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Introduction

Hilbert’s third problem asks the following question: given two polyhedra P and @,
when is it possible to decompose P into finitely many polyhedra and form @ out of the
pieces? More formally, is it possible to write P = |J;_; P; and @ = |J!"; Q; such that
P; = @Q; for all 4, and such that meas(P; N P;) = meas(Q; N Q;) = 0 for all i # j7 (Two
polyhedra for which this is true are called scissors congruent.) The generalized version
of Hilbert’s third problem is the observation that this can be asked in any dimension
and any geometry. The question then becomes: describe a complete set of invariants of
scissors congruence classes of polytopes in a given dimension and geometry.

Let us briefly consider the classical version. If two polyhedra are scissors congruent
then their volumes are equal. The reverse implication is not true; a second invariant,
called the Dehn invariant, exists. For three-dimensional polyhedra (in Euclidean, spher-
ical or hyperbolic space) this invariant is defined as follows:

D(P)= Y len(e)®6(c) e R@R/7Z.
e edge of P

Here, 6(e) is the dihedral angle at e; in other words, it is the arc length of the intersection
with P of a small circle around e. In dimension n it is possible to define other Dehn
invariants, by picking a dimension ¢ and writing a similar sum over all faces of P of
dimension /; the measure of the angle will then be a portion of the sphere in dimension
n—{¢— 1. By the Dehn—Sydler theorem [27,19] in Euclidean space in dimensions 3 and 4,
two polytopes are scissors congruent if and only if their volumes and Dehn invariants are
equal. Work of Dupont and Sah [11] extended this technique to 3-dimensional spherical
and hyperbolic space, classifying the kernel of the Dehn invariant as a group homology
group. We thus have the following question:

Generalized Hilbert’s Third Problem (/71, Question 1]). In Euclidean, spherical, and
hyperbolic geometries, do the volume and generalized Dehn invariant separate the scissors
congruence classes of polytopes?

Remark. Spherical polytopes are often used to measure angles. When a polytope is
decomposed into smaller polytopes it produces extra angles, at all of the faces along the
cuts. These newly produced angles always add up either to an entire sphere (if they are
contained in the interior of the original polytope) or to some type of “flat” angle. Such
flatness can be quantified by observing that such angles always arise from an angle in
a lower-dimensional sphere; in spherical scissors congruence classes we thus declare all
such angles to have “scissors congruence measure 0.” The Dehn invariant, and thus the
generalized version of Hilbert’s third problem, can also be defined for polytopes up to
such “measure-0” polytopes. See Definition 1.13.
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An algebraic approach to Hilbert’s Third Problem defines scissors congruence groups
associated to a geometry X, P(X), which are free abelian groups generated by polytopes
(in whichever geometry is under consideration) modulo “cutting” and translation by
isometries. In addition, when X is a spherical geometry, it is also necessary to quotient
by “suspension.” (For a more formal definition, see Definition 1.12 and 1.13.) The Eu-
clidean and hyperbolic volume and the generalized Dehn invariant can then be defined
as homomorphisms of groups, and we see that the generalized Hilbert’s Third Problem
has a positive answer exactly when volume is injective when restricted to the kernel of
the Dehn invariant.

Motivated by the theory of mixed Tate motives, in [17, Conjecture 1.7] Goncharov
proposed the following method for solving generalized Hilbert’s third problem. Let
D :P(S* ) — @, P(S* 1) @ P(S*")~1) be the Dehn invariant on the spher-
ical scissors congruence groups. The generalized Hilbert’s third problem can then be
rephrased to say that volume is injective when restricted to ker D. Conjectures of Ra-
makrishnan [24, Conjectures 7.1.2,7.1.8] imply that the Borel regulator produces an
injective homomorphism

(gr) K2n-1(C)o ® (Q7)*")" — R/(2m)"Q.

Here, Q7 is Q with an action of Z /2 via the sign, gr) Ka2,_1(C) is the n-th graded piece
of the weight filtration on the algebraic K-theory of C (with action by Z/2 induced by
complex conjugation), and -+ denotes taking the fixed points of the action. (For a more
detailed explanation of this, see Section 5; an in-depth understanding of the terms is not
needed for the current discussion.) If it were possible to construct an injective map

ker D @ Q —— (gr)) K2n—1(C)o ® (Q7)®") " (0.1)

such that the composition with the Borel regulator was equal to the volume, this would
imply generalized Hilbert’s third problem for spherical scissors congruence groups (at
least modulo torsion, and assuming Ramakrishnan’s conjecture). Goncharov also made
an analogous form of this conjecture for the hyperbolic groups; here the Borel regulator
takes values in R. In his paper, Goncharov was able to construct a map of the form (0.1)
once polytopes were restricted to polytopes with algebraic vertices and C was replaced
by Q; however, he did not show that it is injective.

There are a couple of indications this initial version may not be the most useful
form of the conjecture. Restricting to polytopes of a particular dimension restricts us
to considering group homology for matrices of a set dimension; this is directly related
to the rank filtration, rather than the ~y-filtration. As the graded pieces of the rank
and v-filtrations are expected to be isomorphic (see, for example, [21, Conjecture 2.6.1]
for an in-depth discussion) this is not a major change to the conjecture. Since K.(C)g
is isomorphic to the primitive elements in the Hopf algebra H.(BGL(C); Q) (where
GL(C) is considered as a discrete group), the desired map (0.1) can be described as a
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map into a quotient of certain group homology groups. The second is the observation
that scissors congruence groups are constructed out of the group homology of orthogonal
groups, rather than general linear groups, so it is more likely that the kernel of the Dehn
invariant will be related to the group homology of orthogonal groups, rather than general
linear groups. It turns out that the correct analog of the quotient in the orthogonal case
is simply the groups H.(O(n;R); Z[%]"), where -7 indicates that the group is acting via
multiplication by the determinant. These also have a regulator, usually referred to as the
Cheeger—Chern—Simons class, which agrees with the Beilinson (and thus Borel) regulator
[9] and which is also expected to be injective.
With these two changes we can prove a reverse of Goncharov’s conjecture:

Theorem A (Theorem 5.3). Let D be the Dehn invariant for hyperbolic scissors congru-
ence. There is a homomorphism

Hy (07 (1,d;R); Z[%]U) —— ker D

which, after composition with volume is equal to the Cheeger—Chern—Simons class. Thus,
if this map is surjective and the Cheeger—Chern—Simons class is injective, volume and
the Dehn invariant separate scissors congruence classes in hyperbolic geometry in all
dimensions.

Here, O%(1,d) is the subgroup of GL(1+ d) which preserves the hyperbolic quadratic
form and the sign of the first coordinate. An analogous statement is true for the spherical
case, although it is somewhat more complicated as volume is not well-defined on the
spherical scissors congruence groups. For more details, see Theorem 5.4.

Remark. For unreduced spherical scissors congruence groups, generalized Hilbert’s Third
Problem is resolved modulo torsion (see [26, Proposition 6.3.22]). However, unreduced
spherical scissors congruence groups do not appear to have nearly as many interesting
applications as the reduced version, and in particular do not appear to relate to the
homology of the group O(d), and in this paper we therefore focus on the reduced case.

Goncharov’s intuition about scissors congruence classes did not stop at the kernel of
the Dehn invariant. He noticed that Dehn invariants can be iterated to produce a chain
complex, denoted P,(S?). (See Section 3 for more details.) In [17],' he conjectures [17,
Conjecture 1.8] that for odd d there exists a homomorphism

d+1 +
Hm(P*(Sd) ® Q) - (grzd+lj KerLL;rlJ ((C)Q ® (QU)L $ J)

2

! Goncharov’s indexing is somewhat different from ours, as he considers P.(X) to be a cohomologically-
graded complex starting in degree 1.
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for all m. The techniques for proving Theorem A extend to proving a form of this
conjecture, as well:

Theorem B (Theorem /.6). Let X = S or H?, and let I(X) be the isometry group of
X. For all m there are homomorphims

Hm-&-[%] (1(X), Z[%]U) —— Hyp(P(X)).

(Since I(H?) = O*(1,d) this is a generalization of Theorem A to the case when
m = [451].) In fact, Theorem 4.6 is shown for any field of characteristic 0, not just R;
for the definition of scissors congruence groups over a general field see Definition 1.22.
It is also important to note that as the right-hand side will have nonzero homology only
for 0 <m < \_%J, these maps can only be nontrivial in these cases.

The main tool allowing us to prove these theorems is the “geometrization” of the
Dehn invariant: a topological model which is both rigid and equivariant with respect to
the isometry group of our geometry. It is rigid in the sense that the structural properties
that we desire of the Dehn invariant (described at the beginning of Section 2) already
hold for the topological spaces, without having to work “up to homotopy” or “inside
homology groups.” It is equivariant in the sense that the Dehn invariant is a map of
I(X)-spaces, rather than simply topological spaces.

The advantage of this construction is that the presence of higher homological informa-
tion in the coinvariant computations leads to major cancellations. All of the complexity
of P.(X) is contracted into Q7. Here, the key observation is that in a topological con-
text homotopy coinvariants and the “total complex” that Goncharov uses to define P,
commute past one another; thus the rigid and equivariant construction of the Dehn in-
variant above can be used to explicitly determine the homotopy type of a space modeling
this complex. We produce a spectral sequence whose lowest nonzero row is the complex
P.(5%) (resp. P.(H?)); the cancellations allowing us to identify the homotopy type of the
“total complex” allows us to directly relate this to the homology of the isometry group.

At the end of our analysis we illustrate the connection between our reformulation and
Goncharov’s original conjectures (see Proposition 5.10).

Outline of the Proof of Theorem B

The key ingredient in this proof is the repeated use of the notions of homotopy cofiber
and homotopy coinvariants.

The Dehn complex is defined as the total complex of a cubical diagram in AbGp
(Definition 3.6), each vertex of which is obtained by taking coinvariants (i.e. Hp) of an
action on a Steinberg module. The total complex of a cube is the same as the total
homotopy cofiber taken in the category of chain complexes (Example 3.4). Thus, to
construct the Dehn complex, one takes homology of a group, and then takes a homotopy
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colimit. This order feels unnatural from the point of view of homotopy theory, as one
should first construct the space and then analyze its homology.

We begin by replacing each Steinberg module with a space (Definition 1.8), and tak-
ing homotopy coinvariants of the group action. The key step is the construction of an
equivariant Dehn invariant (Definition 2.12), so that we can analyze the total homotopy
cofiber of the original cubical diagram, prior to taking coinvariants. We can then com-
mute the homotopy cofiber past the group action, and analyze them independently. We
denote this space (Y*),1(x) (it is defined in Section 4). Sections 1 and 2 are devoted to
the construction of this cube.

In the homotopical analysis of (Hx)hl( x) @ minor miracle occurs: the space is weakly
equivalent to the homotopy coinvariants of a sphere with I(X) acting on it (almost) triv-
ially. We offer two proofs of this fact in Section 6. This allows for significant simplification
of the spectral sequences that compute its homology groups. The spectral sequences that
we use are known as the homotopy orbit spectral sequence (Proposition B.7) and the
spectral sequence for the total homotopy cofiber of a cube (Section B.3). We can also
use the homotopy orbit spectral sequence to compute H,((YX),; (x)) to obtain a shift
of H.(I(X);Q7); this implies Theorem B. An analysis of the edge homomorphism of
the spectral sequence constructs the desired homomorphism in Theorem 4.6; an explicit
description of the homomorphism in the case * = n—1 in Lemma 4.7 implies Theorem A.

Remark. In this paper we mostly focus on spherical and hyperbolic geometries, as well
as work over R and C, as these were our main examples of interest. However, most of
our techniques do not rely on either these choices of geometry or the choice of field. In
future work we hope to work out further implications of these approaches in other fields,
geometries, and isometry groups. (The Euclidean case is an obvious candidate.)

Remark. What is especially striking about our approach is that most of the topolog-
ical spaces we work with turn out to be homotopy-equivalent to bouquets of spheres.
This means, in essence, that they are combinatorial objects, rather than topological.
Despite this, the topological approach appears to produce significantly simpler proofs,
and stronger results, than has previously appeared in the literature.

Organization

In Section 1 we introduce the basic objects of interest. Although many of the objects
and definitions are standard, several key definitions (esp. RT-buildings) differ subtly
from standard. We have attempted to highlight these differences in the exposition. Sec-
tion 2 introduces derived Dehn invariants and states that they agree with the classical
definitions; although the comparison between our objects and the classical objects is
interesting (and we believe a good introduction to simplicial techniques) we postpone
the direct comparison to Appendix A, as it is technical and completely disjoint from the
main thrust of the paper. Section 3 recalls Goncharov’s definition of the Dehn complex
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and shows how to construct a “geometrized” model. Section 4 is the main meat of the
topological story: it introduces the key theorem (Theorem 4.1) which allows us to di-
rectly compare the homology of the Dehn complex to the group homology of orthogonal
groups. Section 5 proves Theorems A and B and explains the connection between Gon-
charov’s original conjectures and the form in which they arise in this paper. Section 6
proves Theorem 4.1 and uses the proof to provide the computation for the claim about
volume in Theorem A. This section is largely independent of much of the rest of the
paper, dealing mostly with the structure of RT-buildings.

Notation and conventions

All groups considered in this paper are discrete.

We work in the category of pointed topological spaces and simplicial sets. Thus ho-
mology is reduced, and all constructions on spaces are pointed. In particular, homotopy
G-coinvariants—denoted e, c—are taken in a correctly-pointed manner, so that g ~ *
and (S%) g ~ (BG)4. Here, o denotes adding a disjoint basepoint, so that we can think
of S% as x . Note the difference with the unpointed constructions: in the unpointed case
xpa ~ BG. In general, in order to translate from the unpointed case to the pointed case
one adds a disjoint basepoint and then works relative to that point. All groups in this
paper are considered discrete unless explicitly stated otherwise, so that BG is always
the Eilenberg-Mac Lane space K (G, 1).

