
Noname manuscript No.
(will be inserted by the editor)

Superconvergent Interpolatory HDG methods for reaction diffusion
equations II: HHO-inspired methods

Gang Chen · Bernardo Cockburn · John R. Singler ·
Yangwen Zhang

Received: date / Accepted: date

Abstract In [J. Sci. Comput., 81:2188-2212, 2019], we considered a superconvergent hybridizable dis-
continuous Galerkin (HDG) method, defined on simplicial meshes, for scalar reaction-diffusion equations
and showed how to define an interpolatory version which maintained its convergence properties. The in-
terpolatory approach uses a locally postprocessed approximate solution to evaluate the nonlinear term,
and assembles all HDG matrices once before the time intergration leading to a reduction in computa-
tional cost. The resulting method displays a superconvergent rate for the solution for polynomial degree
k ≥ 1. In this work, we take advantage of the link found between the HDG and the hybrid high-order
(HHO) methods, in [ESAIM Math. Model. Numer. Anal., 50(3):635–650, 2016] and extend this idea to
the new, HHO-inspired HDG methods, defined on meshes made of general polyhedral elements, uncov-
ered therein. We prove that the resulting interpolatory HDG methods converge at the same rate as for
the linear elliptic problems. Hence, we obtain superconvergent methods for k ≥ 0 by some methods. We
present numerical results to illustrate the convergence theory.

Keywords Hybrid high order methods · hybridizable discontinuous Galerkin methods · interpolatory
method · superconvergence

1 Introduction

This is the third in a series of papers devoted to the devising of interpolatory HDG methods for the
scalar reaction-diffusion model problem

∂tu−∆u+ F (u) = f in Ω × (0, T ],

u = 0 on ∂Ω × (0, T ],

u(·, 0) = u0 in Ω,

(1)

where Ω is a Lipschitz polyhedral domain in Rd(d = 2, 3), with boundary Γ = ∂Ω. The interpolatory
approach has two main advantageous features. First, it avoids the use of a numerical quadrature typically
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Interpolatory HDG Wh u⋆
h τ flux q scalar u

(A) Pk+1 uh 1/h k + 1 k + 2 (k ≥ 0)

(B) Pk pk+1
h (uh, ˆ︁uh) 1/h k + 1 k + 2 (k ≥ 0)

(C) Pk−1 pk+1
h (uh, ˆ︁uh) 1/h k + 1 k + 2 (k ≥ 2)

Table 1 Convergence rates for the Interpolatory HDG (ABC) methods. The elementwise postprocessing pk+1
h (uh, ˆ︁uh) is

taken from [14]. The last column gives the orders of convergence of u⋆
h to u.

required for the assembly of the global matrix at each iteration in each time step, which is a computa-
tionally costly component of standard HDG methods for nonlinear equations. Second, the interpolated
nonlinear term and its Jacobian are simple to formulate and evaluate, which yields a straightforward
implementation of the method.

In the first paper of this series, [18], we applied this idea to an HDG method defined on simplicial
meshes. It is called the HDGk method since it uses polynomials of degree k to approximate all variables,
that is, the flux q = −∇u, the solution u, and its numerical trace on the faces of the elements. The
interpolatory method was obtained by simply replacing the nonlinearity F (uh) by a suitably defined linear
interpolate IhF (uh). Unfortunately, the resulting method lost the superconvergence property it had in the
linear case. In the second paper, [8], we showed that, if instead of IhF (uh), we use IhF (u⋆

h), where u
⋆
h was

a elementwise postprocessing of the approximate solution, we recovered the superconvergence previously
lost. In this paper, we extend this idea to the new, HHO-inspired HDG methods uncovered in [14]. These
methods are defined on meshes made of general polyhedral elements, use polynomials of degree k to
approximate the flux variable q and numerical trace, and use different polynomial degrees for the scalar
variable u. We refer to them as the HDG (ABC) methods. To deal with non-simplicial elements, the
stabilization function incorporates the postprocessed approximation u⋆

h, which is the distinctive feature
of the HHO methods, see [3, 14]. We prove that the interpolatory technique maintains the convergence
rates of the HDG (ABC) methods while retaining all the advantages of the interpolatory approach.

We note that the HDG (A) method is also known as the Lehrenfeld-Schöberl HDG method or the
HDG+ method. This HDG method has been investigated in a number of works; see, e.g., [3, 39,40] and
the recent papers [9, 24,54] and the references therein.

We summarize the convergence rates of the Interpolatory HDG (ABC) methods in Table 1. We see
that, in terms of the approximation for u, the Interpolatory HDG (A) method converges optimally for
all k ≥ 0, the Interpolatory HDG (B) superconverges for all k ≥ 0, and the Interpolatory HDG (C)
superconverges for k ≥ 2. We must emphasize that the superconvergence of the HDG (B) methods for
k = 0 is fundamentally different from the superconvergence of the HDGk methods considered in [8],
where k ≥ 1 is required for superconvergence. This reflects the essential different nature of the HDG
(ABC) and the HDGk methods. It is worthwhile to mention that the convergence rate of HDG (C)
method stated in [14] has an error when k = 1 since, in the linear case, its superconvergence property is
only valid for k ≥ 2. This property is similar to that of the BDM mixed methods [2] which use the same
local spaces for q and u.

Interpolatory finite element approaches for nonlinear partial differential equations have been investi-
gated for many decades because of their computational advantages. There are many different names for
these methods, including finite element methods with interpolated coefficients, product approximation,
and the group finite element method. For more information, see [7, 10, 11, 22, 23, 25, 26, 30–32, 42, 47–53]
and the references therein. Our interest in applying the interpolatory approach to the HDG methods is
that, after its introduction [15] in the framework of linear steady-state diffusion problems, they have been
extended in the last decade to a wide variety of partial differential equations including nonlinear equa-
tions like those of convection-diffusion [17], of the p−Laplacian [17], of the incompressible Navier-Stokes
flow [5,34,37], of the compressible Navier-Stokes flow [41,43], of fluid dynamics [38], of continuum solid
mechanics [35], of scalar hyperbolic conservation laws [4,28,33], of large deformation elasticity [29,36,46];
see also the reviews [12,13]. The popularity of these methods stems from the fact that they are discontin-
uous Galerkin (DG) methods amenable to static condensation. Therefore, the number of globally-coupled
degrees of freedom for HDG methods is significantly lower than for standard DG methods. The applica-
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tion of the interpolatory approach to HDG methods for nonlinear problems renders the resulting methods
even more efficient to implement.

The paper is organized as follows. We discuss the Interpolatory HDG (ABC) formulations in Section 2.
We then analyze the semidiscrete Interpolatory HDG (ABC) methods in Section 3. Finally, we illustrate
the performance of the Interpolatory HDG (ABC) methods in Section 4 with numerical experiments. We
end with some concluding remarks.

2 Main results

In this section, we introduce the notation, define the interpolatory HDG (ABC) methods, and state and
briefly discuss their a priori error estimates.

2.1 Notation

To describe the Interpolatory HDG (ABC) methods, we first introduce the notation used in [15].

