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PBVI for Optimal
Photoplethysmography Noise
Filter Selection Using Human
Activity Recognition Observations
for Improved Heart Rate
Estimation on Multi-Sensor
Systems

This work details the partially observable markov decision process (POMDP) and the point-
based value iteration (PBVI) algorithms for use in multisensor systems, specifically, a sensor
system capable of heart rate (HR) estimation through wearable photoplethysmography
(PPG) and accelerometer signals. PPG sensors are highly susceptible to motion artifact
(MA); however, current methods focus more on overall MA filters, rather than action specific
filtering. An end-to-end embedded human activity recognition (HAR) System is developed to
represent the observation uncertainty, and two action specific PPG MA reducing filters are
proposed as actions. PBVI allows optimal action decision-making based on an uncertain
observation, effectively balancing correct action choice and sensor system cost. Two central
systems are proposed to accompany these algorithms, one for unlimited observation access
and one for limited observation access. Through simulation, it can be shown that the limited
observation system performs optimally when sensor cost is negligible, while limited
observation access performs optimally when a negative reward for sensor use is considered.
The final general framework for POMDP and PBVI was applied to a specific HR estimation
example. This work can be expanded on and used as a basis for future work on similar
multisensor system. [DOI: 10.1115/1.4065219]
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1 Introduction

Variation of the body’s blood volume due to the cardiac cycle is a
basis for the PPG signal. PPG signals are derived through
extracutaneous optical sensors that irradiate light which is absorbed
or unabsorbed by the body. The optical sensor then receives the
unabsorbed light through either transmission or reflection, forming a
PPG signal. As mentioned, PPG signals contain information about
the body’s cardiac cycle, the change in blood volume directly alter
the light absorption. Thus, the PPG waveform is synchronous with
each heartbeat [1,2].

As PPG signals relate to the cardiac cycle, they are used in many
medical diagnostics and testing. A critical interpretation of the PPG
signal is HR in beats per minute (BPM). HR information remains an
essential tool at home and in clinic diagnostics as it can be derived
from an inexpensive and noninvasive sensor system. To estimate HR
from PPG, the most common method would be to use the time
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between peaks and the signal’s sampling frequency, f;. The
following equation details HR estimation
_ f

Peak(i) — Peak(i — 1)

BPM x60 (1)
where f; is the sampling frequency the signal was obtained at, Peak
(1) refers to the current maximum peak of the waveform, and Peak
(i-1) refers to the previous maximum waveform peak. This method,
shown in Eq. (1), provides a simple and direct way to calculate HR
from PPG, given a clean, uncorrupted waveform is used; However,
PPGis obtained via an externally worn sensor, usually on the wrist or
fingertips. Sensor location causes the sensor signal to be highly
susceptible to MA, which alters the PPG signal dynamics, forcing
inaccurate HR estimation and rendering Eq. (1) useless. In activities
that do not require the user to be stationary, such as walking or
running, HR estimation can be challenging. The following Fig. 1
displays a PPG signal from a finger-worn device in four activities:
Sitting, standing, walking, and running. Along with the PPG signal,
triaxial accelerometer signals are also shown to visualize the motion
near the PPG collection site.
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Fig. 1 PPG and accelerometer data per activity. PPG (left) and triaxial accelerometer data (right) for four activities:

(a) sitting, (b) standing, (c) walking, and (d) running.

As seen in Fig. 1, the degree of motion strongly alters the PPG
signal obscuring the overall waveform. To produce accurate HR
estimations on high-motion activities, it is imperative to create
robust filters to reduce the effects of MA on PPG waveforms. There
have been multiple effective approaches to reducing or removing
MA from PPG. Many techniques revolve around some variation of
the least mean squares (LMS) filter [3,4] or the application of
independent component analysis [5], or singular value decom-
position in conjunction with LMS [6,7]. Other techniques to reduce
MA from PPG include using the frequency domain [8], wavelets,
recursive least squares, or the Hankel matrix [9].These methods,
although successful, do not optimize MA reduction per activity,
ignoring vital differences in the activities and their effect on the
magnitude of MA on the signal. Targeted filters based on the user’s
current activity, i.e., HAR, would reduce the risk of over-filtering the
signal by applying activity specific filters.

