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Glacial meltwater is an important environmental variable for ecosystem
dynamics along the biologically productive Western Antarctic Peninsula (WAP)
shelf. This region is experiencing rapid change, including increasing glacial
meltwater discharge associated with the melting of land ice. To better
understand the WAP environment and aid ecosystem forecasting, additional
methods are needed for monitoring and quantifying glacial meltwater for this
remote, sparsely sampled location. Prior studies showed that sea surface glacial
meltwater (SSGM) has unique optical characteristics which may allow remote
sensing detection via ocean color data. In this study, we develop a first-
generation model for quantifying SSGM that can be applied to both
spaceborne (MODIS-Aqua) and airborne (PRISM) ocean color platforms. In
addition, the model was prepared and verified with one of the more
comprehensive in-situ stable oxygen isotope datasets compiled for the WAP
region. The SSGM model appears robust and provides accurate predictions of the
fractional contribution of glacial meltwater to seawater when compared with in-
situ data (r = 0.82, median absolute percent difference = 6.38%, median bias =
—0.04), thus offering an additional novel method for quantifying and studying
glacial meltwater in the WAP region.

KEYWORDS

glacial meltwater, ocean color, coastal ocean, Western Antarctic Peninsula, high
latitude, polar region

1 Introduction

Sea surface glacial meltwater (SSGM) is a prominent physical feature in the coastal
oceans of Antarctica. For instance, at the Western Antarctic Peninsula (WAP), sea surface
freshwater is composed of glacial meltwater, precipitation, and sea ice meltwater (Meredith
et al., 2017a), with meteoric freshwater (glacial melt + precipitation) dominating the top
few meters of the water column, particularly during the austral summer months (Meredith
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et al., 2010). This SSGM layer is associated with lower salinity
compared to the ambient ocean (Moline et al., 2004), thus it forms a
surface freshwater “lens” which can extend >100 km offshore of the
WAP (Dierssen et al., 2002). Large influxes of seasonal glacial melt
into the ocean have been linked to the austral summer freshening
and stratification of coastal surface waters in Antarctica (Dierssen
et al.,, 2002; Schofield et al., 2018).

Extensive studies on the rates of glacial meltwater discharge
have been conducted, focusing primarily on the long-term impact
on sea level rise (Rignot et al, 2019; An et al.,, 2021). However,
various studies have found that glacial meltwater in the WAP has a
more immediate impact on local ecosystems and regional
biogeochemistry (Cape et al., 2019; Pan et al,, 2020; Forsch et al.,
2021). SSGM is found to correlate positively with total chlorophyll-
a (chl-a) concentration over the WAP continental shelf (Dierssen
et al,, 2002) and in a WAP fjord (Pan et al,, 2019). This positive
correlation between SSGM and chl-a was attributed to glacial
meltwater being a source of nutrients, particularly dissolved iron,
as well as being a proxy for meltwater-buoyancy-driven and wind-
driven upwelling of deep nitrate along the ice-ocean interface
(Forsch et al, 2021). Moreover, meltwater in general has been
found to enable surface layer stabilization and reduce the depth of
mixing (Schofield et al., 2018; Pan et al., 2020), thus leading to
higher overall light levels experienced by phytoplankton (Mitchell
et al, 1991). SSGM input has also been found to significantly alter
phytoplankton community composition (Pan et al., 2020). These
results illustrate the importance of SSGM to Antarctic ecosystems
and their physical environment, and thus the need to closely
monitor its spatial extent over time.

One of the most effective field measurements of glacial
meltwater is through the collection of stable oxygen isotope
(8'%0) samples from the water column (Meredith et al.,, 2008)
and computing meteoric water fraction through an end-member
mass balance calculation (Ostlund and Hut, 1984). This method is
particularly helpful where meltwater processes are relatively weak
and in-situ temperature and salinity measurements cannot
effectively distinguish glacial meltwater input using the Gade line
method at locations away from the glacial front (Pan et al., 2019).
While §'%0 collection is relatively simple and can be easily
integrated with most oceanographic projects, it can only be
achieved through field campaigns, and the complexity of the
laboratory analysis limits the number of samples that can feasibly
be run. This severely limits the spatiotemporal availability of §'*0-
derived meltwater observations. Other efforts for quantifying glacial
meltwater, such as utilizing in-situ temperature, salinity, and
dissolved oxygen, have also been demonstrated in the Amundsen
Sea (Jenkins et al., 2018; Zheng et al., 2021; Yoon et al., 2022).
However, these studies depend on localized parameters for deriving
glacial meltwater and they are somewhat limited by the
spatiotemporal constraints of in-situ measurements. Given the
spatial extent of SSGM and its more immediate ecological
impacts, additional techniques are needed to supplement existing
field measurements.

Ocean color remote sensing provides more extensive spatial and
temporal coverage of the polar regions. Multiple studies have leveraged
these data products to monitor glacial meltwater. Using data from
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NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS)
onboard Terra, Hudson et al. (2014) developed a multispectral model
to monitor suspended sediment concentration (SSC) in Greenland
fjords, which is directly related to glacial meltwater discharge. Similarly,
Pan et al. (2019) found that sedimentary nanoparticles are associated
with meltwater in an Antarctic fjord, and utilized their influence on
seawater apparent optical properties (AOPs) to develop a multispectral
model for deriving glacial meltwater fraction (Pan et al., 2019). While
these studies provided numerous insights, there has not been an
attempt to utilize ocean color remote sensing to directly quantify
SSGM fraction in order to provide more extensive spatial and temporal
monitoring of Antarctic ecosystems. In this study, we present initial
development of a model to map SSGM in the WAP. We describe a
machine learning methodology used to develop a first-generation
SSGM model using MODIS-Aqua data as input, assess model
performance with existing field data from diverse field campaigns at
the WAP covering a range of spatial and temporal scales, and finally,
apply this model to visualize SSGM fraction in the broader
WAP region.

