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ABSTRACT 6 

Ghost forests consisting of dead trees adjacent to marshes are striking indicators of climate change, 7 

and marsh migration into retreating coastal forests is a primary mechanism for marsh survival in 8 

the face of global sea-level rise. Models of coastal transgression typically assume inundation of a 9 

static topography and instantaneous conversion of forest to marsh with rising seas. In contrast, 10 

here we use four decades of satellite observations to show that many low-elevation forests along 11 

the US mid-Atlantic coast have survived despite undergoing relative sea-level rise rates (RSLRR) 12 

that are among the fastest on Earth. Lateral forest retreat rates were strongly mediated by 13 

topography and seawater salinity, but not directly explained by spatial variability in RSLRR, 14 

climate, or disturbance. The elevation of coastal treelines shifted upslope at rates correlated with, 15 

but far less than, contemporary RSLRR. Together, these findings suggest a multi-decadal lag 16 

between RSLRR and land conversion that implies coastal ecosystem resistance. Predictions based 17 

on instantaneous conversion of uplands to wetlands may therefore overestimate future land 18 

conversion in ways that challenge the timing of greenhouse gas fluxes and marsh creation, but also 19 

imply that the full effects of historical sea-level rise have yet to be realized. 20 
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1. INTRODUCTION 26 

Climate-driven landscape reorganization, manifested in coastal ecosystems as the migration of 27 

marshes into adjacent uplands via sea-level rise, is affecting large sections of the global coast 28 

(Kirwan & Gedan, 2019; McDowell et al., 2022; Osland et al., 2022). This phenomenon is 29 

considered one of the major processes that will fundamentally modify the feedbacks of coastal 30 

ecosystems to global climate (Chen & Kirwan, 2022a; Smart et al., 2020; Smith & Kirwan, 2021; 31 

Valentine et al., 2023; Warnell et al., 2022) and potentially incur large socio-economic 32 

repercussions (Bhattachan et al., 2018; Kirwan & Megonigal, 2013). However, predictions of 33 

coastal ecosystem transformations remain limited by an incomplete understanding of how the 34 

impacts of relative sea-level rise rate (RSLRR) are potentially mediated by spatially variable 35 

environmental drivers. 36 

Upland forest is generally considered to be highly vulnerable to sea-level rise and saltwater 37 

intrusion (Doyle et al., 2010; Fagherazzi et al., 2019; McDowell et al., 2022). Previous estimates 38 

of coastal forest loss to sea-level rise assume that the positional change of the coastal treeline is 39 

synchronous with rising sea level (Buchanan et al., 2022; Enwright et al., 2016; Haer et al., 2013; 40 

Molino et al., 2022; Osland et al., 2022; Warnell et al., 2022). For example, recent studies based 41 

on modeled tidal datums predict that a 1.0-1.5 m mean global sea-level rise will translate into 42 

hundreds of thousands of hectares of upland forests replaced by salt marshes across the 43 

conterminous US within this century (Osland et al., 2022; Warnell et al., 2022). The resulting loss 44 

of wood production and stimulation of methane emissions contribute to a predicted net increase in 45 

the global warming potential of coastal ecosystems over large regions of the US coast (Baustian 46 

et al., 2023; Warnell et al., 2022).   47 

However, it is unclear to what extent the predicted magnitude of forest loss will be realized, as 48 

multiple lines of evidence suggest that coastal forest retreat may not be synchronized with rising 49 

seas (Chen & Kirwan, 2022b; Schieder & Kirwan, 2019), and that other factors also play a role in 50 

modulating fine-scale patterns of coastal treeline dynamics (Fagherazzi et al., 2019; Poulter et al., 51 

2009). For example, site-specific stratigraphic reconstructions over the past 2000 years suggest 52 

periods of time where upland conversion was slower (Schieder & Kirwan, 2019) or faster (Miller 53 

et al., 2021) than concurrent RSLRR. These reconstructions are consistent with field observations 54 

of mature trees that persist for decades under chronic flooding and salt stress (Field et al., 2016; 55 

Kirwan & Gedan, 2019; Poulter, Christensen, et al., 2008; Williams et al., 1999), and the paradigm 56 
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that storms are necessary to facilitate forest retreat (Fagherazzi et al., 2019). Topography, 57 

disturbance, and biotic interactions are all factors previously invoked to interpret site-scale patterns 58 

of coastal treeline dynamics in response to rising seas (Chen & Kirwan, 2022a; Field et al., 2016; 59 

McDowell et al., 2022; Molino et al., 2022; Poulter et al., 2009; Ross et al., 1994; Schieder et al., 60 

2018; Smith, 2013; Williams et al., 1998, 1999). Nonetheless, it is largely unknown how rates of 61 

coastal treeline retreat will manifest across broad spatial scales that stretch wide gradients of 62 

environmental context (e.g. salinity, disturbance, climate and tidal regime). 63 

Here we leverage extensive Landsat satellite images between 1984 and 2020 to explore 64 

landscape-scale patterns, including rates and drivers of both lateral and vertical coastal treeline 65 

retreat along the US mid-Atlantic coast (Fig. 1), a global hotspot for accelerated sea-level rise 66 

(Sallenger et al., 2012). In contrast to static inundation models that assume instantaneous coastal 67 

ecosystem shifts with sea-level rise, we find that only a fraction of upland forests (~40% within 68 

elevations of 0 and 2 m) retreated inland between 1984 and 2020. Moreover, the rate of vertical 69 

forest retreat is merely half of contemporary RSLRR, pointing to a pronounced lag between sea-70 

level rise and upland conversion that suggests surprising ecosystem resistance. 71 

