Memory Disaggregation: Advances and Open Challenges

Hasan Al Maruf, Mosharaf Chowdhury
SymbioticLab, University of Michigan

Abstract

Compute and memory are tightly coupled within each server
in traditional datacenters. Large-scale datacenter operators
have identified this coupling as a root cause behind fleet-
wide resource underutilization and increasing Total Cost of
Ownership (TCO). With the advent of ultra-fast networks
and cache-coherent interfaces, memory disaggregation has
emerged as a potential solution, whereby applications can
leverage available memory even outside server boundaries.

This paper summarizes the growing research landscape
of memory disaggregation from a software perspective and
introduces the challenges toward making it practical under
current and future hardware trends. We also reflect on our
seven-year journey in the SymbioticLab to build a comprehen-
sive disaggregated memory system over ultra-fast networks.
We conclude with some open challenges toward building
next-generation memory disaggregation systems leveraging
emerging cache-coherent interconnects.

1 Introduction

Modern datacenter applications — low-latency online services,
big data analytics, and AI/ML workloads alike — are often
memory-intensive. As the number of users increases and we
collect more data in cloud datacenters, the overall memory de-
mand of these applications continue to rise. Despite their per-
formance benefits, memory-intensive applications experience
disproportionate performance loss whenever their working
sets do not completely fit in the available memory. For in-
stance, our measurements across a range of memory-intensive
applications show that if half their working sets do not fit in
memory, their performance can drop by 8 to 25x [22].

Application developers often sidestep such disasters by
over-allocating memory, but pervasive over-allocation in-
evitably leads to datacenter-scale memory underutilization. In-
deed, memory utilization at many hyperscalers hovers around
40%—-60% [1,22,25,40]. Service providers running on public
clouds, such as Snowflake, report 70%—-80% underutilized
memory on average [48]. Since DRAM is a significant driver
of infrastructure cost and power consumption [33], excessive
underutilization leads to high TCO.

At the same time, increasing the effective memory capacity
and bandwidth of each server to accommodate ever-larger
working sets is challenging as well. In fact, memory band-
width is a bigger bottleneck than memory capacity today as
the former increases at a slower rate. For example, to increase
memory bandwidth by 3.6 x in their datacenters, Meta had to

increase capacity by 16x [33]. To provide sufficient memory
capacity and/or bandwidth to memory-intensive applications,
computing and networking resources become stranded in tra-
ditional server platforms, which eventually causes fleet-wide
resource underutilization and increases TCO.

Memory disaggregation addresses memory-related rightsiz-
ing problems at both software and hardware levels. Applica-
tions are able to allocate memory as they need without being
constrained by server boundaries. Servers are not forced to
add more computing and networking resources when they
only need additional memory capacity or bandwidth. By ex-
posing all unused memory across all the servers as a memory
pool to all memory-intensive applications, memory disaggre-
gation can improve both application-level performance and
overall memory utilization. Multiple hardware vendors and
hyperscalers have projected [9, 10,28, 33] up to 25% TCO
savings without affecting application performance via (rack-
scale) memory disaggregation.

While the idea of leveraging remote machines’ memory
is decades old [15, 18, 20, 29,31, 35], only during the past
few years, the latency and bandwidth gaps between memory
and communication technologies have come close enough to
make it practical. The first disaggregated memory' solutions
(Infiniswap [22] and the rest) leveraged RDMA over Infini-
Band or Ethernet, but they are an order-of-magnitude slower
than local memory. To bridge this performance gap and to
address practical issues like performance isolation, resilience,
scalability, etc., we have built a comprehensive set of soft-
ware solutions. More recently, with the rise of cache-coherent
Compute Express Link (CXL) [3] interconnects and hardware
protocols, the gap is decreasing even more. We are at the cusp
of taking a leap toward next-generation software-hardware
co-designed disaggregated memory systems.

This short paper is equal parts a quick tutorial, a retrospec-
tive on the Infiniswap project summarizing seven years’ worth
of research, and a non-exhaustive list of future predictions
based on what we have learned so far.

2 Memory Disaggregation

Simply put, memory disaggregation exposes memory capac-
ity available in remote locations as a pool of memory and
shares it across multiple servers over the network. It decou-
ples the available compute and memory resources, enabling
independent resource allocation in the cluster. A server’s lo-

'Remote memory and far memory are often used interchangeably with
the term disaggregated memory.

Compute Blades Memory Blades

|| CPU || Cache] [DrRAM ||PMEM||
|| CPU_|[Cache] [pRAM ||DRAM||
| CcPu] [Cashe o=t = [oRAM] [oRant]|

(a) Physically Disaggregated

Monolithic Server Monolithic Server

CPU CPU
Network

e [23] [

(b) Logically Disaggregated
Figure 1: Physical vs. logical memory disaggregation architectures.

cal and remote memory together constitute its total physical
memory. An application’s locality of memory reference al-
lows the server to exploit its fast local memory to maintain
high performance, while remote memory provides expanded
capacity with an increased access latency that is still orders-
of-magnitude faster than accessing persistent storage (e.g.,
HDD, SSD). The OS and/or application runtime provides the
necessary abstractions to expose all the available memory in
the cluster, hiding the complexity of setting up and access-
ing remote memory (e.g., connection setup, memory access
semantics, network packet scheduling, etc.) while providing
resilience, isolation, security, etc. guarantees.

2.1 Architectures

Memory disaggregation systems have two primary cluster
memory architectures.

