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Glacial meltwater is an important environmental variable for ecosystem

dynamics along the biologically productive Western Antarctic Peninsula (WAP)

shelf. This region is experiencing rapid change, including increasing glacial

meltwater discharge associated with the melting of land ice. To better

understand the WAP environment and aid ecosystem forecasting, additional

methods are needed for monitoring and quantifying glacial meltwater for this

remote, sparsely sampled location. Prior studies showed that sea surface glacial

meltwater (SSGM) has unique optical characteristics which may allow remote

sensing detection via ocean color data. In this study, we develop a first-

generation model for quantifying SSGM that can be applied to both

spaceborne (MODIS-Aqua) and airborne (PRISM) ocean color platforms. In

addition, the model was prepared and verified with one of the more

comprehensive in-situ stable oxygen isotope datasets compiled for the WAP

region. The SSGMmodel appears robust and provides accurate predictions of the

fractional contribution of glacial meltwater to seawater when compared with in-

situ data (r = 0.82, median absolute percent difference = 6.38%, median bias =

−0.04), thus offering an additional novel method for quantifying and studying

glacial meltwater in the WAP region.

KEYWORDS

glacial meltwater, ocean color, coastal ocean, Western Antarctic Peninsula, high
latitude, polar region
1 Introduction

Sea surface glacial meltwater (SSGM) is a prominent physical feature in the coastal

oceans of Antarctica. For instance, at the Western Antarctic Peninsula (WAP), sea surface

freshwater is composed of glacial meltwater, precipitation, and sea ice meltwater (Meredith

et al., 2017a), with meteoric freshwater (glacial melt + precipitation) dominating the top

few meters of the water column, particularly during the austral summer months (Meredith
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et al., 2010). This SSGM layer is associated with lower salinity

compared to the ambient ocean (Moline et al., 2004), thus it forms a

surface freshwater “lens” which can extend >100 km offshore of the

WAP (Dierssen et al., 2002). Large influxes of seasonal glacial melt

into the ocean have been linked to the austral summer freshening

and stratification of coastal surface waters in Antarctica (Dierssen

et al., 2002; Schofield et al., 2018).

Extensive studies on the rates of glacial meltwater discharge

have been conducted, focusing primarily on the long-term impact

on sea level rise (Rignot et al., 2019; An et al., 2021). However,

various studies have found that glacial meltwater in the WAP has a

more immediate impact on local ecosystems and regional

biogeochemistry (Cape et al., 2019; Pan et al., 2020; Forsch et al.,

2021). SSGM is found to correlate positively with total chlorophyll-

a (chl-a) concentration over the WAP continental shelf (Dierssen

et al., 2002) and in a WAP fjord (Pan et al., 2019). This positive

correlation between SSGM and chl-a was attributed to glacial

meltwater being a source of nutrients, particularly dissolved iron,

as well as being a proxy for meltwater-buoyancy-driven and wind-

driven upwelling of deep nitrate along the ice-ocean interface

(Forsch et al., 2021). Moreover, meltwater in general has been

found to enable surface layer stabilization and reduce the depth of

mixing (Schofield et al., 2018; Pan et al., 2020), thus leading to

higher overall light levels experienced by phytoplankton (Mitchell

et al., 1991). SSGM input has also been found to significantly alter

phytoplankton community composition (Pan et al., 2020). These

results illustrate the importance of SSGM to Antarctic ecosystems

and their physical environment, and thus the need to closely

monitor its spatial extent over time.

One of the most effective field measurements of glacial

meltwater is through the collection of stable oxygen isotope

(d18O) samples from the water column (Meredith et al., 2008)

and computing meteoric water fraction through an end-member

mass balance calculation (Östlund and Hut, 1984). This method is

particularly helpful where meltwater processes are relatively weak

and in-situ temperature and salinity measurements cannot

effectively distinguish glacial meltwater input using the Gade line

method at locations away from the glacial front (Pan et al., 2019).

While d18O collection is relatively simple and can be easily

integrated with most oceanographic projects, it can only be

achieved through field campaigns, and the complexity of the

laboratory analysis limits the number of samples that can feasibly

be run. This severely limits the spatiotemporal availability of d18O-
derived meltwater observations. Other efforts for quantifying glacial

meltwater, such as utilizing in-situ temperature, salinity, and

dissolved oxygen, have also been demonstrated in the Amundsen

Sea (Jenkins et al., 2018; Zheng et al., 2021; Yoon et al., 2022).

However, these studies depend on localized parameters for deriving

glacial meltwater and they are somewhat limited by the

spatiotemporal constraints of in-situ measurements. Given the

spatial extent of SSGM and its more immediate ecological

impacts, additional techniques are needed to supplement existing

field measurements.

Ocean color remote sensing provides more extensive spatial and

temporal coverage of the polar regions. Multiple studies have leveraged

these data products to monitor glacial meltwater. Using data from
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NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS)

onboard Terra, Hudson et al. (2014) developed a multispectral model

to monitor suspended sediment concentration (SSC) in Greenland

fjords, which is directly related to glacial meltwater discharge. Similarly,

Pan et al. (2019) found that sedimentary nanoparticles are associated

with meltwater in an Antarctic fjord, and utilized their influence on

seawater apparent optical properties (AOPs) to develop a multispectral

model for deriving glacial meltwater fraction (Pan et al., 2019). While

these studies provided numerous insights, there has not been an

attempt to utilize ocean color remote sensing to directly quantify

SSGM fraction in order to provide more extensive spatial and temporal

monitoring of Antarctic ecosystems. In this study, we present initial

development of a model to map SSGM in the WAP. We describe a

machine learning methodology used to develop a first-generation

SSGM model using MODIS-Aqua data as input, assess model

performance with existing field data from diverse field campaigns at

the WAP covering a range of spatial and temporal scales, and finally,

apply this model to visualize SSGM fraction in the broader

WAP region.
2 Material and methods

2.1 Study sites

Field data from multiple sites spanning the WAP were utilized

in this study (Figure 1A). The majority of our combined field

dataset was from the Palmer Long Term Ecological Research

(LTER) grid stations (Figure 1B). Discrete d18O samples were

collected from oceanographic cruises, primarily in austral

summer (December to February), conducted between 2011 and

2019 over the WAP shelf. Samples were drawn from Niskin bottles

closed at discrete depths during water column profiling with a Sea-

Bird conductivity–temperature–depth (CTD) instrument (Ducklow

et al., 2013; Meredith et al., 2017a).