  72 
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 73 

Fig. 1 | Sea-level rise along the mid-Atlantic coast of North America. a, Yellow circles indicate the locations of all 74 

tide gauges (n = 19) across the study region, where long-term information in sea level is available (1984-present). The 75 

size of the circles is proportional to the relative sea-level rise rate between 1984 and 2020. Elevation is relative to 76 

NAVD88 (mean sea level in the region). b, Regional sea-level rise trend averaged across all tide gauges in the region. 77 

Data shown as mean ± 1 standard deviation. The mean linear regression trendline is bounded by the 95% confidence 78 

interval. c, Drone image showing retreating forest in the Blackwater National Wildlife Refuge taken in 2020 (Image 79 

credit: Tyler Messerschmidt). 80 

 81 

2. METHODS 82 

2.1 Regional context 83 

We studied coastal forest migration in response to sea-level rise across the US mid-Atlantic coast 84 

(~12,000 km2; Virginia, Maryland, Delaware and New Jersey). This geophysically variable region 85 

encompasses the largest US estuary, the Chesapeake Bay, and the adjacent Delaware Bay (Fig. 1). 86 

Soil texture is relatively homogenous in the region, largely characterized as silt and silt loam 87 

(Walkinshaw et al., 2022). The region was selected because it is a known global sea-level rise 88 

hotspot (Sallenger et al., 2012), and spans strong gradients in salinity, topography, and rates of 89 

relative sea-level rise rate (RSLRR) (Table 1). Moreover, the relatively rural coast of the US mid-90 

Atlantic represents a great opportunity to observe how sea-level driven landscape reorganization 91 

proceeds across broad scales with minimal anthropogenic obstacles (Molino et al., 2022). Indeed, 92 
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massive marsh encroachment and forest mortality have been documented across the region over 93 

recent decades concurrent with increasing flooding and saltwater intrusion towards uplands 94 

(Schieder et al., 2018; Smith, 2013; White et al., 2022). 95 

To capture the full spatial extent of sea-level rise impact (Chen & Kirwan, 2022a), we included 96 

areas between 0 and 5 m above sea level (relative to NAVD88, the mean sea level in the region) 97 

(Fig. 1). The elevation range extends from permanently flooded lowlands to coastal uplands free 98 

from seawater flooding (Pekel et al., 2016). All elevation data refers to the high precision Coastal 99 

National Elevation Database (CoNED) (Danielson et al., 2018) at 1 m resolution. All sea-level rise 100 

data are observed by long-term tidal gauges (Table 1), accessed from the NOAA Center for 101 

Operational Oceanographic Products and Services (Center for Operational Oceanographic 102 

Products and Services, 2023). 103 

 104 

Table 1 | Sea-level rise in the US mid-Atlantic region.  105 

Tide Gauge Station* NOAA 
Code Geolocation Time-span RSLRR 

(mm yr-1) 
Linear regression 

statistics 
Sewells Point, VA 8638610 36.95° N, 76.33° W 1984-2020 6.30 R2 = 0.82 (P < 0.001) 
Chesapeake Bay Bridge 
Tunnel, VA 8638863 36.97° N, 76.11° W 1984-2017 5.74 R2 = 0.79 (P < 0.001) 

Kiptopeke, VA 8632200 37.17° N, 75.99° W 1984-2020 4.66 R2 = 0.74 (P < 0.001) 
Yorktown, VA 8637689 37.23° N, 76.48° W 1984-2020 6.85 R2 = 0.86 (P < 0.001) 
Wachapreague, VA 8631044 37.61° N, 75.69° W 1984-2020 5.68 R2 = 0.79 (P < 0.001) 
Dahlgren, VA 8635027 38.32° N, 77.04° W 1984-2020 6.03 R2 = 0.83 (P < 0.001) 
Lewisetta, VA 8635750 37.99° N, 76.47° W 1984-2020 6.86 R2 = 0.84 (P < 0.001) 
Solomons Island, MD 8577330 38.32° N, 76.45° W 1984-2020 5.91 R2 = 0.86 (P < 0.001) 
Washington, D.C.  8594900 38.87° N, 77.02° W 1984-2020 4.84 R2 = 0.59 (P < 0.001) 
Cambridge, MD 8571892 38.57° N, 76.06° W 1984-2020 5.10 R2 = 0.81 (P < 0.001) 
Annapolis, MD 8575512 38.98° N, 76.48° W 1984-2020 5.28 R2 = 0.76 (P < 0.001) 
Baltimore, MD 8574680 39.27° N, 76.58° W 1984-2020 4.58 R2 = 0.76 (P < 0.001) 
Tolchester Beach, MD 8573364 39.21° N, 76.25° W 1987-2020 4.97 R2 = 0.65 (P < 0.001) 
Chesapeake City, MD 8573927 39.53° N, 75.81° W 1984-2020 5.13 R2 = 0.71 (P < 0.001) 
Ocean City, MD 8570283 38.33° N, 75.09° W 1984-2020 5.95 R2 = 0.83 (P < 0.001) 
Lewes, DE 8557380 38.78° N, 75.12° W 1984-2020 5.26 R2 = 0.80 (P < 0.001) 
Reedy Point, DE 8551910 39.56° N, 75.57° W 1984-2020 4.18 R2 = 0.72 (P < 0.001) 
Cape May, NJ 8536110 38.97° N, 74.96° W 1984-2020 5.81 R2 = 0.84 (P < 0.001) 
Atlantic City, NJ 8534720 39.36° N, 74.42° W 1984-2020 5.01 R2 = 0.75 (P < 0.001) 

*All sea-level data are available at the NOAA Center for Operational Oceanographic Products and Services (Center 106 
for Operational Oceanographic Products and Services, 2023). The relative sea-level rise rate (RSLRR) is computed 107 
as the slope of linear regression between year and mean sea level.  108 