Physical Disaggregation. In a physically-disaggregated ar-
chitecture, compute and memory nodes are detached from
each other where a cluster of compute blades are connected
to one or more memory blades through network (e.g., PCle
bridge) [30] (Figure 1a). A memory node can be a traditional
monolithic server with low compute resource and large mem-
ory capacity, or it can be network-attached DRAM. For better
performance, the compute nodes are usually equipped with a
small amount of memory for caching purposes.

Logical Disaggregation. In a logically-disaggregated archi-
tecture, traditional monolithic servers hosting both compute
and memory resources are connected to each other through
the network (e.g., Infiniband, RoCEv2) (Figure 1b). This is a
popular approach for building a disaggregated memory sys-
tem because one does not need to change existing hardware
architecture; simply incorporating appropriate software to
provide a remote memory interface is sufficient. In such a
setup, usually, each of the monolithic servers has their own
OS. In some cases, the OS itself can be disaggregated across
multiple hosts [44]. Memory local to a host is usually prior-

Table 1: Selected memory disaggregation proposals.

Abstraction System Hardware oS Application
Transparent | Transparent | Transparent
Global Memory [19] Yes No Yes
Memory Blade [30] No No Yes
Virtual Infiniswap [22] Yes Yes Yes
Memory Leap [32] Yes No Yes
LegoOS [44] Yes No Yes
Management " N
(VMM) zSwap [25] Yes No Yes
Kona [14] Yes No Yes
Fastswap [12] Yes No Yes
Hydra [27] Yes Yes Yes
Virtual File Memory Pager [31] Yes Yes No
System (VFS) | Remote Regions [11] Yes Yes No
Custom FaRM [17] Yes Yes No
AP FaSST [24] Yes Yes No
Memtrade [34] Yes Yes No
Programming AIFM [42] Yes Yes No
Runtime Semeru [49] Yes Yes No

itized for running local jobs. Unutilized memory on remote
machines can be pooled and exposed to the cluster as re-
mote [14,22,27,32,34,42,44].

Hybrid Approach. Cache-coherent interconnects like CXL
provides the opportunity to build a composable heterogeneous
server memory systems that combine logical and physical
disaggregation approaches. Multiple monolithic servers, com-
pute devices, memory nodes, or network specialized devices
can be connected through fabric or switches where software
stacks can provide the cache-line granular or traditional vir-
tual memory-based disaggregated memory abstraction.

2.2 Abstractions and Interfaces

Interfaces to access disaggregated memory can either be trans-
parent to the application or need minor to complete re-write of
applications (Table 1). The former has broader applicability,
while the latter might have better performance.

Application-Transparent Interface. Access to remote dis-
aggregated memory without significant application rewrites
typically relies on two primary mechanisms: disaggregated
Virtual File System (VFS) [11], that exposes remote memory
as files and disaggregated Virtual Memory Manager (VMM)
for remote memory paging [22,27,32,44]. In both cases, data
is communicated in small chunks or pages (typically, 4KB). In
case of remote memory as files, pages go through the file sys-
tem before they are written to/read from the remote memory.
For remote memory paging and distributed OS, page faults
cause the VMM to write pages to and read them from the
remote memory. Remote memory paging is more suitable for
traditional applications because it does not require software
or hardware modifications.

Non-Transparent Interface. Another approach is to di-
rectly expose remote memory through custom API (KV-
store, remote memory-aware library or system calls) and
modify the applications incorporating these specific APIs
[17,24,34,41,42,49]. All the memory (de)allocation, trans-
actions, synchronizations, etc. operations are handled by the
underlying implementations of these APIs. Performance op-

Register: 0.2ns
Cache) 1-40ns

Main Memory 80-140ns
- R?’é%ﬁ%ﬁ’mlg‘l}yu B 170-400ns
Network-Attached Memory 2-4ps
SSD 10-40ps
HDD 3-10ms

Figure 2: Latency characteristics of different memory technologies.

timizations like caching, local-vs-remote data placement,
prefetching, etc. are often the responsibility of the application.

2.3 Challenges in Practical Memory Disaggregation

Simply relying on fast networks or interconnects is not suffi-
cient to make memory disaggregation practical. A comprehen-
sive solution must address challenges in multiple dimensions:

* High Performance. A disaggregated memory system in-
volves the network in its remote memory path, which is
at least an order-of-magnitude slower than memory chan-
nels attached to CPU and DRAM (80-140 nanoseconds
vs. microseconds; see Figure 2). Hardware-induced remote
memory latency is significant and impacts application per-
formance [22,32,33]. Depending on the abstraction, soft-
ware stacks can also introduce significant overheads. For
example, remote memory paging over existing OS VMM
can add tens of microseconds latency for a 4KB page [32].

* Performance Isolation. When multiple applications with
different performance requirements (e.g., latency- vs.
bandwidth-sensitive workloads) compete for disaggregated
memory, depending on where the applications are running
and where the remote memory is located, they may be con-
tending for resources inside the server, on the NIC, and in
the network on the hardware side and variety of resources
in the application runtimes and OSes. This is further exac-
erbated by the presence of multiple tiers of memory with
different latency-bandwidth characteristics.

* Memory Heterogeneity. Memory hierarchy within a
server is already heterogeneous (Figure 2). Disaggregated
memory — both network-attached and emerging CXL mem-
ory [21,28,33] — further increases heterogeneity in terms
of latency-bandwidth characteristics. In such a heteroge-
neous setup, simply allocating memory to applications is
not enough. Instead, decisions like how much memory to
allocate in which tier at what time is critical as well.

