A UNIQUENESS THEOREM FOR ASYMPTOTICALLY
CYLINDRICAL SHRINKING RICCI SOLITONS

BRETT KOTSCHWAR & LU WANG

Abstract

We prove that a shrinking gradient Ricci soliton which agrees to
infinite order at spatial infinity with one of the standard cylinders
Sk x R"* for k > 2 along some end must be isometric to the
cylinder on that end. When the underlying manifold is complete,
it must be globally isometric either to the cylinder or (when k =
n — 1) to its Za-quotient.

1. Introduction

A shrinking Ricci soliton is a Riemannian manifold (M, g) for which
(1.1) 2Re(g) + Lxg =g

for some smooth vector field X on M. The soliton is gradient if X = V f
for some f € C°°(M). When a shrinking soliton is complete and of
bounded curvature, it is always possible to find f such that X — Vf
is Killing [45, 47|, and so, for most applications, there is no loss of
generality in considering only gradient shrinking solitons. (By contrast,
there are expanding Ricci solitons of bounded geometry which are non-
gradient in an essential way: see, e.g., [1, 36].) Below, we will assume
that all shrinking solitons (or, simply, shrinkers) are gradient and are
normalized to satisfy the equations

(1.2) Re(g) +VVf =5, R+[VfP =",
on M. The contracted second Bianchi identity implies that
V(R+|Vf?=f)=0

whenever the first equation is satisfied, so it is always possible to achieve
the normalization in the second equation by adding a constant to f on
each connected component of M.
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We will use either (M, g, X) or (M, g, f) to denote a soliton structure,
depending on our emphasis. When there is no ambiguity about which
particular structure is meant, we will refer to (M, g), or simply M, as
“the” soliton.

Shrinking solitons are of some intrinsic geometric interest both as
generalizations of positive Einstein manifolds and as models in the the-
ory of smooth metric measure spaces. We are interested here in their
connection to the Ricci flow

(1.3) %g = —2Re(g),

where they correspond to shrinking self-similar solutions: generalized
fixed points of the equation which move only under the natural actions
of Ry and Diff (M) on the space of metrics. When (M, g) is complete,
the vector field V f is complete [55] and the system

{ % =—iVie¢
¢-1 =1d

may be solved to obtain a family of diffeomorphisms ¢y : M — M
defined for t € (—00,0). The family of rescaled pull-backs g(t) = —t¢fg
of the original metric then solve (1.3) on M x (—o0,0).

The study of shrinking solitons is central to the analysis of the sin-
gular behavior of solutions to the Ricci flow. Solutions which develop
a singularity at a finite time T are expected “generically” to satisfy a
so-called Type-I curvature bound sup s o) (7" —t)| Rm| < oo. From

the work of Hamilton [25], Perelman [47], Sesum [50], Naber [45], and
Enders, Miiller (Buzano), and Topping [20], it is now known that, about
any point in the high-curvature region of such a Type-I singular solution,
one can extract a sequence of blow-ups converging to a complete non-
trivial shrinking gradient Ricci soliton. In this sense, shrinkers represent
potential models for the geometry of a solution in the neighborhood of a
developing singularity. It is a fundamental problem to understand what
possible forms these model geometries may take.

1.1. The classification problem for shrinking Ricci solitons.
Shrinking solitons are completely classified in dimensions two and three.
In dimension two, Hamilton [24] proved that the only complete shrinkers
are the flat plane R? with the Gaussian soliton structure and the stan-
dard round metrics on S? and RP2. (Alternative proofs that compact
2-D shrinkers have constant positive curvature were later given in [14]
and [11]; the latter, being independent of the Uniformization Theo-
rem, can be used with the convergence results in [13, 24| to show that
the Ricci flow uniformizes compact surfaces.) In three dimensions, the
combined results of Hamilton [25], Ivey [28], Perelman [47], Ni-Wallach
[46], and Cao-Chen-Zhu [6] show that the only complete shrinkers are
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the Gaussian soliton on R? and finite quotients of the round sphere S?
and standard round cylinder S? x R.

These classifications are made possible by some additional a priori
structure peculiar to two and three dimensions: in dimension two, ori-
entable gradient solitons are necessarily rotationally symmetric (the ro-
tation of the potential vector field V f by the complex structure is a
Killing vector field) and in dimension three, complete shrinkers are nec-
essarily of nonnegative sectional curvature (on account of the Hamilton-
Ivey estimate [25, 28]). In higher dimensions, the class of shrinkers—
which includes all Einstein manifolds with positive scalar curvature—is
simply too large to expect an exhaustive classification.

The three-dimensional classification has nevertheless been extended
to a variety of restricted classes. For example, the work of Cao-Wang-
Zhang [8], Eminenti-LaNave-Mantegazza [19], Ferndndez-Lépez and
Garcia-Ri0[23], Munteanu-Sesum [38], Ni-Wallach [46], Petersen-Wylie
[49], and Zhang [56], has shown that the only complete shrinkers with
vanishing (even harmonic) Weyl tensor are either the Gaussian soliton
R” or finite quotients of S™ or S”~! x R. Other results in this direc-
tion include the classification of four-dimensional half-conformally flat
shrinking solitons due to X.-X. Chen and Y. Wang [12], later general-
ized by H.-D. Cao and Q. Chen [5] to shrinkers with vanishing Bach
tensor in all higher dimensions.