 109 

2.2 Landcover mapping 110 
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We mapped regional landcover using Landsat satellite images acquired around 1984 and 2020, 111 

and estimated lateral and vertical patterns of coastal forest retreat between 1984 and 2020 (Tables 112 

S1-S2). We did not include an intermediate time-step after taking into account the relatively slow 113 

processes of coastal forest retreat (Chen & Kirwan, 2022b; Schieder & Kirwan, 2019) combined 114 

with comparatively coarse spatial resolution of Landsat images. The extended 36-yr (1984-2020) 115 

time-span allowed us improved confidence in change detection (Chen & Kirwan, 2022a). We 116 

generated two landcover maps (one in 1984 and one in 2020 that include each of six classes: Marsh, 117 

Forest, Farmland, Urban area, Water and Sandbar, Table S1) with special focus on the marsh-118 

forest boundary using the classification algorithm we developed earlier for accurate mapping of 119 

retreating forest in coastal landscape (Chen & Kirwan, 2022b). It is worth mentioning that ‘Forest’ 120 

studied here refers specifically to upland forest (Table S1), and it does not include forested 121 

wetlands (i.e. freshwater swamps). We mapped all upland forests across our study region, which 122 

stretch from higher elevations entirely devoid of seawater inundation to low-lying, salt-intruded 123 

areas at the coastal transgression front where forest species are dominated by relatively salt-124 

tolerant evergreen trees like Loblolly pine (Pinus taeda) and red cedar (Juniperus virginiana) 125 

(Brinson et al., 1995; Kirwan et al., 2007). Both maps were created at 30 m resolution using 126 

random forest classifier in R (v. 4.1.1, packages of ‘caret’ and ‘randomForest’). A detailed 127 

description of our coastal mapping approach can be found in Chen & Kirwan (2022b). 128 

Briefly, we complemented the multispectral Landsat satellite images acquired from contrasting 129 

seasons in the year of mapping with a set of phenology metrics derived from the annual Landsat 130 

NDVI time-series for optimal differentiation between encroaching marsh and retreating forest at 131 

the upland-wetland transition (Chen & Kirwan, 2022b). For each mapping, we trained the classifier 132 

with 50% of reference sites collected earlier for different landcover types across the mid-Atlantic 133 

region (Chen & Kirwan, 2022a), and used the remaining sites for validation. All reference sites (~ 134 

30,000) were identified according to field campaign, drone images, or high-resolution aerial 135 

images acquired in 1982-1986 (for mapping in 1984) and in 2018-2020 (for mapping in 2020) 136 

(Chen & Kirwan, 2022a), and the sites were divided randomly by landcover type in the ratio of 137 

1:1 for training and validation.  138 

The resulting maps were processed further for enhanced accuracy following similar post-139 

processing steps as addressed in Chen & Kirwan (2022a). First, we assigned all areas where 140 

flooding frequency is identified by Global Surface Water dataset (1984-2020) (Pekel et al., 2016) 141 
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as greater than 95% to water. Next, areas of potential misclassification of marshes were identified 142 

and removed according to the rules of flooding frequency less than 5% and elevation greater than 143 

2.5 m (upper tidal range of mid-Atlantic (Danielson et al., 2018)). Finally, we manually digitized 144 

all areas (~5% of the study region) precluded from auto-classification due to contamination by 145 

cloud/cloud-shadow in the input Landsat images using high-resolution aerial images following the 146 

approach by Chen, Lara, et al. (2021). The final landcover maps were validated extensively across 147 

the region, which achieved an overall classification accuracy of 92.4% (Kappa coefficient = 0.91) 148 

and 94.5% (Kappa coefficient = 0.93) for the map in 1984 and 2020, respectively (Table S2). 149 

2.3 Coastal treeline and coastal forest retreat 150 

Using the landcover maps generated above, we then extracted coastal treelines in 1984 and 2020 151 

following the approach of Chen & Kirwan (2022b). Coastal treelines in this study refer specifically 152 

to the marsh-forest boundary (or in less frequent occasions where coastal forests meet seawater or 153 

sandy shores as commonly seen on barrier islands) (Chen & Kirwan, 2022a, 2022b; Schieder et 154 

al., 2018; Schieder & Kirwan, 2019), and they do not include treelines where forests border human 155 

land use like farmland or urban areas, which were removed prior to analysis. To understand the 156 

spatial distribution and temporal changes of coastal treelines along topography, we systematically 157 

sampled the elevation and slope data along all coastal treelines every 100 m (‘Generate Points 158 

Along Line’ tool in ArcGIS v10.7) from the CoNED DEM (Danielson et al., 2018) (Fig. 2). 159 

We differenced the landcover maps in 1984 and 2020 to identify areas of forest change, and 160 

then estimated rates of lateral and vertical forest retreat based on unique patterns of forest boundary 161 

change. The step by step methodology is illustrated in Fig. 2, modified from the framework in 162 

Chen & Kirwan (2022b) to quantify both lateral and vertical forest retreat. In brief, there are four 163 

patterns of forest loss depending on coastal treeline configuration: Interior loss (P1: emerging 164 

forest loss, treeline present only in 2020), Entire loss (P2: complete patch loss, treeline present 165 

only in 1984), Linear retreat (P3: parallel retreat with conjoint treelines in 1984 and 2020), and 166 

Radial retreat (P4: concentric retreat with disjoint treelines in 1984 and 2020) (Fig. 2). All areas 167 

of forest loss were converted to smoothed polygons (‘Smooth Polygon’ in ArcGIS v10.7) with the 168 

boundaries classified either as treeline in 1984 or in 2020. In general, forest losses in P1 and P2 169 

are usually small in size, collectively accounting for less than 10% of regional forest loss, with the 170 

remaining 90% areas of forest loss roughly equally represented by P3 and P4. 171 
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Next, we generated transects running through the polygons to represent paths of forest retreat 172 