In addition to water sample collection over the WAP shelf, the

Palmer LTER program also samples quasi-weekly during austral

summer from two nearshore sites near the Palmer Research Station

on Anvers Island (Figure 1B). Station B, located at 64.7795°S/

64.0725°W, is <1 km from shore and in waters of 75 m depth.

Station E, located at 64.815°S/64.0405°W, is farther offshore and

more directly exposed to the continental shelf and open ocean, with

a water depth of 200 m. The start of each sampling season is subject

to boat access due to severe weather conditions and sea ice presence,

thus ranging from mid-October to late December. During austral

winter, when boat operation ceases, the Palmer LTER program also

samples seawater through an inlet at 5.8 m depth, located at

64.7738°S/64.0545°W. These nearshore stations are situated near

the shallow marine-terminating Marr Ice Piedmont and other land-

based ice masses (Meredith et al., 2021) (Figure 1B).

The combined field dataset also contains d18O seawater samples

from additional nearshore stations at Potter Cove and Maxwell Bay,

located on King George Island (Figure 1B). Water samples were

collected using 4.7 L Niskin bottles during water column profiling

with a Sea-Bird SBE 19 CTD instrument (Meredith et al., 2018).

Some field data from the Rothera Oceanographic and Biological
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Time Series (RaTS) were also included in the combined field

dataset, albeit sparse due to a lack of matching MODIS-to-field

data given its proximity to the shore of Adelaide Island (67.5700°S/

68.2250°W) (Figure 1B). Water sampling here was also conducted

in conjunction with CTD casts (Meredith et al., 2010). This

expansive selection of study sites aligns with prior studies, such as

the WAP research overviews provided by Ducklow et al. (2007) and

Hendry et al. (2018), which often include islands and areas near the

northern tip of the Peninsula.
2.2 Glacial meltwater fraction field data

From each of the sites mentioned, d18O seawater samples at the

surface were selected for this study. Surface is here defined as the

shallowest sample depth in the water column within the top 5m, and

d18O is here measured in units of‰. SSGM is derived based on mass

balance calculations conducted in the aforementioned studies, and it

is measured in units of freshwater % (Meredith et al., 2010; Meredith

et al., 2017a; Meredith et al., 2018; Meredith et al., 2021). Each

discrete d18O sample is paired with its corresponding salinity values

from CTD data. The mass balance calculation presumes each sample

is composed of a simple mixture of three components – ocean water

(ow), sea ice meltwater (sim), and meteoric water (met), with the

latter term being the sum of precipitation and glacial meltwater:

Fsim + Fmet + Fow = 1 (1)

Ssim · Fsim + Smet · Fmet + Sow · Fow = Stotal (2)

d 18Osim · Fsim +   d 18Omet · Fmet +   d 18Oow · Fow =   d 18Ototal (3)

This system of equations is solved for Fsim, Fmet, and Fow, which

are the respective fractions of the three components in each sample.

Ssim, Smet, and Sow are the salinity values for the end-member source

components, while d18Osim, d18Omet, d18Oow are the corresponding

d18O values. Endmember values are taken from the previous studies

that generated our combined field dataset (Table 1); these data
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sources include Palmer LTER grid (Meredith et al., 2017a), Palmer

Station on Anvers Island (Meredith et al., 2021), Potter Cove

(Meredith et al., 2018), and Rothera Point on Adelaide Island

(Meredith et al., 2010) as described above.
2.3 Spaceborne multispectral data

MODIS-Aqua Level 3 remote sensing reflectance data, Rrs(l),
for 10 spectral bands (i.e., 412, 443, 469, 488, 531, 547, 555, 645, 667,

678 nm where l is light wavelength in vacuum) were acquired from

the NASA Ocean Biology Distributed Active Archive Center (DOI:

10.5067/AQUA/MODIS/L3M/RRS/2018). Level 3 Ocean Color

Standard Mapped Images at 4 km resolution were accessed via

Google Earth Engine (GEE). An initial matchup dataset was

compiled by iteratively reviewing all field data, and then matching

each field data point with a set of corresponding MODIS pixel

values that cover these field coordinates from the same date.

Furthermore, the level 3 Rrs(l) data already removes areas with

sea ice, thus eliminating the potential of sea ice contamination in the

overall dataset. This process produced a dataset where each field

measurement of meteoric water fraction was matched with its ten

corresponding MODIS Rrs band values. Out of the 86 matchups, 38

were from the Palmer LTER grid, 42 from the Palmer Station site,

and 6 from Potter Cove or the Rothera Time Series. The low

matchup availability is mostly due to cloud cover. This initial

dataset also needs very low or zero glacial meltwater values for

standard machine learning models to effectively detect a wide range

of target values. Therefore, the initial dataset was also supplemented

with synthetic “blank” meteoric water samples. For each date when

a field-MODIS data point pair is found, a synthetic blank sample is

also obtained at three locations on the outside of the Antarctic

Circumpolar Current (ACC) (Figure 1A). They were sampled at

47.2382°S/99.1695°W, 54.3690°S/97.1654°W, and 35.5635°S/

129.8333°W. For each “blank” sample, a value of 0% glacial

meltwater fraction was assigned to the Rrs band values obtained

for these pixels.
FIGURE 1

Area of interest. (A) Overview of Antarctica; orange points indicate synthetic blank sampling locations (i.e., regions assumed to have zero glacial
meltwater) and the red box denotes the Western Antarctic Peninsula (WAP). The background is the MODIS chlorophyll-a concentration austral
summer climatology (2002-2016); sACF, Southern Antarctic Circumpolar Current Front; PG, Polar Front; SAF, Subantarctic Front; STF, Subtropical
Front. (B) The WAP and oxygen isotope field data sampling locations. Blue outlines indicate major ice shelves in the region.
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2.4 Data processing & model development