2.1.1 Meshes and inner products

Let Th be a collection of disjoint elements K that partition Ω, and K is star-shaped with respect to some
ball; see [1, Definition 4.2.2]. Set ∂Th to be {∂K : K ∈ Th}. For an element K in Th, let e = ∂K ∩ Γ
denote the boundary face of K if the d− 1 Lebesgue measure of e is non-zero. For two elements K+ and
K− of the collection Th, let e = ∂K+ ∩ ∂K− denote the interior face between K+ and K− if the d− 1
Lebesgue measure of e is non-zero. We assume the edges are flat in 2D and are planar in 3D. Let Eo

h and
E∂
h denote the sets of interior and boundary faces, respectively, and let Eh denote the union of Eo

h and
E∂
h .
For D ⊂ Rd, let (·, ·)D denote the L2(D) inner product and, when Γ is the union of subsets of Rd−1,

let ⟨·, ·⟩Γ denote the L2(Γ ) inner product. We finally set

(w, v)Th
:=

∑︂
K∈Th

(w, v)K , ⟨ζ, ρ⟩∂Th
:=

∑︂
K∈Th

⟨ζ, ρ⟩∂K .

2.1.2 Spaces

Set

Vh := {v ∈ [L2(Ω)]d : v|K ∈ [Pk(K)]d, ∀ K ∈ Th},
Wh := {w ∈ L2(Ω) : w|K ∈ Pℓ(K), ∀ K ∈ Th},
Zh := {z ∈ L2(Ω) : z|K ∈ Pk+1(K), ∀ K ∈ Th},
Mh := {µ ∈ L2(Eh) : µ|e ∈ Pk(e), ∀ e ∈ Eh, µ|E∂

h
= 0},

where Pk(D) denotes the set of polynomials of degree at most k on a domain D. In what follows, we
take ℓ = k + 1, k, and k − 1 to define the Interpolatory HDG (A), (B), and (C) methods, respectively.
Note that the Interpolatory HDG (C) method is only defined for k ≥ 1.

2.1.3 Interpolators and projections

As in [8], we denote by Ih the element-wise Lagrange interpolation operator with respect to the finite
element nodes for the space Zh. Thus, Ihg ∈ Zh for any function g that is continuous on each element.

We denote by Πo
ℓ (ℓ ≥ 0) and Π∂

k (k ≥ 0) the particular L2-orthogonal projections Πo
ℓ : L2(K) →

Pℓ(K) and Π∂
k : L2(e) → Pk(e), respectively, that is,

(Πo
ℓ u, vh)K = (u, vh)K , ∀ vh ∈ Pℓ(K), (2a)

⟨Π∂
k u, ˆ︁vh⟩e = ⟨u, ˆ︁vh⟩e, ∀ ˆ︁vh ∈ Pk(e). (2b)

The following error estimates for the L2−projections and the elementwise interpolation operator Ih from
Section 2 are standard and can be found in [1].
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Lemma 1 Suppose k, ℓ ≥ 0. There exists a constant C independent of K ∈ Th such that

∥w − Ihw∥K ≤ Chk+2|w|k+2,K ∀ w ∈ C(K̄) ∩Hk+2(K),

∥w −Πo
ℓw∥K ≤ Chℓ+1|w|ℓ+1,K ∀ w ∈ Hℓ+1(K),

∥w −Π∂
kw∥∂K ≤ Chk+1/2|w|k+1,K ∀ w ∈ Hk+1(K).

We now define an auxiliary projection related to the postprocessings originally developed in [16, 27,
44, 45] but more intimately linked with that of the HHO methods [19–21], see also [14]. On an element
K ∈ Th, we define the auxiliary projection Π⋆

k+1 as

Π⋆
k+1u = pk+1

h (Πo
ℓ u,Π

∂
k u), (3)

where pk+1
h (uh, ˆ︁uh) is the element of Pk+1(K) satisfying

(∇pk+1
h (uh, ˆ︁uh),∇zh)K = −(uh, ∆zh)K + ⟨ˆ︁uh,n · ∇zh⟩∂K ∀ zh ∈ [Pk+1

ℓ (K)]⊥, (4a)

(pk+1
h (uh, ˆ︁uh), wh)K = (uh, wh)K ∀ wh ∈ Pℓ(K), (4b)

where [Pk+1
ℓ (K)]⊥ := {vh ∈ Pk+1(K) : (vh, wh)K = 0,∀ wh ∈ Pℓ(K)}.

2.2 The Interpolatory HDG (ABC) methods

We can now define the Interpolatory HDG (ABC) methods as follows: for all (rh, vh, ˆ︁vh) ∈ Vh×Wh×Mh,
find (qh, uh, ˆ︁uh) ∈ Vh ×Wh ×Mh such that

(qh, rh)Th
− (uh,∇ · rh)Th

+ ⟨ˆ︁uh, rh · n⟩∂Th
= 0, (5a)

(∂tuh, vh)Th
− (qh,∇vh)Th

+ ⟨ˆ︁qh · n, vh⟩∂Th
+ (IhF (u⋆

h), vh)Th
= (f, vh)Th

, (5b)

⟨ˆ︁qh · n, ˆ︁vh⟩∂Th\E∂
h
= 0, (5c)

uh(0) = uh(0), (5d)

where u⋆
h := pk+1

h (uh, ˆ︁uh). To complete the definition of the methods, we need to define the numerical
trace for the flux, ˆ︁qh, and the initial condition uh(0). For any element K ∈ Th, we define ˆ︁qh · n on ∂K
by

ˆ︁qh · n = qh · n+ rk∗∂K [h−1
K rk∂K(uh − ˆ︁uh)], (6a)

where rk∗∂K is the adjoint of rk∂K , and rk∂K is defined, see [14], by

rk∂K(uh − ˆ︁uh) = Π∂
k u

⋆
h − ˆ︁uh. (6b)

Finally, we define the initial condition uh(0) as one of the components of the HDG (ABC) elliptic approxi-
mation. For any t ∈ [0, T ], we define the HDG (ABC) elliptic approximation of (−∇u(t)|Th

, u(t)|Th
, u(t)|Eh

)
to be the unique element (qh, uh, ˆ︁uh) of Vh ×Wh ×Mh which solves

(qh, rh)Th
− (uh,∇ · rh)Th

+ ⟨ˆ︁uh, rh · n⟩∂Th\∂Ω = 0, (7a)

(∇ · qh, vh)Th
− ⟨qh · n, ˆ︁vh⟩∂Th

+ ⟨h−1
K (Π∂

k u
⋆
h − ˆ︁uh), Π

∂
k v

⋆
h − ˆ︁vh⟩∂Th

= (−∆u(t), vh)Th
(7b)

for all (rh, vh, ˆ︁vh) ∈ Vh ×Wh ×Mh, where u⋆
h = pk+1

h (uh, ˆ︁uh) and v⋆h = pk+1
h (vh, ˆ︁vh).
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2.3 Main result

We assume that the nonlinearity F satisfies a Lipschitz condition:

|F (u)− F (v)| ≤ L |u− v| ∀ u, v ∈ D. (8)

As done in [8], we assume that, when F is globally Lischitz in a suitably chosen domain D, the solutions
of the model problem (1), and those of the semidiscrete Interpolatory HDG (ABC) equations (5), exist
and are unique for t ∈ [0, T ].

We also assume the elliptic regularity inequality

∥Φ∥1 + ∥Ψ∥2 ≤ C∥g∥0, (9a)

where (Φ, Ψ) solves the dual problem:

Φ+∇Ψ = 0, ∇ ·Φ = g in Ω, Ψ = 0 on ∂Ω. (9b)

We can now state our main result for the Interpolatory HDG (ABC) methods.

