CROSS-ECOSYSTEM SECURITY EVALUATION VIA SCORECARD

OpenSSF Scorecard: On the Path Toward
Ecosystem-Wide Automated Security Metrics

Nusrat Zahan“, Parth Kanakiya, Brian Hambleton, Shohanuzzaman Shohan*,
and Laurie Williams" | North Carolina State University

d licensed usg limited to: N.C. Statﬁé.\l/gi%gg}

The OpenSSF Scorecard project is an automated tool to monitor the security health of open source

software. This study evaluates the applicability of the
and gaps in the npm and PyPI ecosystems.

T

ply chain (SSC) attacks over the past three years.!

he 2022 annual report from Sonatype shows an
average 742% annual increase in software sup-

Therefore, practitioners are increasingly concerned
with whether their projects’ open source components
are secure.

Introduction

Although standards, such as the National Institute of
Standards and Technology (NIST) Secure Soft-
ware Development Framework (SSDF)? and the Open
Worldwide Application Security Project (OWASP)
software component verification standard (SCVS),3
provide exhaustive lists of security practices, a lack of
consensus is observed regarding the implementation,
validation, and verification of these practices toward a
unified and consistent baseline measurement. Research
is being conducted on the development of different
security metrics. However, establishing a pipeline to
measure security is not straightforward since it involves
exploring various sources of information, including
source code repositories, vulnerability tracking systems,

Digital Object Identifier 10.1109/MSEC.2023.3279773
Date of current version: 26 June 2023

celrRlRs 4 cauisitions & Discpyory, 5 DQWRHOIRAT ANARE 200545 SY05: U TC from IEEE X

Scorecard tool and compares the security practices

continuous integration/continuous deployment (CI/
CD) pipelines, license(s) validity, package release his-
tory, and other metrics to develop standards for adop-
tion. Additional challenges arise during the security
assessment of packages in a software supply chain,
particularly when the packages come from different
sources and have different functionality. Practitioners
want to make informed decisions about whether or not
packages meet security standards based on evidence.
Also, practitioners desire to monitor the “health” of
open source software (OSS) to identify and manage any
future risks of software supply chain attacks. Therefore,
practitioners are more interested than ever in identify-
ing healthy open source components and determining
the security practices compared to other components
within the ecosystem. Toward this end, the goal of this
study is to aid practitioners in producing more secure
software products and make informed decisions on the
security practices of candidate dependencies by depict-
ing current security practices and gaps across ecosys-
tems via an empirical study of the Open Source Security
Foundation (OpenSSF) Scorecard project.

The OpenSSF Scorecard project* is an automated
tool to monitor the security health of the OSS supply
chain. The primary goal of this project is to autogenerate

plorg, BIsYiFI085 38R

https://orcid.org/0000-0002-2738-4118
http://orcid.org/0000-0002-0252-5084
https://orcid.org/0000-0003-3300-6540

a “security score” for OSS projects, using a list of 18
security metrics that can be used to assess the security
health of potential dependencies. While projects like
the Scorecard exist to perform heuristic-based checks of
a package’s security practices to aid dependency selec-
tion, little research has been done to understand the
viability of using Scorecard security metrics to identify
existing security gaps and practices in an entire ecosys-
tem in addition to the individual packages. Observing
the pattern of these security metrics across one or more
ecosystems can assist practitioners in determining how
their packages fit into the ecosystem and what they can
do to improve security. Practitioners can also benefit
by knowing whether a specific security metric is effec-
tive within that ecosystem. In this work, we studied the
Scorecard tool to evaluate the tool’s applicability and
analyze what security practice patterns are observed in
both ecosystems.

OpenSSF Scorecard

The OpenSSF, sponsored by the Linux Foundation, is a
cross-industry collaboration with a mission to improve
OSS’s security. OpenSSF launched the Scorecard proj-
ect* in November 2020 to provide an automated secu-
rity tool that gives a “security score” for OSS and reduces
the manual effort required to analyze a package’s secu-
rity. These results are made available via a BigQuery
public dataset and the Open Source Insight (OSI) site.
Additionally, practitioners can execute Scorecard on
a specific GitHub repository to evaluate the security
practices of that repository.

At the time of the study, the Scorecard contained
18 security practice metrics and assigned an ordinal
score between 0 and 10 to each. Each metric has one of
four risk levels: critical risk-weight 10, high risk-weight
7.5, medium risk-weight 5, and low risk-weight 2.5.
An aggregate confidence score is also provided, which
is a weighted average of the individual metric scores
weighted by risk. Table 1 provides information on the
18 Scorecard metrics.

Security Frameworks

Guidelines and Standards
The OWASP SCVS? is a framework to develop a com-
mon set of activities, controls, and security practices
that can help in identifying and reducing risk in a soft-
ware supply chain. There are six control families that
contain 87 controls for different aspects of security veri-
fication or processes. The SCVS has three verification
levels, where higher levels include additional controls.
In response to Section 4 of the President’s Executive
Order (EO) on “Improving the Nation’s Cybersecurity
(14028),”® NIST updated the SSDF.2 The framework

Ww.COmputer.org/security

comprises four groups containing high-level security
practices and tasks based on established secure software
development models. Each group has a number of prac-
tices, which are further split into different tasks. These
four groups are:

= prepare the organization (PO): practices, S; tasks, 13

= protect the software (PS): practices, 3; tasks, 4

= produce well-secured software (PW): practices, 9;
tasks, 16

= respond to vulnerabilities (RV): practices, 3; tasks, 9.

Automation is essential for implementing security
practices at scale. The Scorecard tool allows us to auto-
mate the measurement of security practice metrics at
scale. We investigated whether the 18 security practices
defined by the Scorecard* complement the EO and SSDF
as part of secure software development life cycle practices
for organizations. To that end, two authors individually
mapped each metric to SSDF practices and compared the
findings. We found that of the 18 Scorecard security met-
rics, 13 can be mapped to the SSDF’s practices. Table 1
shows the mapping between each Scorecard metric and
SSDF practices. Note that each SSDF practice consists of
anumber of tasks, hence, a practice can be linked to more
than one Scorecard metric.

Methods

This section discusses the data sourcing and generation
process of this study. We compiled a package list and
relevant metadata from the npm and PyPI ecosystems
to collect the security score for those packages from the
Scorecard tool.

Ecosystem Package Metadata

Package name. To begin, we collected a list of all package
names available in both ecosystems. We sourced the list
of npm packages names (1,494,105) from Zahan et al.”
and the list of PyPI package names (365,450) was col-
lected using the PyPI application programming inter-
face (APT)® in April 2022.

Dependents data. The number of dependents reflects
the importance of a project by quantifying how many
other projects use it. We collected dependent infor-
mation from the OSI APL’ a Google-developed and
hosted tool. In this work, we collected dependent infor-
mation to prioritize the packages list for manual review.