(Fig. 2). For forest loss in patterns of P3 and P4, treelines are present in both years to indicate 173 

directional retreat from 1984 to 2020. For these areas, we placed points along all polygon 174 

boundaries at regular distance (100 m), from where we created perpendicular lines (‘Create 175 

Perpendicular Lines’, ArcGIS v10.7) to intersect the opposite treeline (Fig. 2). Only those 176 

connecting paired treelines were selected as a retreat path, the intersection with the treeline in 1984 177 

was determined as the start of the path, and the intersection with the treeline in 2020 was the end 178 

of the path. Unlike P3 or P4 polygons of paired treelines, the P1 and P2 polygons have a single 179 

treeline, present either in 1984 or in 2020. For each of these polygons, we generated a theoretical 180 

start (P1) or end (P2) point according to the CoNED DEM to direct the path of forest retreat. To 181 

be specific, the start point of the P1 polygon was identified as the location that has the lowest 182 

elevation within the polygon, whereas the end point of the P2 polygon referred to the location of 183 

the highest elevation within the polygon. In the same way, we generated points along boundaries 184 

of P1 and P2 polygons every 100 m, and connected these points with the start or the end point to 185 

represent directional change of forest from 1984 to 2020 (Fig. 2). 186 

Finally, we computed the length of each path to represent the magnitude of lateral forest retreat, 187 

and estimated the elevation difference between the start and the end of the path to represent the 188 

magnitude of vertical forest retreat. We then divided the magnitude of lateral/vertical forest retreat 189 

by the years between 1984 and 2020 to calculate the rate of lateral/vertical forest retreat. To allow 190 

explicit representation of forest retreat pattern across the study region, we sampled forest retreat 191 

rate every 100 m along each path across all areas of forest loss, and rasterized the results (‘Generate 192 

Tessellation’, ArcGIS v10.7) to generate regional forest retreat maps at a spatial resolution of 0.075 193 

km2 (Hexagon grid, side length of 170 m). The value of each grid is calculated as the mean of all 194 

rate samples inside the grid, and grids outside polygons are assigned to a value of 0 as they 195 

correspond to areas of no forest change (Fig. 2). 196 

 197 
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 198 

Fig. 2 | Flowchart for quantifying coastal forest retreat. The approach was modified from the framework developed 199 

in Chen & Kirwan (2022b). See Methods for detailed description of the step by step procedure. 200 

 201 

2.4 Data analysis 202 

We analyzed regional forest retreat rates using multiple linear regression models to identify key 203 

environmental drivers for the dynamic patterns of coastal forest change (Table 2). To explore 204 

whether the environmental controls differ between lateral and vertical forest retreat, we generated 205 

separate models for lateral retreat rate (m yr-1) and vertical retreat rate (mm yr-1). We fitted each 206 

model with the same set of candidate variables that includes observed RSLRR and 24 other 207 

predictors identified from literature as influential for coastal forest retreat (Table 2). Overall, these 208 

variables can be grouped into 5 broad categories: (1) climatic variables, such as precipitation, 209 

growing degree days (Chen & Kirwan, 2022a; Desantis et al., 2007; McDowell et al., 2022; White 210 

et al., 2022); (2) geophysical variables, including sea surface salinity, tidal range, and soil texture 211 

(Kirwan & Gedan, 2019; Molino et al., 2021; Schieder et al., 2018); (3) sea-level rise variables, 212 

such as RSLRR, flooding frequency (Chen & Kirwan, 2022a; Schieder & Kirwan, 2019; White & 213 
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Kaplan, 2021); (4) landscape metrics, like mean forest patch size, proximity to drainage channels 214 

(Chen, Hu, et al., 2021; Poulter, Goodall, et al., 2008; Raabe & Stumpf, 2016; Smart et al., 2020); 215 

and (5) disturbance variables, including observed storm frequency, and modeled inundation depth 216 

and duration of Hurricane Isabel (Fagherazzi et al., 2019; Ury et al., 2021; White et al., 2022). 217 

To be consistent with sea-level rise observation, all data (except for static variables) were 218 

processed to the same time-span (1984-2020) and watershed-scale (HUC10 unit) as defined by the 219 

National Hydrography Dataset Plus (McKay et al., 2019), where the variable value of a certain 220 

watershed was computed as the mean of all forested areas within the watershed. We fitted the 221 

model with all candidate variables, and eliminated unimportant, cross-dependent/correlative 222 

variables in a stepwise manner to achieve a single reduced model that contains only significant 223 

predictors for the response variable (i.e. lateral or vertical forest retreat rate). Model performance 224 

was assessed using the adjusted coefficient of determination (R2
adj), and the Pearson's correlation 225 

coefficient (r) was calculated between the response variable and the set of significant predictors 226 

retained in the final model. All statistical analyses were conducted in R (v. 4.1.1) and significance 227 

was determined at the level of p < 0.05. 228 

  229 
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Table 2 | Candidate predictors for modeling lateral and vertical forest retreat rate. The column “Reference” 230 

refers to prior literatures suggesting relationships between coastal forest retreat and the variables selected. 231 

Category Variable Description Data source Reference 

Climatic 
variables 

MAAT Mean annual air temperature (oC)  30-year normals of PRISM Climate 
Data (“PRISM Climate Group,” 
2020) 

Chen & Kirwan  
(2022a); Desantis et 
al. (2007); 
McDowell et al. 
(2022); Schuerch et 
al. (2018); White et 
al. (2022) 

Tmax Maximum air temperature (oC)  
TAP Total annual precipitation (mm) 
VPD Maximum vapor pressure deficit (hPa) 
GDD Mean annual growing degree (≥10 oC) days  

Chen & Kirwan (2022a), derived 
from annual PRISM Climate Data 
(“PRISM Climate Group,” 2020)  

