, 13]. Effort was also devoted
to further characterize the associated transition probabilities through the corresponding forward and
backward Kolmogorov equations [14–17] in the late 1900s and early 2000s. The structure of fast and
slow diffusions, and diffusions with a Markov chain was considered in [18]. Along another line, dif-
fusions modulated by continuous-time switching processes were considered in [19, 20]; the former
concentrated on Markovian switching diffusions, whereas the latter treated the switching processes
depending on the diffusion processes.

In this paper, we consider a class of controlled non-Markov processes (also called non-Markov
decision processes) that are similar to Markov decision processes (or controlled Markov processes)
in which the switching processes depend on control actions; see [21] for related works on piecewise
deterministicMarkov processes and references therein. However, the underlying randomly switching
process appears in a stochastic differential equation as a slowly varying component. There is a fast
varying diffusion. So the main features are the non-Markovian switching and the presence of the fast
and slow processes. Our objective is to minimize an objective function for the control problem.

Our effort here is to show that in lieu of working with the process directly, the control-dependent
switching process, in fact, has a limit in an appropriate sense. To begin, the fast-varying diffusion does
not blowup, but rather has a stationary or invariant distribution. Thenwe can show that the diffusion-
dependent switching process converges weakly (in the sense of convergence in probability measure)
to a process. Interestingly, the limit process is a Markov decision process, or a controlled Markov
chain whose generator depends on the control. We then show that the original objective function
converges to that of a Markov decision process. Assuming the limit Markov decision process has an
optimal control, we proceed to show that if we use the optimal control of the limit process in the
original process, we get an optimality of the original process in an appropriate sense.

The novelties of the paper are in the following aspects. First, the controlled switching process is
non-Markovian. Second, although optimization of two-time scale systems has been treated in the
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literature, the current effort is different from the existing work. In the treatment of singularly per-
turbed diffusions, there are usually two equations, one for the fast-varying process and the other for
a slowly-changing process [13]. In the work on multi-scale Markov decision processes, both fast and
slow controlled processes aremodeled using operators. In this paper, the fast process is a diffusion that
is coupled with the slow process, whereas the slow process is given by using an operator. In addition,
the fast-changing process is both dealt with as a state and also a fast noise process. The main analysis
is based on weak convergence methods. After showing that the slow process has a limit process that
is a Markov decision process, we use the optimal control of the limit process in the original system.
We then show that such controls lead to asymptotic optimality.

The rest of the paper is arranged as follows. Section 2 begins with the formulation of the problem.
Then Section 3 establishes the weak convergence of the switching process. Section 4 analyzes the
asymptotic optimality of the control process.

This paper is written on the occasion of the celebration of ProfessorWei Lin’s 90’s Birthday. More
than 40 years ago, when Professor Lin visited Professor Robert Gilbert at the University of Delaware
(UD), George Yin was an undergraduate student at UD. Both of them rented the same house on
Elkton Road at that time. George benefited the many discussions with Professor Lin.

While his mathematical work started in the early 1960s, Professor Lin’s main line of work has
been focused on partial differential equations and applications inmathematical physics and elasticity.
His book (English version) coauthored with the renowned mathematician Professor Loo Keng Hua
and also Professor Ci-QuianWu, was published in Pitman’s Research Notes in Mathematics in 1985,
which has become an important reference for partial differential equations from the particular angle
of using the function theory approach. It should also bementioned that in his early career in the 1970s,
Professor Lin worked on control theory and applications. Our current paper is related to Professor
Lin’s earlier work in that our paper is devoted to a class of stochastic control problems. We join our
colleagues to celebrate Professor Lin’s achievement inmathematics, wishing himmany happy returns.