2 Material and methods

2.1 Study sites

Field data from multiple sites spanning the WAP were utilized
in this study (Figure 1A). The majority of our combined field
dataset was from the Palmer Long Term Ecological Research
(LTER) grid stations (Figure 1B). Discrete 3'%0 samples were
collected from oceanographic cruises, primarily in austral
summer (December to February), conducted between 2011 and
2019 over the WAP shelf. Samples were drawn from Niskin bottles
closed at discrete depths during water column profiling with a Sea-
Bird conductivity-temperature—depth (CTD) instrument (Ducklow
et al., 2013; Meredith et al., 2017a).

In addition to water sample collection over the WAP shelf, the
Palmer LTER program also samples quasi-weekly during austral
summer from two nearshore sites near the Palmer Research Station
on Anvers Island (Figure 1B). Station B, located at 64.7795°S/
64.0725°W, is <1 km from shore and in waters of 75 m depth.
Station E, located at 64.815°S/64.0405°W, is farther offshore and
more directly exposed to the continental shelf and open ocean, with
a water depth of 200 m. The start of each sampling season is subject
to boat access due to severe weather conditions and sea ice presence,
thus ranging from mid-October to late December. During austral
winter, when boat operation ceases, the Palmer LTER program also
samples seawater through an inlet at 5.8 m depth, located at
64.7738°5/64.0545°W. These nearshore stations are situated near
the shallow marine-terminating Marr Ice Piedmont and other land-
based ice masses (Meredith et al., 2021) (Figure 1B).

The combined field dataset also contains §'*0 seawater samples
from additional nearshore stations at Potter Cove and Maxwell Bay,
located on King George Island (Figure 1B). Water samples were
collected using 4.7 L Niskin bottles during water column profiling
with a Sea-Bird SBE 19 CTD instrument (Meredith et al., 2018).
Some field data from the Rothera Oceanographic and Biological
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Area of interest. (A) Overview of Antarctica; orange points indicate synthetic blank sampling locations (i.e., regions assumed to have zero glacial
meltwater) and the red box denotes the Western Antarctic Peninsula (WAP). The background is the MODIS chlorophyll-a concentration austral
summer climatology (2002-2016); sACF, Southern Antarctic Circumpolar Current Front; PG, Polar Front; SAF, Subantarctic Front; STF, Subtropical
Front. (B) The WAP and oxygen isotope field data sampling locations. Blue outlines indicate major ice shelves in the region.

Time Series (RaTS) were also included in the combined field
dataset, albeit sparse due to a lack of matching MODIS-to-field
data given its proximity to the shore of Adelaide Island (67.5700°S/
68.2250°W) (Figure 1B). Water sampling here was also conducted
in conjunction with CTD casts (Meredith et al., 2010). This
expansive selection of study sites aligns with prior studies, such as
the WAP research overviews provided by Ducklow et al. (2007) and
Hendry et al. (2018), which often include islands and areas near the
northern tip of the Peninsula.

2.2 Glacial meltwater fraction field data

From each of the sites mentioned, 80 seawater samples at the
surface were selected for this study. Surface is here defined as the
shallowest sample depth in the water column within the top 5m, and
580 is here measured in units of %o. SSGM is derived based on mass
balance calculations conducted in the aforementioned studies, and it
is measured in units of freshwater % (Meredith et al., 2010; Meredith
et al, 2017a; Meredith et al, 2018; Meredith et al., 2021). Each
discrete §'®0 sample is paired with its corresponding salinity values
from CTD data. The mass balance calculation presumes each sample
is composed of a simple mixture of three components — ocean water
(ow), sea ice meltwater (sim), and meteoric water (met), with the
latter term being the sum of precipitation and glacial meltwater:

Fsim+Fmet+Faw:1 (1)
Ssim * Fsim + Smet * Fiet + Sow * Fow = Stotal (2)

51805im : Fsim + alsomet : Fmet + 51800W : an = 5180mml (3)

This system of equations is solved for Fy;,,, F,,er, and F,,,, which
are the respective fractions of the three components in each sample.
Ssim> Smen and S,,, are the salinity values for the end-member source
components, while Oy 0,p1ers 8°0,,, are the corresponding
8'%0 values. Endmember values are taken from the previous studies
that generated our combined field dataset (Table 1); these data
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sources include Palmer LTER grid (Meredith et al., 2017a), Palmer
Station on Anvers Island (Meredith et al., 2021), Potter Cove
(Meredith et al., 2018), and Rothera Point on Adelaide Island
(Meredith et al., 2010) as described above.

2.3 Spaceborne multispectral data

MODIS-Aqua Level 3 remote sensing reflectance data, Rys(A),
for 10 spectral bands (i.e., 412, 443, 469, 488, 531, 547, 555, 645, 667,
678 nm where A is light wavelength in vacuum) were acquired from
the NASA Ocean Biology Distributed Active Archive Center (DOI:
10.5067/AQUA/MODIS/L3M/RRS/2018). Level 3 Ocean Color
Standard Mapped Images at 4 km resolution were accessed via
Google Earth Engine (GEE). An initial matchup dataset was
compiled by iteratively reviewing all field data, and then matching
each field data point with a set of corresponding MODIS pixel
values that cover these field coordinates from the same date.
Furthermore, the level 3 R (L) data already removes areas with
sea ice, thus eliminating the potential of sea ice contamination in the
overall dataset. This process produced a dataset where each field
measurement of meteoric water fraction was matched with its ten
corresponding MODIS R, band values. Out of the 86 matchups, 38
were from the Palmer LTER grid, 42 from the Palmer Station site,
and 6 from Potter Cove or the Rothera Time Series. The low
matchup availability is mostly due to cloud cover. This initial
dataset also needs very low or zero glacial meltwater values for
standard machine learning models to effectively detect a wide range
of target values. Therefore, the initial dataset was also supplemented
with synthetic “blank” meteoric water samples. For each date when
a field-MODIS data point pair is found, a synthetic blank sample is
also obtained at three locations on the outside of the Antarctic
Circumpolar Current (ACC) (Figure 1A). They were sampled at
47.2382°S/99.1695°W, 54.3690°S/97.1654°W, and 35.5635°S/
129.8333°W. For each “blank” sample, a value of 0% glacial
meltwater fraction was assigned to the R, band values obtained
for these pixels.
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TABLE 1 End member values for mass balance calculations of meteoric water and sea ice meltwater fractions.