Knowing the state of the user, such as activity from HAR, would
then require the system to make optimal decisions, or actions, by
applying the appropriate filter. In parallel, wearable sensor systems
or wireless body area networks typically have one central power unit
making energy savings on top of optimal decision making critical.
This is where success with dynamic programing (DP) has been
found. DP can be used to find accurate, and low-energy ways to use
multisensor systems [10,11]. Another technique called Markov
decision process (MDP), which uses probabilities to determine
optimal actions, has also found success in energy savings in
multisensor systems, with one particular case using a PPG sensor
[12]. The results showed promising energy savings using an MDP
method indicating the use cases of DP and MDP in multisensor
systems for HAR and HR estimation.
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This work proposes a method to apply frequency-based noise
filters to reduce the effects of MA based on the observed user’s
activity. This method chooses optimal actions of PPG filter selection
based on the user’s current activity to allow long-term, accurate HR
signal readings. To solve this, a POMDP and a point-based value
iteration (PBVI) framework are proposed. Usage of the POMDP and
PBVI algorithms are supplemented with a practical example. The
practical example includes an end-to-end embedded HAR device
and two specific MA-reducing filters for PPG.

2 Methods

To optimally select the correct action, POMDP, and PBVI are
used and have been well described by Pineau et al. [13]. A POMDP
closely follows a MDP except the agent can only perceive
observations that can be used to convey incomplete information
about the state. Common terminology to describe a POMDP
includes states, S, actions, U, and observations, Y. A state transition
probability, Py = P(Sgs1 =Jj|Sk =i, Ur = u), an observation
probability distribution, P, = P(Y; =y|Sy =i,Ur = u), and a

reward function, £ [ZQZOI r|.

Application of PBVI curbs the curse of dimensionality of
POMDP. To start, a set of beliefs can be defined as the probability
distribution of the current state and history. The belief can be defined
as a sufficient statistic to predict the future. However, the belief
space, B can be large, bringing the need for a term, A, to represent a
suitable finite-dimensional set of vectors of o. The value function
update can be implemented as a sequence of operations on the set of
vectors. However, this still contains a large number of vectors. Thus,
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arelevant subset of vectors, A, can be used on a smaller dimensional
subset of belief points, [3. PBVI starts with a small initial set of belief
points to start a set of backup operations. Belief points grow, and
backup operations continue until an approximate solution is
reached. The equations and methods by Pineau et al. [13] are
explained further in the application of this work.

To correctly fit the system model into a POMDP framework, the
system states, actions, rewards, transitions, and observation
probabilities must be described. This work compares two separate
systems, denoted A: Unlimited Observation Access and B: Limited
Observation Access.

Both systems share the same state space and transition
probabilities. Transition Probabilities can be described as
Py = P(Sts1 =j| Sk =i, Up = u), where Sy = j represents the
next state, S; = i represents the current state, and U; = u represents
the current action. The probabilities and states are modeled after the
ones derived by Thatte et al. [10] and displayed in the Markov Chain
from Zois et al. [11]. States have been simplified to S € {1,2,3,4},
corresponding to sit, stand, walk, and run, respectively. The
probabilities are action independent and can be simplified into the
following transition probability matrix:

Py =P(Sgp1 = jISk = i) = Pij =

Lo

S rio o
o W L W
L W= O

Generally, the actions can be described as the PPG filter selection
for both systems. The system may choose one of two filters to apply
to the PPG signal based on the user’s current state, using no filter for
the low motion, quasi-static states of sit and stand and a unique
noise-reducing filter for walk and run. As mentioned, the system
follows observations of the state, meaning the actual state of the user
is not always correctly observed. To accompany the POMDP and
PBVI framework, this work provides practical applications for both
the observation estimation and the application of the PPG noise
filter. First, an end-to-end HAR-embedded machine learning system
is created to represent the uncertainty of observations. Next, two
PPG filters optimized for walk and run states were developed and
tested. Then using the practical examples of observation uncertainty
and PPG filters, system A and system B are described in detail for use
in the POMDP and PBVI framework.

2.1 Application: End-to-End Human Activity Recognition.
An end-to-end human activity recognition (HAR) embedded system
was created to provide a real basis for the observation’s uncertainty
in representing the state. The observation is based on the estimated
state or observation the system receives, as it does not have direct
access to the actual states sit, stand, walk, and run. Without direct
access to the actual state, or in this case, activity, the system must
estimate the state as an observation, which inherently comes with
some uncertainty and inaccuracy. A HAR-embedded system can be
used to model the uncertainty and estimation accuracy of the true
state with an observation. Thus, the final validation accuracy the
HAR system achieves represents how accurate observation is when
estimating state. Embedded machine learning was used to create the
HAR model, which requires data collection, data processing, model
training, and model deployment, which can all be performed through
Edge Impulse [14].