In this study, the MODIS Rrs(l) band values are input variables

while meteoric water fraction is the target variable. The input

variables are the ten ocean color band values of Rrs(412), Rrs

(443), Rrs(469), Rrs(488), Rrs(531), Rrs(547), Rrs(555), Rrs(645), Rrs

(667), Rrs(678), and band math values for Rrs(555) + Rrs(667), and

Rrs(667)/Rrs(488) per previous AOP models for retrieving glacial

meltwater fraction (Pan et al., 2019). In order to model the data, we

executed a three-step process involving: (1) algorithm selection, (2)

hyperparameter optimization of the selected algorithm using train,

validation and test subsets, and (3) final model training with the

best hyperparameters on the complete dataset. For algorithm

selection, we used a method of evaluating thirty-six different

regression algorithms, including adaptive boosting, support vector

machines, k-nearest neighbors, linear regression, gradient boosting,

an individual decision tree and a random forest, among others

(https://scikit-learn.org/stable/supervised_learning.html). The

selected algorithm had to be reasonably interpretable, so

algorithms like advanced neural networks were excluded. The

primary goal of this preliminary step is to understand how

different models would respond to the SSGM training dataset as

well as their general performance without extensive model tuning,

such as hyperparameter search.

After identifying the random forest algorithm as the best-

performing in the initial evaluation, we conducted a hyperparameter

search to fine-tune the following hyperparameters: n-estimator, which

is the number of decision trees in a random forest; minimum-samples-

leaf, which is the minimum number of samples that should be present

in the leaf node after splitting a node; and minimum-samples-split,
Frontiers in Marine Science 04
which is the minimum number of data points in any given node in

order to split it.

Hyperparameter optimization is the process of iteratively

tuning a learning algorithm’s hyperparameters in order to better

fit training data. Overfitting is a common problem when utilizing

this technique (Cawley and Talbot, 2010; Feurer and Hutter, 2019).

To avoid overfitting, the dataset was split into training (80%),

validation (10%) and test subsets (10%) (Figure 2). The training

subset was used to train 10000 candidate models. The cross-

validation accuracy score for each model was evaluated using the

validation dataset. There are a number of search algorithms used in

hyperparameter optimization – most commonly grid search,

random search and Bayesian algorithms. A Tree-structured

Parzen Estimator (TPE), which is a Bayesian technique, enables a

more efficient search of the hyperparameter space than grid or

random searches (Bergstra et al., 2011). This means new

hyperparameters were selected iteratively based on the previous

performance of those hyperparameters, as measured against the

validation dataset. The best hyperparameters were 265 n-

estimators, a minimum-samples-leaf of 1, and a minimum-

samples-split of 8. The maximum depth of the random forest is

not predetermined, and the decision trees’ nodes are expanded until

all leaves contain less than the minimum-samples-split. At the

completion of the hyperparameter search, a model was selected and

evaluated against the test dataset. This means that the test dataset

was used only once during the entire modeling process (Figure 2).

The finalized model is trained using data and settings described

earlier in this section – all available Rrs bands and band math as well

as the random forest model hyperparameters determined from the

TPE-based search process. The finalized model is deployed with
TABLE 1 End member values for mass balance calculations of meteoric water and sea ice meltwater fractions.

Salinity (PSU) d18O (‰)

Palmer LTER Grid

Sea ice melt 7 2.1

Meteoric water 0 −16

Ocean water 34.73 0.1

Palmer Station + Seawater Inlet

Sea ice melt 7 1.1

Meteoric water 0 −12

Ocean water 34.65 0

Potter Cove

Sea ice melt 5 1.6

Meteoric water 0 −11

Ocean water 34.40 −0.2

Ryder Bay/Rothera

Sea ice melt 7 2.1

Meteoric water 0 −17

Ocean water 34.62 −0.08
fr
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geemap (Wu, 2020), a Python package for interactive mapping with

GEE, using the native GEE random forest function. The MODIS-

Aqua level 3 dataset was compiled in GEE using its NASA/

OCEANDATA/MODIS-Aqua/L3SMI image collection (DOI:

10.5067/AQUA/MODIS/L3M/RRS/2018). Further model

validation was conducted to assess the model’s robustness and to

gain insights on its applicability to spatially and temporally

averaged MODIS data (Figure 3). Spatially, each field data point

is compared with the MODIS-based prediction that encompasses

the field data coordinates (Figure 3 row 1, column 1), and then the

field data point is also compared with spatially averaged MODIS-

based predictions – by adding 2.5 km, 5 km, 7.5 km, and 10 km to

each side of the pixel to create a new area of interest, and then

averaging all predicted values that fall within the new target areas

respectively (Figure 3 rows). Temporally, each field data point is

compared with the MODIS-based prediction from the same date

(Figure 3 row 1, column 1), and then the field data point is also

compared with predicted values averaged over 3 days, 7 days,

monthly, and date range covering the Palmer LTER cruises which

varies annually (Figure 3 columns). These comparisons generate a

matrix of 25 configurations of different spatial and temporal

correlations between field data and predicted values (Figure 3).

For each comparison configuration, we evaluated the Pearson’s

correlation coefficient (r), p-value, sample size and a visualization of

the correlations as scatter plots (Figure S1). Additional statistical

measures were produced to evaluate the SSGM model by focusing

on the correlation between the daily MODIS-based values and

discrete field data (Figure 3 row 1, column 1). The loss of

correlations between field data and spatiotemporally averaged

predictions can provide some indications on SSGM’s spatial scale

and residence time.
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2.5 PRISM airborne dataset

The final SSGM model was also applied to airborne imaging

spectroscopy data from the NASA/JPL Portal Remote Imaging

SpectroMeter (PRISM) (Mouroulis et al., 2014), collected as part

of the O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS)

campaign in January-February 2016 (Stephens et al., 2018), to

further assess the model’s applicability across platforms. The goal

was to demonstrate the spatial resolution advantages of such

airborne datasets. PRISM flew on the NSF/NCAR Gulfstream-V

aircraft at an approximate altitude of ~12.2 km providing water-

leaving radiance and remote sensing reflectance from 350 to 1050

nm, approximately every 3 nm, with 10 m spatial resolution

(https://prism.jpl.nasa.gov/dataportal/). Atmospheric correction

was conducted using an Optimal Estimation formulation that

simultaneously models surface and atmospheric reflectance

contributions from statistical priors (Thompson et al., 2018;

Thompson et al., 2019). The PRISM ORCAS data were pre-

processed in ENVI® to extract Rrs(l) bands according to MODIS

wavelengths and the images were exported to GEE as GeoTIFF files.