OpenSSF Scorecard Score

The Scorecard tool only runs on source code hosted
by GitHub. Hence, to obtain the Scorecard scores for
a given package, the first step was to map the package

d licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 20,2024 at 20:05:34 UTC from IEEE Xplore. Restrictions apyy.

https://www.computer.org/security

I CROSS-ECOSYSTEM SECURITY EVALUATION VIA SCORECARD

L'AY

€Sd ‘TSd ‘1'Sd

¥Md ‘€0d

L'Sd

¥'Md

LAY ‘LMd

1'Sd ‘SOd

LAY ‘'Md

sandeld 1ass
03 Suiddepy

'sayepdn se sayoaed A11INJ3s A1 01 S9SN 10J Asea 31 sadjew Suidexdey ‘smopjiom Suideded
qnHuD Aq paysijqnd si a3exded sy Ji ssulwISp pue gny palejas e 01 ageyded aya peojdn Jeys suondy qnHID dyidads-agen3ue| saxedipu|

“Ao110d £111Nn23s e eIA A]21n2as 31 140da1 03 MOy pue AJijIqesaulnA B $93NIIISU0D Jeym uied| ued s1asn Ao1jod A3undas e paysiiqnd sey aexed
a1 J1 93s 01 A1onsodal e jo qny3 16 aya 4o [9A3]-doa 3y 1| SLI0IDAUIP Ul (JARISUISUI-ISD) pul* X I, TYNDIS PJ21AUS 31y B U0 1ioday

“Juauodwod aundasul Ue 3pNPUl ABW YDIYM ‘SUOISIIA OMI 32 U3aMI3q
S3DUIIYIP 33 SUIMAIASL INOYIIM UOISIIA Mau e 03 Aduapuadap e Sunnepdn-oine smojje Aouspuadag pauuidun ‘sapuapuadap
Pa%20] s,303(0id a1 AJL1aA 01 SMOTIXIOM gNHRTHPUe ‘S3dTIDS TT8YS ‘ST 1JI9300(ul sapuapuadap pauurdun sajedipu|

"3oBjI14e 93 JO adurUAAOLd 31 01 35313k Saseajay paudls ‘UBTs “x ‘B1s % ‘(dBd) ose x ‘BISTUTW *:S3sed|as
Al 1se| 5,333(0ud 3y ul sawreua|ly Suimo|joy aya 1oy Suiyoo| Aq qnHIID Ul s1dejiaIe dseajal aya pausis 133(oad aya Iayasaym saredipu|

"$)pe13e 01 duoid aue sapuspuadap 31ep-jo-INQ “Yd & Suiuado Aq saruspuadap patepino Sunepdn
40 ssad0ud a3 ayewoane 03 [00] Aepdn Adouspuadag 10gareaousy 10 J0qepuadaq e pajqeus sey A1olisodal sya Jayaaym saxedipu|

14312 3xau 3y e sautod ured 01 paysies A||ny aq Isnw pue sy d|dnjnw sey a1 Ydeg ‘3[eds paail-dAL e UO P30S SIXI3Yd 3y |
“Youe.q urew a3 olul adueldadde aloyaq syPaYd snaels Jendnted Suissed 10 smalaai SuLinbai se Yyons ‘SmojprIom d1dads 9310jud 03 SaUIPPING
195 01 SI9UIILIBW S3|qRUD X3P S | ‘sayduelq sa3exded e 01 paljdde usaq aney sSunias uondaod Yyouelq sqnHIID JYIBYM SEJIpU]

‘sapuapuadap aindasul pue apod paydredun Suiaey Jo dsii aya unu s133(oid aARdEU| 91025 353YS1Y B2 JAIDAL
[]/M 21 ‘S3NSSI PUB SIIWILWOD O 15378] 31 10j SAep 06 SuIpadaid aya 1oj 3j9am Jad 1wiwod auo Ises) Je sey 123foud e i ‘ojdurexs 104 ‘s1aumo 133foad
J0 ‘SI2quIBW ‘5101210gE||0D WO SANSSI PUE SIILULLOD UO S3NIAIDL UO Paseq 21025 Y1 Suleaqo pue paureurew Apande si aexded auy Ji saxedipuj

49121WILIOD 32 WO SI3YIP 43843 33 JI 10 smMalAdL panoadde-qnyain
211190 “MO.| dJB SULULUOD OE ISB| Y3 JI 935 01 SH00] 323D a3 ‘s|iey dais aya J| 4amalAai paiinbai auo 15e3| 3. Yaim pateainde si
U0113310.(YdueIg J1 335 01 S1 5232 33 Jo da3s 3541y 3y | "Yd e SuiSiaw 03 Jolid SMaIAL 9p0od $1onpuod siauonndeld aya ji sa1edipu|

'2102s 353y31y

a3 5198 123oad 3y ‘|aAs]-unu aya Je paJe[dap aJe suolssiwiad 1M pasinbai aya pue ‘aa3| doa aya 1e Ajuo-peal se 13s aie 3|y jubh
S,MO[J>10M DB3 Ul SUORIULAP S,uolssiIad aya J| 'ss3d0. 3ILIM Laim U0l pasiwoidwod e Suisn 133(oad aya 0aul 9pod snopijew
223(ur 3y3iw siaxdeIIE 95Nedaq JueIIodl SI Siy | AJuO-peal 01 135 Al SUI 01 MO|IoM palewolne sadexded ayl Jayaaym sazedipuj

*3]qBINDAX3 33 143AQNS A|snodijew
01 3|qIssod sI 31 ‘pamalA3I 9q Jouued S1D8j11IE Aeulq aulS 'A1031s0das sy Ul s1oeje (A1eulq) 3|qeIandaxa Jo aduasaid ay) saxedipu|

"aseqeIep (ASO) sanliIqeIauNA 221n0s uadQ ay3 ul a3exded e Jo sanljIGeIaUINA PaxIjuN Jo dudsaid ay3 sa1ed1pu|

“uondafur snoiijew 03 pes| Aew ‘paniojdxa Ji ‘pue s1asn AQ pajjoaau0d 3q ued (Syd) s1sanbai |ind 1o sanssi qnHAID Se Yyons ‘eIep 1Xa1U0d
1U3A3 JO 35I| / "SUONDY qNHIID PaINZUODSIW 01 NP SMOTIXIOM NH3 19 s8exded aya ur suianred snossSuep aie a9y Ji sa3edIpU|

uondudsaq sau3a A3Lndag

(wnipaw) Suidexdey
(wnipaw)
A3110d A314n23g

(wnipaw)
sapuapuadaq pauuly

(y31y) saseajay pausis

(y31y) jooL
a1epdn Aduspuadag

(ySiy) uondaloiy youeug

(y31y) paureurewy

(Y81y) mainay apod

(yS1y) suoissiwIdg U0

(ySiy) s1oeynay Areulg
(4y31y) sanijiqesauinp
(1e2n1)

Mo|pjIopN snosadue(q

(13qen
JsIY) swep soLIIdIW

‘(111 Mo] 03 [e21311D WOy pjuel) 4gsS aY3 03 Suiddew ayy pue so1a33w £314Nd3s paedalods °| |qel

rivacy

d licensed usg limited to: N.C. StathlgE%%sri% I&it‘l;raries - Acquisitions & Discovery S. Downloaded on June 20,2024 at 20:05:34 UTC from IEEE Xmgcgmgieerf&%tei%%seﬁﬂﬁly.

to its respective source code location. To retrieve the
source code location for both ecosystems, we used

S
OBQ b 030' the OSI APL? We collected unique GitHub reposito-
e g & ries of 767,389 npm and 191,158 PyPI packages. The
§ '§ ; g S package-to-repository mapping is not always a 1:1
o o o o e

match. Multiple packages can be found in a single repos-
itory. In total, we collected 947,936 npm packages with
767,389 unique GitHub repositories and 211,088 PyPI
packages with 191,158 unique GitHub repositories.
Then, Scorecard runs a weekly scan of open source
packages to generate the security score of those pack-
ages. However, we could not directly utilize these data
for both ecosystems because, at the time of this study,
Scorecard scores were only generated on 760,000 of
947,000 npm and 10,000 of 211,000 PyPI packages.
Therefore, we submitted a pull request (PR) to the
Scorecard repository, adding the GitHub repositories of
missing packages to collect the scores from both eco-
systems. The weekly Scorecard scan was able to run on
those GitHub repositories after the Scorecard team suc-

.md. Scorecard can also detect these files in the

LICENSES directory. The lack of a license will hinder any security review and create a legal risk for potential users.

cessfully merged the PR.
Of the 947,936 npm packages and 211,088 PyPI
packages, we collected the generated scores of 832,422

Btoiop

npm packages and 191,483 PyPI packages. We reviewed
S0 randomly chosen packages where the Scorecard
failed to generate scores and found that we did not have
access to those GitHub repositories. We collected the
Scorecard score on 9 May 2022.