2. Formulation

We begin with the following formulation. Let x ∈ R
d andM = {α1, . . . ,αm} be a finite set. Suppose

that ε > 0 is a small parameter and that αε(t) is a continuous-time stochastic process taking values
in the finite set M such that αε(t) depends on the small parameter. The dependence of αε(·) is to
be specified shortly. Consider a pair of stochastic processes (Xε(t),αε(t)), which is jointly Markov so
that for H : R

d × M �→ R
d, a suitable smooth function, we have

dXε(t) =
1

ε
H(Xε(t),αε(t)) dt +

1
√

ε

√
2ρ dW(t), Xε(0) = x, (1)

where ρ > 0 is a constant, andW(·) is a standard d-dimensional Brownianmotion. Assume through-
out the work that both αε(·) and W(·) are defined on a complete probability space (�,F ,P).
Moreover, αε(·) and W(·) are independent. The model is originated from the consideration of
stochastic simulation in chemical reactions, in which the Brownian perturbation is added to speed up
the process. We have adopted this formulation. In fact, there is no problem for treating the diffusion
part given by 1√

ε
σ̃ (Xε(t),αε(t)) dW(t). All needed is σ̃ (x,α)̃σ ′(x,α) to be positive definite (i.e. the

diffusion is non-degenerate).
Suppose that uε(t) is a control taking values in U a compact subset of R

l, and that the transition
probabilities of αε(·) satisfy

P(αε(t + �) = αj|αε(t) = αi,X
ε(s),αε(s), uε(s) : s ≤ t)

= qij(X
ε(t), uε(t))� + o(�), (2)

for� ↓ 0 withQ(x, u) = (qij(x, u)) ∈ R
m×m matrix-valued function satisfying qij(x, u) ≥ 0 for i 
= j

and
∑m

j=1 qij(x, u) = 0 for each i. Note that the transition probabilities depend on x through (2). We
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index the process u by ε just for indicating that the control is associated with αε(·) that depends on
ε. System (1) has a two-time scale structure; Xε(·) is fast varying and αε(·) is slowly changing. We
remark that αε(·) alone is not Markov due to the dependence of Q(x, u) on the state x; only the pair
(Xε(·),αε(·)) isMarkov. If the x dependence inQ(x, u)weremissing, thenQ(x, u) = Q(u)would be a
generator of a continuous-timeMarkov decision process. In this paper, we aim to solve a problem that
is similar to a Markov decision process. Nevertheless, the problem is a non-Markovian optimization
problem due to the x dependence. Hence the problem is more complex. Our objective is to minimize
a cost function

Jε(αι, u
ε(·)) = E

∫ T

0
L(αε(t), uε(t)) dt, (3)

where L(αι, u) is a suitable running cost rate function, α
ε(0) = αι,T is a positive constant. To empha-

size the dependence of the initial data αε(0) = αι, one often uses Eι in lieu of E. In this paper, to
simplify the discussion, we will not use this notation. Recall that the dynamics of αε(·) depend on
Xε(·). Note also Xε(·) is fast varying, and can be viewed as a noise process. Directly solving the prob-
lem seems virtually impossible.Nevertheless, the fast changing diffusion given by (1) does not blowup,
but has an invariant measure leading to certain averages with respect to the invariant measure taking
place, which helps us to solve the underlying problem.

We aim to show that as ε → 0, αε(·) converges weakly to α(·), a continuous-time Markov chain
whose generator Q(u) is an average with respect to the stationary distribution of the fast-varying
diffusion. The more precise notion will follow.

2.1. Some backgroundmaterials

As alluded to in the introduction, we are dealingwith a class of stochastic control problems. Normally,
stochastic control problems lead to the treatment of the so-called Hamilton–Jacobi–Bellman (HJB)
partial differential equations.However, because the problemwe are considering is notMarkovian. The
usual approach does not work. As an alternative, we will use a probability approach. This approach is
deeply rooted to themethods of weak convergence of probabilitymeasures andmartingale averaging.
Before proceeding further, we briefly recall some of the basic notions.

The concept of weak convergence is a substantial generalization of convergence in distribution
in probability theory. Here we gather a number of definitions and results regarding weak conver-
gence including tightness, martingale problem, Skorohod representation, and Prohorov’s theorem,
etc. Nevertheless, all the notions are mentioned in a rather intuitive way. Additional references are
given for convenience.