Two spaces (resp. simplicial sets) are weakly equivalent if there exists a map f :
X — Y which is a bijection on connected components and such that the induced
maps fi : (X, ) — 7, (Y, f(z)) are isomorphisms for all choices of basepoint = and
all n > 1. When two spaces (resp. simplicial sets) X and Y are weakly equivalent,
we denote this by X ~ Y. Two simply-connected spaces are “weakly equivalent after
inverting 2” if there exists a map f : X — Y such that the induced maps fi : 7, (X, 2)®
Z[1] — m (Y, f(z)) ® Z[4] are isomorphisms for all n > 2. We denote this by X ~ Y.

The notation X/Y will refer to the quotient of spaces (resp. simplicial sets): the
topological space (resp. simplicial set) given by collapsing all points to Y to a point. The
only exception to this notation will be the group quotient R/Z (and scalings thereof)
and the group Z/2.

We denote by X either d-dimensional hyperbolic (%%) or spherical (S¢) space. In each
case, we think of X? as sitting inside R4*!, with subspaces being cut out by subspaces
of R% through the origin (which intersect, respectively, the plane where x4.; = 1, the
hyperboloid —z{ +23+- - ~—|—m§, and the sphere in a nonempty set). When the dimensions
is clear from context we write X instead of X<

For any abelian group A, we write Ag def 4 R Q.

The field k is always assumed to have characteristic 0. (Although many of the tech-
niques should work over finite characteristic, there are several key geometric points where
rational coefficients are necessary.)
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1. RT-buildings and scissors congruence groups

Our main goal in this section is to establish the basic definitions of the objects we will
be using, as many of these definitions are not (quite) standard. Many small variations
on these definitions exist in the literature (see, for example, [13, Chapter 2], [5]), leading
to a combinatorial explosion of choices. In our experience only the current choices lead
to a consistent rigid derived theory. We work over any base field &k of characteristic 0.

1.1. RT-buildings

Definition 1.1 (Based on [5, Definition 1.0.3]). A geometry over k, X, is a vector space
equipped with quadratic form (E, q) over k, where ¢ is totally nondegenerate, together
with its isometry group I(X). The dimension of X is dim E — 1. The isometry group
must be a subgroup of I(E), the subgroup of GL(F;k) which preserves the quadratic
form.

When we wish to emphasize that a geometry X has dimension d, we write it as X<

Definition 1.2. The neat geometries are the spherical geometry S, given by the quadratic
form z3 +--- + mz, and the hyperbolic geometry H¢, given by the quadratic form —z% +
x? + -+ 2%. The isometry group of the spherical geometry of dimension d is O(d + 1).
The isometry group of the hyperbolic geometry is O(1,d) if k is unordered, and O (1, d)
if k is ordered; here, O™ (1,d) is the subgroup of O(1,d) of those transformations that
preserve the sign of the first coordinate.

When it is not clear from context, we write S,‘f or Hg to emphasize that the geometries
are over k.

In later sections, we will often be considering maps of the form X% — X % S? (where
* is defined in Definition 2.7). A map of this sort states that we fix a type of geometry
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(spherical or hyperbolic), and both X’s are of this same type, of dimensions d and a,
respectively.

Definition 1.3. Let P(E) be the projectivization of E. For a geometry X = (FE, q), where
q has signature (n_,n,), a subspace U of X is a subset of P(F) corresponding to a
linear subspace V of E such that the restriction of ¢ to V is totally nondegenerate and
such that the signature (m_,m4) of ¢|y has m_ = n_. The isometry group I(U) is the
subgroup of I(X) that preserves U. Note that a subspace of a neat geometry is another
neat geometry of the same type.

An angular-subspace U of X is a linear subspace V of E such that the restriction of ¢
to V is totally nondegenerate and such that the signature (m_, my) of g|ly has m_ = 0.

For any subspace or angular-subspace U of X we say that U is represented by V. The
dimension of U is dim V' — 1; if dim U = 0 we refer to U as a point of X.

When k contains v/—1, the condition on the signature is vacuous and subspaces and
angular-subspaces are equivalent.

Remark 1.4. The condition on the signature may appear artificial, but it is necessary
in order to model the types of subspaces in question. A geometry X of dimension d
can be considered to be sitting inside k%*! as a submanifold. In the case when k is not
algebraically closed, a plane of dimension m may not intersect this submanifold in a
subspace of dimension m — 1, as desired. The condition on the signature ensures that
this will happen in the cases of hyperbolic and spherical geometry.

Remark 1.5. Many of the definitions and results in this paper will also work for the
Euclidean geometry, as well as for geometries with signatures other than (0,d + 1) and
(1,d). However, there are enough subtleties and differences between these cases that in
this paper we focus exclusively on the spherical and hyperbolic cases.

The key structure necessary for the program is the presence of an orthogonal comple-
ment for any subspace and the notion of a projection onto the orthogonal complement.

Definition 1.6. Let U be an i-dimensional subspace of X, represented by a linear subspace
V of E. We define the orthogonal complement U+ of U to be the angular-subspace
represented by V.

If U is a subspace and U’ is an angular-subspace of X, represented by V and V', then
we write U L U' if VL V’'. We write U & U’ for the subspace represented by V @ V’. If
V L V' we write U L U’ instead of U @ U’ to emphasize this fact.

For subspaces U C U’ of X, we write

pry. UL U AUt

The isometry group of pr;; . U’ is taken to be the subgroup of the isometry group of U’
that fixes U.
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We will be using the following three properties of subspaces:

Lemma 1.7. Let X% be a neat geometry and let U? be a subspace of X. Then dimU~+ =
d—i—1. For a subspace U’ containing U, U’ is uniquely determined by U and U+NU".
In addition, the induced quadratic form on pryL U’ has positive signature.

The key object of study in this paper is the RT-building associated to a geometry X.?

Definition 1.8. Let X be a geometry of dimension d over k.

Let T (X) be the simplicial set whose i-simplices are sequences Uy C --- C U; of
nonempty subspaces of X of dimension at most m. The j-th face map deletes Uj; the
j-th degeneracy repeats U;. The isometry group I(X) acts on T."(X).

We define the RT-building of X to be the pointed simplicial set given by

FX S Td(X) /T (X),

with the inherited I(X)-action. More explicitly, the non-basepoint i-simplices of F,X are
sequences Uy C --- C U;, where each Uj is a nonempty subspace of X and U; = X. The
face maps and degeneracies work as before, with the caveat that if U;_; # X then d;
sends the simplex Uy C - -- C U; to the basepoint.

It turns out that the group fId(F,Sd) contains vital information about scissors con-
gruence. In fact, this is the only nonzero homology group of this space:

Proposition 1.9. For i # dim X, H;(FX) 0.

The fact that all homology groups above dim X are 0 is evident from the fact that all
nondegenerate simplices have length at most d+ 1. The fact that all (reduced) homology
groups below degree d are also 0 is more complicated; one can refer to the Solomon—Tits
Theorem [23, Section 2], or use the theory developed in Appendix A. As the proof is
technical and not illuminating, we defer it to the appendix.

1.2. Classical scissors congruence

We turn our attention to defining the scissors congruence groups. For scissors congru-
ence to be defined we need a notion of a geometry to work within, as well as a notion of
“inside” and “outside” for polytopes; thus we will need to be working inside an ordered
field. For now we fix £ = R, although most of the machinery developed should work
equally well over other ordered fields.

2 The term “RT-building” is named after Rognes and Tits, as our objects are “halfway” between Tits’
original objects—which must start at a nonempty subspace and end at a proper subspace—and Rognes’
spaces Dl(V)7 which have simplices which start at the trivial subspace and end at the full space.
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The basic building block of a polytope (and thus of a scissors congruence group) is a
simplex, which can be defined as a convex hull.

Definition 1.10. Suppose X is a neat geometry of dimension n.
A convez hull of a tuple (ag,...,an) of points in X is any subset of X represented
by a cone over b;

{ i cib; € RIH!

=0

for any choice of 0 # b; € a; for all 4.

An m-simplex in X is the convex hull of a tuple (ay, . . ., a,,) which is not contained in
an m — 1-dimensional subspace of X. An m-polytope in X is a finite union of m-simplices;
we make no assumptions of convexity or connectedness. When m = d we omit it from
the terminology and refer simply to “simplices in X” or “polytopes in X.”

Remark 1.11. When X is hyperbolic, a simplex is uniquely determined by its vertices in
the following sense. The hyperboloid —z2 +z% +--- + xi has two connected components,
and we think of X as one of these components and a point of X as the intersection of the
representing line with this component. A tuple of points (ag,. .., aq) in X thus defines a
tuple of vectors in R%*!, and thus the positive cone above is well-defined.

When X is spherical, there are 291 possible choices of “sign” of the representatives
b;. Thus a simplex is no longer uniquely defined by its vertices.

We can now define the scissors congruence group of X:

Definition 1.12. Let X be a neat geometry over R, and let G be a subgroup of I(X).
Then the scissors congruence group of X relative to G, denoted P(X,G), is the free
abelian group generated by polytopes in X modulo the relations

e [PUQ] = [P]+]Q] if PNQ is contained in a finite union of m — 1-dimensional
subspaces.

o [P] =[g- P] for any g € G. Here g acts on P pointwise; as it is in I(X) it takes
convex hulls to convex hulls.

When G = I(X) we omit it from the notation.

2941 choices for any convex

The case X = S¢ is more complicated, as there are now
hull, depending on how the points b; are chosen. The following definition will make all

of the choices in Definition 1.10 equivalent.

Definition 1.13. For any G-module M, the coinvariants of G acting on M are defined to
be the group
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M/(m—g-ml|lgeG, meM).

This is isomorphic to the zeroth group homology Hy(G, M).
Let

2 P Pvnst1) —P(sh1) (1.14)
VCRH1
dim V=n
be the “suspension” map taking a simplex in V' N S™ to the union of the two simplices
defined by the choice of representatives in V+. Denote by P(S¢, G) the cokernel of the
induced map

z;HO(G, D ﬁ(VﬁS‘ﬂl))—»HO(GJs(Sd,l)).
VCR™ !
dim V=d

When X # S we define P(X,G) < P(X,G).

The cokernel of ¥ turns out to be the more “correct” notion of scissors congruence
of the sphere, as it is most often used to measure angles. A subdivision of a polytope
adds many angle measures that add up to the entire sphere; thus, in order to make
our definitions treat subdivisions correctly, the entire sphere should be considered to be
zero. When we discuss the Dehn invariant in Section 2 this will become clearer, as Dehn
invariants are only well-defined inside these reduced scissors congruence groups.

Remark 1.15. The notation we are using is somewhat nonstandard. The group 73(X ,G)
is usually denoted P(X,G), and the group P(S¢,G) is generally denoted ﬁ(Sd, G). In
this paper, however, the group of interest is §(S%, G) for X = S¢, and we would like to
unify the notation so that this group is the default one.

As motivation for considering scissors congruence as homotopy coinvariants we observe
that

P(X,G) = Hy(G,P(X,1)) (1.16)

and that this works for the groups 73(Sd, G) as well.
To end this subsection we mention a classic result which underlies several key steps
in the paper:

Lemma 1.17 ([13, Corollary 2.5]). When k = R, the groups P(S?) are 2-divisible.
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1.3. Geometrizing a twist

In the classical literature on scissors congruence, flags often take the place of polytopes
(thus motivating our study of RT-buildings). However, a complication arises: in the
algebraic story, the action of the isometry on flags is twisted by the determinant map,
so that ¢ - [z] = (det g)[g - ]. In order to construct a topological model of such a twist,
we need a topological model for “tensoring with a copy of Z with the sign action.”

Definition 1.18. Let S* be the pointed simplicial set Al /GA?L.

Let S° be the pointed simplicial set A Uga1 AL, with one of the vertices in A taken
to be the basepoint. This is a model of a circle with two 0-simplices and two 1-simplices.
There is an action of Z/2 on S given by swapping the two 1-simplices.

Remark 1.19. The notation S is chosen to be compatible with the standard notation
M? for a G-module which is twisted by the action of a “sign” map G — Z/2.

The group I(X) acts on S via the map det : I(X) — Z/2. Note that Hy(FX) =
Hay1(S7 AFX) as groups. As I(X)-modules, these differ only by the action on S, which
adds a twist «© by the determinant. In particular, this means that

Ho(G, Hy(FX)%) = Ho(G, Hgy1(S° A EX)).

In other words, the I(X)-coinvariants of Hy,1(S” A F/X) are exactly the “I(X)-semi-
coinvariants” in Hy(F.X). From Proposition 1.9, the homotopy orbit spectral sequence
(see Proposition B.7) collapses, and we have

Ho(G, Ha1 (87 A FX)) 2 Hapa ((S7 A F¥)na)-
For a detailed discussion of homotopy orbits, see Appendix B.2.

Remark 1.20. It may seem that the approach of “geometrizing” - by smashing with S¢
produces a spurious increase of dimension. However, this increase is present in the alge-
braic story (discussed in [26, Section 6.1], [17], and others) as well: the scissors congruence
groups for S”~! C R™ must be graded by the ambient dimension n, rather than n —1, in
order to make the Dehn invariant a graded homomorphism. In addition, Section 5 shows
that these dimensions allow the maps from K-theory to have the correct grading. It is
thus unsurprising that something of this sort should appear in the topological viewpoint.

1.4. The geometrization of scissors congruence groups

We now state the connection between scissors congruence and RT-buildings:
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Theorem 1.21. Suppose k = R. Let X have dimension n and let G be a subgroup of the
isometry group of X. For a neat geometry X,

P(X,G) = Hy1((S° A FX)ng) = Ho(G, Hyy1 (S A FX)).