An Arduino Nano 33 BLE sense was used to collect data as it
contains a built-in inertial measurement unit (IMU), the LSM9DS1,
and can run embedded machine learning. The IMU provides triaxial
accelerometer, triaxial gyroscope, and triaxial magnetometer data
giving nine total input data sources. Based on the states, sit, stand,
walk, and run, IMU data needed to be collected performing each
activity in a wrist-like location. In detail: Sitting, with arms on a
table or in their lap with small to no arm motion, standing, with arms
at the side with small body motions like swaying, walking, at
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different paces, from 1 to 4 mph, and running, at different paces,
from 4.5 to 7 mph.

The Arduino can then be connected to Edge Impulse, where the
IMU can be directly read, and the data can be labeled for use in a
classification problem. IMU data can be collected for each activity in
5-second intervals at 100Hz. In total, 25min of data can be
collected, with 6.25 min of data per activity. An 80/20 train test split
can be used on the data, with each 5-second sample being windowed
with a window size of 2 s and a window increase of 200 ms.

The following spectral settings were chosen through Edge
Impulse’s built-in preprocessing blocks. For each of the nine inputs,
the axis was scaled by 2, a lowpass filter with a 5 Hz cutoff and a 4th
order Butterworth were applied, and 64 FFT points were considered.
These settings most optimally separated the features as shown in
Fig. 2. After feature extraction, 54 final features were selected and
fed through a simple neural network. The network consisted of an
input layer, two hidden layers of 20 and 10 neurons, respectively,
and an output layer with a dimension of four to represent the four
states. The model ran for 300 iterations with a learning rate of 0.0005
with a final accuracy of 99.7% and a final categorical cross-entropy
loss of 0.01.

With a fully trained model, a validation set consisting of 20% of
the training data can be run on the system to validate the
performance. After validation, a final validation accuracy of
96.25% was achieved. Most often, walking was mistaken for
running (3.8%) while standing was mistaken for walking (6.3%).
The final system can generate observations that correctly identify
the state approximately 96% of the time, giving a real basis for
observation space generation. This uncertainty can be represented
by the value e where ¢ = 1 — validation accuracy yielding € = 0.04.

The HAR system can be fully embedded by deploying the trained
model to Arduino and adding a power source to the Arduino and
securing it to the wrist. Through Edge Impulse, the trained model
can then be packaged as an Arduino library file and exported to the
Arduino IDE. The IMU can be read to build an input tensor of IMU
data matching the 2-second window described. The input tensor can
then be fed to the model to output continuous HAR through
Bluetooth or serial connection to a different device.

2.2 Application: Motion Artifact Filtering of Photoplethys-
mography for Accurate Heart Rate Estimation. As discussed,
MA on PPG signals obscure the underlying waveform and force
inaccurate estimation of HR. Low motion activities such as sitting
and standing allow for clean PPG signals as there would be
negligible amounts of MA corrupted signal. Thus, Eq. (1) can be
used directly on any portion of data that includes two peaks, and no
additional filtering would be required to get direct HR values. This
method can be improved by taking the average peak-to-peak across a
window of data, as there may be some rare instances of an inaccurate
waveform.

Higher motion activities such as walking and running are where
unique MA removal filters can be applied. As shown in Fig. 1, the
degree of MA on the PPG signal and the amplitude of the
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Fig.2 Extracted activity features visualized with edge impulse
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Fig. 3 Device hardware used to collect PPG and accelerometer
data and for performing embedded HR estimation. On the left are
the hardware components, where (1) is the Arduino Nano 33 BLE
Sense and (2) is the MAXREFDES117 PPG evaluator with a foam
stabilizer. The right depicts the device being worn on the left
index finger.

accelerometer differ between walking and running. To develop and
test optimal noise filters, example data, including PPG and triaxial
accelerometer, were collected on the two activities, walk and run.
The data can be collected on the finger-worn device shown in Fig. 3.
To collect PPG signals, a MAXREFDES117 PPG evaluator was
used, while sensor processing and accelerometer were collected
from an Arduino Nano 33 BLE Sense. Both PPG and accelerometer
were collected around 104 Hz.