* Resilience to Expanded Failure Domains. Applications
relying on remote memory become susceptible to new fail-
ure scenarios such as independent and correlated failures of
remote machines, evictions from and corruptions of remote
memory, and network partitions. They also suffer from

stragglers or late-arriving remote responses due to network
congestion and background traffic [16]. These uncertainties
can lead to catastrophic failures and service-level objective
(SLO) violations.

« Efficiency and Scalability. Disaggregated memory sys-
tems are inherently distributed. As the number of memory
servers, the total amount of disaggregated memory, and the
number of applications increase, the complexity of finding
unallocated remote memory in a large cluster, allocating
them to applications without violating application-specific
SLOs, and corresponding meta-data overhead of memory
management increase as well. Finding efficient matching
at scale is necessary to achieve high overall utilization.

 Security. Although security of disaggregated memory is
often sidestepped within the confines of a private datacen-
ter, it is a major challenge for memory disaggregation in
public clouds. Since data residing in remote memory may
be read by entities without proper access, or corrupted from
accidents or malicious behavior, the confidentiality and in-
tegrity of remote memory must be protected. Additional
concerns include side channel and remote rowhammer at-
tacks over the network [45, 46], distributed coordinated
attacks, lack of data confidentiality and integrity and client
accountability during CPU bypass operations (e.g., when
using RDMA for memory disaggregation).

3 Infiniswap: A Retrospective

To the best of our knowledge, Infiniswap is the first memory
disaggregation system with a comprehensive and cohesive
set of solutions for all the aforementioned challenges. It ad-
dresses host-level, network-level, and end-to-end aspects of
practical memory disaggregation over RDMA. At a high level,
Infiniswap provides a paging-based remote memory abstrac-
tion that can accommodate any application without changes,
while providing a high-performance yet resilient, isolated, and
secure data path to remote disaggregated memory.

Bootstrapping. Our journey started in 2016, when we sim-
ply focused on building an application-transparent interface
to remote memory that are distributed across many servers.
Infiniswap [22] transparently exposed remote disaggregated
memory through paging without any modifications to appli-
cations, hardware, or OSes of individual servers. It employed
a block device with traditional I/O interface to VMM. The
block device divided its whole address space into smaller
slabs and transparently mapped them across many servers’
remote memory. Infiniswap captured 4KB page faults in run-
time and redirected them to remote memory using RDMA.
From the very beginning, we wanted to design a system
that would scale without losing efficiency down the line. To
this end, we designed decentralized algorithms to identify
free memory, to distribute memory slabs, and to evict slabs
for memory reclamation. This removed the overhead of cen-
tralized meta-data management without losing efficiency.

Improving Performance. Infiniswap’s block layer-based
paging caused high latency overhead during remote memory
accesses. This happens because Linux VMM is not optimized
for microsecond-scale operations. We gave up one degree of
freedom and designed Leap [32] in 2018 — we modified the
OS to optimize the remote memory data path by identifying
and removing non-critical functionalities while paging.

Even with the leanest data path, a reactive page fetching
system must suffer microsecond-scale network latency on the
critical path. Leap introduced a remote memory prefetcher
to proactively bring in the correct pages into a local cache
to provide sub-microsecond latency (comparable to that of a
local page access) on cache hits.

Providing Resilience. Infiniswap originally relied on local
disks to tolerate remote failures, which resulted in slow failure
recovery. Maintaining multiple in-memory replicas was not
an option either as it effectively halved the total capacity.
We started exploring erasure coding as a memory-efficient
alternative. Specifically, we divided each page into k splits to
generate r encoded parity splits and spread the (k4 r) splits
to (k4 r) failure domains — any k out of (k +r) splits would
then suffice to decode the original data. However, erasure
coding was traditionally applied to large objects [38]. By
2019/20, we built Hydra [27] whose carefully designed data
path could perform online erasure coding within a single-digit
microsecond tail latency. Hydra also introduced CodingSets,
a new data placement scheme that balanced availability and
load balancing, while reducing the probability of data loss by
an order of magnitude even under large correlated failures.

Multi-Tenancy Issues. We observed early on (circa 2017)
that accessing remote memory over a shared network suffers
from contention in the NIC and inside the network [54]. While
our optimized data paths in Leap and Hydra could address
some of the challenges inside the host, they did not extend
to resource contentions in the RDMA NIC (RNIC). We fin-
ished designing Justitia [56] in 2020 to improve the network
bottleneck in RNICs by transparently monitoring the latency
profiles of each application and providing performance isola-
tion. More recently, we have looked into improving Quality-
of-Service (QoS) inside the network as well [55].

Expanding to Public Clouds. While Infiniswap and related
projects were designed for cooperative private datacenters,
memory disaggregation in public clouds faces additional con-
cerns. In 2021, we finished designing Memtrade [34] to har-
vest all the idle memory within virtual machines (VMs) — be
it unallocated, or allocated to an application but infrequently
utilized, and exposed them to a disaggregated memory mar-
ketplace. Memtrade allows producer VMs to lease their idle
application memory to remote consumer VMs for a limited
period of time while ensuring confidentiality and integrity. It
employs a broker to match producers with consumers while
satisfying performance constraints.

~180 ns
38.4 GB/s per channel
~100 ns

DRAM

(a) Without CXL

64 GB/s per x16 li

~170-250 ns

38.4 GB/s per channel
~100 ns

(b) With CXL on PClIe 5.0
Figure 3: A CXL system compared to a dual-socket server.