This map is induced by the G-equivariant map P(X,1) — Hgy1(S° A FX) which takes
a simplex with vertices {xg,...,xq} to the sum

Z sgn(U)[span(xg(o)) - span(aca(o), -Tcr(l)) c.---C Span(xa(o)v s 7xo(d))]'
TEXg41

As the proof of this theorem is technical and not illuminating, we postpone it until
Appendix A. A similarly-simple model for 73(5 4 @) is not known.

The theorem above implies that scissors congruence information is contained inside
Hi1(S° A FX) = Hy(FX)?. The value added by the topology is that when G # 1 the
space (S° A FX),¢ contains nontrivial higher homological information (see for example
Lemma 1.25), and thus remembers more about the algebra of G than the left-hand side.

Inspired by Theorem 1.21 we can now define generalized scissors congruence groups:

Definition 1.22. Let X be a geometry over k, and let G < I(X). The scissors congruence
group of X, written P(X,G), is

PX,G) Y Hyor ((S7 A FX)00).

When G = I(X) we omit it from the notation.

Remark 1.23. At this point it may be tempting to think that since all spaces under
consideration are simply-connected, the current topological model can contain no in-
formation that is not contained in P(X,G). However, this misses the important point
that we are keeping track not only of the group, but also of the G-action. Taking orbits
on the level of homology is the “underived” model, which cannot keep track of higher
homotopical information. Taking homotopy coinvariants will remember this higher in-
formation, analogously to the way that taking homotopy coinvariants of G acting on a
point produces BG, which has many interesting homology groups (even though a point
does not).

A large part of the value in these models is that we can define a rigid topological
model of the Dehn invariant. This allows us to use simple topological techniques to prove
Theorem 4.1, none of which work in the case where we are working up to homotopy.

As a first application of the topological viewpoint, we show that when X = S?" there

is no interesting scissors congruence information:
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Proposition 1.24. When n > 0, after inverting 2,

(57 A FS™ Yoty ) *.
In other words, the left-hand side is connected and for i > 1,
mi((S7 A F-Szn)hO(2n+1)) ® Z[3] = H; ((SU N F.Szn)ho(2n+1)§ Z[%]) =0.
In particular, for n > 0, P(S*") = 0.

Proof. First consider the case when n > 0. The matrix —/ € O(2n + 1) acts on all
homology groups of S AE° o by —1. Thus by the “Center Kills Lemma” [13, Lemma 5.4],
2 annihilates H;(O(2n+1), Hap (S AFS™: Z[1])) for all i; since we have inverted 2, these
must all be 0. By the homotopy orbit spectral sequence (Proposition B.7),

~ 2n
H. ((S" AFS )hO(2n+l);Z[%]) =0

for all . Since the simplicial set (S AF,S2n)hO(2,L+1) is simply-connected (as suspensions
and homotopy coinvariants commute), it must be contractible after inverting 2.

When n = 0 the situation is somewhat more complicated. In this case, F° = S0, with
one non-basepoint 0-simplex represented by the subspace S° and no other nondegenerate
simplices. Then S A S° = §7, with O(1) = Z/2 acting on it via the sign representation.
By definition, (57)z/2 = BZ/2, which is a nilpotent space. Thus after inverting 2 its
homotopy groups are trivial, as desired.

The last part of the proposition follows because by [13, Corollary 2.5, P(S3") is
2-divisible, so inverting 2 does not affect the lowest homology group. O

In general, the homology of (S® A FX),¢ can be described in terms of the homology
of G and the homology of F.X:

Lemma 1.25. Let X be a neat geometry of dimension d. For all i,
H;((S7 AFX)ha) Hz‘—(d+1)(G,ﬁd(F.X)"),

where -7 denotes that the action of G on the homology is twisted by multiplication by the
determinant. In particular, if i — (d + 1) is negative the left-hand side is 0.

Proof. This follows directly from the homotopy orbit spectral sequence (see Proposi-
tion B.7). Since the reduced homology of S° A FX is concentrated in degree d + 1, the
homotopy orbit spectral sequence is contained in the d-th column, and thus collapses.
This implies that

Hi((S7 NFX)ne) = Hi—(as1)(G, Hgpr (87 A FX)).
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Using that Hyy(S° A FX) 2 Hy(FX)? as a G-module completes the proof. O
2. Rigid derived Dehn invariants

The statement (rephrased in modern terminology) of Hilbert’s third problem is ex-
tremely simple:

Do there exist two polyhedra with the same volume which are not scissors congruent?

The answer, given in 1901 by Dehn is “yes”: the cube and regular tetrahedron are not
scissors congruent, even if they have the same volume. Dehn proved this statement by
constructing a second invariant of polyhedra (these days called the “Dehn invariant”)
which is zero on a cube and nonzero on any regular tetrahedron. This invariant takes
values in R ®z R/Z—a difficult group to work in, but even more startling given that
tensor products were only originally defined in 1938. In 1965, Sydler proved that the
volume and the Dehn invariant uniquely determine scissors congruence classes; phrased
in a more modern fashion (after [19]), this is equivalent to stating that the volume map
is injective when restricted to the kernel of the Dehn invariant.

2.1. The classical story: constructing an equivariant Dehn invariant

In this section we give a definition of the classical Dehn invariant (extended to arbi-
trary dimensions in the form proposed by Sah in [26]) and construct a derived model
(a “geometrization”). The homological inspiration for our construction is Cathelineau’s
approach in [4-6].

Definition 2.1. Let X? be a neat geometry over R, and consider P(X). For any integer
0 < i < n, we define the i-th classical Dehn invariant in the following manner. Since
P(X) is generated by simplices, it suffices to define it on simplices. For a simplex o in

X with vertices {zg,...,z4}, we define
Do)=Y [w@lprgs(es)] € PXLIXY) @ P(ST L I(S4).
JUJ' ={0,...,d}
[J]=i41

U=span xj

Here, x; is the set {z;|j € J}, [z;] is the class of the simplex with vertices z; in an
isometric copy of X? sitting inside X<, and [pr;;. 2 5/] is the class in P(S4¢~1, [(S1~i~1))
of the simplex spanned by the projections of the z ;. For a more detailed discussion of
this, see [26, Section 6.3].

This generalization of the Dehn invariant allows for the following question, the “gen-
eralized Hilbert’s third problem”:
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Question 2.2 (Generalized Hilbert’s third problem). In a neat geometry X, is volume
injective when restricted to the kernel of @?:1 D;?

Remark 2.3. There is an important subtlety which is often overlooked in the definition
of scissors congruence groups. Although volume is well-defined on P(#¢) and P(5%),? it
is not well-defined on P(S%): inside P(S%) we quotient out by lunes, which are polytopes
which are “suspensions” of lower-dimensional polytopes. Since lunes of any volume can
be constructed, the volume map on 73(S’d) does not descend to a well-defined map out
of P(5%) for d > 1. (When d = 1 all lunes are semicircles, and thus length is well-defined
mod 7.)

The Dehn invariant is not well-defined if P(X) is replaced by P(X,1), as there is no
natural way to consider [z;] as sitting inside P(X?, 1). Since the goal is to postpone taking
the coinvariants of I(X) for as long as possible in order to model D; on an RT-building, it
is necessary to construct the Dehn invariant as the functor of I(X)-coinvariants applied
to an equivariant homomorphism of I(X)-modules; this motivates the later geometric
construction. To define a map

Dy :P(X,1) — P(U,1) @ P(U*,1)

consider a simplex o with vertices {xo,...,2,} in X, and suppose that U =
span(xo, . .., ;). Let T be the projection of {x;11,...,2z,} to UL. Define

~ def

Dy([zg, ... xn]) = [Toy- .., 2] @ [7].

For any simplex {zg,...,zq} such that there do not exist 0 < jo < -+ < j; < d with
U = span(xj,,...,zj,), define

~ def
DU([ZL'O, e ,l’d]) = 0.

Lemma 2.4. With this definition,

® Dy

P(X,1) P rwnePUt1)

UCX

dim U=
is well-defined and I(X)-equivariant. After taking 1(X)-coinvariants this map becomes

D;.

Proof. To prove well-definedness it suffices to show that for any simplex o all but finitely
many of the Dy are 0. This is true because there are only finitely many subspaces U
which are the span of a subset of {xq,..., x4}

3 and also P(E?), although E¢ is not a neat geometry.



18 J.A. Campbell, I. Zakharevich / Advances in Mathematics 451 (2024) 109757

The action of I(X) on the left is simply an action on tuples. The action on the
right is a bit more complicated: it acts on the indices of the sum, and acts within each
group, as well. However, simplices in U can be thought of as i-simplices in X that
happen to be contained in U, on each individual simplex the action is via acting on each
vertex of the simplex; in this way the right-hand side is considered to be sitting inside

@ UCX P(X71)®P(X,1).
dim U=1

It remains to check that taking I(X)-coinvariants makes this map into D;. The left-
hand side becomes P(X). Moreover, I(X) identifies all of the summands on the right-
hand side, and the stabilizer of any fixed U is I(U) x I(U+); thus the right-hand side is
Ho(I(U) x I(UL),P(U,1) ® P(U+,1)). We have an isomorphism [3, Section V.2]

Ho(I(U),P(U, 1)) ® Ho(I(U*), P(U*,1)) —— Ho(I(U) x I(U*),P(U,1) ® P(U*, 1)),

induced by the cross-product in homology, as the group P(U, 1) is free (by [13, Theo-
rem 3.5]). Thus the right hand side is P(U) @ P(U"1), as desired.

To see that the map is exactly D;, note that taking the I (X)-coinvariants adds up the
images of all nonzero EU on a given simplex o; this is exactly the definition of ﬁl a

The classical Dehn invariant can be iterated in the following sense. Suppose that i < j;
then the following square commutes:

P(Xx9) D: P(XH) @ P(s? i1

DJ jmﬁ“ (2.5)

D; ®id

PX)@P(SI) PXY) @ P(ST-1) @ P41,

Goncharov uses this observation to construct a chain complex of Dehn invariants which
he conjectures is related to algebraic K-theory. For a discussion of this, see Section 3.

2.2. The derived construction

The goal is to construct a notion of the Dehn invariant on FX which will produce the
classical Dehn invariant when k = R, but only after taking coinvariants and homology.
The idea that the Dehn invariant should be constructed in this manner is key to making
the analysis in Section 4 possible. It is also the only perspective from which it appears to
be possible to construct the derived Dehn invariant; the authors attempted many non-
equivariant constructions before settling on this approach. That this makes the Dehn
invariant concise and clean and exposes its combinatorial nature is a minor miracle.

The key idea here is to replace the tensor product of abelian groups with the reduced
join of simplicial sets.
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Remark 2.6. Classically, the tensor product would be replaced by the smash product,
and choosing instead the reduced join may appear to be a perverse choice: the reduced
join of simplicial sets is not symmetric in the category of simplicial sets, and using it
to model a symmetric structure like the tensor product feels unnatural. And, as above,
the authors spent considerable time on attempts to rework this material using a smash
product. Unfortunately (or perhaps incredibly interestingly), it does not seem possible
to construct a topological model of the Dehn invariant using a smash product of spaces.*
(See also Remark 1.20.)

An interesting corollary of this is that the constructions in this section are fundamen-
tally unstable. Smash products of spaces lift naturally to smash products of spectra, and
therefore give some hope that analogous constructions could be lifted to stable models
of scissors congruence (such as those arising from [8,29]). Unfortunately, this does not
appear to be the case, and the natural questions arise: how stable is the Dehn invariant?
What parts of it can be seen stably? And which portions are irredeemably unstable?

Definition 2.7. For pointed simplicial sets X and Y, the reduced join X %Y is defined
by

XFY)m= \/ XiAY;.

i+j=m—1

For a simplex (z,y) € X;AYj, the face maps d; are defined to be dyx1 : X; AY; — X;_1A
Y; when ¢ < 4, and 1 X dp—j—1 : X; ANY; — X; ANY;_1 otherwise. If i+ = £ = 0 or
j=m—1—/{ =0 then the face map takes the simplex to the basepoint. Degeneracies
are defined analogously, with the first ¢ + 1 acting on the z-coordinate, and the last
m — i — 1 acting on the y-coordinate. Note that this structure makes the reduced join
asymmeltric.

For those unfamiliar with reduced joins, an introduction and proofs of the most rel-
evant properties of the reduced join are in Section B.1. The most important feature of

reduced joins is their relationship to smash products; the proof is given in Section B.1:

Lemma 2.8 (Lemma B./). Let X and Y be pointed simplicial sets. There exists a sim-
plicial weak equivalence

SIAXAY — X FY.

To define Dehn invariants on FX (Definition 1.8) the first step is, as above, to define
a Dehn invariant indexed by a single subspace.

4 Indeed, it seems that this may not be possible with any symmetric notion of product.
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Definition 2.9. Let U be a proper nonempty subspace of X. Define the rigidly derived
Dehn invariant relative to U, Dy : FX L FUX F,UL by

* ifﬂjs.t.Uj:U
Dy(Uo C -+ CUp) =< (Uo S CUj)A(prye Ujyr € -+ Cprye Uy)
if j =max{i|U; =U}.

We call a j as above the U-pivot of Uy C --- C U,.

That Dy is compatible with the simplicial structure is direct from the definitions.
Observe that if a U-pivot exists then it is strictly less than n, since U # X.

Lemma 2.10. Let U be a proper nonempty subspace of X, and write I(X,U) for the
subgroup of I1(X) of those elements fiving U. The group I1(X,U) acts on U and Dy is
I1(X,U)-equivariant.