2.2.1 Photoplethysmography Filter Methods. Both final filters,
named Filter 1: Walking and Filter 2: Running in this work, were
created using two methods, sliding window and frequency cutting.
The sliding window method begins by gathering a window of data
across the PPG and triaxial accelerometer data. Given the 104 Hz
sampling rate for both sensors, a full window of data was selected to
contain 1000 samples or approximately 10s of data. The window
then slides 100 samples, or around 1 s getting 100 new samples and
removing 100 old samples.

Walking: PPG FFT Alteration
PPG vs ACC* [FFT|

Frequency cutting requires two steps, frequency range reduction,
and accelerometer correlation reduction, which are applied to each
PPG data window of 1000 samples. The first step, frequency range
reduction, reduces frequencies from specified ranges. The 0-0.5 Hz
range is the first to be reduced, which corresponds to around 0to 30
BPM, using a parameter named Ry, by applying 7 — to the PPG
FFT amplitude. Next, the 4 Hz to Nyquist Frequency, which equates
to 52 Hz or half the sampling rate, is reduced by a parameter named
Ruign by applying R to the PPG FFT amplitude. The final
frequency reduction parameter Rwiq is applied only to the Running
filter as it reduces frequencies from .5 to 1.33 Hz or the 30 to 80 BPM
range.

The second step in frequency cutting is accelerometer correlation
reduction. To start, the FFT of the triaxial accelerometer, including
X, Y, and Z, must be taken individually. The resulting FFTs can be
added to create a total accelerometer FFT. The absolute total
accelerometer FFT and absolute PPG FFT peaks are then compared.
If the peak from the accelerometer matches the peak from the PPG

the PPG FFT amplitude to both the matching peak, an(i the \?a ues
_]LlSt before and after it. -— is applied when the accelerometer peak
is greater than the PPG pea.k while 7—— is applied when the PPG
peak is greater than the accelerometer The most significant
difference between walking and running here is that walking also
considers peaks that are off by one when reducing the PPG FFT,
while running only considers peaks that exactly match.

The following, Fig. 4, display the frequency cuttings effect on the
PPG’s FFT for walking and running, respectively. From Fig. 4, it is
possible to see the frequency range reduction and the accelerometer
correlation reduction on a snapshot of data. The differences between
the walking and running filters can also be seen. From Fig. 4, the
accelerometer and PPG peaks that are off by 1 are considered and
reduced while they are not in the running filter. From Fig. 4, the Ryiq
frequency range reduction parameter is used but is not used on
walking.

After taking a window of data and performing frequency cutting,
the HR can be estimated from the resulting reconstructed PPG
signal. This is performed by taking the inverse FFT of the data

Running: PPG FFT Alteration
PPG vs ACC* [FFT|
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Fig.4 Walking (left) and running (right) frequency cutting method example on the PPG signal from set 1. The top graph
compares the original PPG absolute FFT and the accelerometer absolute FFT. The matching peaks are circled, and the
reduction parameters, Racc and Raccr are shown. Rucc refers to the accelerometer amplitude being greater than the PPG,
while Raccr refers to the PPG amplitude being greater than the accelerometer. It can be seen that some accelerometer and
PPG peaks are offset and still circled as matching. This was intentionally done to the walking filter to improve
performance. Note that the accelerometer, called ACC, has had the 0-.5Hz and 4 Hz plus range set to zero, the bottom
graph shows the altered absolute PPG FFT. Shown are the ranges for the R values, Riow, Ruid, RHigh- Both frequency
range reduction and accelerometer correlation reduction have been applied.
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window. To estimate HR, Eq. (1) can be used by taking the average
peak-to-peak distance across all waveforms contained in the
window. This averaged value can then be used with the sampling
rate of 104 Hz to produce an estimated HR for that window of data.
The sliding window then shifts 100 samples, and the process is
repeated until five shifts have occurred and five estimations have
been created. These five estimations are then averaged and output as
the final estimated HR for the approximately 5 s it took to gather the
new 500 data points. A final estimation technique is included, which
allows the filters to be more robust to large changes in HR estimates.
The filter checks the previous HR estimation, which was the average
of five sliding windows, and compares it to the current estimate. If
the estimations have a difference greater than 10 BPM, the new
estimation is taken as the midpoint between estimations, as shown in
Eq. (2), where i resents the current estimation, and i — 1 represents
the previous estimation

HRest(i) _ HRest(i) + ;{Resl(i - 1) (2)

The walking and running filters have some differences, as
mentioned previously; however, the main difference between the
filters lies with the system parameters. Along with the reduction
parameters, R, the peak prominence when estimating HR, Pprom,
must also be considered. Peak prominence determines the
magnitude of peaks to detect when performing peak-to-peak
calculations. These system parameters can be tuned to optimally
estimate HR for a particular activity. They can also be tuned to be
subject-specific, so the filter can ensure optimal HR estimation per
subject.