ΔMAAT Change in annual air temperature (oC) from 1984 to 2020 
ΔTAP Change in annual precipitation (mm) from 1984 to 2020 
ΔGDD Change in annual growing degree days from 1984 to 2020 

Geophysical 
variables 

Elevation Elevation (meter above sea level) 
CoNED DEM (Danielson et al., 
2018)  Chen & Kirwan 

(2022a, 2022b); 
Chen & Ye (2014); 
Langston et al. 
(2017); Schieder et 
al. (2018); Smith & 
Kirwan (2021); 
Williams et al. 
(1998) 

Slope Topographical slope 
TPI Topographic position index (unitless) 
Aspect Aspect (degree) 

Salinity Sea surface salinity (psu) 

Delaware Bay (Salinity 
Climatology for the Mid-Atlantic, 
2023); Chesapeake Bay (St-Laurent 
et al., 2020) 

ST Soil texture (unitless) Soil properties (Walkinshaw et al., 
2022) 

𝑅𝑡𝑖𝑑𝑎𝑙  
Mean tide range (m), computed as the difference in height 
between mean high water and mean low water 

NOAA Tidal Datums (NOAA 
Tidal Datums, 2023) 

Sea-level 
rise variables 

FF Flooding frequency (0-100%) between 1984 and 2020 Global Surface Water Dataset 
(Pekel et al., 2016)  

Chen & Kirwan 
(2022a, 2022b); 
Fagherazzi et al. 
(2019); Schieder & 
Kirwan (2019) 

ΔFF Change in flooding frequency from 1984-1999 to 2000-
2020 

RSLRR Relative sea-level rise rate (mm yr-1) between 1984 and 
2020  

NOAA Tides & Currents (Center 
for Operational Oceanographic 
Products and Services, 2023) 

Landscape 
metrics 

PR Mean proximity to channels (m) NHDPlus Version-2 (McKay et al., 
2019), and Our landcover map in 
1984 

Poulter, Goodall, et 
al. (2008); Smart et 
al. (2020); Ury et al. 
(2021)  

MPS Mean forest patch size (m2) 

Compact Mean compactness of forest patch (unitless) 

Disturbance 
variables 

𝑆𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  Number of tropical storms between 1984 and 2020 NOAA IBTrACS Project (Knapp et 
al., 2018) 

Fagherazzi et al. 
(2019); Schieder & 
Kirwan (2019); 
White et al. (2022) 

𝑆𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦   Number of hurricanes between 1984 and 2020 
𝐻𝑑𝑒𝑝𝑡ℎ   Maximum inundation depth (m) by Hurricane Isabel Storm surge simulation by 

ADCIRC (Molino et al., 2021) 𝐻𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛   Inundation duration (h) by Hurricane Isabel 

 232 

3. RESULTS  233 

3.1 Coastal landscape reorganization 234 

We find that 1320.8 km2 of the areas between 0 and 5 m NAVD88 underwent landcover change 235 

from 1984 to 2020, mostly (733 km2) driven by human activity (e.g. deforestation), and to a lesser 236 

degree (587 km2) by sea-level rise impacts (e.g. forest transition to marsh, Fig. 3a). However, 237 

closer examination of patterns of landcover change reveals that human-induced changes largely 238 

(67.3%) occurred at elevations greater than 2 m, whereas 96% of sea-level induced changes 239 

appeared at elevations between 0-2 m elevations (Fig. 3b). Thus, we restricted all further analysis 240 

to 0-2 m above sea level. 241 

Within elevations between 0 and 2 m, sea-level rise impacts outpaced human activity as the 242 

predominant force responsible for over 70% of all coastal landcover change, expressed primarily 243 
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as forest conversion to marsh (223.6 km2) and marsh transition to water (171.9 km2), followed by 244 

farmland loss to marsh and water (50.1 km2) (Fig. 3b). In particular, sea-level driven landward 245 

marsh migration led to the creation of 257.3 km2 of new marsh, which overcompensated marsh 246 

loss at coastal margins and resulted in an overall increase of marsh area of 78.8 km2 from 1984 to 247 

2020 (Fig. 3). In contrast, 235.7 km2 of forests were deforested by rising seas from 1984 to 2020. 248 

In spite of reforestation from abandoned farmland (180.8 km2), the total area of coastal forest 249 

decreased by 88.7 km2 (Fig. 3b). 250 

 251 

 252 

Fig. 3 | Patterns of coastal landcover change in the US mid-Atlantic region from 1984 to 2020. a, Landcover 253 

change for all areas between 0 and 5 m above sea level. b, Landcover change for all areas between 0 and 2 m above 254 

sea level. Alluvial plots illustrate the direction and magnitude of changes between landcover types. Numbers given 255 

indicate the percent cover of each landcover type. 256 

 257 

3.2 Lateral forest retreat 258 

We detect that coastal forest retreat was widespread across the mid-Atlantic region (Fig. 4 and Fig. 259 

S1), with an average lateral retreat rate of 0.67 ± 0.01 m yr-1 (mean ± SE) between 0 and 2 m 260 

elevations (Fig. 4a). However, not all forested areas retreated with rising seas, and the average 261 

forest retreat rate exhibited declining trends with elevation (r = -0.70, p < 0.001, Figs. 4-5). Overall, 262 

41% of coastal forests retreated, whilst 56% of the forests remain unchanged with the remaining 263 

3% showing treeline advance (primarily in the Virginia Coastal Reserve due to natural barrier 264 
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island rollover (Deaton et al., 2017)) (Fig. 4c). The proportion of retreating forest decreased rapidly 265 

from ~70% at elevations below 0.3 m above sea level to ~10% at elevations of 1.9-2.0 m (Fig. 4c). 266 