Proof. The first claim follows from the definition of orthogonal complement. To check
equivariants it suffices to check that for any g € I(X,U), the map Dy commutes with
the action of g. If a U-pivot exists then the action of g passes to F,UL, and thus commutes
with Dy . If no U-pivot exists then this is also true after applying g; since g fixes the
basepoint the action of g commutes with Dy. O

This derived Dehn invariant can also be iterated on the nose, analogously to (2.5):

Lemma 2.11. Let U C V be proper nonempty subspaces of X. Then the following diagram

commutes:
X Dy U F.Ul
Dy id ¥ Dyiay
FVspyt v pugputov g gyt

Proof. Fix any m-simplex Uy C --- C U,, with U-pivot ¢ and V-pivot j. For any subspace
W of X, if pryy. (W) C VNUL then we must have W C V. In particular,

(1% Dyray) o Dy)(Up C -+ C Up)
= (1 xDyray)((Uo € -+ CU) A(prye(Uisr) € -+ Cprye (Um)))
= (U C--- CU) A (prye(Uig1) € -+ Cprye(Uy))

A (pry prye (Ujp1) € - C prys prya (Un))
=0 C - CU) A (pryr(Uis1) € -+ Cprye(Uj))
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A(PryL(Ujs1) €+ Cprys (Un))

where the last step follows because V+ C U~. This is equal to the composition around
the bottom, as desired. O

Up to this point, the definitions and results can be constructed for the smash product,
instead of the reduced join. However, the authors could not find anything analogous to
the definition below when * is replaced by A:

Definition 2.12. Let 0 < i < d. Define the dimension-i derived Dehn invariant D; to be
the lift in the following diagram:

\/ FUxFY

UCX
dim U=

T

FX H Dy H FU ;;F\UL

UCX
dim U=i

This is well-defined: every simplex contains at most one space of dimension 4, and thus
only a single dimension-i component will be nontrivial on it.

Lemma 2.13. D; is well-defined and I(X)-equivariant.

This produces a Dehn invariant for a fixed dimension. Moreover, this Dehn invariant
can be put into a square similar to (2.5). When 4 < j the diagram

FX D \/ FUFE
UCx
dim U=1
D;
id* Dj—i (2.14)

\/ RVER PN\ RUFEUV IRV

VCX UCV
dim V=j dim U=t
dim V=j

commutes and is I(X)-equivariant.
Analogously to Theorem 1.21, this construction is compatible with the classical story;
as before the proof is postponed to Appendix A.
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Theorem 2.15. Suppose dim X = d and k = R. Then Ho(I(X); Hgt+1(S° A D)) is the
classical Dehn invariant.

3. A geometrization of the Dehn complex

Let X be a neat geometry (in the sense of Definition 1.2).

In [17] Goncharov considers a complex P, (X) constructed out of iterations of the
Dehn invariant, and gives several conjectures relating these to algebraic K-theory. These
conjectures will be discussed in Section 5; here we focus on the construction of this
complex and its geometrization.

We begin with an informal outline in the case k = R and dim X = 2n — 1. Using
the square (2.5) the classical Dehn invariant D; can be iterated by varying over all
possible values of 0 < i < 2n — 1; this produces a commutative cube of dimension 2n — 2
whose vertices contain tensor products of scissors congruence groups. When j is even,
P(S7) = 0 (Proposition 1.24); removing the coordinates where these appear leaves an
(n —1)-dimensional cube. Goncharov considers the total complex of this cube in [17]; we
refer to this complex as the Dehn complex and denote it by P.(X). One advantage is
that it allows for the following rephrasing of the generalized Hilbert’s third problem for
reduced spherical and hyperbolic scissors congruence groups:

Question 3.1. Is volume injective on H, _;P.(X?)?

The goal of this section is to develop a tool for analyzing this complex using total
homotopy cofibers of cubical diagrams; as an additional benefit, a definition of the Dehn
complex for arbitrary fields k£ naturally emerges.

More formally:

Definition 3.2. Let I be the category 0 — 1. An n-cube in C is a functor I — C.
Suppose that C is a model category.” Write I™ for the full subcategory of I™ which does
not contain the object (1,...,1).

Let F : I —> C be any functor. The total homotopy cofiber cofib™ F is the homotopy
cofiber of the map

h
COhmF‘INn 4>F(1,...,1).

For a more in-depth discussion of the total homotopy cofiber, see [22, Section 5.9].
The important examples are the following;:

5 Model categories are just one of a wide variety of situations (often called “homotopical categories”) in
which it is possible to define homotopy cofibers (which is all we need for the current application). For an
overview of this, see for example [25].
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Example 3.3. In the case n = 1 the cube F' becomes a morphism M — M’ of R-modules,
which can be thought of as a morphism of chain complexes concentrated in degree 0.
Taking the homotopy cofiber produces

cofib™ (M[0] — M'[0]) = (0 — M — M’ — 0),

with M’ in degree 0 and M in degree 1. Tautologically, this is the total complex of the
1-complex given by the original 1-cube.

Example 3.4. Now consider the general case. Let F': I" — Modpg be a functor; this is
an n-complex which has length 2 in each direction. One can check that the total complex
of F is quasi-isomorphic to cofib™™ F[0].

To construct the Dehn complex it is more convenient to work with a slightly different
coordinatization of a cube.

Definition 3.5. Denote by Z; the category whose objects are sequences A= (b,a1,...,a;)
of positive integers such that b+a;+- - -4+a; = d and in which all a; are even. There exists
a morphism (b,a1,...,a;) — (0, a},...,a;) if there exist indices 0 < ig < -+ < iy =1
such that b =0"+ay +---+a; and aj =ai, _ 1+ +aj.

Note that Zy is an L%j—cube via the map (b,aq,...,a;) — (d1,... ’5L%J)’ where
0; = 1 if there exists an index ¢ with b+ a1 + - -+ + a; = 25 and 0 otherwise.

Definition 3.6. Let X be a neat geometry of dimension d.
Define the Dehn complez P.(X) to be the total complex (equivalently, total homotopy
cofiber) of the cube D : 7, — AbGp sending (b, a1, ...,a;) to

D(b,a1,...,a;) = Z[3] @ P(X*) ® ®7>(5a1—1)

Jj=1

and the map (b,a1,...,a; +aji1,...,a;) — (bya1,...,0;) t01®---®@ Dy, ®---® 1.
The equivariant Dehn cube is the cube D4Vt : 7; —> Mod 1(x) given by

D (b, ap, ..., a;) = Z[}] @ ) PW.1) @ QP(V;:1).
Wetviet @t Vi=X =t
dim W=b

dim V;=a;—1

By the same reasoning as in the proof of Lemma 2.4, we see that Ho([(X), —) o DIt =
D.G

S The only change that tensoring with Z[}] imposes is that when n = 0, P(X™) = Z[1], instead of Z (as
it would usually be: it is a count of the number of points). All other classical scissors congruence groups

are 2-divisible.
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Thus the Dehn complex is obtained by constructing a cube of coinvariants of homology
groups and taking its total homotopy cofiber. The goal of this section is to construct,
I(X)-equivariantly, a “geometrization”: a cube of spaces that produces D after taking
homology and then the I(X)-coinvariants.

Remark 3.7. As mentioned in (1.16) and Theorem 1.21, taking coinvariants in the ho-
mology can be replaced by taking the homotopy coinvariants of an action on a space.
Since homotopy coinvariants and the total homotopy cofiber commute past one another,
in future sections these are applied in the opposite order to relate the homology of the
Dehn complex to algebraic K-theory.

We proceed as in previous sections: by replacing P(X) with FX. It cannot be done
over Z, but instead over Z[%]; the difficulties are highlighted in the differences between

FX and JA:
Definition 3.8. Let A be any tuple of integers A= (b,ay,...,a;). Define

FA Lt \V Y% % FV
=1

Woer@t V=X =
dim Vj=a;—1
dim W=b

(with *-factors ordered from left to right) and

JrE o\, FVA /\ (87 AFD).

WGBL@L ‘/J:X ]:1
dim Vj=a;—1
dim W=b

The construction of the Dehn complex in spaces can be duplicated in the current
context:

Definition 3.9. Define the functor Y : Z; — Top by
A—5 87 A FfY ,

with morphisms given by the appropriate D;. Define the Dehn space YX by
YX = cofib™ Y.

Theorem 3.10. Let X be a neat geometry of dimension d. The Dehn complex is quasi-
d—1

isomorphic to the total complex of the | “5= |-cube given by

Hap1 (Y(=)nrx); Z[3)) - A Hyp ((SU A F-E)hI(X)? Z[%D :



J.A. Campbell, I. Zakharevich / Advances in Mathematics 451 (2024) 109757 25

The rest of this section is dedicated to the proof of this theorem; as everything from
this point on will be done with Z[3] coefficients, the coefficients are omitted from the
notation. From the homotopy orbit spectral sequence (Proposition B.7) applied to the
right-hand side of the given formula, it suffices to construct a natural isomorphism
D — Ho(I(X),Hy+1(Y)). Because D = Hy(I(X),D°"") it suffices to produce an
I(X)-equivariant natural isomorphism o : D' — H,, 0 Y.

To produce the value a 7 of o on fi first observe that

-,

Deqvt( ) — Z[%] ® @ P(VV, 1) ® ®P(Vj7 1)

o Hdﬂ( \/ STAFY A NS A F.Vf)> = Hyr (S A JH.
Wat@t v,=x j=1
dim Vj=a;—1
dim W=b

Therefore a 7 could be produced by giving maps of simplicial sets S7 A J,"T — S7A F,“T
which give isomorphisms on Hgy1, compatible with the images of arrows in Z,,. These
arrows are given by Dehn invariants; unfortunately, while Definition 2.12 gives a ge-
ometrization of the Dehn invariant on F,“Y , we do not have an analogous geometrization of
the Dehn invariant on J,"T . Therefore the compatibility conditions between the « ; cannot
be stated using only maps of simplicial sets. Instead, ad-hoc mappings are constructed
between these spaces, which with a scaling correction behave correctly on homology.
These maps are homotopy equivalences after tensoring with Z[%], although not integral
homotopy equivalences.

Remark 3.11. This seems to imply that the original definition of the Dehn invariant had
an extra factor of 2 somehow incorporated into the definition. It would be interesting to
see a geometric explanation of this phenomenon.

To construct this explicit descriptions of S' and S? are required. The structure is
summarized in the following table; note that in the case of S!, € = 1 always; in the case
of S7, e =+1.
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St Se
n-simplices {x,1,...,n} {x,®,£1,...,£n}
di(ei) j=0,i=1 « ®
j=1i=n * *
j<i i—1 e(i—1) (3.12)
otherwise i €l
sj(ei) j<it i+1 e(i+1)
j>1 7 €l
Z /2-action none €l — —e€i

All simplices above dimension 1 are degenerate. All face and degeneracy maps on * (resp.
®) map it to * (resp. ®) in the appropriate dimension.

In this notation, the simplicial weak equivalence mentioned in Lemma 2.8 and
Lemma B.4 is described via

(i,2,9) € (S"AX AY), — (&) e, diy) € (X *Y),. (3.13)

The key construction for the desired equivalence is the Z/2 x Z/2-equivariant map
defined by
v: 8 NS —— ST ASt
(CL, b) — ((Sgn b)aa |b‘)
and vy(x) = *. Here, Z/2 x Z/2 acts on the left coordinatewise, and on the right via

the addition mapping Z/2 x Z/2 — Z /2. This is a two-fold cover of S? by S2. More
visually, consider the following illustration:

In this diagram all nondegenerate simplices present in S x S and S” x S! are drawn;
everything drawn dashed is collapsed to a single point in the smash product. Edges are
not labeled but 2-simplices are, using the explicit description of the simplicial structures
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in (3.12). In effect, the map =y is the endomorphism of the unit disk which multiplies the
angle (in polar coordinates) by 2.

It is now possible to define f;: S7 A J,“Y — S9N F,“Y. For any simplicial sets K and
Lylet f: S'ANKAL— K % L take (a,z,y) to (d?"%"'z,d3*y); by Lemma B.4 it
is a weak equivalence. Define f; inductively, as an i-fold composition of maps of the
following form:

SCAKAS AL -T2 8 ASTAKAL-— S AS'AKANL -1+ AKFL.

Lemma 3.14. After inverting 2, f; becomes an I1(X)-equivariant weak equivalence.

-,

With a ; constructed, we can describe the homology groups of Y (A)p (x) explicitly
in terms of group homology and scissors congruence groups:

Lemma 3.15. Let A = (b,ai,...,a;) be an object of Zy. Then

m, (Y( H)h](X);Q) = @ Hyy 51 (1(X"),P(X",1)g)
lot-tli=q

® ® Hfj—aj—l(o(a'j + 1)7 P(Saj ) 1)@)
j=1

Moreover, when q = d + 1 this works with only 2 inverted:

%
-

Har (Y(A)rx 213]) 2 P(X) © @ P(5™).

=1
Proof. Since a ; is an equivariant weak equivalence, we know that

-,

H, (Y( )h1(x); Z[%]) =~ H, ((S" NIV z[%]) .

We thus focus on the computation of the right-hand side. We can model (S A J,‘I)M(X)
as the bisimplicial set K.. where

Kpq=I(X)1 A (S AT,

Here, the horizontal face and degeneracies act only on the (5S¢ /\J,“Y)—coordinate. The j-th
vertical degeneracies add an identity into the j-th slot in the tuple I(X)?; the vertical
face maps are defined as follows:

((g15---,9i419ir---,9¢),y) HfO0<i<gq
di((glv"'vgq)ay): ((glﬂ"'3gq—1)7y) 1fz:q
((gQa"'agq)agl'y) if 1 =0.
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In particular, every simplicial set K, . is the nerve of a category whose objects are
(S7A J“Y) and in which Hom(y,y") = {g € I(X) \g y =19} (plus a disjoint basepoint).