Palmer LTER Grid

Salinity (PSU) 580 (%o)

Sea ice melt 7 2.1
Meteoric water 0 -16
Ocean water 34.73 0.1
Palmer Station + Seawater Inlet

Sea ice melt 7 1.1
Meteoric water 0 -12
Ocean water 34.65 0
Potter Cove

Sea ice melt 5 1.6
Meteoric water 0 -11
Ocean water 34.40 -0.2
Ryder Bay/Rothera

Sea ice melt 7 2.1
Meteoric water 0 17
Ocean water 34.62 —-0.08

2.4 Data processing & model development

In this study, the MODIS R,(A) band values are input variables
while meteoric water fraction is the target variable. The input
variables are the ten ocean color band values of R,(412), R
(443), R;5(469), Ry5(488), Ry5(531), Ry5(547), Rys(555), Ry(645), Ry
(667), R,s(678), and band math values for R.(555) + R.(667), and
R;5(667)/R,s(488) per previous AOP models for retrieving glacial
meltwater fraction (Pan et al., 2019). In order to model the data, we
executed a three-step process involving: (1) algorithm selection, (2)
hyperparameter optimization of the selected algorithm using train,
validation and test subsets, and (3) final model training with the
best hyperparameters on the complete dataset. For algorithm
selection, we used a method of evaluating thirty-six different
regression algorithms, including adaptive boosting, support vector
machines, k-nearest neighbors, linear regression, gradient boosting,
an individual decision tree and a random forest, among others
(https://scikit-learn.org/stable/supervised_learning.html). The
selected algorithm had to be reasonably interpretable, so
algorithms like advanced neural networks were excluded. The
primary goal of this preliminary step is to understand how
different models would respond to the SSGM training dataset as
well as their general performance without extensive model tuning,
such as hyperparameter search.

After identifying the random forest algorithm as the best-
performing in the initial evaluation, we conducted a hyperparameter
search to fine-tune the following hyperparameters: n-estimator, which
is the number of decision trees in a random forest; minimum-samples-
leaf, which is the minimum number of samples that should be present
in the leaf node after splitting a node; and minimum-samples-split,
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which is the minimum number of data points in any given node in
order to split it.

Hyperparameter optimization is the process of iteratively
tuning a learning algorithm’s hyperparameters in order to better
fit training data. Overfitting is a common problem when utilizing
this technique (Cawley and Talbot, 2010; Feurer and Hutter, 2019).
To avoid overfitting, the dataset was split into training (80%),
validation (10%) and test subsets (10%) (Figure 2). The training
subset was used to train 10000 candidate models. The cross-
validation accuracy score for each model was evaluated using the
validation dataset. There are a number of search algorithms used in
hyperparameter optimization - most commonly grid search,
random search and Bayesian algorithms. A Tree-structured
Parzen Estimator (TPE), which is a Bayesian technique, enables a
more efficient search of the hyperparameter space than grid or
random searches (Bergstra et al., 2011). This means new
hyperparameters were selected iteratively based on the previous
performance of those hyperparameters, as measured against the
validation dataset. The best hyperparameters were 265 n-
estimators, a minimum-samples-leaf of 1, and a minimum-
samples-split of 8. The maximum depth of the random forest is
not predetermined, and the decision trees’ nodes are expanded until
all leaves contain less than the minimum-samples-split. At the
completion of the hyperparameter search, a model was selected and
evaluated against the test dataset. This means that the test dataset
was used only once during the entire modeling process (Figure 2).

The finalized model is trained using data and settings described
earlier in this section - all available R, bands and band math as well
as the random forest model hyperparameters determined from the
TPE-based search process. The finalized model is deployed with
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Model training and validation workflow implemented in this study.

geemap (Wu, 2020), a Python package for interactive mapping with
GEE, using the native GEE random forest function. The MODIS-
Aqua level 3 dataset was compiled in GEE using its NASA/
OCEANDATA/MODIS-Aqua/L3SMI image collection (DOI:
10.5067/AQUA/MODIS/L3M/RRS/2018). Further model
validation was conducted to assess the model’s robustness and to
gain insights on its applicability to spatially and temporally
averaged MODIS data (Figure 3). Spatially, each field data point
is compared with the MODIS-based prediction that encompasses
the field data coordinates (Figure 3 row 1, column 1), and then the
field data point is also compared with spatially averaged MODIS-
based predictions - by adding 2.5 km, 5 km, 7.5 km, and 10 km to
each side of the pixel to create a new area of interest, and then
averaging all predicted values that fall within the new target areas
respectively (Figure 3 rows). Temporally, each field data point is
compared with the MODIS-based prediction from the same date
(Figure 3 row 1, column 1), and then the field data point is also
compared with predicted values averaged over 3 days, 7 days,
monthly, and date range covering the Palmer LTER cruises which
varies annually (Figure 3 columns). These comparisons generate a
matrix of 25 configurations of different spatial and temporal
correlations between field data and predicted values (Figure 3).
For each comparison configuration, we evaluated the Pearson’s
correlation coefficient (1), p-value, sample size and a visualization of
the correlations as scatter plots (Figure S1). Additional statistical
measures were produced to evaluate the SSGM model by focusing
on the correlation between the daily MODIS-based values and
discrete field data (Figure 3 row 1, column 1). The loss of
correlations between field data and spatiotemporally averaged
predictions can provide some indications on SSGM’s spatial scale
and residence time.
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2.5 PRISM airborne dataset

