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ABSTRACT

Security advisories are the primary channel of communication for

discovered vulnerabilities in open-source software, but they often

lack crucial information. Speci�cally, 63% of vulnerability database

reports are missing their patch links, also referred to as vulner-

ability �xing commits (VFCs). This paper introduces VFCFinder,

a tool that generates the top-�ve ranked set of VFCs for a given

security advisory using Natural Language Programming Language

(NL-PL) models. VFCFinder achieves a 96.6% recall for �nding the

correct VFC within the Top-5 commits, and an 80.0% recall for the

Top-1 ranked commit. VFCFinder generalizes to nine di�erent pro-

gramming languages and outperforms state-of-the-art approaches

by 36 percentage points in terms of Top-1 recall. As a practical

contribution, we used VFCFinder to back�ll over 300 missing VFCs

in the GitHub Security Advisory (GHSA) database. All of the VFCs

were accepted and merged into the GHSA database. In addition to

demonstrating a practical pairing of security advisories to VFCs,

our general open-source implementation will allow vulnerability

database maintainers to drastically improve data quality, supporting

e�orts to secure the software supply chain.
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1 INTRODUCTION

Security advisories help users identify vulnerabilities, apply neces-

sary �xes, and facilitate informed decision-making regarding com-

ponents in software. The United States and the European Union

have emphasized the need for high-quality advisories to address

software dependency vulnerabilities e�ectively [34, 59]. Neverthe-

less, many existing security advisories lack crucial information [11].

Vulnerability �xing commits (VFCs) are a valuable but often

missing part of security advisories. VFCs help practitioners miti-

gate vulnerabilities by enhancing software composition analysis

tools [39, 40] and enabling patch presence veri�cation [50, 53, 60],

as well as new state-of-the-art techniques such as enabling few-

shot bug repair [26, 57]. While the security community frequently

focuses on identifying new vulnerabilities in code, less attention

is given to identifying �xes for vulnerabilities [21, 51, 54]. This

disparity is also re�ected in practice. GitHub and Sonatype use hu-

man curators to enhance vulnerability databases [17, 48]; however,

the volume of security advisories exceeds the available workforce,

leading to 63% of advisories without patch links; see Figure 1.

Prior work established several variations for matching security

advisories to VFCs. Initial approaches include extracting the vulner-

ability ID from commit messages [23] or following reference links

in advisories [24, 58]. However, poorly documented security com-

mit messages [43] and incomplete security advisories [11] limit the

e�ectiveness of these techniques. In response to these limitations,

machine learning approaches have shown promise by transitioning

the task into a ranking problem. For instance, FixFinder [21] ranks

commits using 23 features and a logistic regression model, achiev-

ing a Top-1 recall of 65.1% and Top-5 recall of 77.7% on a single

Java dataset [41]. PatchScout [51] uses 22 features and RankNet [5]

to attain a Top-1 recall of 69.5% and Top-5 recall of 85.4% across

various C/C++ projects and a single Java project. VCMatch [54], and

its GUI-based implementation Patchmatch [47], extends PatchScout

using 100 features and three machine learning models to achieve

the highest reported Top-1 recall of 88.9% and Top-5 recall of 95.3%

across 10 OSS projects.

Existing Limitations: Despite the reported performance met-

rics, several key factors limit the application in practice of the

current state-of-the-art (i.e., VCMatch [54]).

(1) Lack of Representative Training Data: We performed a pre-

liminary study on OSS projects with �xes in GHSA and found that

41.2% of the projects do not include any contributing guidelines.1

1Evaluating if a CONTRIBUTING.md �le exists in a repository.



Without guidelines, contributors submit poor quality commits mes-

sages [43]. However, VCMatch (the top-performing prior work)

evaluated rigorously maintained projects with restrictive contribut-

ing guidelines. For example, FFmpeg’s contribution policymandates

that a reference to an issue on the bug tracker is insu�cient. Con-

tributors must also include a summary of the bug in the commit

message.2 This dataset is not representative of the broader software

supply chain. We address this limitation by curating data from 3,389

advisories across 2,138 di�erent projects.

(2) Non-contiguous Data Sampling: PatchScout and VCMatch use

a random sampling technique to build their training and evaluation

datasets. Speci�cally, for every positive VFC, 5,000 other random

commits from the code repository are selected as negative samples.