2.2.2  Photoplethysmography Filter Outcomes. To determine
the performance of the filters on walking and running, both are
compared to just the sliding window. These are then validated by the
ground truth HR value from the NONIN WristOx2 [15,16] through
mean absolute error (MAE) shown in Eq. (3) where N is the total
number of estimations, n is the current estimation, BPM,, is the
estimated HR, and BPMyony is the true HR from NONIN.

1 N
MAE = NZ\BPMcst(n) — BPMyonin (7)) 3)

n=1

Two example sets were used to test the filter’s ability to be tuned
and optimized not only per activity but per set. Both sets performed
an initial two minutes of the specified activity, then after two
minutes, around one and a half minutes of sensor data and ground
truth HR values were recorded. Given the sampling rate of around
104 Hz, ground truth HR was recorded every five seconds to match
the sliding window averages for comparison. The device from Fig. 3
and the NONIN are index finger based.

The following table, Table 1, displays the exact parameter values
used to optimize the filters for each activity on the data for set 1,
while Table 2 displays parameters for set 2.

Filter 1: Walking, using the parameters from Tables 1 and 2
achieved an MAE of 4.31 and 5.48 BPM for sets 1 and 2,

Table1 Filter parameter values used for the walking and running
filters on set 1

Set 1 filter parameter comparison

Parameter Walking Running
RLow 5 5
Rwia 1 1.2
Ruigh 5
Racc 2 1.5
Rprom 0.9 0.2

Journal of Medical Devices

Table2 Filter parameter values used for the walking and running
filters on set 2

Set 2 filter parameter comparison

Parameter Walking Running
Riow 5 5
Rwid 1 1.2
R High 5 5
Race 5 1.5
Rprom 0.5 0.7

respectively. Using just the sliding window achieved an MAE of
14.52 and 15.21 BPM showing a 10 BPM performance increase with
the use of the final filter, named Filter 1: Walking.

Filter 2: Running, using the parameters from Tables 1 and 2,
achieved an MAE of 3.98 and 3.06 BPM for sets 1 and 2,
respectively. Using just the sliding window achieved an MAE of
8.43 and 7.99 BPM showing a 5 BPM performance increase.

Both Filters improved the HR estimation outcomes for the
provided data; however, an MAE of around 5 BPM was achieved for
both activities. This MAE value means that, on average, the
estimation is incorrect by around 5 BPM from the ground truth. This
means that although the filters do improve performance, they still
come with a small estimation error when used.

The method of windowing, frequency cutting, and midpoint
estimation reduction comes with specific parameters that can be
tuned and optimized to fit the data best, motivating selective
filtering. As shown with walking and running activity data, tuning
the filter parameters to be activity-specific improves the HR
estimation. The differences can be pointed toward the motion
represented by the accelerometer, the difference in HR value for
each activity, and even the difference in the user. Due to this, the
frequency information would be different and require different
filtering magnitudes to fit the activity best. From this, two activity-
specific MA-reducing filters, named Filter 1: Walking and Filter 2:
Running, were created to increase HR estimation accuracy.

With a basis for observation uncertainty from a HAR system and
two specific noise-reducing filters for PPG described, differences in
System A and System B can be described in detail in the subsequent
sections.

2.3 System A: Unlimited Observation Access. System A
observes the accelerometer readings at every step to make decisions
meaning it has unlimited access to the observation space. It has three
possible actions from an action space, U € {1,2,3}, no filter used,
filter 1: Walking used, and filter 2: Running used,, respectively. As
the states are not directly observable, it requires an observation
space denoted as Y € {1,2,3,4} to represent the interpreted
observation of the state. As mentioned, the algorithm to correctly
determine the state may not always be accurate, which is why an
observation probability is used. The observation probability,
P(Yy = y|Sks1 =/, Sk =i, Ux = u), does not depend on action or
next state and can simplify to:

€/3Vy #£i

P,=PY,=y|Si=1i) =
4 (k y|k ) {(l—e)Vy—l

Here, an ¢ = 0.04 is used and was derived from the HAR
application described. This again represents that 96% of the time, the
observation can correctly estimate the state.