Accordingly, lateral forest retreat rates declined from a maximal rate of 1.93 ± 0.09 m yr-1 at 267 

elevations of 0.2-0.3 m to 0.12 ± 0.01 m yr-1 at elevations of 1.9-2.0 m. 268 

To explore the linkage between spatially-variable lateral forest retreat rate and relative sea-269 

level rise rates (RSLRR, n = 19) observed in local watersheds, we averaged the spatially-explicit 270 

map (Fig. 4a) by watershed to generate a watershed-scale forest retreat map (Fig. 4b). Interestingly, 271 

we do not detect a statistical relationship between lateral forest retreat rate and RSLRR (p = 0.88, 272 

Fig. 4d). The lack of correlation is confirmed by our multiple linear regression model (R2
adj = 0.69, 273 

p < 0.001, Fig. 6a), suggesting that lateral forest retreat rate is strongly and positively influenced 274 

by sea surface salinity (p < 0.01), and negatively influenced by elevation (p < 0.05) and 275 

topographical slope (p < 0.05). Whereas salinity emerges as the most influential variable 276 

responsible for 38.5% of the variance, topography – the combination of elevation and slope – 277 

accounts for the majority of overall variance (55.2%) in lateral forest retreat (Fig. 6a).  278 

 279 

 280 

Fig. 4 | Lateral forest retreat from 1984 to 2020 across the mid-Atlantic region. a, Spatially-explicit map of lateral 281 

forest retreat rate (resolution 0.075 km2). Positive values refer to forest retreat, and negative values represent forest 282 

advance. The white box outlines the Blackwater National Wildlife Refuge, highlighted in Fig. 5. b, Watershed-scale 283 

lateral forest retreat rate (HUC10 units, NHDPlus (McKay et al., 2019)). White circles refer to relative sea-level rise 284 

rate (RSLRR) recorded by long-term tide gauges in the region. c, Histogram showing patterns of coastal forest 285 

dynamics along elevation. d, No statistical relationship between lateral forest retreat and RSLRR. Data shown as mean 286 

± 1 standard deviation.   287 
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 288 

Fig. 5 | Regional subset highlighting dynamic patterns of coastal forest retreat in the Blackwater National 289 

Wildlife Refuge. High-resolution (~1.0 m) aerial photographs in 1984 (a) and 2020 (b) demonstrate variable patterns 290 

of landward marsh migration and coastal treeline retreat along gradients in elevation (c) and slope (d). The landcover 291 

maps in 1984 (e) and 2020 (f) were used to create the spatially-explicit maps of lateral (g) and vertical (h) forest retreat 292 

rate. The elevation and slope data refer to the CoNED DEM (Danielson et al., 2018).  293 

  294 
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 295 

Fig. 6 | Multiple linear regression models for patterns of coastal forest retreat. Factors responsible for spatially-296 

variable patterns of horizontal forest retreat rate (a) and vertical forest retreat rate (b). The mean linear regression 297 

trendline is bounded by the 95% confidence interval. The inserted pie charts present the relative contribution of each 298 

variable retained in the model to overall variance, where variables in red represent positive correlation with the 299 

response variable and variables in blue suggest negative correlation. RSLRR is short for relative sea-level rise rate, 300 

and salinity refers to sea surface salinity.  301 

 302 

3.3 Vertical forest retreat 303 

Whilst lateral forest retreat is conceptually simple, the rate is heavily influenced by terrain 304 

attributes (Figs. 4-6). To better isolate the influence of sea level on coastal forest retreat, we then 305 

created maps of vertical forest retreat (i.e. the upward migration of forest along elevation) between 306 

1984 and 2020 (Fig. 7). Similar to patterns of lateral forest retreat, vertical forest retreat rates 307 

varied widely across the mid-Atlantic region (Fig. 7a), and declined with increasing elevation (r = 308 

-0.48, p < 0.05). Our multiple linear regression model suggests that RSLRR is the overriding 309 

variable (R2
adj = 0.58, p < 0.01) responsible for 43.1% of the variance in vertical forest retreat (Fig. 310 

6b). Although slope (r = -0.51, p < 0.05) and salinity (r = 0.46, p < 0.05) remain significant controls 311 

shaping the observed patterns of vertical forest retreat, they are secondary to RSLRR, explaining 312 

21.6% and 13.3% of the variance, respectively (Fig. 6b). 313 

Concurrent with rising sea level, the average elevation of the coastal treeline shifted upslope 314 

from 0.60 ± 0.01 m (n = 443,145) above sea level in 1984 to 0.69 ± 0.01 m (n = 468,502) above 315 

sea level in 2020 (Fig. 7c). Notably, the estimated regional mean vertical forest retreat rate of 2.71 316 

± 0.003 mm yr-1 (averaged across all forested areas between 0-2 m elevations, Fig. 7a) is less than 317 
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the regional RSLRR of 5.48 ± 0.17 mm yr-1 (n = 19, Table 1). The deficit between forest retreat 318 

and sea-level rise is reaffirmed by the watershed-scale results (Fig. 7b). We find that although the 319 

rate of vertical forest retreat is strongly and positively correlated with RSLRR (r = 0.55, p < 0.05), 320 

the vertical forest retreat rate is merely 48.5 ± 2.6% (n = 19, range of 34.6-76.4%) of RSLRR (Fig. 321 

7d). For instance, as RSLRR increased from 4.2 mm yr-1 in New Castle, Delaware to 6.9 mm yr-1 322 

in Yorktown, Virginia, the corresponding vertical forest retreat rate increased from only 2.2 mm 323 

yr-1 to 3.8 mm yr-1 (Fig. 7b).  324 

 325 

 326 

Fig. 7 | Vertical forest retreat from 1984 to 2020 across the mid-Atlantic region. a, Spatially-explicit map of 327 

vertical forest retreat rate (resolution 0.075 km2). White box outlines the Blackwater National Wildlife Refuge, 328 

highlighted in Fig. 5. b, Watershed-scale vertical forest retreat rate (HUC10 units, NHDPlus (McKay et al., 2019)). 329 