This random sampling can have unintended consequences. For

example, the time di�erence between the commit and the associated

CVE �le date in VCMatch can become emphasized by the model

as a discriminating feature and could lead to overestimation of

recall. When commits are randomly selected for analysis, there is a

tendency to overlook nearby commits to the VFC that would need

analysis in a real-world setting. In contrast, contiguously sampling

all commits between the window of the reported �xed version and

the prior version of commits does not introduce this issue.

As a result, VFCFinder required approximately 24 times less data

than PatchScout and 60 times less data than VCMatch for train-

ing purposes due to our contiguous sampling approach. The ran-

dom sampling approach by PatchScout required 3,329,286 unique

commit-to-vulnerability pairs and 8,346,669 pairs for VCMatch. The

contiguous sampling approach in VFCFinder required only 138,529

commit-to-vulnerability pairs.

(3) Model Complexity and Risk of Over�tting: VCMatch incorpo-

rates 100 features, complicating its interpretability and heightening

the risk of model over�tting. Prior machine learning research [3, 14]

shows more features lead to a higher variance and tend to over�t

noisy patterns in the training data, resulting in poor accuracy on

new examples. We con�rmed this hypothesis of over�tting through

empirical evaluation of testing VCMatch on unseen data.

Our System: In this paper, we propose VFCFinder, a novel ap-

proach for helping an analyst match a given security advisory to

its VFC. Our key intuition is to leverage the �xed version number,

which is available for the overwhelming majority of advisories

(84%, see Section 4.3). Speci�cally, we take the window of commits

between the �xed version and the prior version to determine the

VFC. We empirically found that advisories with �xes contain 94%

of VFCs between this window. We then use a combination of �ve

intuitive features to produce a ranked set of �ve potential VFCs

for a given advisory. These features are: (1) the likelihood a com-

mit �xed a vulnerability, (2) the type of vulnerability �xed, (3) the

similarity between the commit message and the advisory details,

(4) where the commit appeared in the window, and (5) any direct

indicators in the commit message (i.e., CVE/GHSA-ID).

The �rst two features, VFC �x probability and VFC vulnerability

type, are generated by �ne-tuning the CodeBERT NL-PL model [13].

The semantic similarity between commits and advisory details is

generated from sentence embeddings using a pre-trained language

2https://�mpeg.org/developer.html#Contributing

model. The �nal two features, commit location and CVE/GHSA-

ID in the message, are statically generated. Finally, these features

are fed into an XGBoost model for ranking. We then introduce a

contiguous sampling technique that divides the training and testing

sets between �xed and prior versions, simulating the approach a

human would take to identify a VFC.

We began our work with the goal of automatically back�lling

VFCs to security advisories. However, we found that a fully au-

tomatic solution inherently introduces unacceptable risk. Adding

the incorrect VFC to a security advisory can result in a false sense

of security. While a "human-in-the-loop" process will always be

required for matching VFCs to their security advisories, our work

seeks to provide a nearly-automatic method.

Evaluation and Measurement: We evaluate VFCFinder in two

ways. First, we construct a representative dataset consisting of the

set of all security advisories from the GHSA database with a known

patch link: thousands of projects spanning nine programming lan-

guages. VFCFinder identi�es the correct VFC for a given security

advisory 96.6% of the time within the Top-5 ranked commits and

80.0% within the Top-1 ranked commit. For projects with 15 or

fewer commits between version releases, VFCFinder identi�es the

VFC for a given security advisory with a Top-1 recall of 90.9%. In

contrast, running VCMatch on our dataset resulted in a Top-1 recall

of 44.0% and a Top-5 recall of 70.1%.

Second, we deploy VFCFinder on over 300 randomly selected

GHSA advisorieswithout patch links to demonstrate that VFCFinder

generalizes beyond our training and testing data. VFCFinder found

the missing patch link with a Top-5 recall of 96.1% and a Top-1

recall of 81.2%.

In summary, we make the following key contributions.