The final SSGM model was also applied to airborne imaging
spectroscopy data from the NASA/JPL Portal Remote Imaging
SpectroMeter (PRISM) (Mouroulis et al., 2014), collected as part
of the O,/N, Ratio and CO, Airborne Southern Ocean (ORCAS)
campaign in January-February 2016 (Stephens et al, 2018), to
further assess the model’s applicability across platforms. The goal
was to demonstrate the spatial resolution advantages of such
airborne datasets. PRISM flew on the NSE/NCAR Gulfstream-V
aircraft at an approximate altitude of ~12.2 km providing water-
leaving radiance and remote sensing reflectance from 350 to 1050
nm, approximately every 3 nm, with 10 m spatial resolution
(https://prism.jpl.nasa.gov/dataportal/). Atmospheric correction
was conducted using an Optimal Estimation formulation that
simultaneously models surface and atmospheric reflectance
contributions from statistical priors (Thompson et al, 2018;
Thompson et al, 2019). The PRISM ORCAS data were pre-
processed in ENVI® to extract R5(A) bands according to MODIS
wavelengths and the images were exported to GEE as GeoTIFF files.
Here, we assume that the PRISM bands near the targeted MODIS
bands would perform similarly. The final SSGM model was applied
to each airborne image to retrieve glacial meltwater fraction.

3 Results
3.1 SSGM model evaluation

When the predicted glacial meltwater fraction values and field
data are compared during the development phase (Figure 2), we
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Conceptual diagram of the validation matrix in this study. In addition to comparing each field data point with its corresponding daily MODIS-based
value (row 1, column 1), each field sample is also compared with spatially and temporally averaged MODIS-derived values.

found the validation dataset had an r value of 0.878 and the test
dataset had an r value of 0.885. The r values across both datasets are
relatively high, and notably, these r values are relatively consistent
indicating the hyperparameter search did not cause the model to
overfit against the validation data. This evaluation confirms the
model’s overall performance, so all development datasets were
combined to produce the final model for this study. After the final
version of the model is applied to MODIS-Aqua data, we found
relatively high r value when field data are compared to predictions
based on matching pixel values from the same dates (r = 0.82, p <
0.01). However, the correlation decreases as the MODIS-based
predictions are averaged over longer time periods (Table 2,
columns). The decrease in correlation is even more pronounced
when the predicted values are averaged over larger areas (Table 2,
rows). Figure S1 presents a visualization of these correlations as
scatter plots.

To further evaluate the model performance, several statistical
measures were calculated to describe the regression function
between field data and daily MODIS-derived SSGM values
(without spatial or temporal averaging, Figure SI row 1, column
1). These measures are commonly used for evaluation in
biogeochemical modeling and bio-optical studies (Brewin et al.,
2015; Seegers et al., 2018) (Figure 4; Table S.1). We found that the
residual differences between MODIS-derived SSGM and field data
have a symmetric probability distribution around a median of
0.04%. The median ratio (MdR) and median bias (MdB, in units
of predicted variable) measures are produced to characterize
systematic deviations, while the median absolute percentage
difference (MdAPD) and root mean square error (RMSE, in units
of predicted variable) are used to characterize random deviations
between modeled SSGM values and field data. A model that
provides the best overall fit to in-situ data should have MdR close
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to 1 and low values of MdB, MdAPD and RMSE. We found MdR =
0.990, while MdB = —0.040, MdAPD = 6.375%, and RMSE = 0.463.
Moreover, errors in remote sensing and bio-optical models are also
often reported by statistical indicators calculated based on linear
regression between in-situ and predicted values. Here, we calculated
the statistical measures based on Model II least-squares fit (Ricker,
1973), because both satellite- and §'*0-derived values presented in
Figure 4 are collected from an uncontrolled environment, subject to
error, and are dependent on the actual SSGM fractions in the field.
The slope of the line is determined by calculating the geometric
mean of the slopes from the regression of Y-on-X and X-on-Y
(Sokal and Rohlf, 1995). The best-fit coefficients of the regression
function and correlation coefficient reveal the degree to which the
predicted values agree with measured values over the entire
dynamic range. For instance, deviations from 1 for the slope and
deviations from 0 for the intercept (A) of the fitted regression reveal
the variation in the bias of SSGM predictions relative to the field
data across its full range (Table S.1). These measures are further
evaluated when our analysis considers outliers. The outliers were
selected based on a Bland-Altmann plot (Figure S2) and they are
defined as data points where the predicted SSGM value is beyond +2
standard deviations from the mean of residuals between predicted
and observed values.

3.2 SSGM model analysis

Further model diagnostics were conducted to evaluate the
model’s performance and to better understand the relationship
between the R (A) values and predicted SSGM fraction values. In
Figure 5, the model’s input variables are ranked by the amount of
variance that they explain. The top variable, R,(667)/R(488),
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TABLE 2 Validation matrix illustrating the comparison between field data and MODIS-derived values.

Same Date 3-Day 7-Day Monthly Cruise Date Range

r=0.82 r =045 r=1032 r=20.33 r=0.15
Pixel p<0.01 p<0.01 p<0.01 p<0.01 p<0.01
n =86 n =146 n =295 n =638 n =895
r=0.25 r=10.28 r=10.26 r=0.23 r=0.15
+ 2.5 km p =0.0055 p =0.0001 p<0.01 p<0.01 p<0.01
n=121 n =201 n =408 n =788 n =961
r=02 r=02 r=0.18 r=0.15 r=0.13

+5 km p=0.0185 P =0.0018 < 0.0002 p< 0.01 P =0.0001
n =140 n =231 n =452 n =812 n =962
r=20.18 r=02 r=0.11 r=0.13 r=0.12

+7 km p=00194 p = 0.0009 < 0.0086 p = 0.0002 P =0.0002
n =161 n=274 n =535 n =829 n =963
r=0.17 r=20.1 r=0.11 r=0.12 r=0.12

+10 km p=0023 p =0.0856 < 0.0114 p = 0.0004 p = 0.0002
n =169 n=292 n =547 n =832 n =963

explains 82.96% of total variance. The following two variables — Ry
(443) and R,(412) - explain an additional 7.35% cumulatively.
Therefore, the top three input variables explain a total of 90.31% of
the variance. The remaining input variables explain 9.69% of the
total variance (Figure 5).