Theorem 1 Assume that the nonlinearity F is globally Lipschitz, that is, it satisfies condition (8) with
D := R. Assume that u ∈ C1[0, T ;Hk+2(Ω)] ∩ C0[0, T ;W 1,∞(Ω)]. Finally, assume that the elliptic
regularity inequality (9a) holds. Then, for all 0 ≤ t ≤ T , the solution (qh, uh, u

⋆
h) of (5) satisfies

∥q(t)− qh(t)∥Th
≤ C hk+1,

∥u(t)− uh(t)∥Th
≤ Chℓ+1,

∥u(t)− u⋆
h(t)∥Th

≤ C

{︄
h2 if (k, l) = (1, 0),

hk+2 otherwise.

The constant C is independent of h, but depends on T and on norms of u and ut. Moreover, if the
nonlinearity F satisfies the Lipschitz condition (8) with D := [−M,M ], where

M = max{|u(t, x)| : x ∈ Ω, t ∈ [0, T ]}+ δ, for a fixed δ > 0,

and the mesh is quasi-uniform and h ≤ 1
C δ

1
k+2−d/2 is small enough, then the same convergence rates

hold.

This result states that, provided the solution is smooth enough, we recover the optimal orders of conver-
gence. For HDG (A) with k ≥ 0, the optimal order of convergence of k + 2 holds for u⋆

h, as it coincides
with uh. Superconvergence of order k + 2 for u⋆

h holds for HDG (B) with k ≥ 0, and for HDG (C) with
k ≥ 2. When k = 1, the order of convergence of u⋆

h for HDG (C) is only k + 1 = 2.

The result can be extended to other initial conditions, as confirmed by our numerical experiments.
The one we chose makes the proof simpler.

3 Proof of the error estimates

This section is devoted to proving our main result, the a priori error estimates of Theorem 1. To do
that, we essentially follow the approach carried out in [8]. However, we need to use different auxiliary
projections to capture the special structure of the stabilization functions of the HDG (ABC) methods.

3.1 Reformulating the HDG (ABC) methods

We begin by rewriting the definition of the Interpolatory HDG (ABC) methods to render it more suitable
to our error analysis. Unlike the approach used in [8], here we eliminate the numerical trace of the flux
from the equations.
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Proposition 1 (Reformulation of the methods) For all (rh, vh, ˆ︁vh) ∈ Vh ×Wh ×Mh, the Interpo-
latory HDG (ABC) formulations can be rewritten as follows: find (qh, uh, ˆ︁uh) ∈ Vh×Wh×Mh satisfying

(qh, rh)Th
− (uh,∇ · rh)Th

+ ⟨ˆ︁uh, rh · n⟩∂Th
= 0,

(∂tuh, vh)Th
+ (IhF (u⋆

h), vh)Th
+ (∇ · qh, vh)Th

− ⟨qh · n, ˆ︁vh⟩∂Th

+⟨h−1
K (Π∂

k u
⋆
h − ˆ︁uh), Π

∂
k v

⋆
h − ˆ︁vh⟩∂Th

= (f, vh)Th
,

uh(0) = uh(0),

where u⋆
h = pk+1

h (uh, ˆ︁uh) and v⋆h = pk+1
h (vh, ˆ︁vh).

Proof Inserting the definition of the numerical trace of the flux (6a) into the first two equations defining
the HDG (ABC) method (5), we obtain

(∂tuh, vh)Th
− (qh,∇vh)Th

+ (IhF (u⋆
h), vh)Th

+⟨qh · n+ rk∗∂K [h−1
K (Π∂

k u
⋆
h − ˆ︁uh)], vh⟩∂Th

= (f, vh)Th
,

⟨qh · n+ rk∗∂K [h−1
K (Π∂

k u
⋆
h − ˆ︁uh)], ˆ︁vh⟩∂Th

= 0.

Subtracting the second equation from the first, and integrating by parts, we get

(∂tuh, vh)Th
+ (IhF (u⋆

h), vh)Th
+ (∇ · qh, vh)Th

− ⟨qh · n, ˆ︁vh⟩∂Th

+⟨rk∗∂K [h−1
K (Π∂

k u
⋆
h − ˆ︁uh)], vh − ˆ︁vh⟩∂Th

= (f, vh)Th
.

Since rk∗∂K is the adjoint of rk∂K , the result follows after using the definition of rk∂K in (6b), rk∂K(vh−ˆ︁vh) =
Π∂

k p
k+1
h (vh, ˆ︁vh)− ˆ︁vh, and after recalling that v⋆h = pk+1

h (vh, ˆ︁vh).
3.2 Main error estimate

Our analysis is based on estimating the following quantities:

eqh = qh − qh, euh = uh − uh, eˆ︁uh = ˆ︁uh − ˆ︁uh, eu
⋆

h = u⋆
h − u⋆

h.

Here, we obtain the main estimates for these functions.
We begin by obtaining the error equations.

Lemma 2 (Error equations) We have

(eqh, rh)Th
− (euh,∇ · rh)Th

+ ⟨eˆ︁uh, rh · n⟩∂Th
= 0,

(∂te
u
h, vh)Th

+ (∇ · eqh, vh)Th
− ⟨eqh · n, ˆ︁vh⟩∂Th

+⟨h−1
K (Π∂

k e
u⋆

h − eˆ︁uh), Π∂
k v

⋆
h − ˆ︁vh⟩∂Th

+ (IhF (u⋆
h)− F (u), vh)Th

= (∂t(Π
o
ℓ u− uh), vh)Th

.

This result can be easily proven by subtracting the equations (7) from those in Proposition 1, and noting
that eu

⋆

h = pk+1
h (euh, e

ˆ︁u
h).

Lemma 3 (Error estimates at t = 0) We have euh(0) = 0 and

∥eqh(0)∥
2
Th

+ ∥h−1/2(Π∂
k e

u⋆

h (0)− eˆ︁uh(0))∥2∂Th
= 0.

Proof Take (rh, vh, ˆ︁vh) := (eqh(0), e
u
h(0), e

ˆ︁u
h(0)) in the error equations of Lemma 2, evaluate at t = 0 and

add the resulting equations. Since euh(0) = uh(0)− uh(0) = 0, we get the result.

Next, we display the main error estimates.

Lemma 4 (Main error estimates) For t ∈ [0, T ], we have

∥euh(t)∥2Th
+

∫︂ t

0

(︁
∥eqh∥

2
Th

+ ∥h−1/2(Π∂
k e

u⋆

h − eˆ︁uh)∥2∂Th

)︁
≤ C tΘ(t),

∥eqh∥
2
Th

+ ∥h−1/2Π∂
k e

u⋆

h − eˆ︁uh∥2∂Th
+

∫︂ t

0

∥∂teuh∥2Th
≤ C Θ(t),

where Θ(t) :=
∫︁ t

0
∥∂t(Πo

ℓ u− uh)∥2Th
+
∫︁ t

0
∥F (u)− IhF (u⋆

h)∥2Th
.
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Proof We first take (rh, vh, ˆ︁rh) := (eqh, e
u
h, e

ˆ︁u
h) in the error equations of Lemma 2, and add the resulting

equations to get

(∂te
u
h, e

u
h)Th

+ ∥eqh∥
2
Th

+ ∥h−1/2(Π∂
k e

u⋆

h − eˆ︁uh)∥2∂Th
= (∂t(Π

o
ℓ u− uh), e

u
h)Th

+ (F (u)− IhF (u⋆
h), e

u
h)Th

.