Fix a smgle decomposition X = W et @ V;, and write Y/ = (S A FW A
/\j 1(STA JoAE 7). Consider the bisimplicial subset K7, of K.. containing those simplices
((91,---,94),y) with y € Y'; for each p, K, is also the nerve of a category, which is the
full subcategory of K. on the simplices in Y”. Note that the inclusion of this subcate-
gory is essentially surjective, and thus induces a weak equivalence on nerves. Thus the
inclusion Kzlv,- — K. is a weak equivalence for all p, and thus the inclusion K,’_’, — K..
is a weak equivalence on geometric realization. Consequently,

m, (Y( D) r(x); Z[%}) ~ H,(K..).

Any group element appearing in K,’ﬁ, must preserve each of W, Vq,... V;. Thus (by
reversing the construction of K.. above) we see that

Kl NY}Z(I W)xITi_, 1(V))) =

(S /\F /\Sa/\FV RI(V;)-

After tensoring with Q, the homology of the right-hand side gives the desired formula.
Moreover, as the d + 1-st homology on the right is the lowest nonzero homology group,
the second part of the lemma follows by the Kiinneth theorem. O

It follows that the objects in the desired cube are isomorphic to the objects in
Goncharov’s cube. In an ideal world, it would be possible to define oz = Hay1(f3)-
Unfortunately, it is not that smlple as this is not compatlble with Dehn invariants. Con-
sider a small example. When A= (d), F. A= = J; A = FX. Fix b, and consider the Dehn
invariant D, corresponding to the morphism (d) — (b, a). This produces the following
noncommutative diagram:

Hd+1 (SU A J,(b’a))

& JHdJrl(f(b,a))
Hd+1 (SU A\ F.(b’a))

Hapa(57 A FT) Har1(Dy)

To make the diagram commute it is necessary to multiply the vertical map by % (due to
7 having degree 2). This is true in general; writing |A| for the length of A, if |[A] > 1 the
construction of f; contains |ff| — 1 compositions with 7, and thus multiplies by 21411

in homology. As 2 is inverted, this can be remedied:

def

Lemma 3.16. 21~ ‘A‘HdH(fg) gives a natural isomorphism

D — Hy i (Y3 Z[3).



J.A. Campbell, I. Zakharevich / Advances in Mathematics 451 (2024) 109757 29

The proof is now complete. 0O
4. Large cubes and the Dehn complex

To construct the Dehn complex, Goncharov essentially starts with the groups P(X, 1),
takes their coinvariants with respect to a group action (or, in other words, a homology
group), constructs a new differential to make these groups into a chain complex, and
then studies the homology of this new chain complex. This produces an object which
is difficult to analyze and does not seem to fit into any of the standard methods for
taking the homology of homologies. In light of Example 3.4, this chain complex can be
thought of as the total homotopy cofiber of a cube of groups. The goal of this section
is to compare it with the total homotopy cofiber (Y*)p,;(x) of derived Dehn invariants
defined above. It turns out that the homology of (YX )Jn1(x) can be described in two
ways: one by directly analyzing its homotopy type, and one via a spectral sequence of
Munson and Volic [22, Proposition 9.6.14]. The comparison between these computations
is incredibly fruitful.

For the rest of this section, the neat geometry X over k has dimension d = 2n or
2n —1 (so that n = [2£L]).

Theorem 4.1. After inverting 2 there is an equivalence

(Y nrx) = (S7 A S Drx)-
Here 1(X) acts by det on the S°-coordinate and trivially on the S™~'-coordinate.

The proof of this theorem is deferred to Section 6. The key to this theorem is the obser-
vation that homotopy coinvariants are both homotopy colimits and therefore commute;
thus

(Y5 )nrx) = (cofib™ Y),1(x) = cofib™ (Y r(x))-

This means that the simple combinatorial nature of Y can be played against the benefits
of taking homotopy coinvariants. This is also where the benefits of constructing an equiv-
ariant Dehn invariant comes into play: if an equivariant model for the Dehn invariant
did not exist it would be impossible to move the homotopy coinvariants outside of the
total cofiber.

Theorem 4.2. Write Z[1]° for a copy of Z[%] with I(X) acting on it via multiplication
by the determinant. For all i,

in particular, when i < n both are zero.
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Proof. By Theorem 4.1 there is an isomorphism
Hi(Ynrx): ZI5)) = Hi((S7 A S™ Dnrcx); Z[3))-

By the homotopy orbit spectral sequence (Proposition B.7), and since Z[%]“ &
Hl(SU;Z[%])a

I

L, (7 A S Y ZI4) (rx); /1, (57 A 5™ 214)

I

Hifn
H_, (I(X);Z[4)7). o

The spectral sequence for the total homotopy colimit of a cube proved in Proposi-
tion B.9 can now be used to connect the homotopy type of HhXI(X) to the Dehn complex.
In this case the spectral sequence becomes

El,= D H (YD ZE]) = e (95000 23]) . (43)
A=(b,a1,...;an_1_p)

Since Y(/T) has no nonzero homology below degree d + 1 this also holds for Y(/T) hI(X)-

Thus all entries in the spectral sequence with ¢ < d + 1 are 0. When ¢ = d + 1 the row
of the spectral sequence is exactly the Dehn complex.

Below is a picture of the spectral sequence for H*(%;((X);Z[%]) in (4.3). The red

indicates the non-zero entries in E*. (For interpretation of the colors in the equation(s),

the reader is referred to the web version of this article.) The Dehn complex is the base

complex of Y; it is the thick blue line sitting in the row where ¢ = d + 1.

q
d+1 7 s 7 o
+1l+n E;ﬂq = @ H, (Y( )hI(XﬁZ[%]) = Hpig—n (I(X)?Z[%} )
Aez,
d+1 len(A)=n—p
di: By —— By,
dr By —— B} 14r

len(b,ay,...,a;) =i+1

d+1
(4.4)

Definition 4.5. Let F}; , be a first-quadrant homologically-graded spectral sequence with
lowest nonzero row at p = m, converging to the sequence of groups Gpi4. The base
complex of the spectral sequence is the complex F*l’m with differential d'. The induced

homomorphism 6,, : G, — F! is called the projection to the base.”

n—m,m

7 This is also sometimes called an “edge homomorphism in the spectral sequence.”.
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Theorem 4.6. Projection to the base gives a homomorphism
O : Hn+m(I(X);Z[%]U) —— Hp,,P.(X).

This homomorphism is surjective if and only if all differentials d” : E7, ;1 — EJ . ;..

forr > 2 are zero. It is injective if and only if E;5,_,, =0 for allp >d+1.

Proof. Projection to the base is surjective onto E72 ; ;. As the base complex is the lowest
nonzero row, the spectral sequence contains no differentials into that row; thus, B
is a subgroup of Eg’ 441 for all p. This subgroup is exactly the intersection of all of the
kernels of the d", and is therefore equal to the whole group if and only if all of these
differentials are 0. The kernel of projection to the base is exactly the subgroup given by
all of the terms in the m-th diagonal above the base complex on the E*°-page; thus the
map is injective if and only if the terms in the diagonal are 0. O

In the case of this spectral sequence, it is possible to give an explicit description of
077.71:

Lemma 4.7. Let k = R. In the spectral sequence (/.3), the map
en—l : Hd(I(X>7 Z[%}U) I— n—lp*(X>

is induced by the map taking a chain (g1,...,94) to the scissors congruence class of the
d-simplex with vertices

{93079dxo,9d9d—1130, e gd 9170},
(for any chosen point xo € X ) with the sign given by H?Zl det(g;).

The proof of this lemma is technical and not illuminating, so it is postponed to
Section 6 (Lemma 6.6); in fact, in that section it is proved over any field k. We state it
here for the special case as it makes the result easier to describe and this is the only case
of interest in the current paper. This is a generalization to any field of a result claimed
by Dupont in [13, Remark 3, p46]; unfortunately, the formula given there is incorrect as
stated.

Directly from the spectral sequence it is possible to prove minor generalizations (to
all fields of characteristic 0, instead of just the real field, and including all d not just odd
ones, and removing rational coefficients) of the following results of Cathelineau:

Theorem 4.8 (Generalization of [4, Thm. 10.1.1]). For d = 2n or 2n—1 withn > 2, and
any field k of characteristic 0,

H(I(X):Z[4) =0 ifi<n
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and

H,(I(X); Z[3)7) = HoPu(X?).
Proof. Cousider the spectral sequence (4.4). Everything below the d + 1-st diagonal is
0, which implies the first claim. In the p 4+ ¢ = d + 1-st diagonal there is exactly one

nonzero entry: Ho(P.(X4)). O

For the next theorem it is unfortunately necessary to rationalize, rather than simply
inverting 2. As the rationalization is used only in computing the group homology of
SO(2), in certain cases with good control over the torsion in this group it may be
possible to get away with a milder localization.

Theorem 4.9 (Generalization of [5, Proposition 6.2.2]). Let X be a neat geometry over
a field k of characteristic 0. Then

Hy(I(XY); Hy (FX)7) = 0.
Consequently, for d =2n or 2n — 1, with n > 2,
Hni1(1(X); Q%) 2 Hi(Pu(X)g)-
Proof. Via the spectral sequence in (4.4), it suffices to check that E(%,d+2 = 0. This term
is a direct sum of tensor products, where each tensor product contains exactly one of
the groups
HV(I(HY), Hi(FF)7) - or - Hi(I(S"), (F5)7).
When X is spherical, only terms of the second sort will arise. Thus the second statement
in the theorem follows directly from the first.
Let IT(X!) be the subgroup of I(X!) of those elements with determinant 1. The
Lyndon—Hochschild—Serre spectral sequence for the extension
I'"X)— I(X) — 72,
has
1 1
Ep = Hy(Z/2, Hy(I'"(X), Hi(FX")?)) == Hpyq(I(X), Hi(F)7).

In particular, since Hy(F/X 1) is 2-divisible, E}%q = 0 whenever p > 0. Thus

H,(I(X), H(FX')?) = Hy(Z /2, H, (It (XY), Hi (FX')7)). (4.10)
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We turn our focus to computing H, (IT(X'), Hi(FX')?) = H,(I't(X'), Hy(FX")),
which by the homotopy orbit spectral sequence (Proposition B.7) is isomorphic to
HnH((F,Xl)H(Xl);Q). Consider (F.Xl)hI(Xl) as a bisimplicial set, with the simplices
of FX" in the horizontal direction, and the I(X!)-action in the vertical direction. This
produces a double complex, whose spectral sequence converges to H*((F,Xl)1+(x1); Q).

Consider the spectral sequence in which we take first vertical homology, then horizon-
tal homology. As the only nondegenerate simplices in F.X " are in dimensions 0 and 1,
this spectral sequence will be concentrated in the first two columns. The simplicial set
FX' has exactly one non-basepoint 0-simplex [X!], which has as its stabilizer IT(X?!);
thus

Ej, = H(I'T(X1),Q).
The simplicial set F.X " has as its nondegenerate 1-simplices inclusions Uy € X', which
have as their stabilizers the subgroup of I(X?) x I(X°) with determinant 1 (this is the
group which fixes Uy and U(f-) This is a 2-group, and we will therefore have
El, 20 g¢>0.
When ¢ = 0 this is simply Q, and d; will send this Q isomorphically to E(%,o = Q.
Thus the spectral sequence collapses at E2, where it is concentrated in the 0-th column,
producing
Hy (I (XY), Hy (FX)7) & Hy (IF(X1), Q7).
Combining this with (4.10) produces
Hy(I(X1), Hy(FX)7) 2 Ho (2/2, Hopr (IF(X1),Q7)).
In the particular case of interest we have
Hy(I(X"), Hy(FX')7) = Ho (Z/2, Hy (T*(X1),Q7)) .
The group I7(X1) is abelian, and therefore
Hy (IT(X1),Q7) 2 A*(IT(X") ® Q7).

The group Z/2 acts by —1 on both @ and on I (X%); thus it will act by —1 on every
chain, and thus on the homology group Hs. Thus, since everything is 2-divisible,

HO (Z/QaHQ (I+(X1)7QU)) = 07

as desired. O
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Directly from these calculations we can conclude the following:

Corollary 4.11 (Generalization of [4, Thm 10.2.1]). Projection to the base 0y, is an iso-
morphism when m = 0,1 and surjective when m = 2.

5. Goncharov’s conjectures

In this section we discuss the connections between Goncharov’s original conjectures,
Cheeger—Chern—Simons invariants, and the results of the previous sections. All groups
in this section are considered as discrete groups.

5.1. Projection to the base and the modified conjectures

In [17], Goncharov has a series of three conjectures about possible connections be-
tween the Dehn complex and the algebraic K-theory of C. We give a summary of these
conjectures here. Our notation does not exactly agree with Goncharov’s; in particular,
Goncharov’s Dehn complex is cohomologically graded and 1-indexed, while ours is ho-
mologically graded and 0-indexed. We number the parts of our summary by the number
of the conjecture in [17].

All tensor products of Z/2-modules in this section are equipped with a Z /2-action via

the diagonal action. Write Q"¢ def (Q7)®" equipped with the diagonal action of Z /2.

Conjecture 5.1 (/17, Conjectures 1.7-1.9]). Let P.(X?*"~1) be the Dehn complex for the
geometry X2~ over R.

(1.8) There exist homomorphisms

@i

H;P(S*"71) — (g1} Kn+i(C)o ® Q") F

and

HiPL(H?™1) 25 (a1 K 44(C)g ® Q7)™

(1.7) The homomorphism ¢,_1 is injective, and the diagrams

ker@p ~H, 1P, (521 (g7 Kon—1(C)o @ Q™) *
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and

n—1
~ ¢)7l*
ker @ D; = H,_1 P (M) ——"——— (g1] K2n—1(C)o ® Q)™
=1

vol T

commute. Here, the right-hand map is the Borel (resp. Beilinson) regulator.