• We propose a security advisory-to-VFCmatching approach that

generalizes to nine programming languages and thousands of

open-source projects. In contrast to prior work, which uses 100

features [54], our approach only uses �ve. By using a smaller

set of features, we reduce the amount of variance in the

resulting model, allowing similar performance of the model

across nine languages. Speci�cally, VCMatch [54] has a 36

percentage point lower Top-1 recall than VFCFinder when

evaluated on VFCFinder’s dataset, which spans thousands of

projects and nine languages. Whereas VFCFinder performs

similar to VCMatch when tested on the VCMatch dataset

(not included in VFCFinder’s training).

• We propose a new evaluation standard for security advisory-to-

VFCmatching tools. Priorwork [51, 54] uses a non-contiguous

sampling approach for VFC ranking, which overestimates

their recall in practice. Our contiguous sampling approach

ranges from 24 times less data to 60 times less data than

non-contiguous approaches.

• We deployed VFCFinder to back�ll over 300 security advisories

in the GitHub Security Advisory database. GitHub’s security

team con�rmed all of our submitted VFCs and integrated

them into the GHSA database.

Availability: VFCFinder is available on GitHub.3

3https://github.com/s3c2/vfcfinder







Tokenization: Before �ne-tuning, we transcribe the free-form

commit message and code into numerical forms through tokeniza-

tion. The tokenizer expects two elements from commit data: (a) the

commit message, and (b) the git di� featuring modi�ed, deleted,

and added code. The tokenizer produces a tensor divided into

three sections: input_ids, attention_mask, and token_type_ids. The

input_ids are a blend of the commit message and git di� as fol-

lows: [CLS] commit_message [SEP] git_diff [EOS]. Tokens

[CLS][SEP][EOS] are special separators; [CLS] signi�es the be-

ginning of the segments, [SEP] is a divider between the commit

message and raw git di� code, and [EOS] is the end-of-sequence

token. The attention_mask assists the model in identifying input_ids

padded tokens, indicating which tokens require attention. The to-

ken_type_ids designates the start and end of sequences, speci�cally,

the length of the commit message tokens and the git di�.

The tokenizer accepts a maximum token count based on the pre-

trained model; for CodeBERT, it is 512 tokens. Excess tokens are

truncated. In order to minimize truncation, we section the commit

data into smaller chunks, each based on a �le with changes, and

generate tensors from these chunks. This method not only aids in

reducing data truncation but also allows us to make predictions

and evaluations for individual programming languages separately.

Fine-Tuning: We implemented a classi�cation �ne-tuning loop

for the CodeBERT model. The model includes an embedding layer

that maps input tokens to 768-dimensional vectors and 12 encoder

layers. These encoder layers incorporate a self-attention mecha-

nism for focusing on varying parts of the input sequence. Each

encoder’s intermediate layer executes a non-linear input transfor-

mation, followed by a linear output layer transformation. The last

encoder layer’s output is directed to a pooling layer, averaging

the hidden states across the input sequence. This output is then

processed through a fully connected layer with an output size of

one. During tuning, we use an unweighted binary cross entropy

loss function de�ned as:

;��� = − [~ · logG + (1 − ~) · log(1 − G)] (1)

where G is the input and ~ is the target. The logits are passed

to a sigmoid activation function, producing the �nal prediction,

ranging from 0 to 1, indicating the VFC positive class probability.

Aggregating Predictions to Commit Level: VFCFinder gen-

erates predictions on a per-�le basis. This strategy ensures that

di�erent programming languages are handled separately during the

prediction process. For instance, when a commit updates Python

and C �les, CodeBERT does not need to process multiple languages

simultaneously. Therefore, VFCFinder consolidates �le predictions

into a total commit prediction. To do so, VFCFinder calculates the

arithmetic mean of the �le predictions, resulting in a single value

between 0 and 1, where 1 suggests a likely vulnerability resolution.

3.3 VFC Vulnerability Type

The �ne-tuning for VFC type identi�cation mimics the VFC identi�-

cation outlined in Section 3.2, di�ering primarily in the classi�cation

tasks. VFC type is categorized based on the OWASP Top 10 and

an additional “Other” class that signi�es vulnerabilities outside the

OWASP Top 10. Initially, we contemplated predicting VFC type at

the CWE level, but since MITRE de�nes 933 di�erent CWE types

[CLS] tokm1 ... tokmi [SEP] tokc1 ... tokci [EOS]
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Figure 5: A �ne-tuning CodeBERT framework for VFC identi-

�cation. The fully connected layer of the VFC classi�cation is

vector size one. VFC Type identi�cation uses the same frame-

work, but the vector size from the fully connected layer is 10

(i.e., OWASP Top 10) and uses a softmax function.

and the relatively sparse training data, we decided against it. Dis-

cussion of VFC type data collection and mapping OWASP Top 10

labels to VFC types is in Section 4.2.