Notably, we intentionally introduce R, bands that were
designed for terrestrial and atmospheric applications - in
particular, Band 1 centered around 645 nm, Band 3 centered
around 469 nm, and Band 4 centered around 555 nm. The results
demonstrate the model’s ability to distinguish valid information
(i.e., various R, bands designed for ocean observation were selected
as top input variables and they can explain 90.31% of the model’s
total variance). These results also highlight the model’s robustness
to provide valuable insights instead of merely over-fitting to the
target variable with all available input data indiscriminately.
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FIGURE 4

Scatter plot of field data and predicted glacial meltwater values. The
dashed line depicts the 1:1 reference line.
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The response of each input variable is also examined in more
detail. We use individual conditional expectation plots to present
the responses of decision trees within the random forest model to
changes in each input variable (Molnar, 2020). In each panel of
Figure 6, the blue lines represent how individual decision trees
predicted SSGM fraction values change according to the input Ry
(M) values, while the red line represents the average prediction of
these decision trees (Figure 6). Within the top five input variables
(Figure 5), predicted SSGM values increase abruptly when R,(667)/
R.5(488) is over 0.05 meanwhile a more gradual decrease in SSGM is
observed for input variables R.(443), R;(412) and R.(469) when
they increase from 0.005 sr' to 0.01 sr™'. Additionally, a gradual
increase in SSGM is observed when R,(645) increases from 0.00025
s’ t0 0.0005 sr'’. In contrast, the model exhibits minimal change in
predicted SSGM values according to changes in some input
variables, such as R.(678), R,s(667), and R,4(555) (Figure 6).

3.3 MODIS-Aqua data application

The final model is applied to MODIS-Aqua data to provide
visualizations of SSGM. Figure 7 represents the December, January,
and February monthly climatology between 2010 and 2020. The
austral summer months coincide with most of the sampling time
periods of our field data. SSGM is most abundant along the coast
and extends across the WAP continental shelf into the open
Southern Ocean. High SSGM is also observed around islands and
nearshore locations around outlets of glacial fjords. Notably, some
high SSGM is also observed near the Larsen C Ice Shelf on the
eastern side of the Peninsula. Overall, there appears to be more
glacial meltwater on the southern end of the WAP, particularly in
Marguerite Bay and near the Wordie Ice Shelf (Figures 7A, D, G).
The SSGM monthly climatology is also compared to surface chl-a
concentration and sea surface temperature (SST) from the same
time periods. High SSGM values appear to coincide with chl-a
concentrations, but there is a distinct difference in their spatial
patterns over the entire WAP (Figures 7B, E, H). Similarly, some
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Rrs(667) / Rrs(488) 82.96
Rrs(443) 87.22
Rrs(412) 90.31
Rrs(469) 93.16
Rrs(645) 95.39
Rrs(547) 96.35
Rrs(678) 97.28
Rrs(531) 98.12
Rrs(488) 98.83
Rrs(555) + Rrs(667) 99.32
Rr{555) 99.66
Rrs(667) 100.00
FIGURE 5

The ranking of Rs(A) variables based on the final model to predict sea surface glacial meltwater fraction. The bar graph represents the percentage of variance
in the model that is explained by each R(A) variable; the values on the right present the cumulative percentage of explained variance in the model.

nearshore high SSGM is found to coincide with low SST, especially
in Marguerite Bay and between Adelaide Island and Lavoisier Island
(Figures 7C, F, I).

3.4 PRISM airborne data application

The SSGM model was also applied to PRISM airborne ocean
color data to assess the model’s applicability across remote sensing
platforms. PRISM scene prm20160125t181722 is presented in
Figure 8, collected NW of Anvers Island. The entire scene has an
average of 3.94% SSGM fraction. A few icebergs < 1km in size can
be found in the middle of the scene (Figure 8C) and, in contrast, the
maximum SSGM fraction reaches 6.49% in the vicinity of the
icebergs (Figure 8D). Overall, the SSGM derived from airborne
data shows consistent spatial distribution as the MODIS-based
values. In particular, a distinct front can be observed in both
datasets immediately south of 64 °S (Figure 8A). This consistency
in the SSGM spatial distributions derived from different remote
sensing platforms illustrates the potential for applying the model to
other ocean color datasets beyond MODIS. Moreover, the airborne
data demonstrates its significant advantage of having finer spatial
resolution; for example, meltwater from the icebergs cannot be
observed in the spatially coarse MODIS-based SSGM data, but it
can be detected using the airborne data. Notably, a trail of bergy bits
(Dowdeswell and Forsberg, 1992) from the icebergs can be clearly
seen in both enhanced RGB image and SSGM data from PRISM
(Figures 8C, D). There are also some discrepancies between the
PRISM- and MODIS-derived SSGM values. The differences are
likely due to the different processing methods of the remote sensing
data from the two different platforms (Material & Methods 2.3, 2.4,
and 2.5), The discrepancies are also likely resulted from their
temporal difference between the times of data acquisition, which
is several hours apart.
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4 Discussion
4.1 SSGM model assessment

The final model is applied to MODIS-based predictions over
different spatial and temporal scales. A notable feature is the
formation of a “threshold” that is parallel to the x-axes when
predicted SSGM values are averaged over extended spatial and
temporal scales (Figure S1). This horizontal cluster of data points
indicates that it is unsuitable to compare a single field data point with
averaged SSGM prediction over extended space and time periods.
Because of this, future use of this model should only involve other
datasets that are on a similar spatial and temporal scale as the SSGM
data product. For an instance, daily 1 km resolution SSGM product
should not be directly merged with 8-day 4 km resolution chl-a
product; a SSGM composite should be created first before merging
the datasets. The rapid decrease in r values across the comparison
matrix (Table 2) also represents a potential indication of residence
time and spatial extent of SSGM features. While this speculation can
only be confirmed with additional studies beyond the scope of this
project, it still offers some information on the spatial and temporal
requirements for future field campaigns and remote sensing missions
to effectively resolve SSGM features.