Detours Along the Way. Throughout this journey, we
collaborated on side quests like designing a decentralized
resource management algorithm using RDMA primitives
[51], meta-data management inside the network using pro-
grammable switches [53], fine-grained compute disaggrega-
tion [52] etc. Some of our forays into designing hardware
support were nipped in the bud, often because we could not
find the right partners. In hindsight, perhaps we were fortunate
given how quickly the industry converged on CXL.

Summing it Up. Infiniswap together with all its extensions
can provide near-memory performance for most memory-
intensive applications even when 75% and sometimes more
of their working sets reside in remote disaggregated memory
in an application- and hardware-transparent manner, in the
presence of failures, load imbalance, and multiple tenants.
After seven years, we declared victory on this chapter in 2022.

4 Hardware Trend: Cache-Coherent
Interconnects

Although networking technologies like InfiniBand and Eth-
ernet continue to improve, their latency remain considerably
high for providing a cache-coherent memory address space
across disaggregated memory devices. CXL (Compute Ex-
press Link) [3] is a new processor-to-peripheral/accelerator
cache-coherent interconnect protocol that builds on and ex-
tends the existing PCle protocol by allowing coherent com-
munication between the connected devices.? It provides byte-
addressable memory in the same physical address space and
allows transparent memory allocation using standard memory
allocation APISs. It also allows cache-line granularity access
to the connected devices and underlying hardware maintains
cache-coherency and consistency. With PCIe 5.0, CPU-to-

2Prior industry standards in this space such as CCIX [2], OpenCAPI [8],
Gen-Z [5] etc. have all come together under the banner of CXL consortium.
While there are some related research proposals (e.g., [26]), CXL is the de
facto industry standard at the time of writing this paper.

CPU - NVIDIA Grace w/ CXL 2.0

Device — Samsung’s
15t generation
CXL Memory Expander

CPU - Intel Sapphire Rapids w/ CXL 1.1
CPU — AMD Genoa w/ CXL 1.1

CPU — AmpereOne-2
w/ CXL 2.0 on PCIe 5.0

CPU - Intel Diamond
Rapids w/ CXL3.0
on PCle 6.0

Device — 1% gen memory pooling controllers

CPU - AmpereOne-3 w/ CXL2.0 on PCle 6.0

Figure 4: CXL roadmap paves the way for memory pooling and disaggregation in next-generation datacenter design.

CXL interconnect bandwidth is similar to the cross-socket
interconnects (Figure 3) on a dual-socket machine [57]. CXL-
Memory access latency is also similar to the NUMA access
latency. CXL adds around 50-100 nanoseconds of extra la-
tency over normal DRAM access.

CXL Roadmap. Today, CXL-enabled CPUs and memory
devices support CXL 1.0/1.1 (Figure 4) that enables a point-to-
point link between CPUs and accelerator memory or between
CPUs and memory extenders. CXL 2.0 spec enables one-hop
switching that allows multiple accelerators without (Type-1
device) or with memory (Type-2 device) to be configured to
a single host and have their caches be coherent to the CPUs.
It also allows memory pooling across multiple hosts using
memory expanding devices (Type-3 device). A CXL switch
has a fabric manager (it can be on-board or external) that is in
charge of the device address-space management. Devices can
be hot-plugged to the switch. A virtual CXL switch partitions
the CXL-Memory and isolate the resources between multiple
hosts. It provides telemetry for load on each connected devices
for load balancing and QoS management.

CXL 3.0 adds multi-hop hierarchical switching — one can
have any complex types of network through cascading and
fan-out. This expands the number of connected devices and
the complexity of the fabric to include non-tree topologies,
like Spine/Leaf, mesh- and ring-based architectures. CXL 3.0
supports PCle 6.0 (64 GT/s i.e., up to 256 GB/s of through-
put for a x16 duplex link) and expand the horizon of very
complex and composable rack-scale server design with varied
memory technologies (Figure 5). A new Port-Based Routing
(PBR) feature provides a scalable addressing mechanism that
supports up to 4,096 nodes. Each node can be any of the
existing three types of devices or the new Global Fabric At-
tached Memory (GFAM) device that supports different types
of memory (i.e., Persistent Memory, Flash, DRAM, other fu-
ture memory types, etc.) together in a single device. Besides
memory pooling, CXL 3.0 enables memory sharing across
multiple hosts on multiple end devices. Connected devices
(i.e., accelerators, memory expanders, NICs, etc.) can do peer-
to-peer communicate bypassing the host CPUs.

In essence, CXL 3.0 enables large networks of memory
devices. This will proliferate software-hardware co-designed
memory disaggregation solutions that not only simplify and
better implement previous-generation memory disaggregation
solutions (e.g., Infiniswap) but also open up new possibilities.

CXL Switch CXL Switch

CXL Switch

CXL Switch

= = e

Figure 5: CXL 3.0 enables a rack-scale server design with complex
networking and composable memory hierarchy.

| GFAM | | GFaM |

| GFAM | NIC

5 Disaggregation Over Intra-Server CXL

With the emergence of new hardware technologies comes the
opportunity to rethink and revisit past design decisions, and
CXL is no different. Earlier software solutions for memory
disaggregation over RDMA are not optimized enough in CXL-
based because of its much lower latency bound, especially for
intra-server CXL (CXL 1.0/1.1) with 100s of nanoseconds la-
tency. Recent works in leveraging CXL 1.0/1.1 within a server
have focused on (tiered) memory pooling [28, 33] because
a significant portion of datacenter application working sets
can be offloaded to a slower-tier memory without hampering
performance [25,33,34]. We have recently worked on two
fundamental challenges in this context.