First let us recall the definition of weak convergence. LetP andPn, n = 1, 2, . . ., denote probability
measures defined on a metric space. The sequence {Pn} converges weakly to P if

∫
f dPn →

∫
f dP

for every bounded and continuous function f on the probability space. Let {Xn} and X be random
variables associated with Pn and P, respectively. The sequence Xn converges to X weakly if for any
bounded and continuous function f,

Ef (Xn) → Ef (X) as n → ∞.

Use D([0,T];Rr) to denote the space of R
r-valued functions on [0,T] that are right-continuous and

that have left-hand limits. Then we can define what is called Skorohod topology (see [12] for detail).
We say a family of probabilitymeasures defined on ametric space is tight if for each η > 0, there exists
a compact set Kη such that P(Kη) ≥ 1 − η. The notion of tightness is closely related to compactness.
The well-known Prohorov’s theorem indicates that tightness is equivalent to sequential compactness
or relative compactness.
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Weak convergence techniques usually allow the use of much weaker conditions and results in
more general setup. For purely analytic reasons, however, it is often more convenient to work with
probability one convergence. A device, known as Skorohod representation, provides us with such
opportunities. Let Pn and P denote probability measures on D([0,T];Rr) such that Pn converges
weakly to P. Then corresponding to the original probability space (�,F ,P), there exists a probability
space (�̃, F̃ , P̃) on which are defined D([0,T];Rr)-valued random variables X̃n, n = 1, 2, . . . , and X̃
such that for any Borel set B and all n < ∞,

P̃(X̃n ∈ B) = Pn(B) and P̃(X̃ ∈ B) = P(B) such that

lim
n→∞

X̃n = X̃ w.p.1.

Finally, we mention that a right-continuous process X(t), t ≥ 0 and s> 0, is a solution of the mar-
tingale problem for the operator A if and only if for any bounded and continuous function h(·),
any sufficiently smooth (the smoothness requirement depends on the problem) function f (·) with
compact support, any positive integers κ and �, and any t� ≤ t,

Eh(Xt� : � ≤ κ)

[
f (X(t + s)) − f (X(t)) −

∫ t+s

t
Af (X(ζ )) dζ

]
= 0.

We only provided a very brief introduction. Further details on the related consequents can be found
in, for example, [12, 18] and many references therein.

2.2. Further preparation

The process (Xε(·),αε(·)) is Markov [20], whose generator (for a fixed u) is given by

Lf (x,αi) =
ρ

ε
tr(∇2f (x,αi)) +

1

ε
(∇f (x,αi))

′H(x,αi)

+
∑

j∈M
qij(x, u)f (x,αj), αi ∈ M, (4)

where z′ denotes the transpose of z, ∇2 denotes the Hessian matrix (with differentiation with respect
to x), tr(
) is the trace of 
, and f (·) is a suitable smooth function. Sometimes, to emphasize on the
dependence of u, one may write L as Lu. Here and henceforth, for simplicity, we simply suppress the
dependence of u.

To facilitate the analysis, we use the relaxed control representation; see for example, [13, 22–24].
Although the relaxed controls cannot be used in the actual control systems, they are rather convenient
to be used in getting the desired limit problems [23, 24].

Suppose thatB(U × [0,T]) is the σ -algebra of Borel subsets ofU × [0,T]. A deterministic relaxed
control ß is ameasure onB(U × [0,T]) such that themarginal of ß on [0,T] coincides with Lebesgue
measure dt. This space will be denoted by
(U × [0,T]). Then everymeasure ß in
(U × [0,T]) can
be disintegrated as ß(dc dt) = ßt(dc) dt, where ßt is the derivative of ß (more details will follow). The
space
(U × [0,T]) can be metrized with the Prohorov metric (see [22, p. 263]). Under such a setup,
the weak convergence of a sequence of deterministic relaxed controls ßε(·) → ß(·) is equivalent to

∫
φ(c, s)ßε(dc ds) →

∫
φ(c, s)ß(dc ds)

for any continuous function φ(·) on U × [0,T] having compact support. With the Prohorov metric,

(U × [0,T])) is a compact space.