When the final model’s predictions are compared with the field
data, most predicted values appear to slightly over-estimate SSGM,
but within an acceptable range (Figure 4). In contrast, outliers
appear to significantly underestimate SSGM (except for one sample,
Figure S2). Statistical measures shown in Table S.I have been
carried out to analyze the dataset, with and without the outliers,
and both analyses show relatively consistent results (Table S.1;
Figure S4). The slope of the regression line between modeled and in-
situ values decreased from 0.931 to 0.771 after outliers were
removed. This indicates that the model exhibits some remaining
patterns in bias over the entire range of data, as seen in Figure S2
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FIGURE 6
Individual conditional expectation plots display one line per decision tree in the final random forest model that shows how the changes in R,(A)
values impact the predictions of sea surface glacial meltwater fraction.

and Figure S4. They may be related to potentially higher  following the removal of these outliers, and overall support the
measurement uncertainties in some data ranges (e.g., low values  potential utility of this preliminary model developed based on a
of SSGM) or result from uncertainties in spatio-temporal matching  relatively limited training dataset. Additional observations,
of satellite and in-situ measurements. We note, however, that apart  particularly in the lower and upper ranges of SSGM, are needed
from these regression line metrics, all other statistical indicators in ~ to better assess model uncertainties and improve model
Table S.1 of aggregate model bias and random error improved  performance across the entire SSGM range.
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(C, F, 1) sea surface temperature derived from MODIS-Aqua.

4.2 Additional SSGM validation

4.2.1 The physical basis for SSGM
remote detection

Previous studies conducted in Greenland fjords have
demonstrated the effectiveness of leveraging multispectral ocean
color datasets (such as MODIS) to retrieve suspended sediment
concentrations in Arctic polar waters (Chu et al., 2010; Hudson
etal, 2014). The suspended sediments described in these studies are
associated with glacial meltwater discharge and could reach > 600
mg/l on average — effectively becoming a proxy for ice-sheet runoff.
In contrast, the glacial meltwater injection at the WAP is less
intense and therefore it often lacks the prominent surface
sediment plumes often found in Greenland and the broader
Arctic region (Pan et al, 2019). However, while there were no
glacial sediment plumes by visual inspection, field studies
conducted in a WAP fjord (Andvord Bay) found significantly
higher values of seawater inherent optical properties near the
glacial-marine interface - where particulate backscattering
coefficient at 442 nm reached a maximum of 0.01 m™' and
particulate beam attenuation coefficient at 660 nm reached a
maximum of 2.21 m™! in the inner basin of the fjord (Pan et al.,
2019). Moreover, these optical signals near the glaciers in Andvord
Bay are persistent features — field work conducted in the latter part
of the last century also detected high beam attenuation coefficient
values near the glacial front, with a maximum of ~2 m! (Domack
and Williams, 1990). These prior studies offer some indications that
the presence of SSGM is intrinsically associated with fine suspended
glacial sediments.

If SSGM can be quantified as fine particle plumes, then it is
expected that SSGM would share some attributes with surface
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plume features where they would closely interact with other
physical oceanographic features, such as currents and eddies. For
context, there are some prominent features in the WAP region. The
dominant feature offshore is the Antarctic Circumpolar Current
(ACC) flows along the WAP continental shelf (Martinson et al,
2008). In addition, there is a less intense coastal current (Antarctic
Peninsula Coastal Current, APCC) which flows southward along
the western shore of Adelaide Island and Alexander Island (Stein,
1992; Moffat et al., 2008; Savidge and Amft, 2009; Meredith et al.,
2010). The coastal current, specifically, exhibits seasonal variability
and is thought to be partially driven by buoyancy-forced fresh
meltwater supply (Beardsley et al., 2004; Savidge and Amft, 2009).

Other mesoscale physical oceanographic features, such as
eddies and loops, can also significantly impact SSGM distribution
in space and over time. A prior study using high-frequency radar
network deployed near Anvers Island (at Palmer Deep canyon)
found surface particle assemblage residence time was between 1 and
3.5 days with a mean of 2 days and a maximum of 5 days (Kohut
et al., 2018). Similarly, a previous study using the Regional Ocean
Modeling System (ROMS, adapted for the WAP region) found an
overall median residence time of 4.1 + 3.3 days for simulated
neutrally buoyant particles released at the surface (Hudson et al.,
2021). More specifically, the ROMS study found the residence time
ranged between 1.5 + 0.7 and 2.3 + 0.3 days over the WAP
continental shelf, and it ranged between 2 + 1.2 days and 7.1 £ 3
days in the coastal waters near Anvers Island (Hudson et al., 2021).
These residence times are similar to the time frames reflected in our
MODIS-field-data validation matrix (Table 2; Figure S1). We
observed a clear lack of correlation that begins to form when > 3
days of MODIS data are averaged and matched with field data
points (Table 2, Figure S1). The discrete SSGM field data should not
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(A) PRISM airborne data (prm20160125t181722) overlaying MODIS-derived surface glacial meltwater fraction from January 25", 2016. (B) Enhanced
RGB image zoom of the blue square in panel a, depicting icebergs and a trail of bergy bits. (C) Derived glacial meltwater fraction in the same region

as panel (B). (D) A detailed overview of scene prm20160125t181722.

be compared with temporally averaged MODIS-based values,
indicating the importance of having consistent time frames when
SSGM modeled values are assembled with other datasets in future
studies. More importantly, we speculate that the decrease in
correlation across the matrix potentially alludes to the residence
time of SSGM as it interacts with the WAP’s physical oceanography.
This provides additional insights on the appropriate temporal
resolution that is needed to support future field campaigns and
remote sensing missions that have the potential to study glacial
meltwater in the WAP (Cawse-Nicholson et al., 2021).