Memory Usage Characterization. Datacenter applications
have diverse memory access latency and bandwidth require-
ments. Sensitivity toward different memory page types can
also vary across applications. Understanding and character-
izing such behaviors is critical to designing CXL-enabled
heterogeneous tiered-memory systems. Chameleon [33] is a
lightweight user-space memory access behavior characteriza-
tion tool that can readily be deployed in production without
disrupting running application(s) or modifying the OS kernel.
It utilizes the Precise Event-Based Sampling (PEBS) mecha-
nism of modern CPU’s Performance Monitoring Unit (PMU)
to collect hardware-level performance events related to mem-
ory accesses. It then generates a heat-map of memory usage
for different page types and provides insights into an applica-
tion’s expected performance with multiple temperature tiers.

Memory Management. Given applications’ page charac-
terizations, TPP [33] provides an OS-level transparent page
placement mechanism, to efficiently place pages in a tiered-

memory system. TPP has three components: (a) a lightweight
reclamation mechanism to demote colder pages to the slow
tier; (b) decoupling the allocation and reclamation logic for
multi-NUMA systems to maintain a headroom of free pages
on the fast tier; and (c) a reactive page promotion mechanism
that efficiently identifies hot pages trapped in the slow mem-
ory tier and promote them to the fast memory tier to improve
performance. It also introduces support for page type-aware
allocation across the memory tiers.

6 CXL-Disaggregated Memory at Rack-Scale
and Beyond: Open Challenges

Although higher than intra-server CXL latency, rack-scale
CXL systems with a CXL switch (CXL 2.0) will experience
much lower latency than RDMA-based memory disaggre-
gation. With a handful of hops in CXL 3.0 setups, latency
will eventually reach a couple microseconds similar to that
found in today’s RDMA-based disaggregated memory sys-
tems. For next-generation memory disaggregation systems
that operate between these two extremes, i.e., rack-scale and
a little beyond, many open challenges exist. We may even
have to revisit some of our past design decisions (§2). Here
we present a non-exhaustive list of challenges informed by
our experience.

6.1 Abstractions

Memory Access Granularity. CXL enables cache-line
granular memory access over the connected devices, whereas
existing OS VMM modules are designed for page-granular
(usually, 4KB or higher) memory access. Throughout their
lifetimes, applications often write a small part of each page;
typically only 1-8 cache-lines out of 64 [14]. Page-granular
access causes large dirty data amplification and bandwidth
overuse. In contrast, fine-grained memory access over a large
memory pool causes high meta-data management overhead.
Based on an application’s memory access patterns, remote
memory abstractions should support transparent and dynamic
adjustments to memory access granularity.

Memory-QoS Interface. Traditional solutions for memory
page management focus on tracking (a subset of) pages and
counting accesses to determine the heat of the page and then
moving pages around. While this is enough to provide a two-
level, hot-vs-cold QoS, it cannot capture the entire spectrum
of page temperature. Potential solutions include assigning
a QoS level to (1) an entire application; (2) individual data
structures; (3) individual mmap () calls; or even (4) individ-
ual memory accesses. Each of these approaches have their
pros and cons. At one extreme, assigning a QoS level to an
entire application maybe simple, but it cannot capture time-
varying page temperature of large, long-running applications.
At the other end, assigning QoS levels to individual memory
accesses requires recompilation of all existing applications as
well as cumbersome manual assignments, which can lead to er-
roneous QoS assignments. A combination of aforementioned

approaches may reduce developer’s overhead while providing
sufficient flexibility to perform spatiotemporal memory QoS
management.

6.2 Management and Runtime

Memory Address Space Management. From CXL 2.0
onward, devices can be hot-plugged to the CXL switches.
Device-attached memory is mapped to the system’s coherent
address space and accessible to host using standard write-back
semantics. Memory located on a CXL device can either be
mapped as Host-managed Device Memory (HDM) or Private
Device Memory (PDM). To update the memory address space
for connected devices to different host devices, a system reset
is needed; traffic towards the device needs to stop to alter
device address mapping during this reset period. An alternate
solution to avoid this system reset is to map the whole physi-
cal address space to each host when a CXL-device is added to
the system. The VMM or fabric manager in the CXL switch
will be responsible to maintain isolation during address-space
management. How to split the whole address-space in to
sizable memory blocks for the efficient physical-to-virtual ad-
dress translation of a large memory network is an interesting
challenge [26,53].

Unified Runtime for Compute Disaggregation. CXL
Type-2 devices (accelerator with memory) maintains cache
coherency with the CPU. CPU and Type-2 devices can inter-
changeably use each other’s memory and both get benefited.
For example, applications that run on CPUs can benefit as they
can now access very high bandwidth GPU memory. Similarly,
for GPU users, it is beneficial for capacity expansion even
though the memory bandwidth to and from CPU memory
will be lower. In such a setup, remote memory abstractions
should track the availability of compute cores and efficiently
perform near-memory computation to improve the overall
system throughput.

Future datacenters will likely be equipped with numerous
domain-specific compute resources/accelerators. In such a
heterogeneous system, one can borrow the idle cores of one
compute resource and perform extra computation to increase
the overall system throughput. A unified runtime to support
malleable processes that can be immediately decomposed into
smaller pieces and offloaded to any available compute nodes
can improve both application and cluster throughput [41,52].