Here, we assume that the PRISM bands near the targeted MODIS

bands would perform similarly. The final SSGM model was applied

to each airborne image to retrieve glacial meltwater fraction.
3 Results

3.1 SSGM model evaluation

When the predicted glacial meltwater fraction values and field

data are compared during the development phase (Figure 2), we
FIGURE 2

Model training and validation workflow implemented in this study.
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found the validation dataset had an r value of 0.878 and the test

dataset had an r value of 0.885. The r values across both datasets are

relatively high, and notably, these r values are relatively consistent

indicating the hyperparameter search did not cause the model to

overfit against the validation data. This evaluation confirms the

model’s overall performance, so all development datasets were

combined to produce the final model for this study. After the final

version of the model is applied to MODIS-Aqua data, we found

relatively high r value when field data are compared to predictions

based on matching pixel values from the same dates (r = 0.82, p <

0.01). However, the correlation decreases as the MODIS-based

predictions are averaged over longer time periods (Table 2,

columns). The decrease in correlation is even more pronounced

when the predicted values are averaged over larger areas (Table 2,

rows). Figure S1 presents a visualization of these correlations as

scatter plots.

To further evaluate the model performance, several statistical

measures were calculated to describe the regression function

between field data and daily MODIS-derived SSGM values

(without spatial or temporal averaging, Figure S1 row 1, column

1). These measures are commonly used for evaluation in

biogeochemical modeling and bio-optical studies (Brewin et al.,

2015; Seegers et al., 2018) (Figure 4; Table S.1). We found that the

residual differences between MODIS-derived SSGM and field data

have a symmetric probability distribution around a median of

0.04%. The median ratio (MdR) and median bias (MdB, in units

of predicted variable) measures are produced to characterize

systematic deviations, while the median absolute percentage

difference (MdAPD) and root mean square error (RMSE, in units

of predicted variable) are used to characterize random deviations

between modeled SSGM values and field data. A model that

provides the best overall fit to in-situ data should have MdR close
Frontiers in Marine Science 06
to 1 and low values of MdB, MdAPD and RMSE. We found MdR =

0.990, while MdB = −0.040, MdAPD = 6.375%, and RMSE = 0.463.

Moreover, errors in remote sensing and bio-optical models are also

often reported by statistical indicators calculated based on linear

regression between in-situ and predicted values. Here, we calculated

the statistical measures based on Model II least-squares fit (Ricker,

1973), because both satellite- and d18O-derived values presented in

Figure 4 are collected from an uncontrolled environment, subject to

error, and are dependent on the actual SSGM fractions in the field.

The slope of the line is determined by calculating the geometric

mean of the slopes from the regression of Y-on-X and X-on-Y

(Sokal and Rohlf, 1995). The best-fit coefficients of the regression

function and correlation coefficient reveal the degree to which the

predicted values agree with measured values over the entire

dynamic range. For instance, deviations from 1 for the slope and

deviations from 0 for the intercept (A) of the fitted regression reveal

the variation in the bias of SSGM predictions relative to the field

data across its full range (Table S.1). These measures are further

evaluated when our analysis considers outliers. The outliers were

selected based on a Bland-Altmann plot (Figure S2) and they are

defined as data points where the predicted SSGM value is beyond ±2

standard deviations from the mean of residuals between predicted

and observed values.
3.2 SSGM model analysis

Further model diagnostics were conducted to evaluate the

model’s performance and to better understand the relationship

between the Rrs(l) values and predicted SSGM fraction values. In

Figure 5, the model’s input variables are ranked by the amount of

variance that they explain. The top variable, Rrs(667)/Rrs(488),
FIGURE 3

Conceptual diagram of the validation matrix in this study. In addition to comparing each field data point with its corresponding daily MODIS-based
value (row 1, column 1), each field sample is also compared with spatially and temporally averaged MODIS-derived values.
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explains 82.96% of total variance. The following two variables – Rrs

(443) and Rrs(412) – explain an additional 7.35% cumulatively.

Therefore, the top three input variables explain a total of 90.31% of

the variance. The remaining input variables explain 9.69% of the

total variance (Figure 5).

Notably, we intentionally introduce Rrs bands that were

designed for terrestrial and atmospheric applications – in

particular, Band 1 centered around 645 nm, Band 3 centered

around 469 nm, and Band 4 centered around 555 nm. The results

demonstrate the model’s ability to distinguish valid information

(i.e., various Rrs bands designed for ocean observation were selected

as top input variables and they can explain 90.31% of the model’s

total variance). These results also highlight the model’s robustness

to provide valuable insights instead of merely over-fitting to the

target variable with all available input data indiscriminately.
Frontiers in Marine Science 07
The response of each input variable is also examined in more

detail. We use individual conditional expectation plots to present

the responses of decision trees within the random forest model to

changes in each input variable (Molnar, 2020). In each panel of

Figure 6, the blue lines represent how individual decision trees

predicted SSGM fraction values change according to the input Rrs

(l) values, while the red line represents the average prediction of

these decision trees (Figure 6). Within the top five input variables

(Figure 5), predicted SSGM values increase abruptly when Rrs(667)/

Rrs(488) is over 0.05 meanwhile a more gradual decrease in SSGM is

observed for input variables Rrs(443), Rrs(412) and Rrs(469) when

they increase from 0.005 sr-1 to 0.01 sr-1. Additionally, a gradual

increase in SSGM is observed when Rrs(645) increases from 0.00025

sr-1 to 0.0005 sr-1. In contrast, the model exhibits minimal change in

predicted SSGM values according to changes in some input

variables, such as Rrs(678), Rrs(667), and Rrs(555) (Figure 6).
3.3 MODIS-Aqua data application

The final model is applied to MODIS-Aqua data to provide

visualizations of SSGM. Figure 7 represents the December, January,

and February monthly climatology between 2010 and 2020. The

austral summer months coincide with most of the sampling time

periods of our field data. SSGM is most abundant along the coast

and extends across the WAP continental shelf into the open

Southern Ocean. High SSGM is also observed around islands and

nearshore locations around outlets of glacial fjords. Notably, some

high SSGM is also observed near the Larsen C Ice Shelf on the

eastern side of the Peninsula. Overall, there appears to be more

glacial meltwater on the southern end of the WAP, particularly in

Marguerite Bay and near the Wordie Ice Shelf (Figures 7A, D, G).