White circles refer to relative sea-level rise rate (RSLRR) recoded by long-term tide gauges in the region. c, Elevation 330 

of coastal treeline shifted upslope from 1984 to 2020. The inserted panel shows the boxplot of coastal treeline 331 

elevations, where the left and right edges of the box respectively correspond to the first and third quartiles, the center 332 

line refers to the median, the white point corresponds to the mean, and the whiskers represent data within 1.5× the 333 

interquartile range. d, Strong positive correlation between vertical forest retreat rate and RSLRR. The dotted 1 to 1 334 

line indicates where vertical forest retreat rate equals RSLRR. The mean linear regression trendline (solid line) is 335 

bounded by the 95% confidence interval. Data shown as mean ± 1 standard deviation.  336 

 337 

4. DISCUSSION 338 

4.1 Patterns and drivers of coastal forest retreat 339 
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Sea-level rise caused massive forest loss along the mid-Atlantic coast from 1984 to 2020. Notably, 340 

landward forest retreat appeared up to 10 km away from the coastline, facilitated by interconnected 341 

drainage networks. This finding complements earlier observations in coastal North Carolina 342 

(Poulter, Goodall, et al., 2008; Smart et al., 2020; Ury et al., 2021) and the Gulf of Mexico (Raabe 343 

& Stumpf, 2016), suggesting that legacy wetland management practices may serve as effective 344 

corridors for interior salinization. Nonetheless, the very condition detrimental to forest survival is 345 

conducive to inland marsh migration, which outpaced seaward marsh loss and led to an expansion 346 

of regional marsh area by 2%. Topographic and anthropogenic barriers are well known to limit 347 

marsh migration (Enwright et al., 2016; Molino et al., 2022). Interestingly, we found that with sea-348 

level rise from 1984 to 2020, the slope at the marsh-forest boundary increased from 0.8 to 1.1, 349 

indicating that forests are retreating into progressively higher topographic slopes, which may slow 350 

marsh transgression in the future. 351 

In spite of widespread forest loss over past decades, not all forests retreated with rising seas. 352 

In fact, only ~40% of coastal forests migrated inland between elevations of 0-2 m. Notably, stable 353 

treelines commonly occur in steeply sloped areas even at elevations in which treelines would have 354 

otherwise retreated. While it is intuitive that a gentle slope is favorable to forest migration in the 355 

lateral dimension (Chen & Kirwan, 2022a; Kirwan et al., 2016; Schieder et al., 2018; Smith, 2013), 356 

previous site-based measurements suggest contrasting relationships between topographical slope 357 

and vertical forest retreat (Fagherazzi et al., 2019; Field et al., 2016; Wasson et al., 2013). By 358 

synthesizing data across broad spatial scales, we show that both lateral and vertical forest retreat 359 

are strongly, negatively correlated with slope, highlighting steep terrain as a key asset in mediating 360 

sea-level rise impacts on adjacent uplands.  361 

We argue that steep slopes may favor forest persistence in several ways. Aside from posing 362 

direct physical obstacles for marsh encroachment (Kirwan et al., 2016; Smith, 2013), steeper 363 

slopes generally increase the drainage area for forests downslope (Hawthorne & Miniat, 2018). 364 

Thus, forests abutting steep slopes likely receive freshwater subsidies to temper saltwater 365 

intrusion. Moreover, steep slopes minimize the distance that tree roots must extend in the landward 366 

direction to reach freshwater (Messerschmidt et al., 2021). Finally, increasing slopes also tend to 367 

shorten the duration of tidal flooding and enhance soil drainage (Hussein & Rabenhorst, 2001a, 368 

2001b), which lessens salinization and waterlogging conditions. 369 
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Previous work suggests that increases in salinity and/or soil saturation are the primary drivers 370 

of coastal forest mortality although their effects are difficult to distinguish (McDowell et al., 2022; 371 

Smith & Kirwan, 2021). Both hypoxia and salinity are hypothesized to drive similar mechanisms 372 

of plant mortality, resulting in hydraulic failure and carbon starvation (Krauss & Duberstein, 2010; 373 

McDowell et al., 2022). The range of lateral forest retreat rates that we observed across watersheds 374 

of the mid-Atlantic coast offers empirical support to both hypotheses (Fig. 6), and it also indicates 375 

that coastal topography may interact with these processes (hypoxia, salinization) to dynamically 376 

modify the impacts of sea-level rise on coastal forest survivorship. 377 

Interestingly, we find no relationship between rates of forest retreat and patterns of climate 378 

change or disturbance (i.e. storms), both of which are known to influence tree growth and mortality 379 

(Chen & Kirwan, 2022a; McDowell et al., 2022; Ury et al., 2021). Prior dendrochronological 380 

analyses on common coastal forest species (Juniperus virginiana) suggest that progressive 381 

increases in sea level suppress the impacts of climate, while strengthening the impact of tidal 382 

flooding on forest growth (Hall et al., 2022). This phenomenon potentially explains why patterns 383 

of forest retreat are not directly linked to climate, even though a warmer and wetter climate boosts 384 

forest biomass at higher elevations (Chen & Kirwan, 2022a). Similarly, although disturbance has 385 

long been regarded as important in shaping forest retreat (Fagherazzi et al., 2019; Schieder & 386 