Relaxed controls for controlled stochastic processes (in particular, controlled diffusion and/or con-
trolled jump diffusions) were defined in the aforementioned references. Coming back to the problem
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that we are considering, with the given probability space, we say that for ε > 0, ßε(·) is an admissible
relaxed (stochastic) control forαε(·)or (ßε(·),αε(·)) is admissible, if ßε(·) is an
(U × [0,T]))-values
random variable such that ßε(A × [0, t]) is Fε

t -adapted for all A ∈ B(U), where Fε
t is the σ -algebra

generated by {Xε(s),αε(s) : s ≤ t}. The set of admissible relaxed stochastic controls for αε(·) will be
denoted byRε .

In what follows, working with a limit problem, we will consider the set of admissible relaxed
stochastic control for α(·) (the weak-limit of αε(·)) as the set of 
(U × [0,T]))-values random vari-
ables ß such that ß(A × [0, t]) is Ft-adapted for all A ∈ B(U), with Ft is the σ -algebra generated by
{α(s) : s ≤ t}. The set of admissible relaxed stochastic controls for α(·) will be denoted byR.

The technical details will be seen in the section on weak convergence of αε(·) to α. Using the given
processes (Xε(·),αε(·))withXε(0) = x and αε(0) = αι, we proceed to study the near optimal control
with the cost function given by

Jε(αι, u
ε(·)) = E

∫ T

0
L(αε(t), uε(t)) dt

= E

∫ T

0

∫
L(αε(t), c)ßε

t (dc) dt, (5)

where L is a suitable cost rate function, uε is the control, ßε ∈ Rε is a relaxed control representation
of uε , and ßε

t is the derivative of ß. Note that in fact αε(·) depends on Xε(·) as given in (1).

2.2.1. Standing conditions

We shall assume the following conditions throughout the paper.

(A1) The partial derivative ofH(·,αi)with respect to the first variable is continuous for eachαi;L(·, ·)
is continuous in both variables; Q(x, u) is a bounded matrix-valued function that is continuous
with respect to both variables.

Remark 2.1: Choose

f (x,αi) = f (αi) = 1{α=αi} for a fixed αi ∈ M,

where 1A denotes the indicator function of the set A. Because this f (·) is independent of x, we have

Lf (αi) = Q(x, u)f (·)(αi),

where

Q(x, u)f (·)(αi) =
m∑

j=1

qij(x, u)f (αj).

There are many examples of the function H(·). Here, we only need the stochastic differential
equation (1) to have a weak solution. For example, in certain optimization problems, H(x,α) =
−∇xĤ(x,α), where Ĥ(·) is a potential function. In this case, since ρ > 0 in (1), the diffusion is non-
degenerate, by virtue of [20, Theorem 4.3], there is a stationary distribution νε(x,α) for the process
(Xε(·),αε(·)). In what follows, our assumptions are more general including many other cases.

We should also like to add that our main interest is on treating the ‘marginal’ Xε(·) as a fast noise
process and αε(·) as a slow process so as to obtain certain desired limit. Moreover, we are interested
in the associated optimization problem.
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To proceed, using a scaling technique, we change both independent and dependent variables by
defining

Z(t) = Xε(εt), γ (t) = αε(εt), and W̃(t) = W(εt)/
√

ε.

Then (1) can be rewritten as

dZ(t) = H(Z(t), γ (t)) dt +
√
2ρ dW̃(t). (6)

Similar to [13, Chapter 4], we view the process γ (·) of being varying very slowly and almost a constant.
In fact, given γ (t) = α, Z(·) = Z(·|α) is given by the solution of

dZ(t) = H(Z(t),α) dt +
√
2ρ dW̃(t). (7)

That is, we fix or frozen the γ (·) at a constant level (α in (7) is treated as a parameter). To proceed,
we need another condition.