For each package, we could obtain 15 of 18 Score-
card security metrics and their aggregate score, with the
missing three metrics being the CI-Test, Static Applica-
tion Security Testing (SAST), and CONTRIBUTOR
metrics. The Scorecard team took out these three met-
rics to scale the weekly job since computing these met-
rics is API intensive, and GitHub rate limiting can be a
bottleneck for the weekly run. As a result, we could not
collect data for these three metrics.

Scorecard Metrics Evaluation

To evaluate the Scorecard tool metrics and learn why
a metric passed or failed, we manually reviewed 25
sample GitHub repositories from each ecosystem for
each practice. We ranked each metric by the highest
number of dependents and selected the top 25 pack-

Indicates if the project runs tests before PRs are merged by looking for a set of Cl-system names in GitHub CheckRuns and Statuses

in recent 30 commits. Cl-Tests enable developers to identify problems early in the pipeline.
identify trusted code reviewers. The project must have had contributors from at least three organizations in the last 30 commits to

Indicates if the project has contributors from multiple organizations by looking at the company field on the GitHub user profile to
receive the highest score.

Indicates whether the package has a Cll Best Practices badge, which certifies that it follows a set of security-oriented best practices such as

Indicates if the project has published a license by looking for any combination of the following names and extensions in the top-level
vulnerability reporting policy, automatic process to rebuild the software, SAST, and so on.

for known Github apps, such as CodeQL, LGTM, and SonarCloud in the recent merged PRs, or the use of GitHub/codeql-action
directory: LICENSE, LICENCE, COPYING, COPYRIGHT and.html,

Indicates if the project uses SAST. These tools can prevent bugs from being inadvertently introduced in the codebase. The metric look
in a GitHub workflow.

Indicates if the project uses fuzzing by checking the repository name in the OSS-Fuzz project list. Fuzzing is important to detect

exploitable vulnerabilities.

ages. One author reviewed 50 GitHub repositories (25
from each ecosystem) totaling 750 repositories for the
15 metrics. A second reviewer then verified the find-
ings by selecting 100 repositories at random. We used
the Cohen kappa statistic to test the interrater reliability
and achieved a score of 0.96. We resolved our disagree-
ment after discussing our findings, and the first reviewer
cross-reviewed other repositories to make changes if
required. Then, we needed to examine more packages

PO: prepare the organization; PS: protect the software; PW: produce well-secured software; RV: respond to vulnerabilities.

Fuzzing (medium)
Static Application
Security Testing (SAST)
License (low)

Cll Best Practices (low)
Cl Tests (low)
Contributors (low)

to understand a given score for Vulnerabilities and

d licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 20,2024 at 20:05:34 UTC from IEEE Xplore. Restrictions ap?y.
WWwWw.comp ~org/security

https://www.computer.org/security

I CROSS-ECOSYSTEM SECURITY EVALUATION VIA SCORECARD

Code Review metrics. We again chose further packages
by highest dependent order.

Ecosystems Security Practices Evaluation

We observed each ecosystem’s security practices and
patterns by comparing the Scorecard security metrics
scores in three categories: [~1, 0, 1-10]. For each of the
1S security practices, the frequency of packages is mea-
sured using these categories ([-1, 0, 1-10]), as shown
in Table 2.

The notation “~1” denotes the percentage of pack-
ages achieving a score of —1 and indicates that Scorecard
could not get conclusive evidence of the practice being
implemented, or perhaps an internal error occurred
due to a runtime error in Scorecard. The notation “0”
denotes the percentage of packages achieving a score of
0 and means that the tool reports indicate the practice
was conclusively determined not to be implemented.
Since a value of 0 will affect the package’s aggregate
score, Scorecard assigned a value of —1 to avoid the pen-
alty of failing a metric and also to distinguish between
conclusive and inconclusive outcomes. Seven of the 15
security metrics had packages with a score of - 1.

The notation “1-10” denotes the percentage of pack-
ages achieving scores ranging from 1 to 10. In Table 2, the
1-10 columns display the frequency of npm and PyPI
package scores in descending order. Additionally, the
mean, median, and standard deviation (STD) are mea-
sured to understand an ecosystem’s central tendency
and spread of score distribution.

Results

This section discusses the findings of our study. While
evaluating Scorecard metrics and ecosystem security
practices, we looked into whether Scorecard metrics:

= are effective for npm and PyPI ecosystems

= require improvement of the Scorecard tool

= require industry consensus to identify standard
practices

= reported lack of adoption of security practices in npm
and PyPI ecosystems.

In Table 2, a higher percent (green cells) in the
“1-10” column shows that more than 50% packages
implemented the practices. A lower percent (red cells
in Table 2) indicates more than 50% of packages failed
the practice and received a score of 0 or —1. Then, the
green checkmark (@) beside nine metrics represents
the metrics that can be used to measure security by
Scorecard. The red cross (&) beside five metrics indi-
cates that the guideline proposed by Scorecard was not
adopted in practice, requires industry consensus due
to metrics inheritance reliance on other systems, and

d licensed 4s§ limited to: N.C. StathlgE%ersi% I&il?,rarie§ - Acquisitions & Discovery S. Downloaded on June 20,2024 at 20:05:34 UTC from IEEE Xmgre. E{eer

curl rivac

more than 90% of packages in both ecosystems scored
either 0 or —1. We discuss each security metric for both
ecosystems and the frequency statistics in the following
subsection. We also highlight the efficacy of Scorecard
security guidelines.

Dangerous Workflow

This metric indicates the following two patterns in
workflows: untrusted code checkout and script injec-
tion with untrusted context variables. More than 99%
of packages passed the metric. However, we observed
1,938 (0.2%) npm packages and 508 (0.3%) PyPI pack-
ages where Scorecard found vulnerable code patterns.
Of the 50 repositories used for manual analysis, we had
eight packages with -1, all of which were the outcome
ofinternal errors, and 11 packages with vulnerable code
patterns in workflows and, hence, scored 0. Among
them, three npm packages had untrusted code check-
out patterns, and five PyPI and two npm packages had
warnings about script injection. At the end of this sec-
tion, we provide a case study explaining how an attacker
can exploit such patterns in workflows.

Additionally, we observed that Scorecard reports a
score of 10 for Dangerous Workflow metrics in empty
repositories because the repositories did not have any
GitHub workflows, let alone dangerous patterns, and the
tool lacks the verification of GitHub workflow’s existence
in the repositories. Therefore, the Dangerous Workflow
metric script should be improved to detect empty reposi-
tories or repositories without GitHub workflows.

Pinned Dependencies

In both ecosystems, more than 99% of packages had a
practice of using atleast one pinned dependency. Among
these, 81% of npm packages and 66% of PyPI packages
got a score of 10, indicating that they do not have any
unpinned dependencies in the listed directories.