Kirwan, 2019; Ury et al., 2021), we find no correlations between spatially-variable forest retreat 387 

and the magnitude or duration of Hurricane Isabel, the largest storm to influence the mid-Atlantic 388 

coast since the 1950s. We suspect that stochastic processes like storms may be essential in 389 

explaining coastal forest dynamics at relatively short, local scales (Walters et al., 2021), but the 390 

impacts may average out over long, broad scales – a pattern also seen in the process of barrier 391 

island retreat (Mariotti & Hein, 2022). 392 

4.2 Lags with sea-level rise 393 

Vertical forest retreat is strongly correlated with sea-level rise, yet the rate of vertical forest retreat 394 

is merely 35%-76% of RSLRR (Fig. 7). This result, derived from multiple decades of modern 395 

satellite observation, is supported by paleoecological evidence from sediment cores in the region, 396 

which estimated that the magnitude of vertical forest retreat (~2 m) was approximately 60%-80% 397 

that of regional sea-level rise (~2.5-3.5 m) over past millennia (Schieder & Kirwan, 2019). Both 398 

forest retreat rates and RSLRR are accelerating in the mid-Atlantic region (Chen & Kirwan, 2022b; 399 
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Ezer & Corlett, 2012; Schieder & Kirwan, 2019). However, the average vertical forest retreat rate 400 

we observed between 1984 and 2020 (2.7 mm yr-1) most closely resembles the average RSLRR 401 

recorded between 1930-1950 (2.0-3.0 mm yr-1) (Ezer & Corlett, 2012), implying that regional 402 

forest retreat lags behind sea-level rise by roughly half of a century. With the ever-growing power 403 

of Earth observation satellite, future studies that utilize higher spatial/temporal resolution images 404 

may help identify the precise lag and potential nonlinearities in the lag effects. 405 

We hypothesize that a suite of internal and external mechanisms may be involved that buffer 406 

upland forests from the otherwise acute impacts of sea-level rise. For instance, greenhouse 407 

experiments reveal that tree species commonly found in coastal uplands (e.g. Pinus taeda, P. 408 

serotina) possess physiological traits allowing them to tolerate a range of flooding and low salinity 409 

conditions (Poulter, Christensen, et al., 2008; Williams et al., 1998). Recent study also indicates 410 

that coastal forests can actively adapt to rising seas through morphological plasticity, as reflected 411 

by the distribution of tree roots preferentially towards freshwater sources upslope (Messerschmidt 412 

et al., 2021). Moreover, forested wetlands in other regions accrete vertically through the 413 

accumulation of mineral sediment and organic matter (Craft, 2012; Noe et al., 2016), which may 414 

be amplified in our region by the expansion of Phragmites australis into transitioning forests 415 

(Langston et al., 2021). 416 

Although forests intruded by seawater generally display reduced tree height and basal area as 417 

compared to intact forests (Krauss et al., 2009; Smith & Kirwan, 2021), remote-sensing 418 

observations and repeated field surveys suggest that many salt-intruded forests did not show 419 

biomass loss over time (Chen & Kirwan, 2022a; White & Kaplan, 2021) and some even exhibited 420 

heightened growth vigor due to enhanced light availability near forest margin (Field et al., 2016). 421 

Other factors, such as biotic interactions encouraging seedling survival (Poulter et al., 2009), the 422 

effects of marsh migration on reducing saltwater intrusion landwards (Guimond & Michael, 2021), 423 

and the capacity of coastal forests to rapidly regenerate and resprout under variable salt stress 424 

(Walters et al., 2021; Williams et al., 1998) may confer additional strength for forest persistence. 425 

Thus, although upland forests may ultimately succumb to wetlands under excessive tidal flooding, 426 

the complete transition may take years to decades to fully realize. 427 

Our finding of a lagged response between sea-level rise and forest retreat mirrors findings in 428 

an array of terrestrial and coastal ecosystems, where sizable spatiotemporal misalignment exists 429 

between ecosystem transition and climatic forcing (Rastetter et al., 2021). For instance, the upward 430 
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shifts of forest fronts in many Arctic and high-mountain regions demonstrate decadal to centennial 431 

timescale lags with climate warming (Alexander et al., 2018; Chapin & Starfield, 1997; Rastetter 432 

et al., 2021). In coastal barrier islands, the rate of barrier retreat is out of equilibrium with 433 

contemporary sea-level rise rate, but rather reflects baseline rates of past centuries (Mariotti & 434 

Hein, 2022). Similarly, marsh accretion rates lag behind accelerating sea-level rise by around 20-435 

30 years (Kirwan & Temmerman, 2009), and marshes may persist for decades to centuries even 436 

after threshold RSLRR’s are exceeded (Törnqvist et al., 2021).  437 

Our observations of multi-decadal lags between sea-level rise and coastal forest retreat are 438 

therefore consistent with observations from a variety of earth systems responding to various facets 439 

of climate change. Numerical models of marshes, barrier islands, and terrestrial forests typically 440 

include physiological or geomorphic processes that allow ecosystems to persist under climate 441 

change until certain thresholds are surpassed (Dial et al., 2022; Kirwan & Temmerman, 2009; 442 

Mariotti & Hein, 2022). Yet, models of sea-level driven ecosystem migration are in their infancy, 443 

and typically assume that marshes migrate into adjacent uplands as soon as tidal inundation occurs 444 

(Enwright et al., 2016; Molino et al., 2022; Osland et al., 2022; Warnell et al., 2022). Incorporating 445 

newly emerging processes into numerical models are critical to predictions of coastal vulnerability 446 

and feedbacks with climate (Ward et al., 2020). In the meantime, our finding of a multi-decadal 447 

lag suggests that existing predictions based on static inundation may overestimate land conversion 448 

(Kirwan & Gedan, 2019; Osland et al., 2022), greenhouse gas emissions (Warnell et al., 2022), 449 

and marsh formation (Schuerch et al., 2018) during a given time period, but also suggests that the 450 

effects of historical sea-level rise have yet to be fully realized.   451 
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