Tokenization: The tokenizer for VFC type is the same for VFC

identi�cation, as seen in Section 3.2.

Fine-Tuning: The �ne-tuning architecture for VFC type is simi-

lar to that of VFC identi�cation. The primary di�erences are the

output size of the fully connected layer, the loss function, and the

activation function. The VFC type’s output size is 10, denoting its

deployment for a 10-class classi�cation task.5 We speci�cally use a

weighted cross entropy loss function as de�ned:

;,�� = −F~ log
4G,~

∑10
2=1 4

G,2
· ~ (2)

where G is the input, ~ is the target,F is the weight, and 2 is the

number of classes. A softmax activation function is then used on

the fully connected output layer, transforming the results into a

probability distribution across the classes.

Aggregating Predictions to Commit Level: Predicting the

VFC type on a per-�le basis requires a distinct commit-level aggrega-

tion process. To determine the VFC type, we use the �le prediction

that has the maximum probability. In speci�c terms, we use an

argmax function to identify and select the OWASP Top 10 type that

has the highest probability within a given predictions.

0A6<0G 5 (- ) := G : 5 (B) ≤ 5 (G),∀B ∈ - (3)

This procedure ensures the selection of the VFC type with maxi-

mum con�dence. The evaluation of VFC type identi�cation is in

Section 5.3.2.

5As outlined in Section 4.2, the classi�cation size would be 11, but no examples exist
for one of the OWASP Top 10 classes.



3.4 Semantic Similarity

VFCFinder also incorporates the similarity between the commit

message and the original advisory. For instance, consider the advi-

sory GHSA-fj7c-vg2v-ccrm and its associated VFC:

GHSA-fj7c-vg2v-ccrm description: “Bu�er leak on in-

coming WebSocket PONG message(s) in Undertow

before 2.0.40 and 2.2.10 can lead to memory exhaus-

tion and allow a denial of service.”

undertow@c7e84a0 VFC commit message: “[UNDER-

TOW -1935] - bu�er leak on incoming websocket

PONG message”

VFCFinder uses SentenceTransformers [42], an advanced tech-

nique for generating embeddings to produce semantic similarity

scores between texts. Speci�cally, we use the pre-trained all-mpnet-

base-v2 model. 6 VFCFinder then feeds these embeddings into a

cosine similarity function to identify semantic correlations from

the embeddings. The output ranges from -1 (indicating opposite

meanings) to 1 (denoting identical meanings). A score of 0 signi�es

orthogonality or dissimilarity between the two vectors.

Regrettably, not every advisory and VFC commit message is as

descriptive as the previous instance. Take the advisory GHSA-rgp5-

m2pq-3fmg and the related VFC as an example:

GHSA-rgp5-m2pq-3fmg description: “microweber prior

to version 1.2.11 is vulnerable to cross-site scripting”

microweber@f7f5d41 VFC commit message: “update”

In the initial example, the cosine similarity score is 0.88, re�ecting

considerable similarity. However, for the second example, despite

being the VFC for the advisory, the cosine similarity score is -0.01.

3.5 Static Features

VFCFinder also incorporates two static features to enhance the

classi�cation. We initially considered other static features, similar

to those in prior work [21, 51, 54], however, most demonstrated

limited feature importance, leading us to retain the following two

prominent static features.

CVE/GHSA Identi�er: In some cases, developers mention the

CVE or GHSA identi�ers for advisories directly in commit mes-

sages. Naturally, VFCFinder should encapsulate this information.

The presence of the CVE/GHSA-ID within the commit message is

determined using a direct search method. This feature is encoded

as a binary value, with 1 signifying a match.