Some classifications have also been established for shrinkers satisfy-
ing additional curvature positivity conditions. By a theorem of B.-L.
Chen [10] (cf. [17]), every complete shrinker must at least have non-
negative scalar curvature, however, beginning in dimension four, there
are examples that have Ricci curvatures of mixed sign [22]. As a corol-
lary of the work of B6hm-Wilking [2], Brendle [3], and Brendle-Schoen
[4], it is known that any compact shrinker whose curvature operator
is 2-positive or which satisfies the so-called PIC1 condition must be a
quotient of the round sphere. In four dimensions, X. Li, L. Ni, and K.
Wang [34] have shown recently that a complete gradient shrinker with
positive isotropic curvature must be a quotient of the standard sphere
S* or standard cylinder S? x R. In another direction, Munteanu and
J. Wang [44] (generalizing results of Perelman [48] and Naber [45] in
dimensions three and four) have shown that any complete shrinker with
positive sectional curvature must be compact.

The body of literature on shrinking Ricci solitons is too large to
adequately summarize here, and our discussion has left out many im-
portant recent results. As entry points to further related work, we refer
the reader to [7], [9], [26], [27], [35], [39], and the references therein.

1.2. Complete noncompact shrinking solitons. Given the formal
similarity of (1.2) to the condition of nonnegative Ricci curvature, the
geometry of a noncompact shrinker near infinity might be expected to
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be comparatively inflexible, constrained by strong and opposing ten-
dencies toward incompleteness and reducibility. A growing body of
evidence now appears to support this heuristic, and to suggest that
the structural possibilities for the asymptotic geometry of a complete
noncompact shrinker may indeed be few.

Every nontrivial complete noncompact shrinking soliton currently
known either splits locally as a product or has a single end smoothly
asymptotic to a cone. So far, examples of the latter type are scarce.
The construction of Feldman-Ilmanen-Knopf [22] produces a family of
complete U(n)-invariant asymptotically conical Kahler shrinkers on the
tautological line bundle of CP"~! with Ricci curvatures of mixed sign.
This construction was later generalized by Dancer-Wang [18] and Yang
[54] to line bundles over products of Kahler-Einstein metrics with pos-
itive scalar curvature. These examples, too, have quadratic curvature
decay and a single asymptotically conical end.

In four dimensions, it is conjectured that any complete shrinker must
fit one of the two above descriptions, at least asymptotically. The recent
work of Munteanu-Wang [41, 42, 43] allows for a neat phrasing of this
proposed dichotomy in terms of the scalar curvature. On one hand, in
[41, 42], Munteanu and Wang show that if the scalar curvature tends
to zero at spatial infinity, then every end of (M*, g) must be smoothly
asymptotic to a cone. On the other hand, in [43], they show that if the
scalar curvature is bounded below by a positive constant, then either
every end of (M*, g) is smoothly asymptotic to a quotient of S* x R, or,
for any sequence of points x; going to infinity along an integral curve of
Vf, the sequence of pointed manifolds (M?, g, x;) will subconverge in
the smooth Cheeger-Gromov sense to a quotient of S? x R2. (See also
[16] for a general splitting criterion for limits of pointed sequences of
shrinkers.) When (M?*, g) is Kiihler and the scalar curvature is bounded,
it is proven in [43] that these are the only two alternatives for the scalar
curvature.

What connects this proposed dichotomy to a potential classification
of complete noncompact four-dimensional solitons — and what moti-
vates the present paper — is a question of uniqueness of interest in all
dimensions: to what extent is a shrinker determined by its asymptotic
geometry?

The authors have previously addressed this question for conical as-
ymptotic geometries. In [32], it is shown that if two shrinkers are C2-
asymptotic to the same cone on some ends of each, then the shrinkers
must themselves be isometric to each other near infinity on those ends.
This is an analog of a theorem of the second author for asymptotically
conical self-shrinkers to the mean curvature flow [51], and it reduces the
classification of asymptotically conical shrinking solitons to that of the
potential asymptotic cones.
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At present, there are few restrictions known to hold on the cones
which admit an asymptotic shrinker. Lott-Wilson [37] have shown that
there are at least no formal obstructions to the existence of a shrinker
or an expander asymptotic to any regular cone, and it is a consequence
of the uniqueness result in [32] that any isometry of the cone must
correspond to an isometry of the shrinker. The first author has also
shown in [31] that if the cone is K&hler the shrinker must also be Kéahler.

In this paper, we revisit the above question of uniqueness in the case
of asymptotically cylindrical geometries.

1.3. Asymptotically cylindrical shrinking Ricci solitons. Let us
establish the notation we need to state our main result. For each k > 2,
we will write C¥ = S¥ x R"* and let
N 2|2k
where § is the round metric on S* of constant sectional curvature 1 and
g is the Euclidean metric on R %, We will call the soliton structure
(C*, gk, fr) the standard cylinder; the constants in the definitions for gy
and fj have been chosen so that the normalizations in (1.2) are met.
For each r > 0, let Cf denote the end of the cylinder given by
Cr =

T

Sk x (R**\ B,(0)) 2<k<n-—1,
Sl x (r,0) k=mn-—1.

More generally, by an end of a Riemannian manifold (M, g), we will
mean an unbounded connected component of the complement of a com-
pact set in M.

The following definition makes precise the sense in which we mean
that a metric “agrees to infinite order” with the cylinder at infinity.

Definition 1.1. Let r > 0. We will say that (CF,§) is strongly
asymptotic to (C*, gi) if, for all I, m > 0,

l m) (=
(1.4) sup (121195 @ = 91)l (6, 2)) < oo.