The SSGM monthly climatology is also compared to surface chl-a

concentration and sea surface temperature (SST) from the same

time periods. High SSGM values appear to coincide with chl-a

concentrations, but there is a distinct difference in their spatial

patterns over the entire WAP (Figures 7B, E, H). Similarly, some
TABLE 2 Validation matrix illustrating the comparison between field data and MODIS-derived values.

Same Date 3-Day 7-Day Monthly Cruise Date Range

Pixel
r = 0.82
p< 0.01
n = 86

r = 0.45
p< 0.01
n = 146

r = 0.32
p< 0.01
n = 295

r = 0.33
p< 0.01
n = 638

r = 0.15
p< 0.01
n = 895

+ 2.5 km
r = 0.25

p = 0.0055
n = 121

r = 0.28
p = 0.0001
n = 201

r = 0.26
p< 0.01
n = 408

r = 0.23
p< 0.01
n = 788

r = 0.15
p< 0.01
n = 961

+ 5 km
r = 0.2

p = 0.0185
n = 140

r = 0.2
p = 0.0018
n = 231

r = 0.18
p< 0.0002
n = 452

r = 0.15
p< 0.01
n = 812

r = 0.13
p = 0.0001
n = 962

+ 7 km
r = 0.18

p = 0.0194
n = 161

r = 0.2
p = 0.0009
n = 274

r = 0.11
p< 0.0086
n = 535

r = 0.13
p = 0.0002
n = 829

r = 0.12
p = 0.0002
n = 963

+ 10 km
r = 0.17
p = 0.023
n = 169

r = 0.1
p = 0.0856
n = 292

r = 0.11
p< 0.0114
n = 547

r = 0.12
p = 0.0004
n = 832

r = 0.12
p = 0.0002
n = 963
FIGURE 4

Scatter plot of field data and predicted glacial meltwater values. The
dashed line depicts the 1:1 reference line.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1209159
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Pan et al. 10.3389/fmars.2023.1209159
nearshore high SSGM is found to coincide with low SST, especially

in Marguerite Bay and between Adelaide Island and Lavoisier Island

(Figures 7C, F, I).
3.4 PRISM airborne data application

The SSGM model was also applied to PRISM airborne ocean

color data to assess the model’s applicability across remote sensing

platforms. PRISM scene prm20160125t181722 is presented in

Figure 8, collected NW of Anvers Island. The entire scene has an

average of 3.94% SSGM fraction. A few icebergs < 1km in size can

be found in the middle of the scene (Figure 8C) and, in contrast, the

maximum SSGM fraction reaches 6.49% in the vicinity of the

icebergs (Figure 8D). Overall, the SSGM derived from airborne

data shows consistent spatial distribution as the MODIS-based

values. In particular, a distinct front can be observed in both

datasets immediately south of 64 °S (Figure 8A). This consistency

in the SSGM spatial distributions derived from different remote

sensing platforms illustrates the potential for applying the model to

other ocean color datasets beyond MODIS. Moreover, the airborne

data demonstrates its significant advantage of having finer spatial

resolution; for example, meltwater from the icebergs cannot be

observed in the spatially coarse MODIS-based SSGM data, but it

can be detected using the airborne data. Notably, a trail of bergy bits

(Dowdeswell and Forsberg, 1992) from the icebergs can be clearly

seen in both enhanced RGB image and SSGM data from PRISM

(Figures 8C, D). There are also some discrepancies between the

PRISM- and MODIS-derived SSGM values. The differences are

likely due to the different processing methods of the remote sensing

data from the two different platforms (Material & Methods 2.3, 2.4,

and 2.5), The discrepancies are also likely resulted from their

temporal difference between the times of data acquisition, which

is several hours apart.
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4 Discussion

4.1 SSGM model assessment

The final model is applied to MODIS-based predictions over

different spatial and temporal scales. A notable feature is the

formation of a “threshold” that is parallel to the x-axes when

predicted SSGM values are averaged over extended spatial and

temporal scales (Figure S1). This horizontal cluster of data points

indicates that it is unsuitable to compare a single field data point with

averaged SSGM prediction over extended space and time periods.

Because of this, future use of this model should only involve other

datasets that are on a similar spatial and temporal scale as the SSGM

data product. For an instance, daily 1 km resolution SSGM product

should not be directly merged with 8-day 4 km resolution chl-a

product; a SSGM composite should be created first before merging

the datasets. The rapid decrease in r values across the comparison

matrix (Table 2) also represents a potential indication of residence

time and spatial extent of SSGM features. While this speculation can

only be confirmed with additional studies beyond the scope of this

project, it still offers some information on the spatial and temporal

requirements for future field campaigns and remote sensing missions

to effectively resolve SSGM features.