We now apply the Cauchy-Schwarz inequality to both terms of the right-hand side, and take

ζ(t) = ∥euh(t)∥2Th
, Z(s) = 2

(︁
∥eqh∥

2
Th

+ ∥h−1/2(Π∂
k e

u⋆

h − eˆ︁uh)∥2∂Th

)︁
,

A(t) = 0, B(s) = 2(∥∂t(Πo
ℓ u− uh)∥Th

+ ∥F (u)− IhF (u⋆
h)∥Th

)

in a Gronwall-like inequality [6, Proposition 3.1] and the fact that euh(0) = 0 to obtain

∥euh(t)∥2Th
+ 2

∫︂ t

0

(︁
∥eqh∥

2
Th

+ ∥h−1/2(Π∂
k e

u⋆

h − eˆ︁uh)∥2∂Th

)︁
≤

(︃∫︂ t

0

∥∂t(Πo
ℓ u− uh)∥Th

+

∫︂ t

0

∥F (u)− IhF (u⋆
h)∥Th

)︃2

.

The first inequality is obtained after simple manipulations.

Next, we take the partial derivative with respect to t in the first error equation of Lemma 2 and keep
the second equation unchanged. We obtain

(∂te
q
h, rh)Th

− (∂te
u
h,∇ · rh)Th

+ ⟨∂teˆ︁uh, rh · n⟩∂Th
= 0,

(∂te
u
h, vh)Th

+ (∇ · eqh, vh)Th
− ⟨eqh · n, ˆ︁vh⟩∂Th

+⟨h−1
K (Π∂

k e
u⋆

h − eˆ︁uh), Π∂
k v

⋆
h − ˆ︁vh⟩∂Th

+ (IhF (u⋆
h)− F (u), vh)Th

= (∂t(Π
o
ℓ u− uh), vh)Th

.

Taking (rh, vh, ˆ︁rh) := (eqh, ∂te
u
h, ∂te

ˆ︁u
h) in these equations and adding them, we get

(∂te
q
h, e

q
h)Th

+ ⟨h−1
K (Π∂

k e
u⋆

h − eˆ︁uh), ∂tΠ∂
k e

u⋆

h − ∂te
ˆ︁u
h⟩∂Th

+ ∥∂teuh∥2Th

= (∂t(Π
o
ℓ u− uh), ∂te

u
h)Th

+ (F (u)− IhF (u⋆
h), ∂te

u
h)Th

.

We now apply the Cauchy-Schwarz inequality to each of the two terms of the right-hand side, use Young’s
inequality and the estimates of the errors at t = 0 of Lemma 3 to get the second estimate.

3.3 The Lipschitz conditions on the nonlinearity

Here, we end our error analysis. We bound the term ∥F (u) − IhF (u⋆
h)∥Th

under different assumptions
on the nonlinearity F (u) and conclude. To do that, we need the following auxiliary result. Its proof is
given in Appendix A.

Lemma 5 We have

∥Π⋆
k+1u− u∥0,∞,K ≤ Ch∥∇u∥0,∞,K , (10a)

∥Π⋆
k+1u− u⋆

h∥Th
≤ C(∥uh −Πo

ℓ u∥Th
+ h∥qh −Πo

kq∥Th
+ h∥q −Πo

kq∥Th
). (10b)

Theorem 2 For any t ∈ [0, T ], we have the following error estimates

∥Πo
kq − qh∥Th

≤ Ch∥Πo
ℓ (−∆u) +∆u∥Th

+ C(h1/2∥Πo
kq − q∥∂Th

+ ∥h−1/2(Π⋆
k+1u− u)∥∂Th

),

∥Πo
ℓ u− uh∥Th

≤ Ch1+min{1,ℓ}∥Πo
ℓ (−∆u) +∆u∥Th

+ C(h1/2∥Πo
kq − q∥∂Th

+ ∥h−1/2(Π⋆
k+1u− u)∥∂Th

),

∥∂tΠo
ℓ u− ∂tuh∥Th

≤ Ch1+min{1,ℓ}∥Πo
ℓ (−∆ut) +∆ut∥Th

+ C(h1/2∥Πo
kqt − qt∥∂Th

+ ∥h−1/2(Π⋆
k+1ut − ut)∥∂Th

).
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3.3.1 Error estimates for a global Lipschitz condition

Here, we assume the nonlinearity is globally Lipschitz.

Lemma 6 We have

∥F (u)− IhF (u⋆
h)∥Th

≤ ∥F (u)− IhF (u)∥Th
+ C

(︁
∥u− Ihu∥Th

+ ∥u−Π⋆
k+1u∥Th

+ ∥Π⋆
k+1u− u⋆

h∥Th

)︁
.

Proof To bound the error in the nonlinear term, we write F (u)− IhF (u⋆
h) = R1 +R2 +R3, where

R1 := F (u)− IhF (u), R2 := IhF (u)− IhF (Π⋆
k+1u), R3 := IhF (Π⋆

k+1u)− IhF (u⋆
h).

The result follows since

∥R2∥Th
≤ C(∥u− Ihu∥Th

+ ∥u−Π⋆
k+1u∥Th

) and ∥R3∥Th
≤ C∥Π⋆

k+1u− u⋆
h∥Th

.

as shown in [18, Lemma 6]. This completes the proof.

Remark 1 Although the proof of [18, Lemma 6] only holds for simplex mesh, it can be extend to general
polygonal mesh by using a finite number of reference elements. The proof is trivial and we skip it.

Lemma 7 For t ∈ [0, T ], we have that

Θ(t) ≤ ΘHDG(t) +ΘAPP (t) + C

∫︂ t

0

(∥euh∥2Th
+ h2∥eqh∥

2
Th
),

where

ΘHDG(t) :=

∫︂ t

0

∥∂t(Πo
ℓ u− uh)∥2Th

+ C

∫︂ t

0

(∥uh −Πo
ℓ u∥2Th

+ h2∥qh −Πo
kq∥2Th

),

ΘAPP (t) := C

∫︂ t

0

(∥F (u)− IhF (u)∥2Th
+ ∥u− Ihu∥2Th

+ ∥u−Π⋆
k+1u∥2Th

+ h2∥q −Πo
kq∥2Th

).

We note that ΘHDG involves the HDG elliptic approximation, while ΘAPP involves only approxima-
tions of the exact solution of the PDE and related quantities.

Proof We have, by Lemma 6,

Θh := ∥F (u)− IhF (u⋆
h)∥Th

≤ ∥F (u)− IhF (u)∥Th
+ C(∥u− Ihu∥Th

+ ∥u−Π⋆
k+1u∥Th

+ ∥Π⋆
k+1u− u⋆

h∥Th
)

≤ ∥F (u)− IhF (u)∥Th
+ C(∥u− Ihu∥Th

+ ∥u−Π⋆
k+1u∥Th

)

+ C(∥uh −Πo
ℓ u∥Th

+ h∥qh −Πo
kq∥Th

+ h∥q −Πo
kq∥Th

),

by (10b). Using the definition of euh and eqh, and the triangle inequality, we get

∥F (u)− IhF (u⋆
h)∥Th

≤ ∥F (u)− IhF (u)∥Th
+ C(∥u− Ihu∥Th

+ ∥u−Π⋆
k+1u∥Th

)

+ C(∥uh −Πo
ℓ u∥Th

+ h∥qh −Πo
kq∥Th

+ h∥q −Πo
kq∥Th

)

+ C(∥euh∥Th
+ h∥eqh∥Th

).

Inserting this bound in the definition of Θ(t), we obtain the desired result. This completes the proof.