We will say that (M, §) is strongly asymptotic to (C¥, g;) along the end
V C (M, §) if there exists r > 0 and a diffeomorphism W : C¥ — V such
that (C.,U*g) is strongly asymptotic to (C*, gi).

The main result of this paper is the following local uniqueness result.

Theorem 1.2. Suppose (M, §, f) is a shrinking gradient Ricci soliton
for which (M, §) is strongly asymptotic to (C*,gi) along the end V C
(M, §) for some k > 2. Then (V,gly) is isometric to (C¥, gi|cr) for
some r > 0. '
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The local nature of the statement should be kept in mind when eval-
uating the strength of the hypothesis of infinite order decay. Only the
geometry of the shrinker near infinity on the end V is involved, and
(M, §) is required neither to be complete nor to satisfy any a priori re-
striction on the number of its topological ends. In this generality, there
are heuristic reasons to believe the infinite order decay of g — g may
actually be necessary. The theorem is an analog of an earlier result of
the second author [52] for the mean curvature flow, which shows that
an embedded self-shrinker which is asymptotic of infinite order to one
of the standard cylinders must actually coincide with the cylinder. In
this case, the assumption of infinite order decay is known to be effec-
tively optimal- the paper [52] includes the construction of a family of
self-shrinkers on S"~! x (a,00) < R"*! which are not themselves ro-
tationally symmetric but which nevertheless decay to the cylinder at
arbitrarily high fixed polynomial rates.

When the underlying manifold (M, §) is complete, however, one ex-
pects to be able to say more; in this case, Theorem 1.2 implies that
(M, §) must be globally isometric to a quotient of (C*, g.).

Corollary 1.3. Suppose that, in addition to the assumptions in The-
orem 1.2, the manifold (M,§) is complete. Then, either (M,§) is iso-
metric to (C¥,gr), or k =n—1 and (M, §) is isometric to the quotient
(€1, gn1)/T where T = {Id,~} and v(0,2) = (-0, —=z).

The techniques of this paper are rather specialized to address the local
problem of uniqueness in Theorem 1.2. We expect that when (M, §) is
complete, it should be possible to weaken (or eliminate entirely) the
assumption on the rate of convergence to the cylinder. In fact, even
here we haven’t fully optimized the formulation of condition (1.4), nor
do we really require its full strength to obtain the conclusion of Theorem
1.2. For example, using an interpolation argument, it isn’t hard to see
that a metric § on C” is strongly asymptotic to (C¥, gy) provided only
that

(15) Sukp |Z|l‘(§ - gk)|gk (072) < 09, Sukp |V§T)(§ - gk)‘gk(eaz) < o0,
Ck Ck

for all [ > 0 and m > 1. An inspection of the proof shows, moreover,
that our argument actually only requires that the pull-back of the metric
g satisfy (1.5) for m less than some universal constant my.

1.4. Overview of the proof. As in [32], [52], our basic strategy is to
use the correspondence between shrinkers and self-similar solutions to
transform Theorem 1.2 into an equivalent problem of parabolic unique
continuation for solutions to the Ricci flow, which we ultimately treat
with the method of Carleman inequalities. However, the resulting prob-
lem of unique continuation we face here — for a nonlinear, weakly par-
abolic system at the singular time — is more complicated than those
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addressed in either [32] or [52]. (In [32], by contrast, the problem is
fundamentally nonsingular since the solutions extend smoothly to the
terminal time slice— in that case, the end of the common asymptotic
cone. In [52], the problem, though singular in a similar way, reduces
to the analysis of a solution to scalar parabolic inequality.) Our imple-
mentation of this strategy involves a number of new ingredients needed
to overcome obstacles not present in these related problems. We sum-
marize the major steps in our proof now.

For the remainder of this section, we will assume that k > 2 is fixed
and write simply C = C*, C, = CF, g = gy, and f = f, using |- | = |- |,
and V =V, to denote the norms and connections induced by g and
its Levi-Civita connection on tensor bundles over C.

1.4.1. Normalizing the soliton structure. It is sufficient to prove
Theorem 1.2 in the case that § and f are actually defined on Cr, for
some 19 > 0, that is, when (C,,,g) is strongly asymptotic to (C,g).
Taking this as our starting point, our first concern is to put the entire
soliton structure (Cy,, g, f) into a canonical form. The hypotheses of
Theorem 1.2 only explicitly constrain the asymptotic behavior of g,
and, by themselves, do not even guarantee that the difference of X and
X =V f tends to zero at infinity. N

In Proposition 2.2, we first show that we can arrange for X — X to
vanish to infinite order at infinity by pulling back g and X by an appro-
priate translation on the Euclidean factor. We then show in Theorem
2.5 that it is possible to construct a further injective diffeomorphism
¢ :C,, — Cp for some ri > 19 such that ®*X = X and for which
(Cry, @*g) is still strongly asymptotic to (C,g). To ensure the latter
property requires that we construct ® with some care. We postpone
the details of this construction (which are independent of the rest of the
paper) to Appendix A.