(A2) For each α, the stochastic differential equation (7) has a unique weak solution. Moreover, for
each α, Z(·|α) has a unique invariant measure µα(·).

(A3) For the sequence {ßε(·)}, there is a nonnegative function g(·) satisfying 0 ≤ g(x) → ∞ as
|x| → ∞, a 0 < K1 < ∞, and �ε → 0 as ε → 0 such that ε/�ε → 0 and

sup
t≤T

1

�ε

∫ t+�ε

t
Eg(Xε(s)) ds ≤ K1 < ∞.

Remark 2.2: Note that the conditions (A2) and (A3) require that the solution of (7) is regular; i.e.
the solution is global [25] (see also [20]) or no finite explosion time. The well-known theory of diffu-
sions (see [25]) can provides us with sufficient conditions that ensure the existence of the invariance
distribution that associated with the solution of (7), there is an invariant distributionµα(z) such that
the transition probability of Z(·) converges to the invariant distribution exponentially fast as t → ∞.
However, in this paper, rather than giving sufficient conditions for the existence of invariance distri-
bution, we assume the existence of the invariant distribution. This is for simplicity and also our main
interest is in the averaging and optimization based on the existence of the invariant distribution. Note
that Xε(·) can be viewed as a noise process. Although it does not blow up and has an invariant mea-
sure, it does not have a limit in the sense of convergence of probability measure. Rather, only the αε(·)
has a limit in weak sense.

As commented in [13, p. 67], (A3) is satisfied if {Xε(t) : t ≤ T, ε > 0} is tight. Under this assump-
tion, for the sequence {ßε(·)} of relaxed control, for each � > 0, define the occupation measure
by

P̂ε,�
t (F) =

ε

�

∫ (t+�)/ε

t/ε
1F(Z(s)) ds.

Then for any bounded sequence {tε}, the sequence of measure-valued variables {̂Pε,�
tε

, ε > 0} is tight
(see [13, p. 68] for a proof).

With the preparation above, we proceed to derive theweak convergence of the processαε(·). Recall
that Xε(·) is treated as a fast-varying noise. To obtain the desired convergence, we first show that the
sequence is tight. Then we characterize the limit by martingale problem formulation.

3. Limit process

3.1. Tightness of the switching process

Lemma 3.1: Consider the process {αε(·)} and let uε(·) be the corresponding control with ßε(·) being
its relaxed control representation. Then (αε(·), ßε(·)) is tight in D([0,T] : M) × 
(U × [0,T]), where
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D([0,T] : M) is the space of functions that are defined on [0,T] taking values in M, that are right
continuous, and that have left limits endowed with the Skorohod topology, where 
(U × [0,T]) is the
collection of all relaxed controls.

Proof: We first note that since 
(U × [0,T]) is compact, it is weakly compact and hence ßε(·) is
tight. Thus we need only consider the tightness of {αε(·)}. Define

χε(t) = (1{αε(t)=α1}, . . . , 1{αε(t)=αm}) ∈ R
1×m, (8)

where 1G denotes the usual indicator function of the set G. To prove the desired tightness of αε(·),
we use the process χε(·). Since the process (Xε(·),αε(·)) is Markov,

χε(t) − χε(0) −
∫ t

0

∫
χε(v)Q(Xε(v), c)ßε

v(dc) dv is a martingale.

As a result, for any δ > 0, and t, s ∈ [0,T] with s ≤ δ, we have

E

(
χε(t + s) − χε(t) −

∫ t+s

t

∫
χε(v)Q(Xε(v), c)ßε

v(dc) dv|F
ε
t

)
= 0,

Recall that Fε
t denotes the σ -algebra generated by {Xε(v),αε(v) : v ≤ t}. Since Q(x, u) is bounded

and continuous, it is readily seen that

sup
0≤s≤δ

∣∣∣∣
∫ t+s

t

∫
χε(v)Q(Xε(v), c)ßε(dc) dv

∣∣∣∣ = sup
0≤s≤δ

O(s) = O(δ).