Lemma 8 For t ∈ [0, T ], we have

∥euh(t)∥2Th
+

∫︂ t

0

(︁
∥eqh∥

2
Th

+ ∥h−1/2(Π∂
k e

u⋆

h − eˆ︁uh)∥2∂Th

)︁
≤ 2 tΦ(T ),

∥eqh∥
2
Th

+ ∥h−1/2Π∂
k e

u⋆

h − eˆ︁uh∥2∂Th
+

∫︂ t

0

∥∂teuh∥2Th
≤ 2Φ(T ),

where Φ(T ) := ΘHDG(T ) +ΘAPP (T ).

Proof By the previous lemma, we have, for all t ∈ [0, T ],

Θ(t) ≤ΘHDG(T ) +ΘAPP (T ) + C

∫︂ t

0

(∥euh∥2Th
+ h2∥eqh∥

2
Th
)

≤ΘHDG(T ) +ΘAPP (T ) + C

∫︂ t

0

(s+ h2)Θ(s) ds,

by Lemma 4. By applying the Gronwall inequality, we get that Θ(t) ≤ C(T )Φ(T ). The result now follows
by using the main estimates of Lemma 4.
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3.3.2 Error estimates for a local Lipschitz condition

In this section we assume that the nonlinearity F is only locally Lipschitz, as is the case in many
applications. To deal with this case, we assume that the mesh Th is quasi-uniform.

Lemma 9 Assume the mesh Th is quasi-uniform. Then for h small enough and t ∈ (0, T ], the error
estimates of Lemma 8 hold.

Proof By (10a), there is an h0 such that for all h ∈ (0, h0] and for all t ∈ [0, T ], there holds

∥u−Π⋆
k+1u∥0,∞,Th

≤ δ

2
.

Therefore, Π⋆
k+1u ∈ [−(M − δ/2), (M − δ/2)], and this implies that

∥F (u)− F (Π⋆
k+1u)∥Th

≤ L∥u−Π⋆
k+1u∥Th

.

By an inverse inequality and the assumption of quasiuniformity of the mesh, we get

∥Π⋆
k+1u(0)− u⋆

h(0)∥0,∞,Th
≤ h−d/2∥Π⋆

k+1u(0)− u⋆
h(0)∥Th

≤ C(∥uh(0)−Πo
ℓ u(0)∥Th

+ h∥qh(0)−Πo
kq(0)∥Th

+ h∥q(0)−Πo
kq(0)∥Th

)

≤ C(∥uh(0)−Πo
ℓ u(0)∥Th

+ h∥q(0)−Πo
kq(0)∥Th

),

where we used (10b) (5d) and Lemma 3. Then by Theorem 2 and Lemma 1 we have

∥Π⋆
k+1u(0)− u⋆

h(0)∥0,∞,Th
≤ Ch−d/2(hℓ+2+min{ℓ,1} + hk+2).

By the restrictions on d, the upper bound of this error at time zero can be made strictly smaller than
δ/2 by taking h sufficiently small, say, for all h ∈ (0, h⋆

0], where h⋆
0 ≤ h0.

Then, for each h ∈ (0, h⋆
0] let th ∈ (0, T ] be the largest value such that for all t ∈ [0, th] there holds

∥Π⋆
k+1u− u⋆

h∥0,∞,Th
≤ δ

2
. (11)

Therefore, u⋆
h ∈ [−M,M ], and again we have

∥F (Π⋆
k+1u)− F (u⋆

h)∥Th
≤ L∥Π⋆

k+1u− u⋆
h∥Th

.

Now the error estimate of Lemma 9 can be proved in exactly the same way as in Lemma 8. However,
the estimate now holds only for all h ∈ (0, h⋆

0] and for all t ∈ [0, th].
By (10b) and the error estimate, for all t ∈ [0, th] we have

∥Π⋆
k+1u(t)− uh(t)∥Th

= ∥eu
⋆

h (t)∥Th
≤ Chℓ+2+min{1,ℓ} + Chk+2.

By an inverse inequality, for all t ∈ [0, th] we have

∥Π⋆
k+1u(t)− uh(t)∥0,∞,Th

≤ C(hℓ+2+min{1,ℓ} + Chk+2)h− d
2 .

As before, there exists h1 ∈ (0, h⋆
0] such that for all h ∈ (0, h1] and for all t ∈ [0, th] there holds

∥Π⋆
k+1u(t)− uh(t)∥0,∞,Th

<
δ

2
.

Since for each h ∈ (0, h1] we have that th ∈ (0, T ] is the largest value such that (11) holds for all t ∈ [0, th],
therefore th = T for all h small enough. This completes the proof.

3.4 Conclusion

We are now ready to conclude the proof of our main result. Indeed, if the nonlinearity is globally Lipschitz,
since q − qh = q − Πo

kq + Πo
kq − qh + qh − qh and u − uh = u − Πo

ku + Πo
ku − uh + uh − uh, the

convergence estimates for q − qh and u − uh in the main result follow from the triangle inequality, the
estimates in Lemma 1, Theorem 2, and Lemma 8. The superconvergence estimate for u−u⋆

h in the main
result follows from the triangle inequality, Proposition 1, (10b), and the estimates in Theorem 2 and
Lemma 8.

If the nonlinearity is locally Lipschitz, the estimates of the main result in this case now follow from
the above result in the same way. This concludes the proof of the main result, Theorem 1.
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Table 2 History of convergence. Top is HDG (A), middle is HDG (B) and bottom is HDG (C)

Degree h√
2

∥q − qh∥0,Ω ∥u− uh∥0,Ω ∥u− u⋆
h∥0,Ω

Error Rate Error Rate Error Rate

k = 0

2−1 1.18 2.93E-01 2.93E-01
2−2 6.33E-01 0.89 9.53E-02 1.62 9.53E-02 1.62
2−3 3.23E-01 0.97 2.47E-02 1.95 2.47E-02 1.95
2−4 1.62E-01 0.99 6.24E-03 1.99 6.24E-03 1.99
2−5 8.12E-02 0.98 1.56E-03 2.00 1.56E-03 2.00

k = 1

2−1 3.39E-02 8.81E-02 8.81E-02
2−2 9.15E-03 1.97 1.14E-02 2.95 1.14E-02 2.95
2−3 2.33E-02 1.99 1.44E-03 3.00 1.44E-03 3.00
2−4 5.86E-03 1.99 1.80E-04 3.00 1.80E-04 3.00
2−5 1.47E-03 2.00 2.25E-05 3.00 2.25E-05 3.00

Degree h√
2

∥q − qh∥0,Ω ∥u− uh∥0,Ω ∥u− u⋆
h∥0,Ω

Error Rate Error Rate Error Rate

k = 0

2−1 1.21 3.23E-01 2.41E-01
2−2 6.40E-01 0.92 1.41E-01 1.20 6.47E-01 1.90
2−3 3.24E-01 0.98 6.68E-01 1.08 1.66E-02 1.97
2−4 1.62E-01 1.00 3.29E-02 1.02 4.17E-03 2.00
2−5 8.13E-02 1.00 1.64E-02 1.00 1.04E-03 2.00

k = 1

2−1 3.41E-01 9.33E-01 6.31E-02
2−2 9.02E-02 1.90 2.12E-02 2.14 9.05E-03 2.80
2−3 2.28E-02 1.98 5.07E-02 2.07 1.16E-03 2.96
2−4 5.73E-03 2.00 1.25E-03 2.02 1.46E-04 2.99
2−5 1.43E-03 2.00 3.11E-04 2.00 1.83E-05 3.00