Lastly, the reward is denoted with r(i, ), where i is the current
state, and u is the current action. The reward structure for system A
requires that the HAR system be kept on for continuous observation
access, meaning every reward has a cost due to the HAR system’s
energy, called egar. The correct choice of action yields a reward of
R, and incorrect choice results in no reward. Actions 2 and 3 also turn
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on the filter and gain a small cost due to the filter, labeled ey, The
filter cost can be accredited to filter accuracy. Although the filters are
robust, there may be rare instances where the signal is too corrupted
for the filter to work correctly. This is also shown as the MAE results
per filter were not perfectly zero, meaning each filter contains some
degree of inaccuracy. The reward structure can be organized as
follows:

1) _ R*GHARI'ZI,Z
- O—E‘HARi:3,4

Fiu=2,3) = R — efiy —enar i = u
’ ’ 0 — efiit — eqar i # u

2.4 System B: Limited Observation Access. As stated,
system B shares the same states and transition probabilities as
system A; however, it has one main difference. That the system does
not always have access to observations, which allows for reward
comparison between the two models. The system now has an extra
action in the action space, U € {0, 1,2,3}, where action 0 activates
the HAR system and allows access to the observation signals. This,
in turn, expands the observation space to Y € {0, 1,2,3,4}, where
the state estimation of 1 to 4 can only be accessed if action O is
chosen, else it receives an observation value of 0. This is further
shown in the observation model, which is now action dependent

1ly=0
POZ P(YkzylSkZ i, Uk= 1,2,3) =
0y#0
€/3Vy #£i
PUZP(Yk=y|Sk=l,Uk:0): (I*E)Vy:l
0y=0

System B also has a different reward structure, where only action
0 can access the accelerometer, as follows:

r(i,u = 0) = —C€HAR Vi
. Ri=1,2
rlhu=1) = {01‘:3 4

. R—emi=u
—23) =
rliu=2.3) {O—Efml'?éu

2.5 Analysis. Maximizing reward stands as the overall goal to
gain. Given the structure of the rewards, it is best to maximize the
positive reward, R, to optimize action choice. A finite horizon
problem can be used to approximate the overall reward such that
MaXpolicy E[Zk 01 -], with k as an index, N as the number of stages,
and no terminal reward.

Through a PBVI algorithm, it is possible to derive an optimal
action when given a state, observation, and initial belief. To satisty
the PBVI algorithm, it requires a set of hyperplanes that have been
updated to maximize the value function of a subset of belief points.
Those belief points must be a representation of the entire belief
space. Thus, to solve the problem, a belief update function and an
algorithm to maximize the value function must be described. Then a
one-step look-ahead problem can be created to execute the
algorithms and return an optimal action. The following derivations
and equations are in reference to Pineau et al. [13].

2.5.1 Belief Update Function. A belief at some time k can be
defined as f,(i) = P(S; =i|H;), where H is the history of
observations and actions. The next belief can then be described as
Pri1(j) = P(Skp1 =j|His1) and can be written as a function of the
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current belief, 3, action, and observation, 8, (j) = B(B, U, Y«).
This can be expressed in the form
> Bili)PoPy
Brn() = <75 @
" Z,Bk(l)Po
i

where P, represents the observation probability and P, represents
the transition probability as defined earlier. Here, f represents a
vector of size 1 x 4 as j can take any value Sy € {1,2,3,4}. So for
all jand i combinations, the new f3; | can be created given the old 3,
the action, u, and the observation, y.

For system A, the beta update does not require an action, and will
always use the form shown in Eq. (4). System B only chooses Eq. (4)
if action O is selected as it now has access to the observation signal.
For actions # € 1,2, 3, Eq. (4) can be simplified as Z,ﬂ(z) = land
the P, for those actions are 1 when y = 0. This simplifies to

Bri ( Zﬁk Py (&)

where the next belief represents a 1 x 4 vector of all j, i pairs—using
both Eqs. (4) and (5), the belief update function,
Prs1 = B(By, Ur. Yi), can be created for both system A and B.

2.5.2 Approximate Point-Based Value Iteration. To initialize, a
Q dlmenslonal subset of belief pomts can be determined where
{ BLRA LB } indexed with . Each  must sum to 1, and
can be created elther randomly, or by discretization. Random belief
points require a larger Q value to maintain the same accuracy, so itis
advisable to use a discretized set. The discretized set ensures the
space covers all values between 0 and 1 and can be created with
B =[42;c1-4-2—-¢], where ab,c €{0:Z} and
(a+ b+ c) < Z. This creates a subset of belief points of size 1 to
Z, where it can be seen later that Z=15 yields a Q = 56. For each of
the belief points created, an o vector can be associated with it with
the subset of relevant hyperplanes as Ay = {ocN {=1,. Q}
where N is the number of stages. This set can be 1n1t1ahzed w1th
«' = [0;0;0;0].