Thus, working with χε(·), we obtain

sup
0≤s≤δ

E(|χε(t + s) − χε(t)|Fε
t ) = O(δ) and

sup
0≤s≤δ

E(|χε(t + s) − χε(t)|2|Fε
t ) = O(δ).

Taking expectation, then lim supε→0 followed by limδ→0, we obtain

lim
δ→0

lim sup
ε→0

E

[
sup
0≤s≤δ

E(|χε(t + s) − χε(t)|2|Fε
t )

]
= 0.

The desired tightness of {χε(·)} thus follows. Note

αε(t) =
m∑

i=1

αi1{αε(t)=αi} = χε(t)(α1, . . . ,αm)′,

the tightness of {χε(·)} then implies that of {αε(·)}. The proof is complete. �

3.2. Weak convergence

The main result of this section is the following theorem.

Theorem 3.2: Under our standing assumptions, αε(·) converges weakly to α(·), a continuous-time
Markov chain with state spaceM and generator Q given by

Q(c) = (qij(c)) with qij(c) =
∫

Rd
qij(x, c)µαi(dx), (9)

where µαi(x) is the stationary distribution of the diffusion process Z(·|αi).
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Proof: Since {αε(·), ßε(·)} is tight, we can extract a weakly convergent subsequence by the well-
known Prohorov theorem. Extract such a sequence and still index the subsequence by ε for notational
simplicity. Denote the limit by (α(·), ß(·)). We proceed to characterize its limit. By the Skorohod rep-
resentation theorem, we may assume (with a slight abuse of notation) that (αε(·), ßε(·)) converges to
(α(·), ß(·)) with probability one (w.p.1) and the convergence is uniform on any bounded interval.

First note that for any real-valued function f (·) defined onM,

f (αε(t)) =
m∑

i=1

1{αε(t)=αi}f (αi) = χε(t)(f (α1), . . . , f (αm))′. (10)

Then

∫
Q(Xε(t), c)f (·)(αε(t))ßε

t (dc)

=
m∑

i=1

1{αε(t)=αi}

∫
Q(Xε(t), c)f (·)(αi)ß

ε
t (dc)

=
∫

χε(t)Q(Xε(t), c)(f (α1), . . . , f (αm))′ßε
t (dc).

Using the operator L defined in (4) and noting f (α) does not depend on x explicitly, define

Mε
f (t) = f (αε(t)) − f (αε(0)) −

∫ t

0
Lf (αε(v)) dv

= f (αε(t)) − f (αε(0))

−
∫ t

0
χε(v)

∫
Q(Xε(v), c)(f (α1), . . . , f (αm))′ßε

v(dc) dv.

ThenMε
f (t) is a martingale. It follows that for real-valued function h(·), any positive integer κ , κ1, any

t, s> 0, any t� ≤ t with � ≤ κ , and any continuous functions φ1(·), . . . ,φκ1(·) on U × [0,T] having
compact support,

Eh(αε(t�), (ß
ε ,φ�1)t� : � ≤ κ , �1 ≤ κ1)

[
f (αε(t + s)) − f (αε(t))

−
∫ t+s

t

∫
χε(v)Q(Xε(v), c)(f (α1), . . . , f (αm))′ßε

v(dc) dv

]
= 0.