Degree h√
2

∥q − qh∥0,Ω ∥u− uh∥0,Ω ∥u− u⋆
h∥0,Ω

Error Rate Error Rate Error Rate

k = 1

2−1 6.28E-01 2.58E-01 1.16E-01
2−2 1.78E-01 1.82 1.32E-01 0.97 3.20E-02 1.86
2−3 4.58E-02 1.96 6.56E-02 1.00 8.24E-02 1.96
2−4 1.15E-02 1.99 3.28E-02 1.00 2.07E-03 1.99
2−5 2.89E-03 2.00 1.64E-02 1.00 5.20E-04 2.00

k = 2

2−1 1.06E-01 7.39E-02 1.27E-02
2−2 1.44E-02 2.88 1.95E-02 1.92 9.39E-04 3.76
2−3 1.85E-03 2.96 4.95E-03 1.98 6.18E-05 3.92
2−4 2.33E-04 2.99 1.24E-03 1.99 3.92E-06 3.98
2−5 2.93E-05 3.00 3.11E-04 2.00 2.47E-07 4.00

4 Numerical Results

We test the Chaffee-Infante equation with an exact solution to illustrate the convergence theory. The
domain is the unit square Ω = (0, 1)× (0, 1) ⊂ R2, the nonlinear term is F (u) := u3 − u, and the source
term f is chosen so that the exact solution is u = sin(t) sin(πx) sin(πy). The meshes are uniform and
made of triangles. The Crank-Nicolson method is used for the time discretization. The initial condition is
the simple L2-projection of u0 into Wh. For Interpolatory HDG (AB), the time step is chosen as ∆t = h
when k = 0 and ∆t = h2 when k = 1, where k is the polynomial degree. We choose ∆t = h when k = 1
and ∆t = h2 when k = 2 for Interpolatory HDG (C). We report the errors at the final time T = 1 in
Table 2. The observed convergence rates match the theory.

5 Conclusion

In [8], we proposed a superconvergent Interpolatory HDG method to approximate the solution of non-
linear reaction diffusion PDEs. The new method uses a postprocessing procedure along with an interpo-
lation operator to evaluate the nonlinear term. This simple change recovers the superconvergence that
was lost in our earlier Interpolatory HDG work [18]. Furthermore, this method retains the computational
advantages of our Interpolatory HDG method from [18].

We extended the idea developed previously and devised superconvergent Interpolatory HDG methods
inspired by hybrid high-order methods [14]. We proved that the interpolatory procedure does not reduce
the convergence rate.

The devising of superconvergent HDG methods for equations with the more general nonlinear term
F (∇u, u) constitutes a subject of ongoing work.
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A Approximation estimates of auxiliary projections

A.1 Proof of (10a)

Here we prove the estimate for Π⋆
k+1u− u in (10a).

We are going to use the following auxiliary result.

Lemma 10 For any K ∈ Th, we have

∥Π⋆
k+1u− u∥K ≤ C

(︁
h∥∇u−∇Πo

k+1u∥K + ∥u−Πo
k+1u∥K

)︁
.

Proof By definitions (3) and (4), we obtain

(∇Π⋆
k+1u,∇zh)K = −(Πo

ℓ u,∆zh)K + ⟨Π∂
k u,n · ∇zh⟩∂K ,

(Π⋆
k+1u,wh)K = (Πo

ℓ u,wh)K ,

for all (zh, wh) ∈ [Pk+1
ℓ (K)]⊥ × Pℓ(K). This leads to

(∇Π⋆
k+1u,∇zh)K = (∇u,∇zh)K ,

(Π⋆
k+1u,wh)K = (Πo

k+1u,wh)K .

The last equation implies that Π⋆
k+1u−Πo

k+1u ∈ [Pk+1
ℓ (K)]⊥ and so, we can then take zh := Π⋆

k+1u−Πo
k+1u in the first

equation to get

∥∇Π⋆
k+1u−∇Πo

k+1u∥
2
K = (∇Π⋆

k+1u−∇Πo
k+1u,∇u−∇Πo

k+1u)K ,

and

∥∇Π⋆
k+1u−∇Πo

k+1u∥K ≤ ∥∇u−∇Πo
k+1u∥K .

Since Π⋆
k+1u−Πo

k+1u ∈ [Pk+1
ℓ (K)]⊥, we have

(Π⋆
k+1u−Πo

k+1u, 1)K = 0,

and using Poincaré’s inequality, we obtain

∥Π⋆
k+1u−Πo

k+1u∥K ≤ Ch∥∇Π⋆
k+1u−∇Πo

k+1u∥K ≤ Ch∥∇u−∇Πo
k+1u∥K .

Then the estimate follows by applying the triangle inequality. This completes the proof.

We are now ready to prove (10a). Using inverse inequalities, Poincaré’s inequality, and the approximation properties
for Πo

k+1, one gets

∥u−Π⋆
k+1u∥0,∞,K ≤ ∥Π⋆

k+1u−Πo
k+1u∥0,∞,K + ∥Πo

k+1u− u∥0,∞,K

≤ Ch−d/2∥Π⋆
k+1u−Πo

k+1u∥0,K + ∥Πo
k+1u− u∥0,∞,K

≤ Ch1−d/2|u−Πo
k+1u|1,K + ∥Πo

k+1u− u∥0,∞,K .

(12)

By [1, Lemma 4.3.8], there exists Qk+1u ∈ Pk+1(K) such that

∥Qk+1u− u∥1,∞,K ≤ C|u|1,∞,K , ∥Qk+1u− u∥0,∞,K ≤ Ch|u|1,∞,K .

Hence, by (12) we have

∥u−Π⋆
k+1u∥0,∞,K

≤ Ch1−d/2
(︂
∥u−Qk+1u∥1,K + ∥Qk+1u−Πo

k+1u∥1,K
)︂
+

(︂
∥u−Qk+1u∥0,∞,K + ∥Qk+1u−Πo

k+1u∥0,∞,K

)︂
= Ch1−d/2

(︂
∥u−Qk+1u∥1,K + ∥Πo

k+1(Q
k+1u− u)∥1,K

)︂
+ C

(︂
∥u−Qk+1u∥0,∞,K + h−d/2∥Qk+1u−Πo

k+1u∥K
)︂

≤ Ch1−d/2
(︂
∥u−Qk+1u∥1,K + ∥Πo

k+1(Q
k+1u− u)∥1,K

)︂
+ C

(︂
∥u−Qk+1u∥0,∞,K + h−d/2∥Πo

k+1(Q
k+1u− u)∥K

)︂
≤ Ch1−d/2

(︂
∥u−Qk+1u∥1,K + ∥Qk+1u− u∥1,K

)︂
+ C

(︂
∥u−Qk+1u∥0,∞,K + h−d/2∥Qk+1u− u∥K

)︂
≤ Ch1−d/2∥u−Qk+1u∥1,K + Ch−d/2∥u−Qk+1u∥K + C∥u−Qk+1u∥0,∞,K

≤ Ch∥u−Qk+1u∥1,∞,K + C∥u−Qk+1u∥0,∞,K

≤ Ch|u|1,∞,K .

This completes the proof of (10a).
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A.2 Proof of 10b

Here, we prove the estimate for Π⋆
k+1u− u⋆

h in (10b).