1.4.2. Reducing to a problem of backward uniqueness. Having
reduced Theorem 1.2 to the case that X and X coincide on C,, for some
r1 > 0, our next step is to recast it as a problem of parabolic unique con-
tinuation for solutions to the Ricci flow. The family of diffeomorphisms
U:Cp x(0,1] — Cpy given by V-(0,2) = (0, z//T) solve

ov 1
7:—7XO\1/7 \Ijlzld,

or T
and (since X = Vf = v f ), we may use them to construct from ¢ and
g smooth self-similar families of metrics

9(r) =797g, g(r) =7Y79 = (2(k = 1)79) © g,
which solve the backward Ricci flow

(1.6) gi = 2Re(g)
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on Cy, for 7 € (0,1]. The normalizations we have performed to this
point ensure that the difference h(7) = (g — g)(7) = 7¥%(h(1)) of these
solutions is itself self-similar. This will be critical to us in Section 7.
Moreover, since (C,,,g) is strongly asymptotic to (C,g), the tensor h
will vanish to infinite order as |z| — oo and 7 N\, 0 in the sense that

21
sup b—‘lyv<m>h|(9,z,r) < 00
Cryx(0,1] T
for all [, m > 0. Here and below, we write |- | = |- |4, and V = V-

(in fact, the connection V,(;y of the evolving cylinder is independent of
time).

To prove Theorem 1.2, then, it is enough to show that h(79) = 0 on C,
for some 79 and r > 0. For, if so, g(1) — g(1) = h(1) = TO_I(\I/;OI)*h(To)
vanishes on C,» for 1’ = r/,/7, and it follows from a continuation argu-
ment that § and g are isometric on C,,. We give this parabolic restate-
ment in Theorem 3.2 and verify that it indeed implies Theorem 1.2 at

the end of Section 3.

1.4.3. Prolonging the system. To prove Theorem 3.2, we must first
address the lack of strict parabolicity of equation (1.3). The degeneracy
of the equation, a consequence of its diffeomorphism invariance, is not
rectifiable here by the use of DeTurck’s trick as it is in the problem of
forward uniqueness of solutions to the Ricci flow: the diffeomorphisms
needed to pass to a problem of backward uniqueness for the strictly par-
abolic Ricci-DeTurck flow are naturally solutions to a ill-posed terminal-
value problem for a harmonic map-type heat flow. See, e.g., [30] for a
discussion of these and related issues.

To work around the degeneracy of (1.3), we instead employ a device
used by the first author in [30] which encodes the vanishing of A in
terms of the vanishing of solutions to a prolonged “PDE-ODE” system
of differential inequalities. The implementation of this device, however,
is rather more involved than in [30] and [32] since the system used in
these references turns out to be slightly too coarse to track by itself
the blow-up which here occurs anisotropically at the singular time. We
instead make use of two prolonged systems: a “basic” system which, on
account of its relative simplicity, we use to frame and prove the backward
uniqueness theorem which implies the vanishing of h, and a “refined”
system whose higher granularity allows us to track the blow-up rate of
individual components of VRmn.

The basic system is equivalent to those considered in [30, 32|, and
consists of the families of sections

X = VRm = VRm — VRm, Y = (h, Vh,VVh),
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of X = TGIC, and Y = TZ0¢,, ¢ TGO, ¢ THOC,,, respectively.
These sections satisfy a system of inequalities of the form

B B
(D +8)X| < Z[X| + BIY|, |DY| < B(X| + VX)) + ~[Y],

for some constant B on C,, x (0,1]. Here, Rm = Rm(g(7)), Rm =
Rm(j(7)), V = Vi), and A = Ay, and D indicates a derivative
taken relative to evolving g¢(7)-orthogonal frames. We describe this
system in greater detail and derive the above equations in Section 4.

However, our basic system is inadequate for what is perhaps the most
important step in the proof of Theorem 3.2: to parlay the infinite order
decay that we assume on h and its derivatives (and hence on X and
Y) into an exponential-quadratic rate of decay for X and Y (and hence
on h and its derivatives). The Carleman estimate (6.7) we use for this
purpose cannot directly absorb the coefficient of 7= which appears on
the right side of the equation for X.

In Section 5, we will replace the parabolic component X of our basic
system with a more elaborate choice W = (WY W ... W?) in an
attempt to address this issue. The components W consist of collections
of components of VRm (relative to the g-orthogonal splitting TM =
TS* @ TR™*) rescaled by powers of 7 which together satisfy a system
of the form

(1.7) |(D- + A) W] < Br(|W|+[Y])+ B> 7% |W/|

j<t
for some nonnegative constants 3, vj, and B. The strict triangular
structure of the singular terms in (1.7) allows us to absorb the un-

bounded coefficients on the right side of the equation for any W* using
appropriately weighted applications of the inequalities for 7/ < i.

1.4.4. Promoting the rate of decay to exponential. The Carle-
man inequalities (7.9) and (7.10) we ultimately use to prove the vanish-
ing of X and Y involve a weight which, for large |z| and small 7, grows
on the order of exp(C|z|?°/7°) for some & € (0,1). In order to apply
these inequalities, we first need to verify that X and Y decay rapidly
enough to be integrable against this weight. To this end, in Theorem
5.1 (proven in Section 6) we show that there are constants Ny, N1 > 0
such that

1 Ner2
/0 /,4 (IX[? + |[VX|? + [Y]?) e dpig(ry dr < Ny
r,27

for all sufficiently large r. Here A, 2, = C, \Cigr This argument, in-
cluding the derivation of the system (1.7) above, is perhaps the most
delicate in the paper.
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We establish the decay of W and Y inductively, using the Carle-
man inequality (6.7) in tandem with (6.8) and (6.9) to obtain up-
per bounds of the form CL™r~2™m! of successively higher order on
the weighted L?norms of W and Y on S* x B,(z) for small r and
20 € Cp,. These estimates involve a weight approximately of the form
T M exp(—|z — 20|2/(47)) localized about zp. Since the components of
W are merely rescaled components of ﬁf{\rﬁ, the estimates on W di-
rectly yield corresponding estimates for X, which can be summed and
rescaled to obtain the asserted rate of exponential decay. The main in-
equality (6.7), analogous to one established by the second author in [52],
is ultimately modeled on the inequality proven in [21] for an application
to solutions to linear parabolic inequalities on Euclidean half-spaces.