6.3 Allocation Policies

Memory Allocation in Heterogenous NUMA Cluster. For
better performance, hottest pages need to be on the fastest
memory tier. However, due to memory capacity constraints
across different tiers, it may not always be possible to uti-
lize the fastest or performant memory tier. Determining what
fraction of memory is needed at a particular memory tier to
maintain the desired performance of an application at differ-
ent points of its life cycle is challenging. This is even more
difficult when multiple applications coexist. Efficient promo-

tion or demotion of pages of different temperatures across
memory tiers at rack scale is necessary. One can consider
augmenting TPP by incorporating a lightweight but effec-
tive algorithm to select the migration target considering node
distances from the CPU, load on CPU-memory bus, current
load on different memory tiers, network state, and the QoS
requirements of the migration-candidate pages.

Allocation Policy for Memory Bandwidth Expansion.
For memory bandwidth-bound applications, CPU-to-DRAM
bandwidth often becomes the bottleneck and increases the av-
erage memory access latency. CXL’s additional memory band-
width can help by spreading memory across the top-tier and
remote nodes. Instead of only placing cold pages into CXL-
Memory, which has low bandwidth consumption, an ideal
solution should place the right amount of bandwidth-heavy,
latency-insensitive pages to CXL-Memory. The methodology
to identify the ideal fraction of such working sets may even
require hardware support.

Memory Sharing and Consistency. CXL 3.0 allows mem-
ory sharing across multiple devices. Through an enhanced co-
herency semantics, multiple hosts can have a coherent copy of
a shared segment, with back invalidation for synchronization.
Memory sharing improves application-level performance by
reducing unnecessary data movement and improves memory
utilization. Sharing a large memory address space, however,
results in significant overhead and complexity in the system
that plagued classic distributed shared memory (DSM) pro-
posals [36]. Furthermore, sharing memory across multiple
devices increases the security threat in the presence of any
malicious application run on the same hardware space. We
believe that disaggregated memory systems should cautiously
approach memory sharing and avoid it unless it is absolutely
necessary for specific scenarios.

6.4 Rack-Level Objectives

Rack-Scale Memory Temperature. To obtain insights into
an application’s expected performance with multiple temper-
ature tiers, it is necessary to understand the heat map of mem-
ory usage for that application. Existing hot page identification
mechanisms (including Chameleon) are limited to a single
host OS or user-space mechanism. They either use access
bit-based mechanism [4, 6,47], special CPU feature-based
(e.g., Intel PEBS) tools [39,43,50], or OS features [7,33] to
determine the page temperature within a single server. So far,
there is no distributed mechanism to determine the cluster-
wide relative page temperature. Combining the data of all
the OS or user-space tools and coordinating between them to
find rack-level hot pages is an important problem. CXL fabric
manager is perhaps the place where one can get a cluster-wide
view of hardware counters for each CXL device’s load, hit,
and access-related information. One can envision extending
Chameleon for rack-scale environments to provide observabil-
ity into each application’s per-device memory temperature.

Hardware-Software Co-Design for a Better Ecosystem.
Hardware features can further enhance performance of mem-
ory disaggregation systems in rack-scale setups. A memory-
side cache and its associated prefetcher on the CXL ASIC
or switch might help reduce the effective latency of CXL-
Memory. Hardware support for data movement between mem-
ory tiers can help reduce page migration overheads in an ag-
gressively provisioned system with very small amount of local
memory and high amount of CXL-Memory. Additionally, the
fabric manager of a CXL switch should implement policies
like fair queuing, congestion control, load balancing etc. for
better network management. Incorporating Leap’s prefetcher
and Hydra’s erasure-coded resilience ideas into CXL switch
designs can enhance system-wide performance.

Energy- and Carbon-Aware Memory Disaggregation.
Datacenters represent a large and growing source of energy
consumption and carbon emissions [13]. Some estimates
place datacenters to be responsible for 1-2% of aggregate
worldwide electricity consumption [23, 37]. To reduce the
TCO and carbon footprint, and enhance hardware life ex-
pectancy, datacenter rack maintain a physical energy bud-
get or power cap. Rack-scale memory allocation, demotion,
and promotion policies can be augmented by incorporating
energy-awareness in their decision-making process. In gen-
eral, we can introduce energy-awareness in the software stack
that manage compute, memory, and network resources in a
disaggregated cluster.

7 Conclusion

We started the Infiniswap project in 2016 with the conviction
that memory disaggregation is inevitable, armed only with a
few data points that hinted it might be within reach. As we
conclude this paper in 2023, we have successfully built a com-
prehensive software-based disaggregated memory solution
over ultra-fast RDMA networks that can provide a seamless
experience for most memory-intensive applications. With di-
verse cache-coherent interconnects finally converging under
the CXL banner, the entire industry (and ourselves) are at
the cusp of taking a leap toward next-generation software-
hardware co-designed disaggregated systems. Join us. Mem-
ory disaggregation is here to stay.

Acknowledgements

Juncheng Gu, Youngmoon Lee, and Yiwen Zhang co-led dif-
ferent aspects of the Infiniswap project alongside the authors.
We thank Yiwen Zhang for his feedback on this paper. Spe-
cial thanks to our many collaborators, contributors, users,
and cloud resource providers (namely, CloudLab, Chameleon
Cloud, and UM ConFlux) for making Infiniswap successful.
Our expeditions into next-generation memory disaggregation
solutions have greatly benefited from our collaborations with
Meta. Our research was supported in part by National Sci-
ence Foundation grants (CCF-1629397, CNS-1845853, and
CNS-2104243) and generous gifts from VMware and Meta.