(1.9) All ¢; are isomorphisms.

Here, gr) is the n-th graded part of the y-filtration, and Q™7 is the vector space Q with
Z/2 acting on it via multiplication by (—1)™. The sign in the superscript indicates taking

the £1 eigenspace with respect to the action by complex conjugation.

For an exposition of the v-filtration, see for example [18]. For an exposition of the
Borel and Beilinson regulators see [1, Chapter 9].

Goncharov proves (1.7) in the case when C is replaced with Q and simplices in the
Dehn complex are restricted to those with algebraic vertices [17, Theorem 1.6]. Note that
any polytope which can appear as the fundamental domain of a group action is auto-
matically in the kernel of all Dehn invariants; thus in particular Goncharov’s conjectures
would imply that all volumes of hyperbolic manifolds must be in the image of the Borel
regulator.

Inspired by the conjectures, we propose an alternative method to connect the algebraic
K-theory of C and the scissors congruence groups (see Proposition 5.10). Explaining the
~-filtration and the Borel and Beilinson regulators in the above theorems is extremely
nontrivial, while the corresponding notions in our approach are much more elementary.
Due to the nature of our methods the morphisms we construct go in the opposite direction
to Goncharov’s desired morphisms.

As a first observation, Theorem 4.6 constructs exactly the morphism desired by Gon-
charov’s Conjecture 1.8. In the rest of this section we will analyze how well this morphism
proves Conjectures 1.7 and 1.9.

We begin with a description of the Cheeger—Chern—Simons class, which plays the same
role as the Borel regulator for the case of orthogonal groups (rather than general linear
groups).

The construction is originally due to Cheeger and Simons [7, Section 8] (although
the authors originally learned it from Dupont [13, Sect. 10]) and works for more general

homogeneous spaces. See also [10] and [9, Section 5].
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Definition 5.2. The Cheeger—Chern—-Simons construction is a homomorphism
CCS : H?n_l(O(Qn;R);Z[%]U) ﬁ(SZn—l)/[SQn—l]’

defined as follows. Consider the space O(2n;R)/O(2n — 1;R) with the usual topology.
This is homeomorphic to S?"~! with a distinguished point. The group O(2n;R) acts
on this on the left, moving the distinguished point. A chain in degree 2n — 1 is repre-
sented by a sequence of elements (g1, ..., g2,—1); call such a chain generic if the points
{z, gon—1%, gan—192n—2%, . .., gan—1 - g1} are all linearly independent in R?™. For a
generic chain, define a geodesic simplex in S?"~! associated to this chain by

def
(

A(gl,...,gzn,l) = (Zo, 92n—-120, 92n—-192n—2%05 - - - y Y2n—1"* '91150).

To check that this morphism is well-defined it suffices to check that given any 2n-
chain (g1,...,92n) all of whose faces are generic, the sum over the boundary is 0.
This holds in P(S?"~1)/[S?~1], and this construction can be extended to all of
Hsy,—1(0O(2n;R); Z[£]%) as the generic chains are dense ([7, discussion after Theorem
8.14]). Define

CCS : H2n71<0(2n;]R>; Z[%]U) . 7/)\(52n—1>/[52n—1]
[(glv"'ngnfl)] > [A(glv"'7g2n—1)]

(See [7, Section 8] and [10] for a more in-depth discussion.)
Now fix a volume form v € Q?"71(§?"~1) (which we normalize to so that
fS2"71 vgan—1 = (2m)™). The Cheeger—Chern—Simons class is the homomorphism

ces

CCS : Hyp 1(0(20;R); Z[L]7) P(S21)/[8%" Y 2L R/ (2m) " Z[4].

Here we restricted to the odd-dimensional case because (by the “center-kills” lemma
[13, Lemma 5.4]) the homology groups Ha,(O(2n+1;R); Z[£]7) are all 0. By considering
H? = 0% (1,d;R)/O(d; R) one obtains an analogous homomorphism

CES : Ha(OF(1,d); Z[3)7) — P(H?)
and
CCS: Hy(O"(1,d;R); Z[1]7) — R.

The definition of the Cheeger—Chern—Simons construction yields the following analog
of Goncharov’s Conjecture 1.7 for hyperbolic geometry:

Theorem 5.3. When X = H? and d = 2n — 1, projection to the base (Definition /.5)

Hg(0"(1,d;R), Z[5]7) —— Hn1 Pu(HR)
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fits into a commutative diagram

On_1

Hy(O*(1,d;R), Z[3]7) Hyo1Ps(H)

CcCs vol
R.

In particular, vol is injective if 0,,_1 is surjective and CCS is injective.

Proof. The key observation to prove the theorem is that the group homomorphism CC8
agrees with the explicit description of 6,,_; in Lemma 4.7 after composition with the
isomorphism P(H?) — Hyy1((S7 A F,Hd)l(’}.[d); Z[%]) in Theorem 1.21. O

The main difficulty in relating the spherical Cheeger—Chern—Simons homomorphism
to volume is that (as mentioned in Remark 2.3) volume is not well-defined on P(S2"~1).
An interesting question is whether it is possible to give a well-defined definition of volume
of H, 1P.(S?"~1)—i.e., on the kernel of the Dehn invariant. However, it may be the
case that this group is nonzero, and yet still a well-defined lift of the volume is possible,
in which case an analogous statement to the hyperbolic one should exist. The precise
relationship between the Cheeger—Chern—Simons class and projection to the base in
the spherical case is the following; we omit the proof as it is directly analogous to the
hyperbolic case.

Let p: P(S27~1) —» P(52"~1) be the projection. Let

ef _ n—
L2n—1 d: p 1(Hn—lp*(S2 1))7

this is the subgroup of spherical polytopes with Dehn invariant equal to 0 after reduction
by lunes.

Theorem 5.4. In the spherical case, the Cheeger—Chern—Simons class factors through the
inclusion

L2n—1/[52n71] o« 7/5(527171)/[527171]
and is related to the projection to the base via the following commutative diagram:

CCs

ces

Han-1(0(20;R); Z[4]7) Lon-1/[8?"71] % R/(2m)"Z[3]

P
On—1

Hn,lp*(SQ"_l)
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Moreover, the analysis in Theorem 4.8 produces the following version of Goncharov’s
conjecture 1.8, with special cases of 1.9:

Theorem 5.5. Let d = 2n or 2n — 1. For a neat geometry X of dimension d, projection
to the base gives a homomorphism

Om : Hypm (I1(X),Q%) — H,,Piu(X)o-
This homomorphism is an isomorphism when m = 0 or 1 and is surjective when m = 2.
5.2. Relationship to algebraic K -theory

In order to relate the homology of isometry groups to algebraic K-theory, we introduce
the rank filtration.

Definition 5.6 (/28, p. 296]). The higher rational K -theory of k is defined to be

K.(k)o f primitive elements of the Hopf algebra H,.GL(k).

(Recall that all homology is taken with rational coefficients.) The rank filtration on
K. (k)q is defined by

FiK.(k)o ¥ K.(k)g N (im (H.GL(i; k) — H.GL(k))).

Then

ertk Ko (k) = FuK.(k)g/Fa 1 K.(k)g.

We will also need an auxiliary object; define
CLy (k) < coker (H,GL(n — 1;k) p —> H,,GL(n; k)p),

where H,,GL(i;k)p is the subgroup of H,,GL(i;k) of those elements whose images
in H.GL(k) is primitive. Observe that there is a natural surjection CL,, ,,(k) —>
gy Ko (k)q-

Analogously to CL,, ,,, we define

COnm(k) X coker(H,nSO(2n — 2; k) p —— H,nSO(2n; k) p),

where (H,,,SO(i; k))p denotes those elements whose image in H,SO(k) is primitive. We
assume that the stabilization map SO(2n — 2;k) — SO(2n;k) adds coordinates at
positions n and 2n, rather than at 2n — 1 and 2n.
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There is an action of Z/2 on H,SO(n;k) given by conjugation by a matrix with
determinant —1. From the exact sequence

the homology of SO(n; k) splits into eigenspaces
H,,SO0(n; k) 2 H,,O(n; k) ® H,,(O(n; k),Q7),

where the first component is the +1-eigenspace and the second is the —1-eigenspace [6,
p.489]. Since stabilization is equivariant with respect to this action, it induces an action
on COyp (k). When n is odd Hp,(O(n; k); Q%) = 0 for all m ([6, Theorem 1.4], or [13,
Lemma 5.4]); in particular, this implies that

COpm(k)” = Hp(O(2n;k),Q%)p. (5.7)

We now turn our attention to explaining the connection between rational homology
of orthogonal groups and algebraic K-theory. The comparison between the two is very
well-studied (see, for example, [2]), and it is known that, after rationalizing, Hermitian K-
theory is isomorphic to the homotopy fixed points of algebraic K-theory under the action
sending a matrix to its transpose [2, (1-c)] via the hyperbolic map (defined below). This is
explored in more detail below, and used to explain the connection between Goncharov’s
conjectures and the theorems proved above. In particular, we will explain why, in the
real case, both spherical and hyperbolic geometries arise, and how Goncharov’s curious
twisting factors Q™7 arise.

Definition 5.8. The hyperbolic map:
M
hyp : GL(n; k) —— SO(n,n; k) : M — < (M")1> )

When k contains i = v/—1 and /2, conjugation by the matrix

€ 1 n n .
p e L[ I I det Dy, = "
V2 \ =i, i,

induces an isomorphism SO(n,n; k) = SO(2n; k). Conjugation by the matrix

1 I I
plil def - n n det DI — jn—1
n T B\ —diag(,i,...,9) diag(1,4,...,1) A=

induces an isomorphism SO(n,n; k) = SO(1,2n — 1; k).
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This map is not an isomorphism on homology, and it is known that in the limit as
n — o0 it has a large kernel.

Definition 5.9. For any field extension L/k, the groups H,,GL(n;k) and H,,,SO(2n; k)
have an induced action by Gal(L/k). We call this the Galois action and write it on
the left. We call the action induced by conjugation by a matrix with determinant —1
on H,SO(n; k) the conjugation action, and we write it on the right. These two actions
commute, and are equivariant with respect to the stabilization maps, so induce actions
on CLy, »,m and COy, . In the current context only quadratic extensions are considered,
and +1-eigenspaces are denoted with a + or a —, as before. Thus, for example, the
space TCO,, (k)™ is the subspace of those vectors which are —1-eigenvectors for the
conjugation action and +1-eigenvectors for the Galois action.

The module Q7 is considered to have “Galois action” by the sign action, and abuse
notation to consider the “Galois action” on C'L,, (L) ® Q™ via the diagonal action.

In the case when a field k£ does not contain y/—1 it is possible to compare the scissors
congruence of k and the algebraic K-theory of k(7). The case when k = R is the case of
Goncharov’s original conjectures.

Proposition 5.10. Let k be a field containing /2 and not containing i = /—1. There
exist natural zigzags

@t Ko (1)) ® Q") < H(CLym (K(1) © Q") —— " Hy o Pu(S2)
—— HponPu(SP™h)

and

(et (K)o © Q") «— ~(CLyu(k() € Q")
= P (Pa(HEE ) o Hon o P (M),

Here, the middle map is induced by the hyperbolic map and projecting to the base (Defi-
nition 4.5). All homology is taken with rational coefficients.

To make the above analysis as satisfying as possible, it is desirable to prove the
following algebraic conjecture:

Conjecture 5.11. The map H.(SO(2n;k); Q) — TH.(SO(2n;k(3)); Q) is an isomor-
phism.

If this conjecture were true then the zigzags in Corollary 5.10 would be shortened to
a length-2 because the rightmost inclusions would be isomorphisms.
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6. Proof of Theorem 4.1

In this section we prove Theorem 4.1. First, some notation. Write fd for the category
whose objects are sequences A= (b,aq,...,a;) of nonnegative integers such that b+ aq +
--++a; = d and all a; are positive, and morphisms defined as in Definition 3.5. Recall
the definition of F,“T in Definition 3.8. Let ®®avt : fn — Top, be defined by

(I)cqvt( _’) d:Cf S A F:X

and @ : fd — Top, be defined by

-, —.

‘I)( ): ‘I)qut( )hI(X)-

The functor ®°9'* is defined the same as the definition of Y in Definition 3.9, extended
from Z, to Zy. Define

70 L ofi oot and 7 X cofib” @,
Then (as total homotopy cofibers and homotopy coinvariants commute)
(Z°YYpi(x) = Z.
Surprisingly, it is possible to identify the homotopy type of Z¢I't,
Proposition 6.1. There is an I1(X)-equivariant weak equivalence
Zet ~ §7 A S,

Here, the 1(X)-action is trivial on the S%-coordinate and acting by the determinant on
Se.

As the proof of this is technical we postpone it to the end of the section; for now
we assume it and complete the proof of Theorem 4.1. Note that this proposition is an
integral statement; it is not necessary to invert 2.

We now characterize Zj;(x) from a different perspective. For A= (b,a1,...,a;), by
Lemma 3.14,

(SJ A F‘A)h x) S (57 A EM )i A\ (87 AE o)

j=1

I(

By Proposition 1.24, if any of the a; are odd then (S7 A F,Vi)ho(ai) 9] *; thus
if A has some a; odd then ®(A) is contractible. For any atomic morphism ¢
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(b,a1,...,a;) — (byas,...,a,,a),ap41,...,a;) (where ap = a, + a}) we say that the
morphism is in direction r if

r=aj +ap1+- -+ a;.

If r is odd then ®(b,as,...,ap,ay,...,a;),1(x) is contractible; thus all morphisms in
@(fd) in odd directions have contractible codomain. Note that Z,; is exactly the subcat-
egory of fd containing all atomic morphisms in even directions.