4.2.2 Remote sensing and optics of SSGM

The SSGM model appears to track fine particle assemblage
associated with glacial meltwater, allowing detection of SSGM from
remote sensing platforms. The optics of glacial meltwater is expected
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to resemble that of fine suspended sediments in a water column.
Sravanthi et al. (2013) conducted a comprehensive review of R at
various wavelengths and their linear relationships with suspended
particulate mass concentration (SPM) in Kerala, coastal ocean of the
Arabian Sea. They also examined several R;(A) band math variables,
particularly R(555) + R,(620) and R.(620)/R(490) which showed
high correlations with SPM. This information resulted in a
multivariant linear model for deriving SPM (mg/1) based on R(A):
R,.(620)
SPM = 14.93x {[Rm(sss) +R,(620)] + [W]Z} + 822 (4)
Later, Pan et al. (2019) modified this model and applied it to the
polar region for quantifying glacial meltwater in a WAP fjord, given
the high optical signal found near the glacial-marine interface (Pan
et al,, 2019):
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GM = B+ 04[R(555) + R(625)] + 5[

©)

where GM is glacial meltwater fraction based on in-situ 880 data, o0
and P are constant coefficients, and R(A) is defined as the ratio between
upwelling radiance and downwelling planar irradiance at discreet
depths. Although these previous studies were conducted using in-situ
radiometers and offered different wavelengths from MODIS bands, we
have adapted these methods for this study and obtained similar results.
For instance, R.((667)/R(488) accounts for over 80% of the variance
within our SSGM model (Figure 5), and therefore predicted SSGM
values are the most responsive to changes in this variable (Figure 6).
Detailed laboratory-based studies of pure glacial meltwater samples are
required to elucidate the inherent optical properties and size and
chemical composition of these fine glacial particles beyond the scope
of this study. These future laboratory-based measurements are needed
to complement the hyperspectral nature of the next-generation ocean
color satellite missions.

Moreover, the predicted SSGM values appear to coincide with
high chl-a concentrations, but they have distinctly different spatial
distributions (Figure 7). This indicates our SSGM model is not
merely capturing phytoplankton’s optical signal, which is a major
optical constituent in the WAP. This notion is further confirmed by
the ranking of variable importance (Figure 5) and individual
conditional expectation plots (Figure 6) where predicted SSGM
does not appear to be significantly correlated with bands commonly
associated with chl-a detection. These insights and relatively
consistent results across multiple studies indicate the SSGM
model has likely captured significant key aspects of the
underlying optics of glacial meltwater.

4.3 Assumptions and uncertainties

There are inevitably some assumptions and uncertainties
associated with the SSGM model. One area of uncertainty is the
quantity of the final (combined) training dataset (n = 204, including
synthetic blanks). While this dataset is relatively small in comparison to
machine learning projects in industry, the range of field data values in
the dataset helps train a representative and robust model. Within the
dataset, high meteoric water content was captured near Potter Cove.
Many of these surface meteoric water samples were comprised of
almost entirely glacial meltwater associated with heavy sediment
discharge at this site (Meredith et al, 2018). These high meteoric
water contents during the growing season are also consistent with the
low salinity and high turbidity observed in the nearby Admiralty Bay
(Osinska et al., 2023). Low SSGM content was introduced to the dataset
via synthetic blanks that were generated outside of the ACC in the
Southern Pacific open ocean (Figure 1). This gradient of SSGM
captures the full range of meltwater content and their corresponding
remote sensing reflectance properties. Moreover, the training dataset in
this study is one of the most comprehensive 8'*0 data compilation for
the WAP region, including four long-term time series at different
locations (Material and Methods).

There are also assumptions and uncertainties associated with
the field dataset itself. Because the meteoric water content was

Frontiers in Marine Science

12

10.3389/fmars.2023.1209159

computed through mass balance calculations (Material and
Methods), these values are sensitive to the selection of end
member values (i.e., pure glacial and sea ice meltwater §'*0 and
salinities). To mitigate these uncertainties, a consistent and rigorous
methodology was used during these field studies to select end
members that were locally or regionally representative (Meredith
et al, 2017b). In addition, the meteoric water variable is comprised
of precipitation and glacial meltwater (Material and Methods).
While the current state of this method cannot partition these two
components directly, §'*0 sampling remains one of the most cost-
effective and accessible methods for estimating meltwater content
and it can be collected on most oceanographic and community
science cruises (Cusick et al., 2020). Moreover, the meteoric water
variable represents an upper limit of glacial meltwater estimation,
which is still useful for obtaining insights on its surface distribution
over space and in time.

Additionally, the “synthetic blanks” in this study (Material and
Methods) were selected outside of the ACC, therefore their meteoric
water content likely include no glacial meltwater but various
amounts of precipitation. Since these blank samples have
significantly lower optical signal in comparison to the in-situ data
collected at the WAP (Figure S3), by setting the synthetic blanks as
0% SSGM, we have likely trained the model to neglect the effect of
precipitation on SSGM predictions. SSGM prediction also appears
to be only weakly sensitive to the selection of blank SSGM data
(Figure S3). This assumption can be verified to some degree when
daily precipitation data is compared with in-situ meteoric water
fractions around Anvers Island (Figure S4). Precipitation data
retrieved between 1989 and 2019 shows high meteoric water
content is associated with low precipitation (Figure S4A).
Furthermore, the majority of this dataset is associated with no
precipitation. Out of 410 data points, 219 are associated with 0 mm
of rainfall, 361 are associated with 0 cm of snow precipitation, and
282 are associated with no accumulation by snow stake (Figure
S4A). In addition, the anomalous values that fall away from the
validation line in Figure 4 have been identified as outliers, and these
values are also associated with low precipitation (Figure S4B, S4C).
Hence any predictions that deviate from in-situ data is likely not
due to excess precipitation interfering with glacial meltwater signals
in 8'®0 samples. Due to the complex relationship between
precipitation and the 8'®0 measurement, such as land-
accumulated snow melt discharging into the ocean during
summer or any precipitation events that might have occurred
shortly before in-situ sampling, data presented in Figure S4 do
not definitively decouple glacial meltwater from precipitation.
However, these additional results indicate that 80 has value as
an effective in-situ measurement for estimating glacial meltwater in
the WAP, and for training models for predicting SSGM. In the
future, additional cost-effective tracers should be explored to enable
partitioning of meteoric water content.