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

Alibaba Cluster Trace 2018. https://github.com/
alibaba/clusterdata/blob/master/cluster-
trace-v2018/trace_2018.md.

CCIX. https://www.ccixconsortium.com/.

Compute Express Link (CXL).
/ /www.computeexpresslink.org/.

https:

DAMON: Data Access MONitoring Framework
for Fun and Memory Management Optimizations.
https://www.linuxplumbersconf.org/event/
7/contributions/659/attachments/503/1195/
damon_ksummit_2020.pdf.

Gen-Z. https://genzconsortium.org/.

Idle page tracking-based working set estimation. https:
//lwn.net/Articles/460762/.

NUMA Balancing (AutoNUMA). https:
//mirrors.edge.kernel.org/pub/linux/kernel/
people/andrea/autonuma/autonuma_bench-
20120530.pdf.

OpenCAPIL https://opencapi.org/.

Rack-scale computing at Yahoo!
//www.intel.com/content/dam/www/public/
us/en/documents/presentation/idf15-yahoo—
rack-scale-computing-presentation.pdf.

http:

Tencent explores datacenter resource-pooling
using Intel rack scale architecture (Intel RSA).
http://www.intel.com/content/dam/www/public/
us/en/documents/white-papers/rsa-tencent-
paper.pdf.

M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,
J. Gandhi, S. Novakovi¢, A. Ramanathan, P. Subrah-
manyam, L. Suresh, K. Tati, R. Venkatasubramanian,
and M. Wei. Remote regions: a simple abstraction for
remote memory. In USENIX ATC, 2018.

E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout,
M. K. Aguilera, A. Panda, S. Ratnasamy, and S. Shenker.
Can far memory improve job throughput? In EuroSys,
2020.

T. Anderson, A. Belay, M. Chowdhury, A. Cidon, and
I. Zhang. Treehouse: A case for carbon-aware datacenter
software. In HotCarbon, 2022.

I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A.
Maruf, O. Mutlu, and A. Kolli. Rethinking software
runtimes for disaggregated memory. In ASPLOS, 2021.

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

H. Chen, Y. Luo, X. Wang, B. Zhang, Y. Sun, and
Z. Wang. A transparent remote paging model for virtual
machines. In International Workshop on Virtualization
Technology, 2008.

J. Dean and L. A. Barroso. The tail at scale. Communi-
cations of the ACM, 56(2):74-80, 2013.

A. Dragojevi¢, D. Narayanan, O. Hodson, and M. Castro.
FaRM: Fast remote memory. In NSDI, 2014.

S. Dwarkadas, N. Hardavellas, L. Kontothanassis,
R. Nikhil, and R. Stets. Cashmere-VLM: Remote mem-
ory paging for software distributed shared memory. In
IPPS/SPDP, 1999.

M. J. Feeley, W. E. Morgan, E. Pighin, A. R. Karlin,
H. M. Levy, and C. A. Thekkath. Implementing global
memory management in a workstation cluster. In ACM
SIGOPS Operating Systems Review, volume 29, pages
201-212. ACM, 1995.

E. W. Felten and J. Zahorjan. Issues in the implemen-
tation of a remote memory paging system. Technical
Report 91-03-09, University of Washington, Mar 1991.

D. Gouk, S. Lee, M. Kwon, and M. Jung. Direct ac-
cess, High-Performance memory disaggregation with
DirectCXL. In USENIX ATC, 2022.

J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.
Efficient memory disaggregation with Infiniswap. In
NSDI, 2017.

N. Jones. How to stop data centres from gobbling up
the world’s electricity. Nature, 561:163—166, 2018.

A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST:
Fast, scalable and simple distributed transactions with
two-sided (RDMA) datagram RPCs. In OSDI, 2016.

A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal,
R. Burny, S. Butt, J. Chang, A. Chaugule, N. Deng,
J. Shahid, G. Thelen, K. A. Yurtsever, Y. Zhao, and
P. Ranganathan. Software-defined far memory in
warehouse-scale computers. In ASPLOS, 2019.

S.-s. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and
A. Bhattacharjee. MIND: In-network memory manage-
ment for disaggregated data centers. In SOSP, 2021.

Y. Lee, H. A. Maruf, M. Chowdhury, A. Cidon, and K. G.
Shin. Hydra : Resilient and highly available remote
memory. In FAST, 2022.

H. Li, D. S. Berger, S. Novakovic, L. Hsu, D. Ernst,
P. Zardoshti, M. Shah, S. Rajadnya, S. Lee, I. Agarwal,
M. D. Hill, M. Fontoura, and R. Bianchini. Pond: CXL-
based memory pooling systems for cloud platforms. In
ASPLOS, 2023.

https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://www.ccixconsortium.com/
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://www.linuxplumbersconf.org/event/7/contributions/659/attachments/503/1195/damon_ksummit_2020.pdf
https://www.linuxplumbersconf.org/event/7/contributions/659/attachments/503/1195/damon_ksummit_2020.pdf
https://www.linuxplumbersconf.org/event/7/contributions/659/attachments/503/1195/damon_ksummit_2020.pdf
https://genzconsortium.org/
https://lwn.net/Articles/460762/
https://lwn.net/Articles/460762/
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://opencapi.org/
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/idf15-yahoo-rack-scale-computing-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/idf15-yahoo-rack-scale-computing-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/idf15-yahoo-rack-scale-computing-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/idf15-yahoo-rack-scale-computing-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rsa-tencent-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rsa-tencent-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rsa-tencent-paper.pdf

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

S. Liang, R. Noronha, and D. K. Panda. Swapping to
remote memory over InfiniBand: An approach using
a high performance network block device. In IEEE
International Conference on Cluster Computing, 2005.