Note that there are | 952 | even directions and |2t} | odd directions.

It is possible to compute total homotopy cofibers iteratively: taking all cofibers in a
single direction r, it produces a cube one dimension lower; the total homotopy cofiber of
this cube is equivalent to the total homotopy cofiber of the original cube. Take homotopy
cofibers in all of the even directions first: this leaves a L%j—cube with a single entry
%ffl( X) (at the source) and all other entries contractible; since the homotopy cofiber of

any map X — * is XX,
Z =~ ZJL%JCZMXI(X))
By the homotopy orbit spectral sequence (see Proposition B.7) and Proposition 6.1,
H; ((Z°7)n1cx); 2[3]) = Hiaq) (I(X); Z[5]7) -
Thus

Hi (Yn1(x); 2[3]) = Hyag (Z;23]) = Hiap (Z°Y)hrx); Z[3])

= Hy o) ((S7AS" Dnrxi Zl3))

completing the proof of the theorem. 0O

It remains to prove Proposition 6.1.

We begin by computing the homotopy cofiber of a single Dehn invariant. In order
to be able to do this for any general map in the cube, it is necessary to generalize the
definition of the Dehn invariant.

Let W,Uy,...,U; be any decomposition of X into orthogonal subspaces. Define

J
dj =dimW + > dimU,  j>0.
{=1

(Thus dp = dim W and d; = dim X.) Let £ be an integer distinct from dy,...,d;. Let j
be the minimal index such that d; > £. For convenience, define

LU,

Dy:FV 3 FU 5.5 FVi \/ F.W;F_Ull---;EVjQF.VJ OUJ;.

Vi CUj
dim Vj=£-d;j_,

% FYi
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tobe 1%---%Dy_q, , x--- %L

Definition 6.2. For any subset I C {1,...,d} let N7 F.X be the subspace of FX containing
no subspace with dimension contained in I.

This definition gives a convenient way to identify the total homotopy cofiber of a Dehn
cube.

Lemma 6.3. Let X be a pointed simplicial set, and let Y7, ...,Y, be subspaces of X. Write
P(n) for the partial order of subsets of {1,...,n}. Define a functor

F:P(n)—> Top, by IHX/UY“
i€l
with the induced morphisms given by the quotient maps. Then
cofib™ F ~ £ (] Y.
i=1

Proof. We prove this by induction on n. When n = 0 the cube is trivial and the statement
holds. When n = 1 the cube is X — X/Y, and the total homotopy cofiber is XY, as
desired.

Now consider the general case. The total homotopy cofiber can be computed iteratively
[22, Proposition 5.9.3] by first taking cofibers in the direction of “adding n to a set”:
the morphisms in which each subset J € P(n — 1) is mapped to J U {n}. Taking the
homotopy cofiber for each such J produces the cube G : P(n — 1) — Top, given by

J%»EY/ (Y, NY,).
jeJ

This is an n — 1-cube of the same type as in the proposition; by the induction hypothesis,
cofib’" G ~ ¥ 1 ﬂ Y;NY,)
Y(Y; NY,) sits inside X as XY; N XY,,; then

ynol ﬂ (Y;NY,)=x""1 ﬁ(zyi) N(ZY,) =x""1! (n] Y, =3%" (n] Y;,
=1 s A

as desired. O

Proposition 6.4. Let I C {1,...,d}. Consider the sub-|I|-cube formed by D, for i € I
and containing the initial point. This cube has total homotopy cofiber SN FX .
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Proof. For conciseness, write D for the composition of the D; for ¢ € I. Since the Dehn

cube commutes, the order of composition is irrelevant. Let I = {ig,...,%;_1}. We claim
that
~ ~ o~ S U;
D;:FX — \ FVXFU%...xF
wWotuiet -etU;=X
dim W=io
dimUp=ig—ig_1—-—1io £<j

is isomorphic to the map
FX — FX/| N FX
iel
via the isomorphism

\ FWFFD % % B FY )| N FX

weoltuiet -otU;=X iel
dim W=ig
dim Uy=i, £<j

taking an ¢;-simplex
(Uo €+ QU Upy1 €+ C Uy, Upy 41 - CU,)
to £;-simplex corresponding to the flag

UsC---CUpy CUy @Upg41 CUpy @Ugyy2 € - CUp, @--- DUy, .

J

Every flag in the image contains subspaces of all dimensions contained in I, and any face
map that removes one of them takes the simplex to the basepoint. This map is bijective
on simplices, showing that it is an isomorphism of simplicial sets.

Since

N FX = (| Ny FX,
el

the Dehn cube is isomorphic to a cube of the form in Lemma 6.3. Applying the lemma
we see that the total homotopy cofiber is

S\ N FX = SVIN X,
el

as desired. 0O

This can be used to prove Proposition 6.1:
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Proof of Proposition 6.1. By Proposition 6.4, Z°4Vt ~ S’U/\ZdN{O 1
N{0717___,d_1}F,X =~ S0 as it has exactly two simplices in each dimension: the basepoint
and X = --- = X. The functor S? A - commutes with taking homotopy cofibers; thus

d_l}F,X . However,

Zevt ~ 87 A 81 O
To finish up this section we use this calculation to prove Lemma 4.7. First, a few

definitions. Denote by § a tuple (g1, ..., g;) of elements in I(X); this tuple can be of any
length j. For 0 < ¢ < j and a coefficient m € Z[3], define the notation

m(det g)(g2,--.,9;) if =0
_» def . .
de(mg) = m(g1,. .., 901190, -,9;) f 1 <0<
m(gl,...,gj_l) lf] :K

Write, for 1 < a <b < j,

_ def _def _
Hggng"’ga and HZ *gal 9 (Hb )

The double complex C,, is a homologically-graded double complex in which for j > 0
and 0 < ¢ < d the group Cj; is generated by symbols of the form

(gla oo agj){x1| te |xz}7

where g¢1,...,9; € I(X) and zi,...,2; € X. When j is clear from context we
sometimes write this §{z|---|z;}. Define boundary maps 0" : Cj; — C(;_1); and
ov : Cij —> Ci(j—l) by

(ol -+ |ei}) = § Y (=) Yaol -+ [Fl - lai}  and
£=0

8" (G{xol - |2:}) = (dod){grol - |glx}+z ) (deg){xol -+~ i}

Lemma 6.5. Let 0 < S°imig® be a cycle representing an element in Hy(1(X); Z[1]7)
and fiz any point x € X. Inside the total complex of Ci. the cycle 3", m; GV {} is homol-

ogous to

(—1)T S mi(det 1) i(flv{x\g&” o+ Mg 8 <ol M85 - 2fTig® -2},

where the £ = 0 term removes the ¢V ).
( 91
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Proof. Fix z € S%. For any § = (g1,...,9;), any 1 <X < j}, and any point y € S¢, and
any m € Z[31], define

def i1 -
(91,---79A{ ‘ng CL"H{ 19'96‘ ‘ng x}GC(geMz)A

ANmg,y) =
A def iz j—1 = Z
B*(m(ay,...,a;5)) = m(glwu,gx){ H19'$‘ I g'fﬂ‘ ‘ H1 g'fE} € Cli—a+1)A-
For any § = (g1,...,9;) we have
3”AA(* y) = AN N (dog, g1y)
+Z D AN Y dog,y) + (- 1)'\(91,---,93‘—1){9‘ H{ﬁ'x‘ ‘Hl g- l’} and
3hAA Ydy) =B*'(9)

J
JHZ DEAN Y (dog,y) + (=1)7 g1, .., gaet {y’ﬂlg (E‘ ’Hi‘gj’m}

Now consider o, so that in the formulas above j = d. Define

d
def
ot = Zmi (A’\(dog L9z +Z gt 33)) € Cla+1-M)a-
i =1
The above calculations (which will have j = d — 1) imply that
a’ua)\ _ aha/\fl

using the fact that (since o is a cycle)

> m; Z 1)/ B Y(d,g) = 0.

Thus, in the total complex,
82(71)20[/\ — 8”0&1 + (71)d8had.

Plugging in the definitions produces that 9"a? = o and

d —_—
o —Zml detg1 Z { ’ gj(i)- ’ ‘Hdﬂ L) . x‘)Hgg’(’)x’x}
=0

+Zmlz YA (dpG D, z).

% £=0
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(Here we abuse notation and declare that Hg“g(i) = ¢g1.) As o is a cycle, the second
sum is 0. To complete the proof observe that for any d + 1-tuple of points (yo, ..., ¥d),
the class Z‘Z:O{yo\ - +|ge| - - - lya} is a horizontal cycle, and is therefore homologous to

d
Z{gwolml@\mlyyd}
£=0

for any g € I(X). Thus each term in the sum (over i) for d”a! is a cycle. Acting on the
i-th term by Hg G gives the desired expression up to permuting the first element to
the end. As this requires d swaps, it changes the sign by (—1)%. O

We are now ready to prove the general case of Lemma 4.7:
Lemma 6.6. Let d = 2n or 2n — 1. In the spectral sequence of (4.4) the map
encr  Ha(I(X): Z3]7) — Hooa Pu(X)

is induced by the map taking a chain (g1,...,94) to the sum

d
(Hdet(gi)) Z sgn(o) Voo C Vo1 C--- CV,o4l.

Here we define
Vo.i = span(hg(0)T0, ho(1)T0, - - -5 Ro(i)To),

with hg =1, h; = g4+ - ga—i, and xg any fived point in X.
When k = R this is the class of the d-simplex with vertices

{hoxo, h1$0, ey hdl‘o}.

Proof. The map ¢, 1 is induced by the edge homomorphism cofib™ Ynxy —
cofibt® Y1(x), where

?( ~) def {Y((d)) if A= (d)

* otherwise.

(This is the quotient of the n— 1-st filtration level by the n—2-nd in the spectral sequence
for the total homotopy cofiber of a cube.) Both of these total homotopy cofibers can be
computed simultaneously and I(X)-equivariantly via the methods above. As all maps in
Y map to the basepoint, each direction will simply suspend the (d)-case. This implies
that €, is the map on Hy induced by taking I(X)-coinvariants of the map
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SU
ST ARIG0 TP go A ydpX

where 1 is the inclusion of the 0-skeleton into F.X.

This map can be described in an alternate manner. Model homotopy coinvariants via
taking an extra simplicial direction (see, for example, [16, Example IV.1.1]) and take the
double chain complex associated to a bisimplicial set. Then the homology of the geometric
realization is isomorphic to the homology of this total complex. Due to the suspension
coordinates, the bottom d 4 1 rows of this double complex are 0. Above this (assuming
that the group-coordinate is vertical and the flag-coordinate is vertical) the map above
includes the standard bar construction for H,(I(X);Z[3]%) as the leftmost column. In
order to show that the given formula for €, 1 holds it is therefore sufficient to show the
following: given a cycle ¢ in Cy(I(X);Z[5]?) (which lies in coordinate (0,2d + 1) in the
double complex), it is homologous to the cycle given by the formula in the statement of
the lemma (which lies in coordinate (d, d + 1)).

In the double complex associated to the above bisimplicial construction, the group at
coordinate (m,f + d + 1) is generated by diagrams of the form

XO c Xl 4 L. C Xm
g1 Xo —— 1 X1 —— - —— g1 X
(6.7)
geXg —— g X1 —— - —— g X,

We denote such a diagram by
(gla cee 79@)[X0 g e g Xm]

We define
{zol - |zi} = Z sgn(o)[span(z, (o)) C span(z, (o), To(1))
c€Aut{0,...,i}
C .- Cspan(zq(0), - - -, To(i)) S X].
This double complex contains as a (vertically shifted by d + 1) subcomplex the complex

C.x of Lemma 6.5; the conclusion of the lemma is exactly the desired formula.
The last claim in the lemma follows by Theorem 1.21. O
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Appendix A. Comparing RT-buildings to the classical constructions

In this appendix we prove our claims in Theorem 1.21 and Theorem 2.15 that the
construction of the scissors congruence groups in our account agrees with the classical
constructions. To begin we introduce an object closely related to the configuration space
of points in X. The simplices in this space are tuples of points in X; unlike in the con-
figuration space, points are allowed to be repeated, and this can produce nondegenerate
simplices. For example, for any two distinct points a,b € X, (a,b,a) is a nondegenerate
2-simplex in Tuple"(X).

Definition A.1. Tuple 71(X) is the simplicial set whose i-simplices are given by the subset
of H;':o X of those tuples (zg,...,x;) such that any subset of the tuple has a nonde-
generate span of dimension at most m. The j-th face map is given by dropping the j-th
element of the tuple; the j-th degeneracy is given by repeating the j-th element of the
tuple.

The homology of Tuple."(X) is directly related to scissors congruence groups, as the
following results illustrate:

Theorem A.2. [13, Theorem 2.10] Let k = R. The map taking a tuple of points to its
convex hull defines a I(H™)-equivariant isomorphism

H,(Tuple”(H")/ Tuple ! (H"))” —— P(H", 1).

Here, -2 means that the action is twisted by the determinant: for any g € I(H™), g acts
on a homology on the left by (—1)9'9 as well as by the usual action on H".

The spherical case is more complicated. Recall the map 3, defined as the suspension
of a polytope, from Definition 1.13.

Theorem A.3 (/12, Corollary 5.18]). The map taking a simplex to its convex hull induces
a O(n + 1)-equivariant isomorphism

H,,(Tuple”(S™)/ Tuple " (5™))? —— (coker ¥).
In particular, since ¥ is O(n+1)-equivariant, 3 induces an isomorphism on coinvariants
Ho(O(n + 1), H,(Tuple(S™)/ Tuple”*(8™)?) —— P(5",0(n + 1)).

It follows that in order to relate scissors congruence groups and the homology of
57 A FX it suffices to show that Tuple ™ (X)/ Tuple "™ X~1(X) and FX are I(X)-
equivariantly homotopy equivalent.

