

MOVEMENT DISORDERS: DEEP BRAIN STIMULATION PATIENT SELECTION, PROGRAMMING, AND OUTCOMES 1 April 9, 2024 🙃

Subthalamic Nucleus DBS Sub-harmonic Oscillatory Activity Reflect Presence or Absence of DBS Responsiveness (P1-3.013)

Bradley Greger, Markey Olson, Sydney Felsen, Baltazar Zavala, Sankardas Sudeesh, Holly Shill, Francisco Ponce, and Sana Aslam AUTHORS INFO & AFFILIATIONS

April 9, 2024 issue 102 (17_supplement_1) https://doi.org/10.1212/WNL.0000000000206480

0 ~ 0 0 5 5 <

Abstract

Objective:

To correlate DBS sub-harmonics with patient responsiveness and investigate neurophysiological mechanisms subserving DBS induced sub-harmonics.

Background:

DBS induced sub-harmonics have been observed in multiple studies, but the relationship of sub-harmonics to clinical outcomes and underlying neurophysiology is ill-defined.

Electrophysiological recordings and MDS-UPDRS III were performed in two DBS patients without dyskinesia biweekly during a 10-week exercise program. Testing was conducted under four conditions (Levodopa/DBS both ON and OFF) during baseline and final visits and ON/ON in the sessions between.

P009 showed stimulation responsiveness in MDS-UPDRS III scores (55 OFF levodopa/OFF stimulation, 43 ON/OFF, 29 OFF/ON, 25 ON/ON), whereas P010 showed a similar response to medication but was less responsive to stimulation (57, 43, 45, 46). During baseline recordings, P009 (DBS 145 Hz) displayed increased spectral power in two subharmonic frequencies: ~108 Hz (¾ subharmonic, mean-0.086, SD-0.118) and ~72 Hz (½ subharmonic, mean-0.058, SD-0.079) OFF/ON levodopa/DBS. Increased spectral power at ~72 Hz (mean-0.025, SD-0.034) persisted in OFF/OFF. Increased spectral power at DBS sub-harmonic frequencies was not present under any condition in patient P010 (DBS 180 Hz) (mean-0.025, SD-0.0003).

P009 showed increased spectral power at ~108 Hz and ~72 Hz during sessions 1-4. Before session 5, DBS was clinically adjusted to 165 Hz. Increased spectral power was then present at the new subharmonic frequencies (~123 Hz and ~82 Hz) as well as at ~72 Hz (1/2 original DBS frequency). During the final session, increased spectral power was present at ~123 Hz and ~72 Hz with the patient OFF/OFF.

Conclusions:

DBS induced persistent oscillatory neural activity at DBS sub-harmonic frequencies that may serve as a biomarker for patient responsiveness to DBS therapy. DBS may activate natural resonance frequencies in the STN, or establish persistent oscillatory activity in neural circuitry through neural plasticity.

Disclosure: The institution of Prof. Greger has received research support from DoD. Ms. Olson has nothing to disclose. Ms. Felsen has nothing to disclose. Dr. Zavala has nothing to disclose. Mr. Kariparambil Sudheesh has nothing to disclose. Dr. Shill has received personal compensation in the range of \$500-\$4,999 for serving as a Consultant for Sage Biogen. Dr. Shill has received personal compensation in the range of \$500-\$4,999 for serving as a Consultant for Abbvie. Dr. Shill has received personal compensation in the range of \$500-\$4,999 for serving as a Consultant for KeifeRx. Dr. Shill has received personal compensation in the range of \$500-\$4,999 for serving as a Consultant for Praxis Precision Medicine. Dr. Shill has received personal compensation in the range of \$500-\$4,999 for serving as a Consultant for Fasikl Inc. Dr. Ponce has received personal compensation in the range of \$500-\$4,999 for serving as a Consultant for Boston Scientific. Dr. Ponce has received personal compensation in the range of \$500-\$4,999 for serving as a Consultant for Abbott. Dr. Ponce has received personal compensation in the range of \$500-\$4,999 for serving as a Consultant for Medtronic. The institution of Dr. Aslam has received research support from Boston Scientific.