The score may not reflect an accurate statistic
since Scorecard only checks Dockerfiles, shell
scripts, and GitHub workflows to track dependen-
cies. However, the tool does not checkrequirements.
txt, pyproject.toml, setup.py, package. json,
and package-lock. json files in PyPI and npm pack-
age repositories. For PyP], there are different ways to
declare and manage dependencies and their version
in Python. For example, the pyproject.toml file for
declaring dependencies in PyPl is a relatively new stan-
dard but not widespread yet. In practice, developers use
setup. py (using “setuptools”), which can be nondeter-
ministic and makes it harder to track PyPI dependency.
For npm, package. json contains the metadata rel-
evant to the project to manage the project’s dependen-
cies, scripts, and versions. To depict the accurate status
of pinned dependencies in an ecosystem, the Scorecard

vem é%tel%rl])seraﬂﬁly

‘an|pA [|—] ay3 Japisu0d 30U pip suLn(od (U0NDINAP PADPUDIS)

@S pub ‘Upipawi ‘Ubaw ay ‘sad13ap4d wiajsAsoda fo sap3s 31w Apjdsip o] ‘uondopp aiofaq snsuasuod A1snput adinbai soLaN ..® “A114N225 2ANspawi 03 SIIW an1123ff7 () ‘uondopp ui
sdpd paniasqo am ydiym Jof sao1opad A11undas ay Juasaidai pjoq ui siaquinu ay | 1daduod Apjiuiis b smojjof os|b Avi3 papoys-uwinjod ay | ‘s32ayd A114nas pajivf pys sadoyobd Jo a3pauadiad
Buispaioul up a3p21pul 01 pai 03 UOIISUDA]Y [bNPPIS b pup s32aYd A114Nn23as passbd 1vy) sadpxopd fo a8viuadiad 4aySiy b Sunnpoipul uaais yim ‘anbiuyal ulpas 40j0d b Sazijn 3|qp3 ay |

€0 Lo 00 00 00 00 II %078 %LT8 II Suzzny ()
ST 91 00 00 L0 €0 II %S9 %ST II sasedjay paudls (X
Lo z0 00 00 00 00 II %866 %866 %00 %00 saomdeidIsag D
00 00 oL oL oL oL II %00 %0°0 II SuBeprd X
9L gL 00 00 €0 €0 II %Y'L6 %896 %00 %00 forjod fiumdas @
pall €T 00 00 €0 90 I %S'S %L'L6 %SG %0°0 %0°0 [ooy a1epdn Aduspuadag (X)
9l a 00 00 S0 S0 %€E'0L %TOL %T'88 %L'S8 %S'L %LL uondaloud Yuelg @
X3 6T 00 00 gl 'L %LYT %6'EL %6'SL %L98 %00 %00 paurelurery @
LT LT 00 00 Sl vl %8'vE %8'0E %L'S9 %6'89 %T0 %E0 M3INZY 3p0D @)
€€ 9% oL oL 88 69 I %9'89 %0'TL %Y'LE %00 %00 sudIlT @
S 9€ oL oL L '8 I %T'8T %9'SL %00 %00 suolssiudd U0l @)
vl 80 oL oL L6 66 II %'L %S0 %00 %00 sgy Areulg @
00 00 oL oL oL oL II %00 %00 %T0 %<0 sanijiqesunA - @
1T €L oL oL 8 6 II %50 %L0 %E0 %L°0 sapuapuadaq pauuld

S0 S0 oL oL oL oL II %E0 %T0 %00 %00 Mo|plIop snosBueq @)

W3YD A31andag

A>uanba.g 310dg aSeydey

©23.1006 3Y3 Aq painseaw sadiydead £31and3s swayssoda |dAd pue wdu g 3jqel

d licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 20,2024 at 20:05:34 UTC from IEEE Xplore. Restrictions apgly.
WWw.computer.org/security

https://www.computer.org/security

I CROSS-ECOSYSTEM SECURITY EVALUATION VIA SCORECARD

team should improve the Pinned Dependencies metrics
scripts considering ecosystem standards to evaluate the
package dependency.

We also observed that Scorecard does not verify
the presence of Dockerfiles, shell scripts,and
GitHub workflows filesin a repository. If a repository
did not have any files of those types, a package would
receive a score of 10 for not having an unpinned depen-
dency on those missing files.

Vulnerabilities

More than 99% of packages did not have any open vulner-
abilities in the Open Source Vulnerabilities (OSV) data-
base. Hence, they scored 10. Scorecard found seven npm
packages and five PyPI packages with unfixed vulner-
abilities. In addition, 2,703 npm packages and 322 PyPI
packages got a score of -1 for inconclusive results. Our
manual repository review selected repositories where
the package had inconclusive scores or open vulnerabili-
ties, ranked by number of dependents. Note that we did
not review packages with scores of 10 since these pack-
ages did not have any open vulnerabilities reported in
the OSV database. The reason behind the negative score
(~1) was that those repositories were empty. In total, we
found 39 of 50 empty repositories. One package had 10
open vulnerabilities with a score of 0, and nine packages
had one vulnerability open with a score of 9.

Binary Artifacts

More than 99% of packages had a score greater than 0.
The manual review of S0 repositories found eight pack-
ages with a score of 0. The reviewers noticed that these
packages had more than nine binary artifacts with a mean
and STD of 78.25 and 87.17, respectively. These pack-
ages were umbrella projects encompassing a variety of
tools and libraries. Clients are forced to use these binary
artifacts directly.

Another 32 packages in manual review were given a
score from 1 to 10 based on the number of binary arti-
facts ranging from 0 to 9. A score of 10 means no bina-
ries, a score of 9 means the presence of one binary, and
the scores continue to decrease toward 1 as the number
of binary artifacts increases toward 9. We also found a
false positive in one npm package repository, where
Scorecard identified 108 binaries, two of which were
.txt files. Similar to previous metrics, the Scorecard
team should improve the metric script to detect empty
repositories along with enhancing the list of binary key-
words considering different ecosystems.

Token Permissions

This metric indicates that npm yielded a more promis-
ing result: nearly 84% of packages have read and write
permissions declared in workflows, compared to 71%

d licensed yss limited to: N.C. StathlgE%ersi% I&il?,rarie§ - Acquisitions & Discovery S. Downloaded on June 20,2024 at 20:05:34 UTC from IEEE Xmgre. E{eer

curl rivac

of PyPI packages. Our manual review found similar
patterns as we observed in Pinned Dependencies and
Dangerous Workflow. Fourteen packages did not have
any GitHub actions specified in the repository, but
Scorecard assigned 10 to those packages for Token
Permissions. Here, the score was 1@ because the tool
lacks the verification of GitHub workflow’s existence
in the repository. The Scorecard team should improve
the scripts to detect the presence of GitHub workflows
before scoring good or bad practices.

License

We observed that 68% of npm packages and 88% of
PyPI packages had published licenses in the GitHub
repository, indicating, npm has a higher tendency to
avoid licensing in the repository. Our manual review
revealed that four npm packages and eight PyPI pack-
ages had a license in the repository, specifically in
Readme.md and setup . py files. However, Scorecard
did not identify them, hence the metric script should
be improved to detect licenses more accurately.