When the final model’s predictions are compared with the field

data, most predicted values appear to slightly over-estimate SSGM,

but within an acceptable range (Figure 4). In contrast, outliers

appear to significantly underestimate SSGM (except for one sample,

Figure S2). Statistical measures shown in Table S.1 have been

carried out to analyze the dataset, with and without the outliers,

and both analyses show relatively consistent results (Table S.1;

Figure S4). The slope of the regression line between modeled and in-

situ values decreased from 0.931 to 0.771 after outliers were

removed. This indicates that the model exhibits some remaining

patterns in bias over the entire range of data, as seen in Figure S2
FIGURE 5

The ranking of Rrs(l) variables based on the final model to predict sea surface glacial meltwater fraction. The bar graph represents the percentage of variance
in the model that is explained by each Rrs(l) variable; the values on the right present the cumulative percentage of explained variance in the model.
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and Figure S4. They may be related to potentially higher

measurement uncertainties in some data ranges (e.g., low values

of SSGM) or result from uncertainties in spatio-temporal matching

of satellite and in-situ measurements. We note, however, that apart

from these regression line metrics, all other statistical indicators in

Table S.1 of aggregate model bias and random error improved
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following the removal of these outliers, and overall support the

potential utility of this preliminary model developed based on a

relatively limited training dataset. Additional observations,

particularly in the lower and upper ranges of SSGM, are needed

to better assess model uncertainties and improve model

performance across the entire SSGM range.
FIGURE 6

Individual conditional expectation plots display one line per decision tree in the final random forest model that shows how the changes in Rrs(l)
values impact the predictions of sea surface glacial meltwater fraction.
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4.2 Additional SSGM validation

4.2.1 The physical basis for SSGM
remote detection

Previous studies conducted in Greenland fjords have

demonstrated the effectiveness of leveraging multispectral ocean

color datasets (such as MODIS) to retrieve suspended sediment

concentrations in Arctic polar waters (Chu et al., 2010; Hudson

et al., 2014). The suspended sediments described in these studies are

associated with glacial meltwater discharge and could reach > 600

mg/l on average – effectively becoming a proxy for ice-sheet runoff.

In contrast, the glacial meltwater injection at the WAP is less

intense and therefore it often lacks the prominent surface

sediment plumes often found in Greenland and the broader

Arctic region (Pan et al., 2019). However, while there were no

glacial sediment plumes by visual inspection, field studies

conducted in a WAP fjord (Andvord Bay) found significantly

higher values of seawater inherent optical properties near the

glacial-marine interface – where particulate backscattering

coefficient at 442 nm reached a maximum of 0.01 m-1 and

particulate beam attenuation coefficient at 660 nm reached a

maximum of 2.21 m-1 in the inner basin of the fjord (Pan et al.,

2019). Moreover, these optical signals near the glaciers in Andvord

Bay are persistent features – field work conducted in the latter part

of the last century also detected high beam attenuation coefficient

values near the glacial front, with a maximum of ~2 m-1 (Domack

and Williams, 1990). These prior studies offer some indications that

the presence of SSGM is intrinsically associated with fine suspended

glacial sediments.

If SSGM can be quantified as fine particle plumes, then it is

expected that SSGM would share some attributes with surface
Frontiers in Marine Science 10
plume features where they would closely interact with other

physical oceanographic features, such as currents and eddies. For

context, there are some prominent features in the WAP region. The

dominant feature offshore is the Antarctic Circumpolar Current

(ACC) flows along the WAP continental shelf (Martinson et al.,

2008). In addition, there is a less intense coastal current (Antarctic

Peninsula Coastal Current, APCC) which flows southward along

the western shore of Adelaide Island and Alexander Island (Stein,

1992; Moffat et al., 2008; Savidge and Amft, 2009; Meredith et al.,

2010). The coastal current, specifically, exhibits seasonal variability

and is thought to be partially driven by buoyancy-forced fresh

meltwater supply (Beardsley et al., 2004; Savidge and Amft, 2009).

Other mesoscale physical oceanographic features, such as

eddies and loops, can also significantly impact SSGM distribution

in space and over time. A prior study using high-frequency radar

network deployed near Anvers Island (at Palmer Deep canyon)

found surface particle assemblage residence time was between 1 and

3.5 days with a mean of 2 days and a maximum of 5 days (Kohut

et al., 2018). Similarly, a previous study using the Regional Ocean

Modeling System (ROMS, adapted for the WAP region) found an

overall median residence time of 4.1 ± 3.3 days for simulated

neutrally buoyant particles released at the surface (Hudson et al.,

2021). More specifically, the ROMS study found the residence time

ranged between 1.5 ± 0.7 and 2.3 ± 0.3 days over the WAP

continental shelf, and it ranged between 2 ± 1.2 days and 7.1 ± 3

days in the coastal waters near Anvers Island (Hudson et al., 2021).

These residence times are similar to the time frames reflected in our

MODIS-field-data validation matrix (Table 2; Figure S1). We

observed a clear lack of correlation that begins to form when > 3

days of MODIS data are averaged and matched with field data

points (Table 2, Figure S1). The discrete SSGM field data should not
FIGURE 7

Monthly climatology of the Austral summer months from 2010 to 2020: (A, D, G) sea surface glacial meltwater, (B, E, H) chlorophyll-a concentration, and
(C, F, I) sea surface temperature derived from MODIS-Aqua.
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be compared with temporally averaged MODIS-based values,

indicating the importance of having consistent time frames when

SSGM modeled values are assembled with other datasets in future

studies. More importantly, we speculate that the decrease in

correlation across the matrix potentially alludes to the residence

time of SSGM as it interacts with theWAP’s physical oceanography.

This provides additional insights on the appropriate temporal

resolution that is needed to support future field campaigns and

remote sensing missions that have the potential to study glacial

meltwater in the WAP (Cawse-Nicholson et al., 2021).

4.2.2 Remote sensing and optics of SSGM
The SSGM model appears to track fine particle assemblage

associated with glacial meltwater, allowing detection of SSGM from

remote sensing platforms. The optics of glacial meltwater is expected
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to resemble that of fine suspended sediments in a water column.