Normalized Commit Rank Location: In our feature engi-

neering, we observed that VFCs often occur toward the end of

the commit lifecycle, typically before the next version release. For

instance, the GHSA-prrh-qvhf-x788 advisory resolved a vulnera-

bility across 32 commits, with the VFC (314456d) as the 31st com-

mit, directly preceding the v5.0.2 release.7 VFCFinder computes

2><<8CA0=:/2><<8CC>C0; for the normalized commit rank location,

yielding a location of 31/32 = 0.97 for the cited VFC. According to

our ground truth dataset (Section 4), the average normalized com-

mit rank location for VFCs is 0.67. This is intuitive for vulnerability

patching practices. As vulnerabilities are identi�ed, the expectation

is a new software release with the patch provided shortly after.

6https://huggingface.co/sentence-transformers/all-mpnet-base-v2
7https://github.com/PrestaShop/productcomments/compare/v5.0.1...v5.0.2

Table 1: VFCFinder’s ranking model uses �ve features.

Features Description

VFC Probability Probability distribution of commit �xing a

vulnerability

VFC Type Match∗ Boolean match between advisory and VFC

Type prediction

Commit/Advisory

Similarity

Similarity score commit message and advi-

sory report

CVE/GHSA ID

in Commit∗
Boolean match if CVE/GHSA ID in commit

message

Commit Rank

Location

Normalized commit rank location of a commit

in version lifecycle
∗ We describe this as �ve features, but the XGBoost model uses seven features.
We split individual features for CVE and GHSA, and split VFC type into Top-1
and Top-5.

3.6 Ranking Commits

The �nal step in VFCFinder is to use the previously described fea-

tures, Table 1, to rank the commits relevant to the given security ad-

visory. VFCFinder uses XGBoost [7], an iterative gradient-boosting

algorithm that progressively incorporates decision trees while ad-

justing observation weights based on previous inaccuracies. By

combining weak learners and predicting residuals from prior trees,

XGBoost uses regularization techniques to optimize performance

and mitigate over�tting.

To initially tune the hyperparameters of the XGBoost model,

we used hyperopt [4], a Bayesian optimization algorithm. The best

results were obtained when the learning rate was set to 0.001, and

the decision tree depth in the model was restricted to four. Further-

more, we set the maximum number of boosting rounds, i.e., the

number of decision trees included in the model, to 1,500.

A binary logistic objective was used during training, classifying

each commit as related or unrelated to the security advisory �x.

The model outputs the predicted probabilities for each input to

belong to the positive class, which range from 0 (non-match) to 1

(match). This process transforms the task into a classi�cation prob-

lem. These probabilities are then ranked to denote the likelihood

of each commit �xing a security advisory. Section 5 elaborates on

the model’s evaluation.

4 DATA COLLECTION

Here, we discuss the training and testing datasets for VFCFinder.

The data collection process is organized into three sets, each corre-

sponding to a unique classi�cation model: VFC identi�cation, VFC

type identi�cation, and the �nal XGBoost ranking process. Table 2

provides a summary and the aggregate commit count for each set.

4.1 Vulnerability Fixing Commits

We sourced data from three vulnerability databases: NVD[35],

OSV[20], and VulasDB [41]. NVD, operated by NIST, is a primary

vulnerability disclosure platform. Google’s OSV aggregates data

from multiple sources (GHSA, PyPA, RustSec, Global Security Data-

base, and OSS-Fuzz) and primarily targets open-source dependen-

cies. VulasDBmanually curated vulnerable commits in Java projects





Our total dataset consisted of 3,389 advisories, across 2,138

projects, and 138,529 associated commits. The average number

of commits between �xed and prior versions was 15. Commit labels

were determined based on their association with an advisory, with

VFCs in the advisory receiving a label of 1 and others labeled as 0.

Contiguous Data Sampling: The contiguous aspect is to obtain

all of the commits in the order in which they appear in the commit

lifecycle between the prior and �xed versions. As discussed previ-

ously, current state-of-the-art [51, 54] uses a non-contiguous data

sampling technique, selecting non-associated commits randomly

throughout the project. By narrowing the dataset to commits within

the �xed version’s window, we eliminate the risk of overemphasiz-

ing the time di�erence between commits and CVE �le dates.