Code Review

This check evaluates if the package conducts code
reviews prior to merging PRs. The first step of the
check is to see if Branch Protection is activated with
at least one required reviewer. If this fails, the check
looks to see if the last 30 commits are Prow-, Gerrit-,
or Github-approved reviews or if the merge differs
from the committer. Thirty percent of npm packages
and 34% of PyPI packages had code review practices
in their repository. A 2022 study' also showed that
52.5% of the analyzed updates of npm, Crates.io, PyP],
and RubyGems ecosystem packages were only partially
code-reviewed, with an overall median code review
coverage of 27.2%. One reason behind failing this met-
ric would be that the metric is not applicable if the
package has one maintainer.

However, our manual review found nine packages
scored 0 and had no code review practices even though
they had more than one contributor in GitHub reposi-
tories. Both ecosystems exhibit a gap in implementing
Code Review in GitHub repositories, indicating that
packages contain the risk of introducing nonreviewed
code in the software supply chain.

We also had -1 in five sample repositories where
the repositories were empty. To verify this pattern, we
reviewed an additional 10 repositories with —1. These
repositories were empty on GitHub, hence indicating
why Scorecard assigned -1 as an inconclusive result. In
total, we found 2,695 (0.3%) npm and 321 (0.2%) PyPI
empty repositories with —1 scoring in Vulnerabilities,
Branch Protection, Packaging, Signed Releases, and
Code Review metrics.

vem é%tel%rl])seraﬂﬁly

Maintained

Our findings show that more than 85% of packages in
npm and 75% PyPI packages were unmaintained in
GitHub. What is more crucial is that for npm, unmain-
tained packages may have a more extended period than
90 days, as Zahan et al.” revealed that in 2021, more
than 58% of packages in the npm registry were unmain-
tained over two years. Our manual inspections were
consistent with Scorecard data where nine of 50 pack-
ages were inactive in a range of one to seven years.

Branch Protection

Only 10% of packages passed this metric in each ecosys-
tem, indicating these repositories had at least one tier of
branch protection applied. Hence, 90% of npm and PyPI
packages had branch protection disabled in the reposi-
tory. The numbers are considerably high, indicating that
a large number of packages in both ecosystems did not
create a branch protection rule in repositories. Of five
tiers of scoring, “Enabling branch protection”, “inhibits
force to push, and branch deletion” are a tier 1 check.
Then, the presence of at least one reviewer (tier 2),
enabling status checks (tier 3), the presence of a second
reviewer (tier 4), and admin dismisses the stale review
(tier S) are the other tiers. When Scorecard is run with-
out an administrative access token, the requirements
that require admin privileges are ignored to avoid penal-
izing a package score.

Our manual review found that Scorecard metrics
only investigate the default branch and any branch
that was used for creating a release and uses GraphQL
API to verify the protection. However, we verified the
Branch Protection by looking into the GitHub branches
APL!! We found 13 of S0 packages had a score of 1 due
to internal error because Scorecard: 1) looked for the
incorrect branch name that did not exist in the reposi-
tory; 2) could not locate the branch, even though it
existed; 3) the main branch had a different name than
the “main” or “master”; and 4) branch protections were
disabled in main and release branch.

Dependency Update Tool

Ninty-four percent of npm packages and 97% of PyPI
packages failed this metric because Dependabot and
Renovatebot were not used as Dependency Update
tools. A project that uses other tools or manually
updates dependencies will obtain a score of 0 on this
metric, just like other packages with outdated depen-
dencies. The Dependency Update Tool metric calls for
industry consensus on an ecosystem-wide tool list for
Scorecard to report an accurate state. This metric can
only confirm if the Dependency Update tool is enabled;
it cannot confirm if the Dependency Update tool is run-
ning or if the tool’s PRs are merged.

Ww.COmputer.org/security

Security Policy

Only 3.2% of npm and 2.5% of PyPI packages have a
security.md file. After looking into 50 sample pack-
ages, we observed that 25 packages do not adhere to
standard security policies and 11 packages have a dif-
ferent reporting procedure for vulnerabilities. Users
can, for example, submit bugs in other places, such as
GitHub issues, specific e-mail addresses, and differ-
ent bug databases outside of GitHub, or use a different
security policy reporting file security . rst. Although
both ecosystems adopted this practice inadequately,
Security Policy is one of the top recommended GitHub
security best practices determined by practitioners!?
and the SSDF also suggested adopting the practice.

Packaging

Packaging is another metric that indicates the indus-
try consensus is required. Only 1% of npm packages
and 5.8% of PyPI items passed the packaging metric.
Since the software can be packaged in multiple ways,
the challenges of coordinating several package release
protocols may prohibit developers from releasing pack-
ages on GitHub Actions, which can be one reason for
the limited number of packaging in the GitHub packag-
ing workflows. At the time of this study, Scorecard did
not query the package registries directly. Hence, pack-
ages that do not use GitHub Actions get —1 instead of 0.
Note that a package’s aggregate score will be penalized if
it has a score of 0, and inconclusive or —1 have no effect
on the aggregate score. Our manual inspection iden-
tified only two npm packages and six PyPI packages
used GitHub packaging workflow, while 47 of 50 pack-
ages had releases on GitHub. Additionally, the Score-
card failed to detect four packages (two from each
ecosystem) that had a publishing GitHub workflow.
The names of these files are publish.yml, ci.yml,and
release.yml.

Cll Best Practices

Scorecard found the CII Best Practices badge in just
1,665 (0.2%) npm and 341(0.1%) PyPI packages. The
CII Best Practices program is a way for Free/Libre and
OSS (FLOSS) projects to demonstrate that they fol-
low best practices. Projects can voluntarily self-certify
to report how they follow each best practice. According
to the CII Best Practice Program website, only 4,766
FLOSS projects have reported their security policies
and received different degrees of badges, indicating
both ecosystems did not adopt the practice.

Signed Releases

Similar to the Packaging metric, the Signed Releases
metric’s report suggested the need for industry con-
sensus. Only 578 (0.1%) npm and 936 (0.5%) PyPI

d licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 20,2024 at 20:05:34 UTC from IEEE Xplore. Restrictions apgaf.

https://www.computer.org/security

I CROSS-ECOSYSTEM SECURITY EVALUATION VIA SCORECARD

packages had signed releases. Moreover, almost 100%
of packages failed this metric. The low number of
Signed Releases in GitHub repositories are expected
behavior for both ecosystems, as package developers
release versions to the package registry (npmjs.org
or pypi.org) rather than code hosting platforms like
github.com. Additionally, we observed that GitHub,
PyPI, and npm each has different regulations to control
package release to a registry. To publish in both regis-
tries, the team must take additional steps to confirm
the release, which can be incompatible with their work-
flow.!3 For instance, the GitHub registry accepts only
scoped packages. Therefore, if a JavaScript package is
currently named X, it must be renamed @username/X
to publish in GitHub.

Scorecard assigns —1 instead of 0 if the tool can
not detect the signed release. In addition, our manual
review revealed that Scorecard often verifies older
signed versions rather than checking for signatures
on the newest five releases. For example, one package
received an eight of 10 score, meaning four of five of
recent releases of that package had signed artifacts.
However, we found the signed artifacts from older ver-
sions, which contradict the defined rules of Scorecard.
Then we also observed repositories tagged commits
as a release rather than creating a release on GitHub.

However, none of the commits were GitHub-verified,
and Scorecard does not identify tagged releases.
Therefore, along with industry consensus, the Signed
Releases metric’s scripts need to be updated by Score-
card to improve tool accuracy.