Using a PBVI algorithm gets a sufficiently accurate set of
hyperplanes denoted as Ay by iteratively updating A; from
k=N —1:0. The following equations utilize a PBVI algorithm
formulated as a finite horizon problem allowing it to reach 0. The
equations can be looped for k =N —1:0 to create 4. To save
memory, all past A, values can be forgotten and only the final A set
needs to be kept.

The max between the inner product of the next belief and o gets
the previous value function as seen in Eq. (6). This can then be used
to get the current value function in Eq. (7)

Vi1 (B(B,u,y)) = max (B (B u.y). o) (6)

ucl

+ZP(Y/< =y|S =i,
S

VN,k( = maxZ[i’ |:;k i,u)

w=mkaMﬁmM} %)

The index of the maximum when calculating VN,,( yields an
optimal action, called u*. Using the optimal action, the vectors
associated with the future value function can be calculated as

Uy = argmax(B(f,u*,y),0), Vy € Y (8)

acA

Now the new vectors can be computed as
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o= [rk(i,u*) +) PWe=y.Se =jlSk=i.Ur=u")a, (j)]i€S
Jy
9

Equation (9) can be simplified to of =

[rk(i, u*) + Zj’yPDP,,.a{H(j)]i € S. These updated o vectors can

be stored in ;4,( = {otf, l=1,..., Q}. With each new Kk, it returns a

new A until the final Ay is reached.

A one step look ahead problem can be used to solve the execution
of the algorithm and get the overall optimal action. With A,
calculated, the following execution can be performed

Uy = arg rbrtléingﬂk(i) [re(i, u)

+> P =y|S =i,
y

Uy = u)maz«<B(ﬁ”,u,y),a>} (10)
ac A

Now with a given state, observation, initial § value, and .;lo,
Eq. (10) can be used to pick the optimal action.

2.6 Simulation. A simulated environment can be created to test
the algorithm to simulate a sequence of states and observations. A
Markov chain generator can be created to simulate states using the
transition probability and initial distribution of Py(i) = 0.25. To
provide a uniform distribution, a Gumbel max trick can be used,
where G(i) = —log(— log(Uniform(01))). Then the index of the
max can be chosen as the next state as follows:

5 = argmax [G(i) + log(Py)] (1D

Given the observation probabilities, an observation can be
generated with a generated state. Thus, from the HAR system,
96% of the time, the observation y; matches the state s;. Otherwise,
it has a uniform chance to become any of the other states € S. This
can be done using real observations from the HAR system and the
results from the confusion matrices; however, to simulate thousands
of states and observations, the set of observations was simulated
using just validation accuracy. Future work can focus on generating
observations with the HAR system. This would require a generated
sequence of states and a subject performing the state in time. The
observed state from the HAR system can be recorded and compared.

Multiple simulations can be run with a simulated environment
defined to compare systems A and B. For each test, a thousand states
and observations can be simulated. Then, 100 realizations can be
done, giving 100 different simulated tests of length 1000. Each
realization uses the same simulated sequence of states and
observations for every test to compare results fairly. A reward can
be calculated based on previously defined reward functions for each
state and observation. Then for each realization, a reward value can
be calculated to get the average reward per stage, such that

1 1000, L
mzkzoi(sk,uk). The mean across all realizations can also be
calculated to see the average of each.

Systems A and B both use the same belief space, Q =56 and
N =100, when calculating the Ay values before the simulations.
Bothuse areward, R, of 1, an egag cost of 0.5, and an eg;); cost of 0.2.
An epar cost of 0.5 was chosen as there are two main sensor systems,
one to create observations of states and one to filter and process PPG
signals. Both systems would share the same power source, and since
both are Arduino based, they are assumed to pull the same power.
With this, a cost of .5 or 50% was chosen. The e, cost of 0.2 was
chosen to account for instances of poorly read data and rare instances
that the filter fails.

For every 1000 iterations, an action can be determined using
Eq. (10). System A always has access to the observation, y;
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however, system B only has access to y; when an action of 0 is
chosen. For all other actions, u € {1,2,3}, in system B, a y, =0
must be given to the belief update function in Eq. (10).