FixFinder [21] uses a contiguous sampling approach, but the

boundaries are set without respect for the prior and �xed version,

creating a selection of commits two years before and one hun-

dred days after the CVE �le date for each evaluation, resulting in

2,753,058 commits for their training datasets. VCMatch collected a

dataset containing 1,669 vulnerabilities from 10 open-source soft-

ware projects for training their prediction models. VCMatch used

the corresponding �xing commits for each of these vulnerabilities as

positive samples. To construct negative samples, they followed the

method used in the study of PatchScout, which involved randomly

sampling 5,000 other commits in the code repository as negative

samples for each positive sample. VCMatch required a total training

set of 8,346,669 pairs of vulnerabilities and commits. Each of those

approaches requires signi�cantly more data than VFCFinder.

Additionally, our approach separates training and testing datasets

to keep advisories distinct and ensures that commit lifecycles within

each set are non-overlapping. This strategy ensures the integrity

of our training and testing sets, preventing any associated commits

from being split between them. Further details on training and

testing can be found in Section 5.1.

5 EVALUATION

This section presents the evaluation of VFCFinder on the datasets

from Section 4. We pose four research questions:

RQ1: What is VFCFinder’s e�ectiveness in pairing security advisories

and vulnerability �xing commits? This question assesses the

full VFCFinder ranking pipeline. We benchmark VFCFinder

against VCMatch [54] on their dataset and across our dataset,

representing the software supply chain.

RQ2: How well does VFCFinder identify VFCs? We evaluate against

nine programming languages for identifying VFCs.

RQ3: How e�ective is VFCFinder in determining the VFC type? Ex-

tending past VFC identi�cation, we evaluate how VFCFinder

can identify the vulnerability type �xed during the VFC. We

classify based on the OWASP Top 10 and an “Other” class.

RQ4: What features are important for matching security advisories

to VFCs? In addition, we provide insight into how the features

of matching security advisories to VFCs impact the output

of VFCFinder.

5.1 Evaluation Setup

Our evaluation depends on three datasets: GHSA commits (Sec-

tion 4.3, RQ1), VFC/Non-VFC labels (Section 4.1, RQ2), and VFC

Table 4: A Top-N recall comparison of VCMatch [54] vs

VFCFinder on VCMatch’s dataset (8.3M commits across 10

OSS projects) and VFCFinder’s dataset (138K commits across

2,138 projects). VCMatch’s performance on unseen data

(VFCFinder data) indicates over�tting, while VFCFinder

demonstrates robust performance on new unseen data.

VCMatch VFCFinder Di�erence∗

Dataset (# cmts) Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

VCMatch (8.3M) 89.6% 94.3% 81.9% 97.3% -7.7 +3.0

VFCFinder (138K) 44.0% 70.0% 80.0% 96.6% +36.0 +26.6
∗ VFCFinder performance minus VCMatch performance.

types (Section 4.2, RQ3). These are real-world, up-to-date data from

maintained vulnerability databases.

We create a holdout set of 10% of each dataset, preserving vulner-

ability type and language imbalances through strati�ed sampling.

We apply a 5-fold cross-validation for model �ne-tuning on the re-

maining 90% of data. Each fold results in a model that we test on the

holdout set. We then average the model probabilities to create the

�nal holdout set prediction. We con�rmed that the training/testing

and holdout data do not contain any forms of overlap, which would

result in data leakage. Throughout, we use a machine with an Intel

i7-9700k CPU, 32GB RAM, and an NVIDIA RTX 3090 Ti GPU.

During the evaluation of VFCFinder, we use Top-N metrics as

those in prior work [51, 54]. The Top-N metric measures how often

the correct item (or one of the correct items) appears in the top N

recommendations or predictions made by a model.

5.2 Evaluation Results

BaselineComparison:We focus our comparison onVCMatch [54],

as it is the latest and highest reporting metric for advisory to VFC

matching. Additionally, we omit PatchScout [51] from our com-

parative analysis because the source code is not publicly available.

VCMatch replicated PatchScout by themselves in their work and

demonstrated a 17-percentage-point performance advantage over

PatchScout. We attempted to retrain VCMatch on our data but could

not get their source code implementation to work. However, we

could get the source code and trained models to work that was

publicly accessible within Patchmatch [47], the GUI-based imple-

mentation of VCMatch. This availability allows for a noise-free,

direct comparison. We �rst validated Patchmatches implementa-

tion matches VCMatch to obtain results using their original dataset

before comparing its performance with our dataset. We applied

VCMatch on the same contiguous data as VFCFinder and used our

contiguous sampling to evaluate VFCFinder on VCMatch data.