Fuzzing

Both ecosystems fell short on this metric. Scorecard
validates fuzzing exclusively through the tracking of
packages in the OSS-Fuzz project. OSS-Fuzz has been
tested only in 650 open source packages as of July 2022
and a package that uses fuzzing with other tools would
fail the check, similar to the Dependency Update Tool
metric, indicating why the npm and PyPI ecosystems
failed this metric. Of 650 open source packages that
use OSS-Fuzz, we found 50 npm packages and 104
PyPI packages. Despite the fact that only a few pack-
ages passed this metric, PyPI has more fuzzing practice
(50% more) than npm. One reason why npm pack-
ages do not use fuzzing could be that fuzzing JavaScript
engines is tricky and requires expertise. Instead of pro-
cessing user-supplied seeds, JavaScript engines scan
and interpret user seeds into an abstract syntax tree,'*
which impacts the performance of fuzzers. Our man-
ual analysis yielded no different results from what we
expected. Only two PyPI packages used OSS-Fuzz and

{
}
[
|
{
[
|

Aggregate score: 0.0 / 10

17 lines (17 sloc) | 351 Bytes Step 1 : Vulnerable Workflow in the Repository Raw Blame [
1 name: Demo vulnerable workflow
2 on:
3 issues:
4 types: [opened]
5 env:
6 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
7 jobs:
8 vuln_job:
9 runs-on: ubuntu-latest
10 steps:
11 # Checkout used for demonstration purposes
12 - uses: actions/checkout@v2
13 - run: |
14 echo "ISSUE TITLE: ${{github.event.issue.title}}"
15 echo "ISSUE DESCRIPTION: ${{github.event.issue.body}}"
16 - run: |
17 curl -X POST -H “Authorization: Token ${{ secrets.GIT_AUTH_TOKEN }}" -d '{"labels": ["New Issue"]}' ${{ github.event.issue.url }}/labels
RESULTS

Check scores:

Step 2 : Scorecard to Detect the Vulnerable Pattern

SCORE NAME REASON

DETAILS

@ / 10 | Dangerous-Workflow

detected

dangerous workflow patterns

Warn: script injection with untrusted
input 'github.event.issue.title':
.github/workflows/scriptInjection.yml:13
Warn: script injection with untrusted
input 'github.event.issue.body':
.github/workflows/scriptInjection.yml:13

Figure 1. Case study on Dangerous Workflow to detect vulnerable code pattern.

d licensed Ysg limited to: N.C. StathlgE%ersi% H%?J;%? - Acquisitions & Discovery S. Downloaded on June 20,2024 at 20:05:34 UTC from IEEE Xmg(/eez.m e é%g%%%%ly.

curl

48 packages had no fuzzer. Then, Fuzzing had most of
the -1 after Signed Releases and Packaging, but in our
manual analysis rerunning 12 packages with -1, scored
0 in a new run, indicating run-time error occurred dur-
ing the first run.

Case Study on Dangerous Workflow

In this section, we investigate whether we can exploit
GitHub workflows’ vulnerable patterns for malicious
intent and evaluate whether Scorecard can detect the
patterns via the Dangerous Workflow metric. We found
508 PyPI packages (96 packages with an average of 58
dependents) and 1,938 npm packages (805 packages
with an average of 13 dependents) where packages
failed the Dangerous Workflow metric, indicating that
their workflows contain vulnerable coding patterns.
Even if these repositories are not malicious, poten-
tially dangerous misuse of the workflows may allow
malicious attackers access to the data and commit data
breaches and theft.

We refrained from attacking the repositories from an
ethical standpoint since many of these repositories are
legitimate projects. Therefore, to test whether Scorecard
can be used to anticipate malicious attacks, we executed
the Scorecard tool on a dummy GitHub repository where
we built a workflow with an intentionally-vulnerable
issue action, inspired by Dotam. !>

We executed a reverse shell attack by creating the
following issue in the dummy repository from a

different GitHub account user: New malicious
issue title” && bash -i > &/dev/tcp/4.tcp.
ngrok.io/ngrok endpoint @ > &1 && echo”.
Our vulnerable workflow (Figure 1) in the dummy
repository is executed on a GitHub runner when-
ever a new issue is created by any user. Here, line 14 in
step 1 of Figure 1 “ISSUE TITLE: {{github.event.
issue.title}}” is vulnerable to command injection
because the hosted runners replace the macros { {..} }
blindly and echo “{{github.event.issue.
title}}” becomes echo “{{New malicious issue
title}}”, thus giving an attacker to run a reverse shell
inside the hosted runner as part of the arbitrary code
execution capabilities. An attacker can read sensitive
files like . credential from the runner folder.

Step 2 in Figure 1 shows that the Scorecard could
identify the vulnerable pattern, referring to the exact
line number. The dependents stat of these packages
shows that malicious injection may allow attackers
to execute supply chain attacks. Therefore, this case
study substantiates that the Dangerous Workflow
metric is effective for identifying malicious attacks on
GitHub workflows.

Discussion

This section discusses the effectiveness and applicability
of Scorecard tool security metrics and the gap in npm and
PyPI ecosystems security practices. An overview of our
discussion is shown in Table 3.

Table 3. Summary of Scorecard security metrics evaluation.

Dangerous Workflow
Pinned Dependencies
Vulnerabilities

Binary Artifacts
Token Permissions
License

Code Review
Maintained

Branch Protection
Dependency Update Tool
Security Policy
Packaging

Cll Best Practices
Signed Releases

Fuzzing

Ww.COmputer.org/security

Effective metric, need for improvement

Need for improvement

Effective metric

Effective metric, need for improvement

Effective metric, need for improvement, lack of adoption
Effective metric, need for improvement, lack of adoption
Effective metric, lack of adoption

Effective metric, lack of adoption

Effective metric, lack of adoption

Require industry consensus

Effective metric, lack of adoption

Require industry consensus

Require industry consensus

Require industry consensus

Require industry consensus

d licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 20,2024 at 20:05:34 UTC from IEEE Xplore. Restrictions apgy.

https://www.computer.org/security

I CROSS-ECOSYSTEM SECURITY EVALUATION VIA SCORECARD

d licensed limited to: N.C. Stat iversity Li
£ SeeP Sy

Effective Metrics for Both npm

and PyPI Ecosystems

Our study reveals that practitioners can use a subset
of metrics of the Scorecard tool to measure security
practices, including the metrics Dangerous Workflow,
Vaulnerabilities, Binary Artifacts, Token Permissions,
License, Code Review, Maintained, Branch Protection,
and Security Policy. To achieve a higher security score
(toward 10), practitioners need to follow the guide-
lines provided by the Scorecard tool. Most of these are
well-established security metrics, also required by the
SSDF? and SCVS3 framework. However, the guideline
provided by Scorecard for Dangerous Workflow and
Token Permissions are more GitHub-focused, which
requires practitioners to implement GitHub workflows
to achieve higher scores. Both of these metrics effec-
tively detect security weak links in GitHub workflows:
e.g., Dangerous Workflow can be used to prevent mali-
cious PRs and issues. Therefore, Dangerous Workflow
and Token Permissions metrics will not be useful to
practitioners who do not use GitHub workflows for
their CI/CD pipeline.