1.4.5. Establishing the vanishing of X and Y. In Section 7, we
return to an analysis of the basic system. Knowing now that X and
Y decay at an at-least exponential-quadratic rate, we use Carleman
inequalities analogous to those in [30] and [52] to show that they must
vanish identically. This part of the argument is modeled closely on the
corresponding argument in [52], with some modifications to handle the
ODE component Y, and it is here that we make essential use of the
self-similarity of A (and hence of X and Y). The Carleman inequalities
needed here and above in the proof of the exponential decay of X and
Y are proven in Section 8.

Acknowledgment. The authors wish to thank Ben Chow, Ovidiu
Munteanu, Lei Ni, and Jiaping Wang for their interest, encouragement,
and valuable suggestions. They also wish to thank the anonymous ref-
erees for their many helpful recommendations.

2. Normalizing the soliton

Let us now fix 1 < k < n once and for all, and, for the rest of the
paper, continue to write simply C = C* = S¥ x R"* and C, = C¥. For
a, b, r > 0, we define

_ = [ Sk x0B.(0) k<n-1,
Aa,b—ca\cba S’f‘_{ Sn_1><{7“} k=mn—1.
We will also continue to use
2
. _ z k
g=oc= -V @7, 10.2)= 02 =+ L
to denote the metric and potential of the normalized cylindrical soliton
structure on C and to use the unadorned notation

=11 V=V,

for the norms and connections induced by g and its Levi-Civita connec-
tion on the tensor bundles T®™9C.
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Frequently, we will use spherical coordinates on the Euclidean factor
R" % to identify C, with S¥ x S"™*~1 x (a,00) via (6,2) — (0,0,7),
where o = z/|z| and r = |z].

2.1. Some preliminary estimates. To prove Theorem 1.2, it suffices
to consider the situation that M = V = C,, for some r9 > 0 and
(Cry, §) is strongly asymptotic to (C, g). We first record some elementary
consequences of (1.4) for the soliton metric g.

Lemma 2.1. Suppose that (CTO,Q,f) 1s a shrinking Ricci soliton
where
(2.1) sup 3|V (5 — g)| < 00
70
form =0,1,2. Then there are r1 > rg and ko, Ko > 0 such that

1 B ~ - -
(2.2) 29=9<29, IV < Ko(r+1), [Vf]<Ko(r+1),
and
1o _7_1 2
(2.3) —r* < f < =(r+ko)",
8 4
on Cy,.

Quadratic bounds for the potential with sharp coefficient 1/4 have
been established for general complete shrinking solitons by Cao-Zhou
[7] (see also [26]). The weaker bounds for f in (2.3) (which we must
verify from scratch, given the incompleteness of C,,) will be sufficient
for our purposes, however.

Proof. 1t follows directly from (2.1) that we can arrange for (1/2)g <
g < 2g and R > k/4 to hold on C, by choosing a > ry large enough.
The identity R+ \6 f |3 = f then implies that we will have f > k/4 and
\Vf|2 < 2\%f|§ < 2f on the same set. Integrating along along integral
curves of % we then see that

T
@a) PO - Pesa <[9P <o
a
for all (0,0) € Sk x S*=F=1. In particular, IVFl < 2|Vf| < 4(r + K)
on C, for some K depending on supe, f. This proves the the last two
inequalities in (2.2) provided r; > a.
Next, using the soliton equation, we have
V,‘ij = V,‘ij — 6Z€J]E — Ri]‘ + %

~ _ - 1
= (T = T§)Vif — (Rij — Rij) + 5Gij — 9ij) — Rij +

9ij
2
= A5 Vif + Sij — Rij + %,
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where Afj and S;; are polynomials in g1, 71, and V(g — g) for
m < 2. So, using (2.1) and that |V f| < 4(r + K), we have

1 K _&f 1 K

2.5 S A A

(2.5) 2 r2_8r2_2+7‘2’
for some possibly larger K. Integrating both inequalities in (2.5) along
integral curves of % starting at points in S,, we obtain

r ~ 0 r

- —K' < — V< -+ K’

2 _<vf’8r>_2+ ’
for some K’ > 0 depending on a. Hence

2 2 2
r a = r r
——K'r—— < f(0 < — —
4 r 4 = f( , 0, T’) — 4 4
for any rq > a and some K " depending on a. Here we have used (2.4)
to estimate f(6,0,71). Choosing then r; > a large enough to ensure
that the left side is larger than 72/8 on C,,, and then choosing kg large
enough depending on 71 to bound the right side by (r+kq)?/4, we obtain
(2.3). q.e.d.

[

+K'r+f(0,0,71) < —+K'r+(r1+K")?,

2.2. Correcting the vector field by a translation. Our next step
is motivated by the observation that the assumption that (C,,,g) is
strongly asymptotic to (C,g) — even with the implicit normalizations in
(1.2) — does not uniquely determine the vector field v f in the soliton
structure (Cp,, 7, v f ). In general, the difference v f—Vf need not tend
to zero as |z| — oo, much less decay to infinite order.
For example, the soliton structure (C, g, f,,) with the potential
2

Fao(0,2) = ’24‘20' +
satisfies (1.2) for any zg € R"* (and (Co,g
asymptotic to itself), but the difference

|

~—

is, of course, strongly

n—k’ia

is constant. At the same time, the two soliton structures here can
be made to agree by pulling back one by a suitable translation of the
Euclidean factor.