Table 4 presents the results of VFCFinder compared to VCMatch.

VFCFinder signi�cantly outperforms VCMatch in Top-1 recall by 36

percentage points (80.0% vs. 44.0%) on our dataset, demonstrating

greater generalizability. Although VCMatch shows a marginal 7.68

percentage point increase in Top-1 recall when evaluated on its

dataset (89.6% vs. 81.9%), it suggests over�tting to its speci�c data.

Furthermore, VFCFinder excels in Top-5 recall on both datasets,

indicating a broader and more consistent ability to identify vul-

nerabilities correctly. These performance metrics in both Top-1









6.3 Ethics and Disclosure

Before submitting VFC links to the GHSA database, we consulted

our Institutional Review Board (IRB), which con�rmed that analyz-

ing public open-source software projects for vulnerabilities does

not require IRB approval as it doesn’t involve human subject re-

search. The data is public, and our work aims to improve the quality

of security advisories for the public.

Initially, we contacted GitHub to see if they would be interested

in VFC data. After con�rming GitHub’s interest in the VFC data and

agreeing to manage about 300 updates, we limited our submissions

to roughly ten per day to prevent overwhelming the team. Due to

the amount of data, the GitHub security team recommended we

update through their manual advisory update process, allowing the

team to also thoroughly validate and approve our VFC links.

7 THREATS TO VALIDITY

Noisy Data: There is potential for noisy labels within our ground

truth data. While we randomly sampled our non-VFC commits to

con�rm the absence of VFCs from within the set, some could be

within the remaining data set. We also trust the original stakehold-

ers provided the correct VFC links in the security advisories. We

note that prior research has reported errors in NVD data [11, 32].

Unseen Vulnerability Types: VFCFinder cannot label vulner-

ability types it has not seen. For example, we had no instances of

“Vulnerable and Outdated Components" in our training data.

Advisories without Fixed Versions: VFCFinder works with

advisories that have �xed versions. Of the total GHSA dataset, 1,537

(15.7%) advisories do not contain �xed versions. These advisories

are assumed not to have been �xed and do not contain a VFC.

Silent Vulnerability Fixes: VFCFinder only works if a known

security advisory exists for a project. The purpose of VFCFinder is

to pair those known security advisories with their associated VFC.

Therefore, the task to �nd silent vulnerability �xes [12, 29, 49, 61, 62]

is signi�cantly di�erent than VFCFinder.

8 RELATED WORK

Vulnerability Fixing Commit Identi�cation: While VFCFinder

incorporates identifying a VFC, simply identifying the VFC does

not match it to a security advisory. Therefore, the overall task of

VFCFinder is signi�cantly di�erent from identifying if a commit

�xed an arbitrary vulnerability. However, we extend prior work of

identifying vulnerability-�xing commits by evaluating CodeBERT

across nine di�erent programming languages, whereas existing

works have mainly concentrated on C/C++, Python, or Java. The

overall performance of the following prior work for identifying

VFCs is equivalent to ours, ranging in an F1 score of around 90%.

Earlier work has used stack-based classi�ers [66], support vec-

tor machine models [33, 45, 46], and voting algorithms [55] to

detect security patches. Zhou et al. [63] create separate classi�ers

(including CodeBERT) for commit messages and code changes,

subsequently integrating the results through a stacking ensemble

technique. Building on this foundation, Nguyen et al. [33] incor-

porated commit issues as an additional feature for classi�cation.

Vulcurator [30] extended the model using CodeBERT to analyze

messages, issues, and code di�s. Vulcurator reported up to 87% on

a Python dataset. Hong et al. [22] consider multiple data sources,

including issue trackers like Bugzilla, GitHub projects, and Stack

Over�ow. TMVDPatch [64] reported a 90% F1 score on a single

C/++ dataset using an attention-based BLSTM model that relies on

the commit message and the patch to identify VFCs. Midas [31]

introduced a multi-granularity approach, focusing exclusively on

code to identify vulnerability �xes at line, hunk, and �le levels.

Zhou et al. [61] introduced CoLeFunDa to identify vulnerability

�xes at the function level with an AUC of 80% only on a Java dataset.