The weak convergence of αε(·) to α(·), the Skorohod representation, and the fact αε(t) ∈ M for any
t> 0 imply that

Eh(αε(t�), (ß
ε ,φ�1)t� : � ≤ κ , �1 ≤ κ1)[f (α

ε(t + s)) − f (αε(t))]

→ Eh(α(t�), (ß,φ�1)t� : � ≤ κ , �1 ≤ κ1)[f (α(t + s)) − f (α(t))] as ε → 0. (11)

Next, we aim to show that as ε → 0,

Eh(αε(t�), (ß
ε ,φ�1)t� : � ≤ κ , �1 ≤ κ1))

×
[∫ t+s

t

∫
χε(v)Q(Xε(v), c)(f (α1), . . . , f (αm))′ßε

v(dc) dv

]
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→ Eh(α(t�), (ß,φ�1)t� : � ≤ κ , �1 ≤ κ1))

×
[∫ t+s

t

∫
χ(v)Q(c)(f (α1), . . . , f (αm))′ßv(dc) dv

]
, (12)

whereQ(·) is given in (9). We note thatXε(·) varies an order of magnitude faster that αε(·), and αε(·)
is almost a constant in a small interval.

To complete the proof, we use an argument similar to [13, pp. 67–73] or Remark 2.2. By a change of
variable argument, using the tightness of {αε(·)}, the scaling technique discussed in the preparation
subsection, and Remark 2.2, there is � = �ε > 0 satisfying �ε → 0 as ε → 0 and ε/� → 0, and
that there is a sequence tε → t such that

1

�ε

∫ tε+�ε

tε

χε(v)Q(Xε(v), c)(f (α1), . . . , f (αm))′ßε
v(dc) dv

=
ε

�ε

∫ (tε+�ε)/ε

tε/ε
χε(t)Q(Zε(v), c)(f (α1), . . . , f (αm))′ßε

v(dc) dv + δε,�ε (t),

=
ε

�ε

∫ (tε+�ε)/ε

tε/ε
χε(t)Q(Z(v), c)(f (α1), . . . , f (αm))′̂Pε,�

tε
(dz)ßε

v(dc) + δε,�ε (t), (13)

where as ε → 0, δε,�ε (t) → 0 in probability uniformly in t ≤ T. [Note that χε(·) = (1{αε(t)=α1},

. . . , 1{αε(t)=αm)}).] Using the definition of the sample occupation measure P̂ε,�
t (·) of Remark 2.2,

{̂Pε,�
t (·)} is tight. Select a weakly convergent subsequence (with index (ε,�)), it can be argued that

the limit sample occupation measure P̂t = µα(t) (some details can be found in [13, pp. 71–73]).
The weak convergence of αε(·) to α(·), the Skorohod representation, the boundedness and

continuity of Q(·), and the ergodicity of the diffusion process Z(·) then yield

ε

�ε

∫ (tε+�ε)/ε

tε/ε

∫
χε(t)Q(Z(v), c))(f (α1), . . . , f (αm))′ßε

v(dc) dv

→
∫

χ(t)Q(c)(f (α1), . . . , f (αm))′ßv(dc) in probability as ε → 0. (14)

Thus (14) further leads to (12). Combining (11) and (12), we arrive at that as ε → 0,

Eh(αε(t�), (ß
ε ,φ�1)t� : � ≤ κ , �1 ≤ κ1))

[
f (αε(t + s)) − f (αε(t))

−
∫ t+s

t

∫
χε(v)Q(Xε(v), c)(f (α1), . . . , f (αm))′ßv(dc) dv

]

→ Eh(α(t�), (ß,φ�1)t� : � ≤ κ , �1 ≤ κ1))
[
f (α(t + s)) − f (α(t))

−
∫ t+s

t

∫
χ(v)Q(c)(f (α1), . . . , f (αm))′ßv(dc)dv

]
as ε → 0.

That is,

Mf (t) = f (α(t)) − f (α(0)) −
∫ t+s

t

∫
χ(v)Q(c)(f (α1), . . . , f (αm))′ßv(dc) dv

is a martingale, so the desired limit is obtained. The proof is concluded. �

Given that Xε(0) = x, αε(0) = αι, ß
ε ∈ Rε , and ß ∈ R, using the relaxed control representation,

similar to (5), we write the cost function for the limit as

J(αι, ß) = E

∫ T

0

∫
L(α(t), c)ßt(dc) dt. (15)
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Theorem 3.3: Under the conditions of Theorem 3.2, Jε(αι, ß
ε) → J(αι, ß) as ε → 0.