Four other policies were created to compare the results from
systems A and B. Three of them use the reward setup from system A,
and one uses the rewards from system B. The first three are guess
policies that choose an action randomly. The first, called off, chooses
action 1, no filter, at all times. The second, called even, chooses each
action, u € {1,2,3}, uniformly. The Third, called uneven, chooses
action 1 50% of the time, and 2 and 3 25%.

3 Results and Discussion

Figure 5 displays the results comparing the guess policies with
system A. The policy that uses system B’s rewards is called periodic.
At every even-time-step, this system chooses action 0 and gains
access to the observations. It then chooses the following action based
on the observation. Figure 5 also compares the rewards of the
periodic policy and system B.

From Fig. 5, it can be seen that overall, the average cost from
system A exceeds just randomly guessing an action, which would
make sense as it would accumulate more rewards, R, for its correct
guesses. Due to the accelerometer always being on, it finds a
negative reward overall as it constantly refers to the HAR system,
which begins to outweigh the correct guess. Figure 5 also includes
system A; however, it has a much lower reward than the periodic and
system B. As the HAR system is selectively referenced, system B
can gain a better balance between reward and cost. The periodic
system uses the accelerometer every step, lowering its overall
reward. It can be seen from Fig. 5 that a higher reward can be
achieved when selecting the accelerometer, specifically as in system
B. However, the eyar value was fixed at 0.5, which is about half of
the positive reward for a correct guess. To see the effect the epgar
value has on each system, Fig. 5 compares the mean over all 100
realizations for epagr values from O to 1 by 0.2.

By changing the eyar cost value, it is possible further to visualize
the performance of systems A and B. For low accelerometer costs,
system A receives higher rewards. This would be due to having full
access to the accelerometer at all times and having little to no
negative cost due to accessing the HAR system. System A quickly
decreases with a linear trend as the cost of eyag is increased to 1.
System B, on the other hand, remains constant regardless of the eyar
value. It can be seen that system B would outperform system A in
most cases as the cost of the eyar has little to no effect on the final
outcome of the reward.

From the simulated experiments, it can be seen that system B
maintains a higher overall reward when compared to system A. This
is due to System B not using the HAR system and avoiding the cost
from ey 4z for most time steps. The periodic system also outperforms
A asitavoids the HAR system’s cost since it only half the time refers
to the observation. It is also worth noting that the random action
choice methods always performed worse for all time points. System
B balances correct action choices and references to the HAR system
from this.

On the other hand, System A greatly outperforms System B when
the cost from eyar is negligible or zero. This comparison provided
insight into the two systems’ ability to respond to energy costs in
sensor systems. Multisensor systems usually rely on just one power
source, which could be costly to run long term. If the cost of using the
HAR system were negligible, then System A would be the best
option, whereas if the device is energy-constrained, System B will
outperform System A.

The POMDP and PBVI framework described shows a system
capable of maximizing reward through correct action choice while
also providing two distinct Systems, A and B, for use in either
energy-constrained or energy-unconstrained devices. For this work,
a specific example highlighted the algorithm’s ability to work on
wearable multisensor systems. The HAR end-to-end example can
model the observations, and the action of filter choice was motivated
through MA removal for accurate PPG-based HR estimation. What
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Fig.5 Reward versus realization (left) and reward by eHAR variation (right) displays the reward per stage. Displays
the result of each realization and the average to compare system A, system B, the periodic policy, and the three guess
policies. The variation of eHAR is done for systems A and B only.

makes this framework useful is that it can be transferred to almost
any similar sensor system problem. To model the observations, a
choice can be made on the observation accuracy and can be
represented through e. The actions can be altered to represent any
desired filter or action a sensor system needs. For example, a new
filter can be added to filter sitting and standing. Applying this
framework to a wearable assistive device would also be possible
where the user requires assistance or device output based on their
current activity.

4 Conclusions

This work provides a general framework for optimal action
selection on a multisensor or multidevice-based system. A specific
example is provided to emphasize the algorithm through transition
uncertainty, and action specific filters. The end-to-end embedded
HAR system’s final accuracy determines a system’s action
determination. Specific PPG MA filters represent action specific
filters which may also have inherit inaccuracies that can be
represented as costs to the final system. Using the specific examples,
the final system framework can be simulated to find the best action
selection method when considering energy constraints. Insights
from the application of the POMDP and PBVI framework to a
specific multisensor system example can be expanded upon and
applied to many novel multisensor systems.
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