Need-for-Improvement Metrics
The Dangerous Workflow, Pinned Dependencies,
Binary Artifacts, Token Permissions, and License met-
rics exhibit the need for Scorecard team’s attention
for improvement. The Pinned Dependencies metric
requires revision for different ecosystems. For example,
Pinned Dependencies do not check the package . json
and requirement . txt and other files for the depen-
dency version, even though the PyPI and npm contain
dependency information in such files. License metrics
can be improved by enhancing the list of keywords.
Then, accurate ecosystem evaluations require filter-
ing out packages with empty repositories. However, the
Scorecard generates aggregate scores for empty reposi-
tories. Because Dangerous Workflow, Binary Artifacts,
Pinned Dependencies, and Token Permissions metrics
indicate risky patterns in GitHub, for these metrics,
empty repositories obtained a score of 10, as reposito-
ries were completely devoid of any content, let alone
risky patterns. Hence, Scorecard assigned a score of 10
instead of 0, or —1, whereas the other 11 metrics val-
ues were between 0 and —1. Another similar example
would be even if a package does not have GitHub work-
tlows, the tool will automatically score 10 in Danger-
ous Workflow and Token Permissions metrics, which
do not exactly reflect that the package follows good
workflow patterns. Our findings suggest that Scorecard
should check for the existence of GitHub repositories
or workflows before reporting on good or bad security
practices, since high scores give us a false sense of good
security practices. We submitted our findings to the

curl rivacy

Scorecard team, and the team acknowledged and agreed
to improve Scorecard to enable automated testing more
effectively in version 5.

Industry Consensus Required on Metrics

The Dependency Update Tool, Packaging, CII Best
Practices, Signed Releases, and Fuzzing indicate the
requirement of industry consensus before Scorecard
can promote these metrics to practitioners. Scorecard
has proposed guidelines for these practices, but without
industry consensus, these metrics hardly have any value
from an ecosystem security perspective. Both ecosys-
tems exhibited weak adoption of these practices.

For example, Scorecard requires practitioners to
use specific tools for the Dependency Update Tool and
Fuzzing metrics to achieve higher scores. However, the
industry lacks consensus on the list of tools or research
showing the ecosystem’s preference regarding those
tools. The ecosystem needs to agree on or standardize
these tools so that Scorecard can measure the practices.
Then, practitioners did not show evidence of using
Packaging and Signed Releases practices on GitHub.
The reasons could be that practitioners used the pack-
age registry to release the signed/unsigned version and
used GitHub as a platform for source code distribution.
Either Scorecard could integrate with package regis-
tries to collect accurate data on Packaging and Signed
Releases, or practitioners could agree to release signed
packages on GitHub, which can be an additional task
since different platforms may have different regulations
for releasing a package. CII Best Practices requires main-
tainers to self-report their security practices’ adherence.
Therefore, failing these metrics may not necessarily
advocate package owners failed to implement the prac-
tices required for CII Best Practices; they simply may
not have self-reported the practices.

We do acknowledge, however, that such an industry-
wide agreement may be challenging and may take time
to implement. In that case, Scorecard may separate these
metrics from the aggregate score calculation. If a package
implements these practices, the package may get bonus
points instead of directly impacting the aggregate score.
Either way, practitioners and the Scorecard team should
address the above-mentioned issues to achieve an accu-
rate picture of ecosystem security practices.

Ecosystems Security Comparison

In the case of License, Code Review, and Maintained,
PyPI outperformed the npm ecosystem. For example,
only 68% of npm packages had a published license in
the repository, compared to over 88% of PyPI packages.
Although both ecosystems failed the Fuzzing metric
check, we found that PyPI exhibited 50% more fuzz-
ing tools implementation than the npm ecosystem.

aries - Acquisitions & Discovery S. Downloaded on June 20,2024 at 20:05:34 UTC from IEEE Xmor ._Restrictions aﬂﬁly.
ovémber/December

Then, the Token Permission metrics showed that npm
(84.4%) has better file permissions in the GitHub work-
flow compared to the PyPI (71.7%) ecosystem.

Lack of Adoption in Ecosystem-Wide

Security Practices

Both ecosystems indicate lack in practicing Token Per-
mission, License, Code Review, Maintained, Branch
Protection, and Security Policy practices in the GitHub
repository. These Scorecard metrics effectively mea-
sure security in GitHub (Table 2), but both ecosys-
tems showed inconsistency in adopting these security
practices. On the contrary, metrics that require indus-
try consensus demand modification in guidelines pro-
posed by Scorecard, metrics have inheritance reliance
on other systems, and more than 90% of packages in
both ecosystems scored either 0 or —1.

Even if the Token Permission metric needs to be
improved, Scorecard identified 15.6% of npm reposi-
tories and 28.2% of PyPI repositories containing yaml
tiles with write access, indicating package susceptibility
to malicious attack. License is important for an organi-
zation to comply with the organization’s legal policies.
Thirty percent of npm packages and 12% of PyPi pack-
ages did not contain any valid license in GitHub reposi-
tories, which is legally required for any organization
intending to use those packages. Then both ecosys-
tems lacked adopting Code Review (npm: 69%, PyPI:
65%) and Maintained (npm: 86%, PyPIL: 76%) metrics,
indicating the risk of using unreviewed, unmaintained
code. Additionally, around 90% of the packages in both
ecosystems did not show evidence of implementing
default Branch Protection and Security Policy practices
in their repositories.

Token Permission, Code Review, Maintained, and
Security Policy were all listed by the SSDF as impor-
tant security practices, highlighting the significance of
implementing these practices.

Limitations and Future Work

In our study, we group security scores into three catego-
ries ([-1, 0, 1-10]) to avoid arbitrary scoring bias; some
metrics scoring may not be representative of the severity
of security risk. For example, the Vulnerabilities metric
looked for open vulnerabilities in the OSV database and
assigned scores based on number of open vulnerabilities.
However, the tool does not look into the severity of vul-
nerabilities. If a package has one exploitable vulnerabil-
ity it will score 9, whereas a package with more than nine
open but nonexploitable vulnerabilities will score 0.
Even though 9 seems like a better score, severity-wise, it
is a high-risk package with exploitable open vulnerabili-
ties. Additionally, if a package did not contain any vul-
nerabilities reported in OSV database, the package will

Ww.COmputer.org/security

receive a score of 10, which does not confirm that the
package is free of vulnerabilities. Although this scoring is
a limitation of the Scorecard tool, and we tried to reduce
the bias by grouping the score into three categories, met-
rics like Vulnerabilities may prevent us from achieving
accurate security status of these ecosystems.

Then, our case study on Dangerous Workflow on a
dummy repository may not represent 2,446 packages,
which is a limitation of this study. One future direction
of this research is to confirm whether all the reposi-
tories that failed in Dangerous Workflow metrics are
vulnerable to malicious attacks. While our case study
shows that vulnerable patterns identified by Scorecard
are exploitable, without verifying each repository and
their GitHub action individually, it is hard to confirm
whether all repositories are prone to malicious attacks.

Additionally, our results may not be representative
in the future since Scorecard is evolving and practitio-
ners are following Scorecard guidelines. Therefore, the
results are subject to change. However, the findings will
assist the Scorecard team, ecosystems, and practitioners
in improving their current state. Another future direc-
tion of our study is to reach out to npm and PyPI prac-
titioners to validate whether they have decided not to
follow security practices consciously, use alternative
practices, or have other challenges preventing them
from adopting security practices.

T his study compares the npm and PyPI ecosys-
tems’ security practices in GitHub repositories
using Scorecard tools. Our work focuses on measuring
and understanding the adoption of cross-ecosystem
package security practices. We also evaluated whether
we can leverage the Scorecard tool metrics to mea-
sure ecosystem-wide automated security practices. We
found that 13 Scorecard security metrics were compat-
ible with the SSDF. Next, we identified nine Scorecard
security metrics that can be used to measure npm and
PyPI package security. Then, Dangerous Workflow
can aid in identifying malicious attacks. Five practices,
however, necessitate industry agreement. Both ecosys-
tems showed gaps in implementing Token Permission,
License, Code Review, Maintained, Branch Protection,
and Security Policy practices.