Let zh ∈ [Pk+1
ℓ (K)]⊥ and take rh = ∇zh in the first equation of Proposition 1 to get

(qh,∇zh)− (uh,∆zh)Th
+ ⟨ˆ︁uh,∇zh · n⟩∂Th

= 0.

Combined with (4a) one gets

(∇u⋆
h,∇zh) = −(qh,∇zh) ∀ zh ∈ [Pk+1

ℓ (K)]⊥.

By the definition of Π⋆
k+1, as in the proof of Proposition 1 one gets

(∇Π⋆
k+1u,∇zh)K = −(Πo

ℓ u,∆zh)K + ⟨Π∂
k u,n · ∇zh⟩∂K = (∇u,∇zh)K .

Let eh = u⋆
h − uh +Πo

ℓ u−Π⋆
k+1u, and then eh ∈ [Pk+1

ℓ (K)]⊥. By the two previous equations, q = −∇u, and an inverse
inequality we have

∥∇eh∥2K = (∇(u⋆
h − uh),∇eh)K + (∇(Πo

ℓ u−Π⋆
k+1u),∇eh)K

= (−qh −∇uh,∇eh)K + (∇(Πo
ℓ u− u),∇eh)K

= ((q −Πo
kq)− (qh −Πo

kq) +∇(Πo
ℓ u− uh),∇eh)K

≤ C(h−1∥uh −Πo
ℓ u∥K + ∥qh −Πo

kq∥K + ∥q −Πo
kq∥K)∥∇eh∥K .

Since (eh, 1)K = 0, we can now apply the Poincaré inequality to get

∥eh∥K ≤ Ch∥∇eh∥K ≤ C(∥uh −Πo
ℓ u∥K + h∥qh −Πo

kq∥K + h∥q −Πo
kq∥K).

This means

∥eh∥Th
≤ C(∥uh −Πo

ℓ u∥Th
+ h∥qh −Πo

kq∥Th
+ h∥q −Πo

kq∥Th
).

Hence, we have

∥Π⋆
k+1u− u⋆

h∥Th
≤ ∥Π⋆

k+1u−Πo
ℓ u− u⋆

h + uh∥Th
+ ∥Πo

ℓ u− uh∥Th

≤ C(∥uh −Πo
ℓ u∥Th

+ h∥qh −Πo
kq∥Th

+ h∥q −Πo
kq∥Th

).

This completes the proof of (10b).

B Proof of Theorem 2

This appendix is devoted to the proof of the approximation estimates of Theorem 2. We only give the proofs of the estimates
for ∥Πo

kq − qh∥Th
and ∥Πo

ℓ u − uh∥Th
. The proof of the estimate for ∥∂tΠo

ℓ u − ∂tuh∥Th
is very similar and is omitted.

We use the notation

εqh = Πo
kq − qh, εuh = Πo

ℓ u− uh, εˆ︁uh = Π∂
k u− ˆ︁uh, and εu

⋆

h = Π⋆
k+1u− u⋆

h,

and split the proof into four steps.

Step 1: Equations for the projections of the errors

Lemma 11 For all (rh, vh, ˆ︁vh) ∈ Vh ×Wh ×Mh, we have

(εqh, rh)Th
− (εuh,∇ · rh)Th

+ ⟨εˆ︁uh, rh · n⟩∂Th
= 0,

(∇ · εqh, vh)Th
− ⟨εqh · n, ˆ︁vh⟩∂Th

+ ⟨h−1(Π∂
k ε

u⋆

h − εˆ︁uh), Π∂
k v

⋆
h − ˆ︁vh⟩∂Th

= RHSh,

where

RHSh := ((I−Πo
ℓ )(−∆u), (I−Πo

ℓ )v
⋆
h) + Eh(q, u; vh, ˆ︁vh),

Eh(q, u; vh, ˆ︁vh) :=− ⟨(Πo
kq − q) · n, ˆ︁vh − v⋆h⟩∂Th

+ ⟨h−1(Π⋆
k+1u− u), Π∂

k v
⋆
h − ˆ︁vh⟩∂Th

,

and I is the identity operator.
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Proof We begin by noting that, by the properties of Πo
k , Π

o
ℓ , and Π∂

k , we have

(Πo
kq, rh)Th

− (Πo
ℓ u,∇ · rh)Th

+ ⟨Π∂
k u, rh · n⟩∂Th

= (q, rh)Th
− (u,∇ · rh)Th

+ ⟨u, rh · n⟩∂Th
= 0,

since q +∇u = 0. Also, since ⟨q · n, ˆ︁vh⟩∂Th
= 0, we have

(∇ ·Πo
kq, vh)Th

− ⟨Πo
kq · n, ˆ︁vh⟩∂Th

= ((∇ ·Πo
kq, v

⋆
h)Th

− ⟨Πo
kq · n, ˆ︁vh⟩∂Th

= (∇ · q, v⋆h)Th
− ⟨(Πo

kq − q) · n, ˆ︁vh − v⋆h⟩∂Th

= (−∆u, v⋆h)Th
− ⟨(Πo

kq − q) · n, ˆ︁vh − v⋆h⟩∂Th
.

As a consequence,

(Πo
kq, rh)Th

− (Πo
ℓ u,∇ · rh)Th

+ ⟨Π∂
k u, rh · n⟩∂Th

= 0,

(∇ ·Πo
kq, vh)Th

− ⟨Πo
kq · n, ˆ︁vh⟩∂Th

+ ⟨h−1(Π∂
kΠ

⋆
k+1u−Π∂

k u), Π
∂
k v

⋆
h − ˆ︁vh⟩∂Th

= (−∆u, v⋆h)Th

+ Eh(q, u; vh, ˆ︁vh).
The wanted equations can be now obtained by subtracting these equations from the equations defining the HDG elliptic
approximation (7). This completes the proof.

Step 2: Estimate for εqh by an energy argument

Lemma 12 We have

∥∇εu
⋆

h ∥Th
+ ∥εqh∥Th

+ ∥h−1/2(Π∂
k ε

u⋆

h − εˆ︁uh)∥∂Th

≤ C
(︂
h∥(Πo

ℓ − I)(−∆u)∥Th
+ h1/2∥Πo

kq − q∥∂Th
+ ∥h−1/2(Π⋆

k+1u− u)∥∂Th

)︂
.

This result implies the estimate for the approximate flux in Theorem 2. To prove this lemma, we need the following auxiliary
result.

Lemma 13 We have

∥εqh∥Th
≤ C

(︂
∥∇εu

⋆

h ∥Th
+ ∥h−1/2(Π∂

k ε
u⋆

h − εˆ︁uh)∥∂Th

)︂
, (13a)

∥∇εu
⋆

h ∥Th
≤

(︂
∥εqh∥Th

+ ∥h−1/2(Π∂
k ε

u⋆

h − εˆ︁uh)∥∂Th

)︂
. (13b)

Proof Using the first equation of Lemma 11, the definition of pk+1
h in (4), and ∇ · rh ∈ Wh, we have

(εqh, rh)Th
− (εu

⋆

h ,∇ · rh)Th
+ ⟨εˆ︁uh, rh · n⟩∂Th

= 0.

Integration by parts gives

(εqh, rh)Th
+ (∇εu

⋆

h , rh)Th
+ ⟨εˆ︁uh −Π∂

k ε
u⋆

h , rh · n⟩∂Th
= 0.