4.4 SSGM model applications

The SSGM model has provided important results with broader
implications. For instance, the variable importance ranking shows the
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model is primarily dependent on a few key R, wavelengths, indicating
these wavelengths are important to capturing the underlying optical
characteristics of SSGM (Figure 5), though to a lesser extent, additional
bands can also contribute to an increase in overall prediction power of
the model, illustrating the merit of utilizing hyperspectral airborne
ocean color data for future SSGM model development. Hyperspectral
airborne data have several other advantages — such as its high spatial
and temporal resolutions which reveal detailed features of SSGM
distribution that cannot be resolved with MODIS data (Figure 8), as
well as its increased spectral sampling that could provide additional
spectral features not seen in multispectral data that can further tease
out SSGM from other optical constituents. These results highlight the
benefit of supplementing existing multispectral spaceborne datasets
with hyperspectral airborne data in order to achieve better detection
and monitoring of SSGM. Moreover, the application of this model on
PRISM imagery indicates the applicability for other ocean color data
products as well; in general, the model can generate SSGM results if the
input R data are at or near the MODIS bands (Figure 5) and are
processed with consistent techniques used to produce MODIS Level 3
data products. Furthermore, the applicability of this SSGM model to
both spaceborne and airborne datasets alludes to the possibility of
sampling SSGM via Unmanned Aerial Vehicles (UAVs) (Pina and
Vieira, 2022). Imaging instruments can be coupled with UAVs to
achieve greater sampling frequency at a finer spatial resolution, while
also being less susceptible to limitations of cloud cover, thus greatly
complementing existing remote sensing platforms (Li et al., 2023). The
potential of leveraging commercial UAV products to conduct sea
surface imaging has been demonstrated by Wojcik-Diugoborska
et al. (2022) to study glacial suspended sediment plumes in the WAP.

Although this study demonstrates a new method for quantifying
SSGM and its applicability across multiple remote sensing platforms,
we stress that this is the first data product for quantifying SSGM
remotely. While the SSGM predictions are validated with one of the
most comprehensive in-situ 8'°0 datasets compiled for the WAP, there
were no concurrent in-situ optical measurements; accordingly, our
method takes an applied approach to correlate ocean color signals with
field SSGM measurements. For the development of a first-generation
model, we chose this applied approach for rapid implementation, so
the results can be utilized by a wide range of end users for future
projects. Additional laboratory studies are needed to understand the
inherent and apparent optical properties of pure and diluted
glacial meltwater.

The ability to monitor SSGM is directly relevant to
understanding ecological dynamics that are being impacted by
accelerating change along the WAP. The presence of SSGM is
also found to coincide in regions of high chl-a concentrations. For
example, phytoplankton abundance is found to be significantly
correlated with glacial meltwater over the WAP shelf. This
relationship extends >100km offshore and is persistent across
years (Dierssen et al., 2002). The same dynamics between glacial
meltwater and phytoplankton were also observed in a WAP fjord
(Pan et al, 2020). In this study, we found similar spatial
distributions between chl-a concentrations and SSGM but with
clear distinctions between the two (Figure 7), consistent with prior
studies. These results have important implications for polar
ecosystem research. Remote sensing studies of the WAP
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ecosystem have primarily relied on measurements of chl-a, SST,
sea ice properties, and salinity (IOCCG, 2015). However, in recent
years, glacial meltwater has been identified as an additional
environmental variable that is important to the ecosystem in the
WAP and broader polar regions (Dierssen et al., 2002; Arrigo et al.,
2017; Meire et al, 2017; Pan et al., 2020). Freshwater addition
experiments in Potter Cove found that a gradual decrease in salinity
can shift phytoplankton communities dominated by large centric
diatoms to small pennate diatoms, suggesting a phytoplankton
response to low salinity is species-specific (Hernando et al., 2015).
Similar results have also been found in the field over the WAP shelf
where cryptophyte abundance was observed to coincide with
relatively low salinity waters (S < ~33.6 PSU) (Moline et al,
2004). In addition, other studies found that glacial meltwater’s
impact on phytoplankton communities is likely beyond changes in
salinity. In WAP fjords, glacial meltwater is also a pathway for
delivering macro- and micro-nutrients to the surface. Sporadic but
prolonged katabatic wind events bring up deep nitrate-rich water
which is propagated along the surface with SSGM from the ice-
ocean interface (Ekern, 2017; Pan et al., 2020). Dissolved iron is
supplied to the surface via a similar mechanism, but it can also
directly enter the ambient water column via sub-glacial and sub-
marine melting (Sherrell et al., 2018; Forsch et al., 2021). These
results indicate that glacial meltwater plays an important role near
the ice-ocean boundary, and SSGM export from fjords likely serves
as an important nutrient source for the broader WAP ecosystem
(Forsch et al., 2021). In short, detection of SSGM from remote
sensing can provide a new proxy for monitoring the physical
environment, ecosystem, and their variabilities in the WAP.

5 Conclusions

In this study, we present a data product for remotely
quantifying SSGM in the WAP. The model can retrieve SSGM
from ocean color datasets and is applicable across multiple remote
sensing platforms. The model’s robustness is also assessed with one
of the most comprehensive in-situ §'°0 dataset complied for the
WAP region. However, this model is not intended to be a definitive
method for SSGM monitoring, but rather as an evolving model that
will be frequently updated as more in-situ data, and data of other
forms, becomes available in the future. We want to emphasize the
need for persistent long-term in-situ 3'®0 sampling in the WAP
region to ensure the future success of this model. Future model
development can be aided by additional §'®0 data and the inclusion
of other techniques to partition SSGM.

Remote detection and monitoring of glacial meltwater present
an important opportunity for understanding polar ecology and its
physical environment. Given the complex dynamics amongst glacial
meltwater, sea surface salinity, SST, nutrient availability and
phytoplankton community abundance and composition,
additional methods for monitoring and quantifying SSGM
becomes necessary in order to achieve a better understanding of
glacial meltwater’s impact on the WAP ecosystem. The potential of
this SSGM model has important implications for studying the WAP
ecosystem dynamics and the regional biogeochemistry.
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