Sravanthi et al. (2013) conducted a comprehensive review of Rrs at

various wavelengths and their linear relationships with suspended

particulate mass concentration (SPM) in Kerala, coastal ocean of the

Arabian Sea. They also examined several Rrs(l) band math variables,

particularly Rrs(555) + Rrs(620) and Rrs(620)/Rrs(490) which showed

high correlations with SPM. This information resulted in a

multivariant linear model for deriving SPM (mg/l) based on Rrs(l):

SPM  = 14:93*  ½Rrs(555) + Rrs(620)� + ½Rrs(620)
Rrs(490)

�2
� �

+   8:22 (4)

Later, Pan et al. (2019) modified this model and applied it to the

polar region for quantifying glacial meltwater in a WAP fjord, given

the high optical signal found near the glacial-marine interface (Pan

et al., 2019):
FIGURE 8

(A) PRISM airborne data (prm20160125t181722) overlaying MODIS-derived surface glacial meltwater fraction from January 25th, 2016. (B) Enhanced
RGB image zoom of the blue square in panel a, depicting icebergs and a trail of bergy bits. (C) Derived glacial meltwater fraction in the same region
as panel (B). (D) A detailed overview of scene prm20160125t181722.
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GM = b +  a1½R(555) + R(625)� + a2½
R(625)
R(490)

�2   (5)

where GM is glacial meltwater fraction based on in-situ d18O data, a
and b are constant coefficients, and R(l) is defined as the ratio between
upwelling radiance and downwelling planar irradiance at discreet

depths. Although these previous studies were conducted using in-situ

radiometers and offered different wavelengths from MODIS bands, we

have adapted these methods for this study and obtained similar results.

For instance, Rrs(667)/Rrs(488) accounts for over 80% of the variance

within our SSGM model (Figure 5), and therefore predicted SSGM

values are the most responsive to changes in this variable (Figure 6).

Detailed laboratory-based studies of pure glacial meltwater samples are

required to elucidate the inherent optical properties and size and

chemical composition of these fine glacial particles beyond the scope

of this study. These future laboratory-based measurements are needed

to complement the hyperspectral nature of the next-generation ocean

color satellite missions.

Moreover, the predicted SSGM values appear to coincide with

high chl-a concentrations, but they have distinctly different spatial

distributions (Figure 7). This indicates our SSGM model is not

merely capturing phytoplankton’s optical signal, which is a major

optical constituent in the WAP. This notion is further confirmed by

the ranking of variable importance (Figure 5) and individual

conditional expectation plots (Figure 6) where predicted SSGM

does not appear to be significantly correlated with bands commonly

associated with chl-a detection. These insights and relatively

consistent results across multiple studies indicate the SSGM

model has likely captured significant key aspects of the

underlying optics of glacial meltwater.
4.3 Assumptions and uncertainties

There are inevitably some assumptions and uncertainties

associated with the SSGM model. One area of uncertainty is the

quantity of the final (combined) training dataset (n = 204, including

synthetic blanks). While this dataset is relatively small in comparison to

machine learning projects in industry, the range of field data values in

the dataset helps train a representative and robust model. Within the

dataset, high meteoric water content was captured near Potter Cove.

Many of these surface meteoric water samples were comprised of

almost entirely glacial meltwater associated with heavy sediment

discharge at this site (Meredith et al., 2018). These high meteoric

water contents during the growing season are also consistent with the

low salinity and high turbidity observed in the nearby Admiralty Bay

(Osin ska et al., 2023). Low SSGM content was introduced to the dataset

via synthetic blanks that were generated outside of the ACC in the

Southern Pacific open ocean (Figure 1). This gradient of SSGM

captures the full range of meltwater content and their corresponding

remote sensing reflectance properties. Moreover, the training dataset in

this study is one of the most comprehensive d18O data compilation for

the WAP region, including four long-term time series at different

locations (Material and Methods).

There are also assumptions and uncertainties associated with

the field dataset itself. Because the meteoric water content was
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computed through mass balance calculations (Material and

Methods), these values are sensitive to the selection of end

member values (i.e., pure glacial and sea ice meltwater d18O and

salinities). To mitigate these uncertainties, a consistent and rigorous

methodology was used during these field studies to select end

members that were locally or regionally representative (Meredith

et al., 2017b). In addition, the meteoric water variable is comprised

of precipitation and glacial meltwater (Material and Methods).

While the current state of this method cannot partition these two

components directly, d18O sampling remains one of the most cost-

effective and accessible methods for estimating meltwater content

and it can be collected on most oceanographic and community

science cruises (Cusick et al., 2020). Moreover, the meteoric water

variable represents an upper limit of glacial meltwater estimation,

which is still useful for obtaining insights on its surface distribution

over space and in time.

Additionally, the “synthetic blanks” in this study (Material and

Methods) were selected outside of the ACC, therefore their meteoric

water content likely include no glacial meltwater but various

amounts of precipitation. Since these blank samples have

significantly lower optical signal in comparison to the in-situ data

collected at the WAP (Figure S3), by setting the synthetic blanks as

0% SSGM, we have likely trained the model to neglect the effect of

precipitation on SSGM predictions. SSGM prediction also appears

to be only weakly sensitive to the selection of blank SSGM data

(Figure S3). This assumption can be verified to some degree when

daily precipitation data is compared with in-situ meteoric water

fractions around Anvers Island (Figure S4). Precipitation data

retrieved between 1989 and 2019 shows high meteoric water

content is associated with low precipitation (Figure S4A).

Furthermore, the majority of this dataset is associated with no

precipitation. Out of 410 data points, 219 are associated with 0 mm

of rainfall, 361 are associated with 0 cm of snow precipitation, and

282 are associated with no accumulation by snow stake (Figure

S4A). In addition, the anomalous values that fall away from the

validation line in Figure 4 have been identified as outliers, and these

values are also associated with low precipitation (Figure S4B, S4C).

Hence any predictions that deviate from in-situ data is likely not

due to excess precipitation interfering with glacial meltwater signals

in d18O samples. Due to the complex relationship between

precipitation and the d18O measurement, such as land-

accumulated snow melt discharging into the ocean during

summer or any precipitation events that might have occurred

shortly before in-situ sampling, data presented in Figure S4 do

not definitively decouple glacial meltwater from precipitation.