Since ∇εu
∗

h ∈ Vh, by taking first rh := εqh and then rh := ∇εu
∗

h , one gets

∥εqh∥Th
≤ C

(︂
∥∇εu

⋆

h ∥Th
+ ∥h−1/2(Π∂

k ε
u⋆

h − εˆ︁uh)∥∂Th

)︂
,

∥∇εu
⋆

h ∥Th
≤ C

(︂
∥εqh∥Th

+ ∥h−1/2(Π∂
k ε

u⋆

h − εˆ︁uh)∥∂Th

)︂
,

respectively. This completes the proof.

We can now prove Lemma 12.

Proof We take (rh, vh, ˆ︁vh) := (εqh, ε
u
h, ε

ˆ︁u
h) in the error equations of Lemma 11, and add them to get

∥εqh∥
2
Th

+ ∥h−1/2(Π∂
k ε

u⋆

h − εˆ︁uh)∥2∂Th
= R1 +R2 +R3,

where

R1 := ((I−Πo
ℓ )(−∆u), (I−Πo

ℓ )ε
u⋆

h )Th
,

R2 := −⟨(Πo
kq − q) · n, εˆ︁uh − εu

⋆

h ⟩∂Th

R3 := ⟨h−1(Π⋆
k+1u− u), Π∂

k ε
u⋆

h − εˆ︁uh⟩∂Th
.

Since

|R1| ≤ Ch∥(I−Πo
ℓ )(−∆u)∥Th

∥∇εu
⋆

h ∥Th
,

|R2| ≤ Ch1/2∥Πo
kq − q∥∂Th

(︂
∥∇εu

⋆

h ∥Th
+ ∥h−1/2(Π∂

k ε
u⋆

h − εˆ︁uh)∥∂Th

)︂
,

|R3| ≤ ∥h−1/2(Π⋆
k+1u− u)∥∂Th

∥h−1/2(Π∂
k ε

u⋆

h − εˆ︁uh)∥∂Th
,

using the last two estimates of Lemma 13 and simple algebraic manipulations, we get the desired result.
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Step 3: Estimate for εu
⋆

h by a duality argument

Lemma 14 Assume that the elliptic regularity inequality (9a) holds. Then, we have

∥εu
⋆

h ∥Th
≤ Ch1+min{ℓ,1}∥(I−Πo

ℓ )(−∆u)∥Th

+ C(h3/2∥Πo
kq − q∥∂Th

+ h∥h−1/2(Π⋆
k+1u− u)∥∂Th

).

Proof Setting g := εu
⋆

h in the dual problem, and proceeding as in the proof of Lemma 11, we get

(Πo
kΦ, rh)Th

− (Πo
ℓ Ψ,∇ · rh)Th

+ ⟨Π∂
kΨ, rh · n⟩∂Th

= 0, (14a)

(∇ ·Πo
kΦ, vh)Th

− ⟨Πo
kΦ · n, ˆ︁vh⟩∂Th

+⟨h−1(Π∂
kΠ

⋆
k+1Ψ −Π∂

kΨ), Π∂
k v

⋆
h − ˆ︁vh⟩∂Th

= (εu
⋆

h , v⋆h)Th
+ Eh(Φ, Ψ ; vh, ˆ︁vh), (14b)

where

Eh(Φ, Ψ ; vh, ˆ︁vh) = −⟨(Πo
kΦ− Φ) · n, ˆ︁vh − v⋆h⟩∂Th

+ ⟨h−1(Π⋆
k+1Ψ − Ψ), Π∂

k v
⋆
h − ˆ︁vh⟩∂Th

.

Then taking (vh, ˆ︁vh) := (εuh, ε
ˆ︁u
h) in (14b), we get

∥εu
⋆

h ∥2Th
= (∇ ·Πo

kΦ, εuh)Th
− ⟨Πo

kΦ · n, εˆ︁uh⟩∂Th

+ ⟨h−1(Π∂
kΠ

⋆
k+1Ψ −Π∂

kΨ), Π∂
k v

⋆
h − ˆ︁vh⟩∂Th

−Eh(Φ, Ψ ; εuh, ε
ˆ︁u
h)

= (εqh,Π
o
kΦ)Th

+ ⟨h−1(Π∂
kΠ

⋆
k+1Ψ −Π∂

kΨ), Π∂
k ε

u⋆

h − εˆ︁uh⟩∂Th
−Eh(Φ, Ψ ; εuh, ε

ˆ︁u
h),

by the first equation of Lemma 11 with rh := Πo
kΦ. By (14a) with rh := εqh, we obtain

∥εu
⋆

h ∥2Th
= (Πo

ℓ Ψ,∇ · εqh)Th
− ⟨Π∂

kΨ, ε
q
h · n⟩∂Th

+ ⟨h−1(Π∂
kΠ

⋆
k+1Ψ −Π∂

kΨ), Π∂
k ε

u⋆

h − εˆ︁uh⟩∂Th

− Eh(Φ, Ψ ; εuh, ε
ˆ︁u
h)

= ((I−Πo
ℓ )(−∆u), Π⋆

k+1Ψ −Πo
ℓ Ψ) + Eh(q, u;Π

o
ℓ Ψ,Π

∂
kΨ)− Eh(Φ, Ψ ; εuh, ε

ˆ︁u
h),

by the second equation of Lemma 11 with (vh, ˆ︁vh) := (Πo
ℓ Ψ,Π

∂
kΨ). Inserting the definitions of the Eh-terms, we finally get

∥εu
⋆

h ∥2Th
= ((I−Πo

ℓ )(−∆u), Π⋆
k+1Ψ −Πo

ℓ Ψ)

− ⟨(Πo
kq − q) · n, Π∂

kΨ −Π⋆
k+1Ψ⟩∂Th

+ ⟨h−1(Π⋆
k+1u− u), Π∂

kΠ
⋆
k+1Ψ −Π∂

kΨ⟩∂Th

+⟨(Πo
kΦ− Φ) · n, εˆ︁uh − εu

⋆

h ⟩∂Th
− ⟨h−1(Π⋆

k+1Ψ − Ψ), Π∂
k ε

u⋆

h − εˆ︁uh⟩∂Th
,

which leads to

∥εu
⋆

h ∥2Th
≤ Chmin{ℓ,1}+1∥(I−Πo

ℓ )(−∆u)∥Th
|Ψ |min{ℓ,1}+1

+ Ch3/2∥Πo
kq − q∥∂Th

|Ψ |2 + Ch∥h−1/2(Π⋆
k+1u− u)∥∂Th

|Ψ |2

+ Ch
(︂
∥∇εu

⋆

h ∥Th
+ ∥h−1/2(Π∂

k ε
u⋆

h − εˆ︁uh)∥∂Th

)︂
(|Φ|1 + |Ψ |2).

Using the elliptic regularity inequality (9a) and the first inequality of Lemma 12, we finally obtain the wanted result.

Step 4: Estimate for uh

Lemma 15 We have that ∥εuh∥Th
≤ ∥εu⋆

h ∥Th
.

Combining this result and the one in the previous step gives the estimate in the approximation for u in Theorem 2. To
complete the proof of Theorem 2, it only remains to prove the above lemma.

Proof Since u⋆
h = pk+1

h (uh, ˆ︁uh), Π⋆
k+1u = pk+1

h (Πo
ℓ u,Π

∂
k u), and the operator pk+1

h is linear, we have that εu
⋆

h =

pk+1
h (εuh, ε

ˆ︁u
h). Proceeding as in the proof of Proposition 1, it can be shown that εuh ∈ [Pk+1

ℓ (K)]⊥. Then, by equation
(4b), the wanted inequality follows. This completes the proof.
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