Remark 3.4: The assertion essentially follows that of the weak convergence of (αε(·), ßε(·)) to
(α(·), ß(·)), the Skorohod representation, and the continuity of the cost rate L(·).We omit the detailed
argument for simplicity.

4. Asymptotic optimality

Our objective in this section is to demonstrate the asymptotic optimality. The difficulty of the original
optimization problem is due to the non-Markov properties. Here we show how we may resolve the
problem by use of limit process. To proceed, denote

vε(αι) = inf
ßε∈Rε

Jε(αι, ß
ε), and

v(αι) = inf
ß∈R

J(αι, ß). (16)

Thus they are the value functions of the original problem and the limit problem in the class of
stochastic relaxed controls.

Theorem 4.1: Under the conditions of Theorem 3.3, the following results hold:

(a) limε→0 v
ε(αι) = v(αι).

(b) For any η > 0, there is a finite set {a1, . . . , aη
kη

} = Uη ⊂ U and a δ > 0 satisfying that there is

a piecewise constant (in t) and locally Lipschitz continuous in α (uniformly in t) control uη(·)
such that uη(t) = uη(α(iδ), iδ) for t ∈ [iδ, iδ + δ] is an η-optimal control in that

lim
ε→0

|Jε(αι, u
η) − vε(αι)| = 0.

Remark 4.2: In what follows, we mainly concentrate on the proof of (b) above. The rationale is that
we can use the chattering lemma to select a Lipschitz continuous feedback control uη(α, t) that is
η-optimal for the limit problem. Then we can use this control in the actual control systems. The
difference of the cost function uses such a control and the value function for the original problem
will be asymptotically diminishing. Such a result is practically useful. It enables us to use a control
derived in the limit Markov decision processes in the original non-Markov decision processes. In this
way, we obtain asymptotic optimality.

Proof: According to the chattering lemma [26, Theorem 4] (see also [13, 23, 24]) for more details),
uη(·) as in the theorem (b) exists such that

inf
ß∈R

J(αι, ß) ≤ J(αι, u
η) ≤ inf

ß∈R
J(αι, ß) + η. (17)

Observe that

Jε(αι, u
η(·)) = E

∫ T

0
L

(
αε(t), uη(t)

)
dt,

the weak convergence implies that

αε(uη, ·) ⇒ α(uη, ·) and

Jε(αι, u
η) → J(αι, u

η) as ε → 0. (18)
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Because uη is an η-optimal control,

J(αι, u
η) ≤ v(αι) + η.

By (18), we also have

Jε(αι, u
η) = J(αι, u

η) + oε(1)

≤ v(αι) + η + oε(1), (19)

where oε(1) → 0 as ε → 0.
Using the property of the value function, we can choose ßε , such that

vε(αι) ≥ Jε(αι, ß
ε) − ε.

Because ßε is relatively compact, there exists a subsequence, still denoted by ßε for simplicity such
that ßε converges to ß. Therefore, by combining Theorem 3.3 and the previous inequality, it follows
that

v(αι) ≤ J(αι, ß)

= vε(αι) + oε,1(1), (20)

where oε,1(1) → 0 as ε → 0. Using (19), (20), and vε(αι) ≤ Jε(αι, u
η), we obtain

vε(αι) ≤ Jε(αι, u
η)

≤ v(αι) + η + oε(1)

≤ vε(αι) + η + oε(1) + oε,1(1). (21)

Therefore,

lim sup
ε→0

|vε(αι) − v(αι)| ≤ η.

Because η is arbitrary, limε→0 v
ε(αι) = v(αι). Using (21),

0 ≤ Jε(αι, u
η) − vε(αι)

≤ η + oε,2(1), (22)

where oε,2(1) → 0 as ε → 0. Thus lim supε→0 |Jε(αι, u
η) − vε(αι)| ≤ η. The desired result follows.

�
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