We show next that a similar adjustment can be made in general: by
pulling back g and f by an appropriate translation of R % we can
arrange for V.f — Vf to decay to infinite order at infinity. Since the
translation is an isometry of g, the pullback of g will still be strongly
asymptotic to g on some neighborhood of infinity of the end.
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Proposition 2.2. Let p > 2 and suppose that (Cro,g,f) satisfies
(1.2) and

(2.6) sup rl|V(m) (g—9) < o0
o

for alll > 0 and m < p. Then there is a constant vector field V' tangent
to the R % factor such that

r 0

2.7 Vf=-—+V+E
(2.7) Vi=55 tV+E,
where E satisfies

(2.8) sup 7! |V E| < oo

70

foralll>0and 0 <m <p-1.

Proof. Let X = Vf = %% and X = %f From (1.2), we compute
that
VX7 =V, X7+ (T7, - T ) X*
= ViX7 + (¢/FRix — 7" Rir) + (1)), — T X,
Using (2.6) and that |X| < Ko(r+1) from Lemma 2.1, we thus see that
W = X — X satisfies
sup 7 | VMW < 0o
0
forall/>0and 1 <m <p-—1.

Fix any ¢ = (6,2) € C,,, and let {F,;}I"; be any orthonormal basis
for T;C. Extend this basis by parallel transport to a frame {F,;(r)}"
along the radial line v,(r) = (0,72/|z|). For any |z| <11 <7y, and any
[ >0, we have

T2

[(W, Fgi) (Yq(r2)) — (W, Fyi) ((r1))] < / VW |(7q(r)) dr

(2.9) o
M,
for some M, and it follows that, for each i = 1,2,...n, we have
. . _ )
T (W, Fy) (4(1) = Vi(g) < o0
for some numbers V?(g). Define
V(g) = V'(q)Fqi € TyC,

and suppose we repeat this process starting from another orthonormal
basis {Fy;}7 . Then F,;(r) = AlF, ;(r) for some fixed orthogonal
transformation A, and

Vi(g) = lim (W, Ey) (3(r) = (AT)iV (q),
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so the limit V' (¢q) = V(¢) depends only on ¢. Taking such a limit at each
g thus defines a (rough) vector field on C,,.

By construction, for all # and ¢ and all g < r; < ro, the value of
V (0, 0,79) will coincide with that of the parallel transport of V' (6, 0,71)
along the radial line connecting (0, 0,71) and (6,0, r3).

We claim that V' is actually parallel. To see this, fix any (6,0) and
(0,6) in S¥ x S""*=1 and any r; > ro. For r > rq, consider the points
¢ = (0,0,7), G = (0,6,r) € S,. Let a: [0,1] = S¥ x S"*~1 be any
smooth path with a(0) = (0,6) and «(1) = (5,6). Then, for r > rq,
define the curve A, : [0,1] — S, C C by A(s) = (a(s),r) € S, for
r > r1. Note that the speed of A, will be bounded by Cy(r+ 1) for some
Cy depending on a.

For each r > ry and s € [0,1], Let P : T;,C — T (5C denote
parallel translation along A\,. We claim that P..1(V(gr,)) = V().
For this, observe first that the vector field W above is bounded on
account of the decay of [VW/|, and, by the definition of V" and equation
(2.9), we have

M,
(2.10) V-wl<F

for each [ for some constant M;. Hence,

P (V@) = W@ = V(ar) - Wig)?
=2 [ (D W), PraV(an)) = WO (5) ds
< |V(Q7’) - W(Qr)‘g

1
L 2Co(r+ 1) /0 WV ()] + W (An(s))]) ds
Cq
< 22

r
for some C independent of r. So, using (2.10) again, we see that

N C
(211) PalVig) - V@) < 2.
for some Cs independent of r. But, by the structure of the cylindrical
metric and the fact that V is parallel along radial lines,

1P (V(gr)) = V(@) = |Pra(V(gr) = V().
Consequently, sending r — oo in (2.11), we obtain that P..1(V (g, )) =
V()

Fixing 0 = ¢ and r > 7y, and applying this conclusion for arbitrary
6, 0 € S¥, we see that each of the vector fields V(-,0,r) are parallel

relative to the round metric on S¥. Since k > 2, these vector fields must
be trivial and thus V is tangent to the R** factor.
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Now we argue that V' = V (o, ), regarded as a vector field on R %\
B,,(0), is parallel. We already know that V is invariant under paral-
lel translation along any path in which either the r-coordinate or o-
coordinate is fixed, and therefore is also invariant along the concatena-
tion of such paths. Since R"7¥\ B, (0) has trivial local holonomy it
follows that V is parallel and represented by a constant vector on R"~%,

q.e.d.

2.3. Aligning the vector fields. The previous proposition suggests
the following refinement of our notion of asymptotic cylindricity which
incorporates the vector field as well as the metric.

Definition 2.3. We will say that (Cy,, g, X) is strongly asymptotic
to (C,g,X) as a soliton if

(212)  swp sl (VG g)] + [VO(X - X)) < o0
Cro

for alll, m > 0.
We may then restate Proposition 2.2 as follows.

Proposition 2.4. Suppose (C,,, g, ﬁf) 1s a gradient shrinking soliton
for which (Cy,,g) is strongly asymptotic to (C,g). Then there is r1 > 19
and a translation 7, (0, z) = (0,2 — z0) such that (Cr,, 7} g, 72, (VS)) is
strongly asymptotic to (C, g,V f) as a soliton.