However, these additional results indicate that d18O has value as

an effective in-situ measurement for estimating glacial meltwater in

the WAP, and for training models for predicting SSGM. In the

future, additional cost-effective tracers should be explored to enable

partitioning of meteoric water content.
4.4 SSGM model applications

The SSGM model has provided important results with broader

implications. For instance, the variable importance ranking shows the
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model is primarily dependent on a few key Rrs wavelengths, indicating

these wavelengths are important to capturing the underlying optical

characteristics of SSGM (Figure 5), though to a lesser extent, additional

bands can also contribute to an increase in overall prediction power of

the model, illustrating the merit of utilizing hyperspectral airborne

ocean color data for future SSGM model development. Hyperspectral

airborne data have several other advantages – such as its high spatial

and temporal resolutions which reveal detailed features of SSGM

distribution that cannot be resolved with MODIS data (Figure 8), as

well as its increased spectral sampling that could provide additional

spectral features not seen in multispectral data that can further tease

out SSGM from other optical constituents. These results highlight the

benefit of supplementing existing multispectral spaceborne datasets

with hyperspectral airborne data in order to achieve better detection

and monitoring of SSGM. Moreover, the application of this model on

PRISM imagery indicates the applicability for other ocean color data

products as well; in general, the model can generate SSGM results if the

input Rrs data are at or near the MODIS bands (Figure 5) and are

processed with consistent techniques used to produce MODIS Level 3

data products. Furthermore, the applicability of this SSGM model to

both spaceborne and airborne datasets alludes to the possibility of

sampling SSGM via Unmanned Aerial Vehicles (UAVs) (Pina and

Vieira, 2022). Imaging instruments can be coupled with UAVs to

achieve greater sampling frequency at a finer spatial resolution, while

also being less susceptible to limitations of cloud cover, thus greatly

complementing existing remote sensing platforms (Li et al., 2023). The

potential of leveraging commercial UAV products to conduct sea

surface imaging has been demonstrated by Wo jcik-Długoborska
et al. (2022) to study glacial suspended sediment plumes in the WAP.

Although this study demonstrates a new method for quantifying

SSGM and its applicability across multiple remote sensing platforms,

we stress that this is the first data product for quantifying SSGM

remotely. While the SSGM predictions are validated with one of the

most comprehensive in-situ d18O datasets compiled for theWAP, there

were no concurrent in-situ optical measurements; accordingly, our

method takes an applied approach to correlate ocean color signals with

field SSGM measurements. For the development of a first-generation

model, we chose this applied approach for rapid implementation, so

the results can be utilized by a wide range of end users for future

projects. Additional laboratory studies are needed to understand the

inherent and apparent optical properties of pure and diluted

glacial meltwater.

The ability to monitor SSGM is directly relevant to

understanding ecological dynamics that are being impacted by

accelerating change along the WAP. The presence of SSGM is

also found to coincide in regions of high chl-a concentrations. For

example, phytoplankton abundance is found to be significantly

correlated with glacial meltwater over the WAP shelf. This

relationship extends >100km offshore and is persistent across

years (Dierssen et al., 2002). The same dynamics between glacial

meltwater and phytoplankton were also observed in a WAP fjord

(Pan et al., 2020). In this study, we found similar spatial

distributions between chl-a concentrations and SSGM but with

clear distinctions between the two (Figure 7), consistent with prior

studies. These results have important implications for polar

ecosystem research. Remote sensing studies of the WAP
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ecosystem have primarily relied on measurements of chl-a, SST,

sea ice properties, and salinity (IOCCG, 2015). However, in recent

years, glacial meltwater has been identified as an additional

environmental variable that is important to the ecosystem in the

WAP and broader polar regions (Dierssen et al., 2002; Arrigo et al.,

2017; Meire et al., 2017; Pan et al., 2020). Freshwater addition

experiments in Potter Cove found that a gradual decrease in salinity

can shift phytoplankton communities dominated by large centric

diatoms to small pennate diatoms, suggesting a phytoplankton

response to low salinity is species-specific (Hernando et al., 2015).

Similar results have also been found in the field over the WAP shelf

where cryptophyte abundance was observed to coincide with

relatively low salinity waters (S ≤ ~33.6 PSU) (Moline et al.,

2004). In addition, other studies found that glacial meltwater’s

impact on phytoplankton communities is likely beyond changes in

salinity. In WAP fjords, glacial meltwater is also a pathway for

delivering macro- and micro-nutrients to the surface. Sporadic but

prolonged katabatic wind events bring up deep nitrate-rich water

which is propagated along the surface with SSGM from the ice-

ocean interface (Ekern, 2017; Pan et al., 2020). Dissolved iron is

supplied to the surface via a similar mechanism, but it can also

directly enter the ambient water column via sub-glacial and sub-

marine melting (Sherrell et al., 2018; Forsch et al., 2021). These

results indicate that glacial meltwater plays an important role near

the ice-ocean boundary, and SSGM export from fjords likely serves

as an important nutrient source for the broader WAP ecosystem

(Forsch et al., 2021). In short, detection of SSGM from remote

sensing can provide a new proxy for monitoring the physical

environment, ecosystem, and their variabilities in the WAP.
5 Conclusions

In this study, we present a data product for remotely

quantifying SSGM in the WAP. The model can retrieve SSGM

from ocean color datasets and is applicable across multiple remote

sensing platforms. The model’s robustness is also assessed with one

of the most comprehensive in-situ d18O dataset complied for the

WAP region. However, this model is not intended to be a definitive

method for SSGM monitoring, but rather as an evolving model that

will be frequently updated as more in-situ data, and data of other

forms, becomes available in the future. We want to emphasize the

need for persistent long-term in-situ d18O sampling in the WAP

region to ensure the future success of this model. Future model

development can be aided by additional d18O data and the inclusion

of other techniques to partition SSGM.

Remote detection and monitoring of glacial meltwater present

an important opportunity for understanding polar ecology and its

physical environment. Given the complex dynamics amongst glacial

meltwater, sea surface salinity, SST, nutrient availability and

phytoplankton community abundance and composition,

additional methods for monitoring and quantifying SSGM

becomes necessary in order to achieve a better understanding of

glacial meltwater’s impact on the WAP ecosystem. The potential of

this SSGMmodel has important implications for studying the WAP

ecosystem dynamics and the regional biogeochemistry.
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