K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Rein-
hardt, and T. F. Wenisch. Disaggregated memory for
expansion and sharing in blade servers. SIGARCH,
2009.

E. P. Markatos and G. Dramitinos. Implementation of a
reliable remote memory pager. In USENIX ATC, 1996.

H. A. Maruf and M. Chowdhury. Effectively prefetching
remote memory with Leap. In USENIX ATC, 2020.

H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agar-
wal, P. Bhattacharya, C. Petersen, M. Chowdhury,
S. Kanaujia, and P. Chauhan. TPP: Transparent page
placement for CXL-enabled tiered-memory. In ASPLOS,
2023.

H. A. Maruf, Y. Zhong, H. Wong, M. Chowdhury,
A. Cidon, and C. Waldspurger. Memtrade: A
disaggregated-memory marketplace for public clouds.
In SIGMETRICS, 2023.

T. Newhall, S. Finney, K. Ganchev, and M. Spiegel.
Nswap: A network swapping module for Linux clus-
ters. In Euro-Par, 2003.

B. Nitzberg and V. Lo. Distributed shared memory: A
survey of issues and algorithms. Computer, 24(8):52-60,
1991.

F. Pearce. Energy hogs: Can world’s huge data centers
be made more efficient? Yale Environment, 2018.

K. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and
K. Ramchandran. EC-Cache: Load-balanced, low-
latency cluster caching with online erasure coding. In
OSDI, 2016.

A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Peter.
HeMem: Scalable tiered memory management for big
data applications and real NVM. In SOSP, 2021.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and
M. A. Kozuch. Heterogeneity and dynamicity of clouds
at scale: Google trace analysis. In SoCC, 2012.

Z. Ruan, S. J. Park, M. K. Aguilera, A. Belay, and
M. Schwarzkopf. Nu: Achieving microsecond-scale
resource fungibility with logical processes. In NSDI,
2023.

Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Be-
lay. AIFM: High-performance, application-integrated
far memory. In OSDI, 2020.

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

H. Servat, A. J. Peiia, G. Llort, E. Mercadal, H.-C.
Hoppe, and J. Labarta. Automating the application
data placement in hybrid memory systems. In /IEEE
International Conference on Cluster Computing, 2017.

Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS:
A disseminated, distributed OS for hardware resource
disaggregation. In OSDI, 2018.

A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida,
H. Bos, and K. Razavi. Throwhammer: Rowhammer
attacks over the network and defenses. In ATC, 2018.

S.-Y. Tsai, M. Payer, and Y. Zhang. Pythia: Remote
oracles for the masses. In USENIX Security, 2019.

Vladimir Davydov. Idle Memory Tracking. https:
//lwn.net/Articles/639341/.

M. Vuppalapati, J. Miron, R. Agarwal, D. Truong,
A. Motivala, and T. Cruanes. Building an elastic query
engine on disaggregated storage. In NSDI, 2020.

C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen, M. D.
Bond, R. Netravali, M. Kim, and G. H. Xu. Semeru:
A Memory-Disaggregated managed runtime. In OSDI,
2020.

K. Wu, Y. Huang, and D. Li. Unimem: Runtime data
managementon non-volatile memory-based heteroge-
neous main memory. In SC, 2017.

D. Y. Yoon, M. Chowdhury, and B. Mozafari. Dis-
tributed lock management with RDMA: Decentraliza-
tion without starvation. In SIGMOD, 2018.

J. You, J. Wu, X. Jin, and M. Chowdhury. Ship compute
or ship data? why not both? In NSDI, 2021.

Z. Yu, Y. Zhang, V. Braverman, M. Chowdhury, and
X. Jin. NetLock: Fast, centralized lock management
using programmable switches. In SIGCOMM, 2020.

Y. Zhang, J. Gu, Y. Lee, M. Chowdhury, and K. G. Shin.
Performance isolation anomalies in RDMA. In ACM
SIGCOMM KBNets, 2017.

Y. Zhang, G. Kumar, N. Dukkipati, X. Wu, P. Jha,
M. Chowdhury, and A. Vahdat. Aequitas: Admission
control for performance-critical RPCs in datacenters. In
ACM SIGCOMM, 2022.

Y. Zhang, Y. Tan, B. Stephens, and M. Chowdhury. Justi-
tia: Software Multi-Tenancy in hardware Kernel-Bypass
networks. In NSDI, 2022.

W. Zhao and J. Ning. Project Tioga Pass Rev
0.30 : Facebook Server Intel Motherboard V4.0
Spec. https://www.opencompute.org/documents/
facebook-server-intel-motherboard-v40-spec.

https://lwn.net/Articles/639341/
https://lwn.net/Articles/639341/
https://www.opencompute.org/documents/facebook-server-intel-motherboard-v40-spec
https://www.opencompute.org/documents/facebook-server-intel-motherboard-v40-spec

	Introduction
	Memory Disaggregation
	Architectures
	Abstractions and Interfaces
	Challenges in Practical Memory Disaggregation

	Infiniswap: A Retrospective
	Hardware Trend: Cache-Coherent Interconnects
	Disaggregation Over Intra-Server CXL
	CXL-Disaggregated Memory at Rack-Scale and Beyond: Open Challenges
	Abstractions
	Management and Runtime
	Allocation Policies
	Rack-Level Objectives

	Conclusion