_ Proof. Let X = %f and X = V f. By Proposition 2.2, we may write
X = X +V + E where V is a constant vector field tangent to the R~ %
factor and F satisfies

sup || |V E| (0, 2) < 0o

Cro
for all [, m > 0.

Let us write the components of V as V' = zé /2, and define the
translation map 7, : C — C by 75,(0,2) = (6,2 — zp). Provided r >
ro + |20/, we will have 7,,(Cr,) C 72,(Cr, ). Since 7, is an isometry of g,
the restriction of 7 g to C;; will continue to be strongly asymptotic to
g, but we will now have in addition that

TEX(0,2) = X(0,2 — 20) + V + E(0, 2 — 20) = X(0,2) + E(9, 2),
where E(6,z) = E(6,z — z) satisfies
sup |z['[VIE| (0, z) < oo

Cry

for all I, m > 0. q.e.d.

In fact, after adjusting metric and potential by a further diffeomor-
phism, we can arrange for the gradient vector field of (Cy,, g, f) to co-
incide with the vector field of the standard cylindrical structure.
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Theorem 2.5. Suppose (Cro,g,%f) is strongly asymptotic to the
cylinder (Cry, 9,V f) as a soliton. Then there is r1 > 1o and an in-
jective local diffeomorphism ® : C., — C,, for which Car, C ®(C;,),
(Cry, @*q) is strongly asymptotic to (C,g), and

r 0

(2.13) (V) =Vf=5-

on Cy, .

The construction of the map @ is straightforward but somewhat tech-
nical and also conceptually independent of the rest of the paper. We
postpone it until Appendix A.

3. Reduction to a problem of parabolic unique continuation

Now, we recast Theorem 1.2 as a problem of uniqueness for the back-
ward Ricci flow, by converting the cylinder and the unknown soliton into
their shrinking self-similar counterparts. The reduction in the previous
section will allow us to assume that both solutions are flowing relative
to a family of diffeomorphisms generated by the same vector field and
thus that their difference is also self-similar.

Proposition 3.1. Write X = Vf and suppose that (Cyr,,g,X) is
strongly asymptotic to (Cr,,g9,X) as a soliton. Let ¥ : Cr, x (0,1] — Cp,
be the map V(0,z,7) = (0,2/+/7) and put ¥, = VU(-,-,7). Then

g(r) =7V =2k -D7g) &7, g(r) =779,
solve (1.6) on Cry x (0,1], and h(1) = (g — g)(7) = TVEh(1) satisfies
(3.1) sup @|V(m) R(T)| () < 00
Cro x(0,1] Tl g(1) 9(7)
for each I, m > 0.

Proof. The map VU satisfies

(3.2) ‘%’(e,z,f) _ —%(X o T)(0,2,7), U0,z 1) =(0,2),

and it is a standard calculation (see, e.g., [14]) that g(7) = 7¥%g and
g(1) = 7VU%g solve (1.6) . Equation (3.1) follows then by scaling: fixing
I, m > 0, we have

21 o m) _ A o 2\ _ Mim
T|vg(r)h(7)|g(7)(9’zvﬂ - AT |vg(1)h(1)|g(1) 9, \ﬁ < e
on C, for some constant M, ,, by our assumption on h. q.e.d.

Going forward, we will write simply

g= f](T), g = 9(7—)7 h = h(T)7 | ’ | = | ’ ‘9(7')’ V= vg(T)'
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3.1. A reformulation of Theorem 1.2. Our parabolic restatement
of Theorem 1.2 asserts that any shrinking self-similar solution to the
backward Ricci flow which is flowing along the cylindrical vector field
and agrees to infinite order with the shrinking cylinder near spatial
infinity and 7 = 0 in the sense of (3.1) must coincide with the shrinking
cylinder.

Theorem 3.2. Suppose §(7) = 7Vig(1) is a self-similar solution to
(1.3) on Cy, x (0,1] for some ro >0, where ¥ : Cp, x (0,1] = Cp, is the
map V. (0,2) = (0,z/\/T), and g = g(7) = 2(k — 1)79) ®© g. If, for all
[, m >0, there exist constants M, > 0 such that h = g — g satisfies

[
(3.3) sup  — |V h| < M),
Crox(0,1] T

then h =0 on C,, x (0,79] for some r1 > 19 and 0 < 79 < 1.

In fact, g(7) and g(7) will be isometric on all of C,, x (0,1]. We will
prove Theorem 3.2 in Section 7 once we have the necessary ingredients
in place. For now, we note that it indeed implies Theorem 1.2 and show
how to derive Corollary 1.3 from Theorem 1.2.

Proof of Theorem 1.2 assuming Theorem 3.2. Let (M,g, f) be a shrink-
ing Ricci soliton for which (M, §) is strongly asymptotic to (C,g) along
the end V C (M ,g). Then, for some rg > 0, there is a diffeomorphism
¢ : Cr, — V such that (C,,,¢*g) is strongly asymptotic to (C,g). By
Proposition 2.4, there is 71 > 7y and an injective local diffeomorphism
¢ : Cr, — Cy, such that (Cry, (po)*g, (po ¢)*Vf) is strongly asymp-
totic to (C, g, Vf) as a soliton structure. Finally, by Theorem 2.5, there
is ro > 71 and an injective local diffeomorphism @ : C,, — C,, such that
(Cryy (potp o ®)*g, Vf) is strongly asymptotic to (C, g,V f).