VFFinder [29] introduced an AST graph-based approach for iden-

tifying VFCs based only on code changes. Evaluating against 507

C/C++ projects, VFFinder reported an F1 score of 69%. Zhou et

al. [65] introduced CCBERT, a new transformer-based pre-trained

model to represent code changes. Within a downstream task of

identifying bug-�xing commits, they reported a 91.8% F1 score on a

set of Linux bug-�xing patches using just the code. Zuo et al. [68],

using a transformer-based architecture relying only on the commit

message, reported an F1 score of 89.1% across C/C++ projects with

commit patches from NVD. In parallel, Sun et al. [49] con�rmed

that Codebert with commit messages and code changes provided

the best performance in terms of VFC prediction.

Vulnerability Fixing Commit Type: Related to our work has

been identifying the type of vulnerability �xed during a commit,

but the vast majority has been identifying CWE types for longer

descriptions in security advisories [2, 10, 28, 37, 44]. TreeVul [38]

uses a CodeBERT to embed the removed and added code during a

git di�, which is then fed into a hierarchical Bi-LSTM encoder to

predict the CWE type of a VFC. TreeVul reported a 72% weighted F1

score at the depth-3 CWE prediction and up to an 85% F1 score at the

depth-1 CWE prediction on 6,541 commits from 1,560 GitHub OSS

projects. In addition, CoLeFunDa [61] can categorize the correct

CWE type with an F1 score of 50% and AUC of 85%. Contrastingly,

DAA [12] took a non-ML approach for VFC identi�cation, which,

while capable of producing corresponding CWE types, su�ers from

recall issues due to reliance on Static Application Security Testing

tools. While TreeVul, CoLeFunDa, and DAA are similar to a feature

of our work, we predict by the OWASP Top 10.

9 CONCLUSION

The completeness of security advisories is crucial for downstream

users, yet about 63% of GitHub Security Advisories lack their patch

link. This paper presents VFCFinder, a tool designed to perform

security advisory to VFC matching. VFCFinder achieved a recall

of 96.6% in identifying the correct VFC within �ve commits. Our

approach demonstrates that a streamlined pipeline and concise fea-

tures o�er superior generalization over complex systems. Applied

to GHSA advisories lacking VFCs, VFCFinder found 96.1% of the

VFCs within the Top-5. GHSA has accepted and merged over 300

of our submitted VFCs.
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A APPENDIX

A.1 Process for identifying the missing source
code links

Each ecosystem contains an online registry (e.g., PyPI -> https:

//pypi.org/). Using the package name from a GHSA Advisory, we

can do a direct lookup in the respective online registry for the

package project links (e.g., Source Code/Issues/Homepage) that

point to GitHub.

PyPI Example:

(1) Example GHSA-ID: GHSA-m6xf-fq7q-8743

(2) We extract package name: bleach

(3) We then try to parse the project links on the respective online

registry: https://pypi.org/project/bleach/

(4) We extract the homepage from the online registry -> https:

//github.com/mozilla/bleach

(5) We then return the link that points to a GitHub Repository

Maven Example: Maven based projects were not so simple. The

following steps were followed to identify Maven source code links:

(1) First, we search for the project using the following API (https:

//search.maven.org/solrsearch/select?q={groupId}+AND+a:

{artifactId}&rows=10&wt=json)



(2) We extract the package name from the GHSA object: org.

springframework.security:spring-security-core

(3) We search using the following API: https://search.maven.o

rg/solrsearch/select?q=org.springframework.security+AN

D+a:spring-security-core&rows=10&wt=json

(4) We match based on the groupId and artifactID parsed from

the package name.

(5) We pull the latest version of the package from the. Example

response:

(a) Latest Version: 6.0.1

(6) We pull the POM�le for the latest version using the following

API https://search.maven.org/remotecontent?filepath=org/

springframework/security/spring-security-core/6.0.1/sprin

g-security-core-6.0.1.pom

(7) We then search the POM �le for the SCM tag that points to

a GitHub repository:

(a) <connection>scm:git:git://github.com/spring-projects/spring-

security.git</connection>

Our process obtained 56% of the missing source code links. We

provided the appropriate source code to the GitHub security team

to pull these links for their security advisories.
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