Knowing about these security practices and their chal-
lenges will inspire and direct practitioners on what to do to
adopt these practices or identify the gaps preventing them
from doing so. We have also observed and been told that
the Scorecard team welcomes new security metrics and
discussions that indicate the Scorecard is evolving with
time. Therefore, our study aims to draw practitioners’
attention to creating action plans to enhance Scorecard
security metrics for assessing ecosystem-wide security

d licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 20,2024 at 20:05:34 UTC from IEEE Xplore. Restrictions apgy.

https://www.computer.org/security

I CROSS-ECOSYSTEM SECURITY EVALUATION VIA SCORECARD

practices. To improve the tool’s ability to measure secu-
rity automatically, the ecosystem managers, the Score-
card team, and the practitioners can drive ecosystem-wide
standards. Such industry-wide consensus will push soft-
ware producers to start implementing those practices.

Acknowledgment

This work was funded by Cisco and National Science
Foundation Grant 2207008. Any opinions expressed in
this material are those of the author(s) and do not nec-
essarily reflect the views of the National Science Foun-
dation. We thank the OpenSSF Scorecard team for their
valuable feedback and assistance in generating Score-
card data for such a vast number of repositories. m

References

1. “700% average increase in open source supply chain
attacks,” Sonatype, Sep. 2022. [Online]. Available: https://
www.sonatype.com/press-releases/sonatype-finds
-700-average-increase-in-open-source-supply-chain
-attacks

2. M. Souppaya et al., “Secure software development frame-
work, version 1.1,” Nat. Inst. Standards Technol., Gaith-
ersburg, MD, USA, NIST SP 800-218, 2022.

3. Software Component Verification Standard. (2020). Open
Web Application Security Project. [Online]. Available:
https://owasp-scvs.gitbook.io/scvs/

4. Security Scorecards for Open Source Projects. (2021). OpenSSF.
[Online]. Available: https:// github.com/ossf/scorecard

S. Open Source Vulnerability Database. (2021). Google.
[Online]. Available: https://osv.dev/

6. “Executive order on improving the nation’s cybersecu-
rity) The White House, Washington, DC, USA, May
2021. [Online]. Available: https:// www.federalregister.
gov/documents/2021/05/17/2021-10460/improving
-the-nations-cybersecurity

7. N. Zahan et al,, “What are weak links in the NPM supply
chain?”in Proc. IEEE/ACM 44th Int. Conf. Softw. Eng.- Softw.
Eng, 2022, pp. 331-340, doi: 10.1145/3510457.3513044.

8. PyPI API for Package Name. (2022). PyPIL [Online].
Available: https://pypi.org/simple/

9. Open Source Insight. (2022). OSL [Online]. Available:
https://deps.dev/

10. N.Imtiaz and L. Williams, “Phantom artifacts and code review
coverage in dependency updates,” 2022, arXiv:2206.09422.

11. “The GitHub branches,” GitHub, 2022. [Online]. Available:
https://api.github.com/

12. “10 GitHub security best practices” Snyk. Accessed:
Jun. 14,2023. [Online]. Available: https://snyk.io/ blog/
ten-git-hub-security-best-practices/

13. D.Wermke et al., “Committed to trust: A qualitative study
on security and trust in open source software projects,” in
Proc. IEEE Symp. Secur. Privacy (SP), San Francisco, CA,

USA: IEEE Computer Society, 2022, pp. 1572-1572, doi:
10.1109/SP46214.2022.9833686.

14. S. T. Dinh et al., “Favocado: Fuzzing the binding code of

JavaScript engines using semantically correct test cases,”
in Proc. Netw. Distrib. Syst. Secur. Symp., 2021, pp. 1-15,
doi: 10.14722/ndss.2021.24224.

1S. N. Dotam. “Vulnerable GitHub actions workflows.” Legit

Security. Accessed: Jun. 14, 2023. [Online]. Available:
https://www.legitsecurity.com/blog/github-privilege

-escalation-vulnerability

Nusrat Zahan is a Ph.D. student in the Computer Sci-

ence Department at North Carolina State University,
Raleigh, NC 27695 USA. Her research interests include
software security. Nusrat received a B.Sc. in electronics
and communication engineering from Khulna Univer-
sity of Engineering & Technology, Bangladesh. Nusrat
isamember of the Association for Computing Machin-
ery. Contact her at nzahan@ncsu.edu.

Parth Kanakiya is a software developer at Amazon, Seat-

tle, WA 98109 USA. His research interests include
software automation and development. Kanakiya
received an M.Sc. in computer science from North
Carolina State University. Contact him at pkanaki@
ncsu.edu.

Brian Hambleton is a graduate student in the Com-

puter Science Department at North Carolina State
University, Raleigh, NC 27695 USA. His research
interests include software automation and develop-
ment and computer networks. Hambleton received
a B.Sc. from North Carolina State University. Con-
tact him at bthamble@ncsu.edu.

Shohanuzzaman Shohan is a process development advi-

sor at Eli Lilly, New York, NY 10016 USA. His research
interests include software automation and artificial
intelligence. Shohan received a Ph.D. in industrial
engineering from North Carolina State University.
He is an active member of the Institute of Industrial
Systems Engineers and the Society of Manufacturing
Engineers. Contact him at sshohan@ncsu.edu.

Laurie Williams is a distinguished university professor,

director of the Secure Software Supply Chain Center,
and codirector of the Secure Computing Institute at
North Carolina State University, Raleigh, NC 27695
USA. Her research interests include software security.
Williams received a Ph.D. in computer science from the
University of Utah. She is a Fellow of IEEE and a Fellow
of the Association for Computing Machinery. Contact
her at lawilli3@ncsu.edu.

d licensed ysg limited to: N.C. StathlgE%ersi% I&il?,rarie§ - Acquisitions & Discovery S. Downloaded on June 20,2024 at 20:05:34 UTC from IEEE Xmgre. E{eer ictions raﬂﬁly.

curl rivac

vém ecembel

https://www.sonatype.com/press-releases/sonatype-finds-700-average-increase-in-open-source-supply-chain-attacks
https://www.sonatype.com/press-releases/sonatype-finds-700-average-increase-in-open-source-supply-chain-attacks
https://www.sonatype.com/press-releases/sonatype-finds-700-average-increase-in-open-source-supply-chain-attacks
https://www.sonatype.com/press-releases/sonatype-finds-700-average-increase-in-open-source-supply-chain-attacks
https://owasp-scvs.gitbook.io/scvs/
https://github.com/ossf/scorecard
https://osv.dev/
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://pypi.org/simple/
https://deps.dev/
https://api.github.com/
https://snyk.io/blog/ten-git-hub-security-best-practices/
https://snyk.io/blog/ten-git-hub-security-best-practices/
https://www.legitsecurity.com/blog/github-privilege-escalation-vulnerability
https://www.legitsecurity.com/blog/github-privilege-escalation-vulnerability
mailto:nzahan@ncsu.edu
mailto:pkanaki@ncsu.edu
mailto:pkanaki@ncsu.edu
mailto:bthamble@ncsu.edu
mailto:sshohan@ncsu.edu
mailto:lawilli3@ncsu.edu