We begin with a basic lemma about the homotopy type of Tuple,(X) in the absence
of dimension restrictions:
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Lemma A.4.
Tuple ™% (X) ~ .

Proof. By [5, Proposition 2.2.1], since k is infinite ﬁ*(Tuple ?imX(X)) = 0. (In fact,
Cathelineau proves this only with rational coefficients, but his proof works equally well
integrally.) To see that Tuple 3™ X (X) is contractible it suffices to check that it is simply-
connected. By [5, Proposition 2.2.2] for any pair of points (z,y) spanning a subspace of
X, the subset W, ,, of those points in X such that (z,y, w) spans a subspace is a Zariski-
open subspace of X. Suppose that we are given a loop represented by the sequence of
1-simplices (xg,x1), (z1,x2), ..., (x;, 2o). Then, since k is infinite, there exists a point w
such that (z;,w) spans a subspace for all j, and the loop is homotopic to a loop of the
form (zo,w), (w, o). This is contracted by the 2-simplex (o, w, zg), so Tuple ™~ (X)
is contractible. O

For any simplicial set K., let Sd K. be the barycentric subdivision of K. [16, Section
IT1.4]. Define the map h : Sd Tuple."(X) — T:™(X) to be the map induced by taking a
tuple of points in X to their span. More explicitly, an i-simplex in Sd Tuple!"(X) is a
sequence Ty C 1 C --- C &;, where Z; is a tuple in X and &;_; is an (ordered) subset of
Z; for all j. Taking the spans of each tuple produces an i-simplex in T)"(X); as taking
spans is G-equivariant, this map is G-equivariant.

Proposition A.5. The map

h:SdTuple " (X) — T (X)
induced by taking tuples in X to their spans is a G-equivariant weak equivalence.
Proof. We use Theorem A’ [15, p.578], which states that a map of simplicial sets is a
weak equivalence if the “naive left homotopy fiber” above every simplex in the codomain

is contractible. Here, for a given a g-simplex y € T,"(X) represented by (Uy C --- C U,),
the naive left homotopy fiber is the simplicial set

(hly)p = {(:E’O C ... C ) € SdTuple ' (X) |all entries of &, are in UO}.
(For a precise definition of the naive homotopy fiber see for example [20, Defn. 3.1].) In
this case, (h|y), is isomorphic to the simplicial set Sd Tuple . (Up); as this is isomorphic

to Sd Tuple #™ Y0 (1) it is contractible by Lemma A.4. O

The m = dim X case of the following theorem shows that FX is G-equivariantly
homotopy equivalent to a quotient of tuple spaces.
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Theorem A.6. For all m >0

Tuple " (X)/ Tuple " (X) ~ T/™(X) /T H(X)
via a zigzag of G-equivariant maps.
Proof. We have the G-equivariant commutative diagram

Tuple "' (X) «=— Sd Tuple "~ (X) —=— T }(X)
| | |

Tuple " (X) «—=— Sd Tuple " (X) —=— T."(X)

where the vertical maps are injective on all i-simplices, hence cofibrations. Taking vertical
cofibers gives the desired result, as the cofibers of the vertical maps are also the homotopy
cofibers. O

Corollary A.7.
H(FX)=0  fori#dimX.

Proof. By definition FX = TdmX(X)/TdmX=1(X). As all simplices of 79X (X)
above dim X are degenerate (since they must repeat at least one subspace) it
must be the case that H;(FX) = 0 for i > dimX. By Theorem A.6, FX ~
Tuple S™ X (X)) / Tuple "™ *~1(X). However, all simplices of Tuple ™ *(X) of dimen-
sion less than dim X are contained in Tuple ¥™*~!(X), since the span of i points has
dimension at most i — 1. Thus H;(F.X) =0 fori < dimX. O

Using these results we can finally prove Theorem 1.21:

Proof of Theorem 1.21. Theorems A.2, A.3 and A.6, together with (1.16) demonstrate
that scissors congruence groups are group homology with coefficients in H,,(F.X)?; this
is exactly H,1(S° A FX). By the homotopy orbit spectral sequence (Proposition B.7)
this is H,11((S7 A FX¥)p1(x)), as desired. The formula for the class represented by the
vertices of a simplex follows from Theorem A.6 and the fact that on homology the inverse

to the map Sd Tuple™ ' (X) = Tuple”™ *(X) is given by the formula

[zo,.. ., Tn] —> > 5gn(0) [(To(0))" € (Zo(0):To(1))’ € -+ C (To(0)s -+ To(n))']-
oc€Aut{l,..., n}

Here, (T4 (0); - - -, %)) is ordered not by the ordering 0, ..., but rather by the ordering
induced on the z’s from the tuple (zog,...,x,). O
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We wrap up this section by proving our claim in Theorem 2.15, that the derived
definition of the Dehn invariant is compatible with the classical Dehn invariant. As
we saw in Theorem 1.21, in order to translate between classical scissors congruence
groups and RT-buildings we must take “semi-coinvariants,” and thus the twist by S”
(Definition 1.18) appears here as well.

Proof of Theorem 2.15. Rewriting D; using Lemma 2.4, we see that it suffices to con-
struct an I(X)-equivariant diagram relating @, Dy to Hyp41(S7 A D;).
For a geometry W of dimension ¢, write

R(W) %™

Sd Tuple {(W)/ Sd Tuple !~ (W)
for the quotient of barycentric subdivisions Sd. To define DI : R.(X) — \/; R.(U) %
R.(U%) consider a j-simplex of R.(W): this is represented by a sequence Ty C - - - C T} of
tuples of points in W such that the span of T} is W. If there exists a maximal £ such that
dimspanT; = 4, we map this j-simplex to the simplex (Tp C -+ C Ty) A (pryL Te+1 C
- C pry. T;), indexed by spanT,. Otherwise, we map to the basepoint. This is a
well-defined simplicial map for the same reason that D; is.
Consider the following diagram:

Hn+1(56 AN DrL)

Hyps1(S7 A FX) Hyr <sa A\ FU% F.UL>

UCx
dim U=i

¢ h

Hu11(S7 A DY)

Hp1 (SO AR(X) ——— S Hp, s (so A\ RU)* R.(Ul)>

UCX
dim U=1
PR
PR
Do -
P(X,1) P rPwePE 1)
UCX
dim U=1

Here, the vertical maps h are induced by the map h in Theorem A.G (and are thus
isomorphisms). The vertical maps p are defined as in Theorem 1.21 (with G trivial) and
are therefore isomorphisms. The map Dgq is the rationalized Dehn invariant. Since all
maps in this diagram are I(X)-equivariant, the lemma follows. O

Appendix B. Technical miscellany
B.1. Reduced joins

In this section we restate the definition of a reduced join and prove several important
properties.
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Definition B.1 (Definition 2.7). For pointed simplicial sets X and Y, the reduced join
X %Y is defined by

(XFY)y = \/ X; NYj.

i+j=m—1

For a simplex (z,y) € X;AY}, the face maps d; are defined to be dgx1 : X; AY; — X; 1A
Y; when ¢ < 4, and 1 X dp—j—1 : X; AY; — X; ANY;_1 otherwise. If i+ = £ = 0 or
j=m —1—/{¢ =0 then the face map takes the simplex to the basepoint. Degeneracies
are defined analogously, with the first ¢ + 1 acting on the z-coordinate, and the last
m — i — 1 acting on the y-coordinate. Note that this structure makes the reduced join
asymmetric.

Lemma B.2. Reduced joins distribute over wedge products.

Proof. We have

(vocam) LV Ky,

acA acAitj=n—1

V() e (Vo))

Since each step of this expression commutes with simplicial maps, the two are isomorphic

as simplicial sets. O

Lemma B.3. Let f : X — Y be a quotient of simplicial sets. Then the map f*1: X %
Z — Y % Z is also a quotient of simplicial sets. (f ¥ 1)7 () = f~1(x) % Z.

Proof. It suffices to show that every nonbasepoint simplex in the codomain has a unique
preimage in the domain. Consider a non-basepoint n-simplex in Y % Z; this is a pair of
the form (y;, z;) with y; € Y;, z; € Zj and i + j = n — 1. As y; € Y} is non-basepoint, it
has a unique preimage z; € X;. As the given map takes (x, z) to (f(z), z) the preimage
of (y;,2;) is exactly (f~*(yi), 2;), which is unique.

The simplices that map to the basepoint are exactly those that f maps to the base-
point, with anything in the Z-coordinate. O

We end by giving a map relating the smash product and the reduced join.
Lemma B.4. Let X and Y be pointed simplicial sets. The map f: S'AXANY — X %

Y given by sending (i,x,y) € (S'AX AY), to (dP "o, dity) is a simplicial weak
equivalence.
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Proof. The fact that f is well-defined is direct from the definition. We define X %, Y
to be the double mapping cylinder of the diagram

X X xy 25y
We can thus think of X %, Y as the quotient of I x X x Y given by the mapping

cylinder relations (z,0,y) ~ (2/,0,y) and (z,1,y) ~ (z,1,y') for all z,2’ € X and
y,y €Y. Consider the following commutative square:

X, Y —2 5 SIAXAY

T

XY X*xY

The maps g and ¢’ are both weak equivalences because they are quotients by contractible
subspaces. The map [’ is a weak equivalence by [14, Corollary 3.4]. Thus, by 2-of-3, f
is a weak equivalence, as desired. O

B.2. Homotopy coinvariants

All of the results in this section are well-known to experts, although we could not find
references for them for the specific cases we were interested in.

Definition B.5 (/16, Example IV.1.10]). Let X be a (pointed) simplicial set with an action
by a discrete group G. The homotopy coinvariants (or homotopy orbits) of G acting on
X, denoted X}, is the diagonal of the bisimplicial set with (m,n)-simplices given by
diagrams

g1 g2 gn
T air 9291 Gn 1T

forxz € X,,.
Directly from the definition we see that *,g = * and SP, = BG.

Remark B.6. This agrees with the more standard definition of homotopy coinvariants,
defined as

Xne ¥ EG, AG X.
(In the unpointed context, A is replaced by x.)

There is a spectral sequence for computing the homology of the homotopy orbits from
the group homology of G with coefficients in the homology of X:
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Proposition B.7. There is a spectral sequence

Hy(G, Hy(X)) == Hpio(Xnc)-

The proposition holds for all simplicial sets with G-action, which is the case of concern
in this paper.

Proof. Consider X as an unpointed simplicial set; write this space X. The homology of
the diagonal simplicial set of a bisimplicial set is the homology of the total complex of
the associated simplicial abelian group. The spectral sequence associated to a simplicial
abelian group A.. has

Ef;,q _ H;zertHZ};oriz (A.) =— Hpyq(diag A..).

Applying this in the current case to both X, and *,g gives us the following pair of
spectral sequences:

Hy(G, Hy(X)) == Hp+q(Xnc) and Hp(G, Hy(%)) == Hp44(BG).

The second is a retract of the first; if we take the other summand, we get a spectral
sequence

Hy (G, Hy(X)) == Hp1q(Xnc)
as desired. O
Lastly we present a technical proposition relating certain kinds of homotopy orbits.

Proposition B.8. Let G be a group acting on a pointed simplicial set X.. Suppose that Y.
is a subspace of X. such that the following two conditions hold:

(1) If g € G is such that there exists a (non-basepoint) simplex y € Y. such that g-y € Y.
then for ally' €Y., g-y € Y..
(2) For alln and for all x € X,, there exists g € G such that g-x € Y,,.

Let H be the subgroup of G that takes Y. to Y.. Then

Proof. Let Z.. be the bisimplicial set whose (n,m)-simplex consist of diagrams

g1 g2 gm
T T1 e T,
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where the z; € X,, for i = 0,...,m and g; - ;-1 = ;. Then diag Z.. = (X.)ne. In
addition, if we let W.. be the sub-bisimplicial set containing those diagrams where the
x; € Y. and the g; € H then diag W.. = Y, . Thus it suffices to check that the inclusion
W.. — Z.. induces an equivalence on diagonals. To prove this, it suffices (by [16, Propo-
sition IV.1.9]) to show that for all n, W,,. — Z,. is a weak equivalence of simplicial
sets.

Zne (resp. Wy.) is the nerve of the category whose objects are X,, (resp. Y,,) and
whose morphisms are induced by the action of G (resp. H); call these categories C and
D. D is clearly a subcategory of C; thus to show that the map induces an equivalence
on nerves it suffices to check that the inclusion is full and essentially surjective. That it
is full follows from condition (1), since if we are given y,y’ € Y,, then any g such that
g-y =1 is in H. That it is essentially surjective follows from condition (2), since every
element of X, is isomorphic via the action of G to an element of Y,,. O

B.3. The spectral sequence for the total homotopy cofiber of a cube

The technical result that we need in order to understand the Dehn cube is the spectral
sequence for the total homotopy cofiber of a cube. As the usual spectral sequence is stated
only for ordinary, rather than reduced, homology, we state our analog here. We use the
notation introduced in Section 3.

Proposition B.9. Let F': fn — Top, be a functor. There is a spectral sequence

b H,(F(A)) == H,,(cofib™™ F).

A=(b,a1,@n—p_1)

Proof. By [22, Proposition 9.6.14], for a functor G : 7, — Top there is a spectral
sequence

@ Hq(G( _’)) — Herq(COﬁbth G).

A=(b,a1,.,an—p—1)

Each of the spaces we have is pointed, thus the functor C : fn — Top defined by
C ([f) = x is a retract of G. In particular, this means that the spectral sequence given
by the kernel of the induced map G = C' is also a spectral sequence, which converges
to ker(Hp,(cofib™ G) — H,,(cofib™ C)). Since cofib™ C' ~ x, this reduces to the

desired spectral sequence. O
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