Write g = (¢ o1 o ®)*g. Using Proposition 3.1, we can construct a
self-similar solution g(7) = 7¥,§(1) on C,, x (0,1] from § = g(1) and
V f for which h = § — g satisfies

21
sup ’—lyv“”)h\ < 00
Crox(0,1] T
for all [, m > 0.

By Theorem 3.2, h = 0 on C,, X (0, 7] for some 79 > 0 and r3 > ra.
Fixing any a € (0,79, we then have g(a) = a¥:g(l) = a¥lg(l) =
g(a) on Cpyy, 50 G = (potho®)*g = g on Cr, where r4 = r3/4/a.
However, as Ricci solitons, both § and g are real-analytic relative to
atlases consisting of their own geodesic normal coordinate charts [29],
and the isometry between them on C,, can be extended to an isometry
on C,, by continuation along paths. So g and g are in fact isometric on
Cr,. Similarly, ¢*§ and g are isometric on C,,, and (V, g) is isometric to

(Cro»9)- q.e.d.
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Proof of Corollary 1.3. Suppose now that (M, §) is complete. By The-
orem 1.2, (V, §) is isometric to (Cy,,g) for some 9 > 0. Then the lift
(M',g") of (M,§) to the universal cover M’ of M is complete, real-
analytic, and isometric to (C,g) on an open set. Since C and M’ are
simply connected, it follows that (M’, ¢’) is globally isometric to (C, g).
So (M, §) must be a quotient of (C, g) by a discrete subgroup T of isome-
tries acting freely and properly on C.

To identify this quotient, let 7 : C — M be the covering map, and
consider V' = 7= %(V). By [53], the fundamental group of M is finite,
so 7 is proper, and we may write V/ as the disjoint union of finitely
many connected components V/, i = 1,2,...,N. Each V/ is itself an
end of (C, g), and, since V' is open and simply connected, the restriction
of 7 to any V/ is a diffeomorphism.

When 2 < k < n — 1, we must have N = 1 since (C, g) is connected
at infinity. Thus m : C — M is a diffeomorphism and T' = {Id} in
this case. When k£ = n — 1, (C,g) has two ends, and we must have
N < 2 and [I'| < 2. Any isometry v of (C,g) must take the form
v(0,r) = (F(8),G(r)), and, if v € I', we know that both F and G
have order no more than two. For G this means that G(r) = r or
G(r) = —r+c for some c. If G(r) = r, then either v = Id or F'(0) = —0.
However, the latter is impossible since no end of RP"~! x R is isometric
to S"~1 x (a,0) for any a. If instead G(r) = —r + ¢ for some ¢, then
fixes S*~1 x {¢/2}. This forces F to have the form F(#) = —#, if v is not
to fix any points. Thus, when k = n — 1, either I' = {Id} or I' = {Id, v}
where v(6,r) = (=60, —r + ¢) is a reflection on both factors. q.e.d.

4. The basic system

Next we transform Theorem 3.2 into a problem that we can treat
with Carleman inequalities. Following the method used in [30], we will
first define a simple prolonged “PDE-ODE” system whose components
satisfy a coupled system of mixed parabolic and ordinary differential
inequalities amenable to the application of inequalities (7.9) and (7.10)
in Section 7.

4.1. The setting. First we need to establish some notation. Here, as
before, g(7) = (2(k — 1)7g) @ g will represent the normalized shrinking
cylindrical solution to (1.6) on C x (0,00). We will use g = g(7) and
V = V() as the reference metric and connection in our computations,
and write 7 |- | = | - |4(;), suppressing 7.

Since the structural properties of the system we will describe are
independent of the self-similarity of g, we will assume in this section
(except within the context of the last assertion in Proposition 4.1) only
that § = g(7) is a solution to the backward Ricci flow (1.6) on Cy, x (0, 1]
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for which h = g — g satisfies

‘Z|2l
4.1 —
(4.1) sup ~—

70

VB0, 2,7) < 0

for all [, m > 0.
It will be convenient to introduce the operator

0

acting on families of (k,!) tensors V = V(7), where

q aiaz---a; _ ¢q a1a2...a; q a1a2...a; . q ai1az...aj
Ap(v)ble---bk - (5b1 ‘/pbg...bk + 6b2‘/b1p...bk + + (5bk ‘/;)1172...])

B T (A O A e
Here Rl = ¢""R,,. (We have two metrics lurking in the background, so
to avoid confusion, we will only implicitly raise and lower indices with
the metric g, and explicitly include any instances of § and §~'.) When
{ei(7)}~, is a smooth family of local orthonormal frames evolving so as
to remain orthonormal relative to g(7), the components of D,V express
the total derivatives

0
aiag...a; __ " % %
DTVblbg...bk =9, (V(ebl,eb2, ey Bl €y Cay e e ,eal)) .

In particular, D,g = 0.

4.2. Definition of the system. Now consider the bundles
x =100(0), y=19C)e T ()T (),

over C equipped with the smooth families of metrics and connections
induced by g. Let X and Y be the family of sections of X and Y over
Cr, % (0,1] defined by

(42) X =VRm =VRm—VRm, Y = (Yy,Y1,Y2) = (h, Vh, VVh).

The system (X,Y) is equivalent to that considered in [30], [32]. The
components of Y are chosen to ensure that, together, X and Y satisfy
a closed system of differential inequalities.

Proposition 4.1. Let X and Y denote the sections of X and Y
defined above. There is a constant B > 0 such that

B
[(D- + A)X| < —[X[ + B[Y],
(4.3) T B
DY | < B(X| +|VX]) + —[Y],

on Cry x (0,1], and, for each I, m >0, constants M, such that

21
(4.4) sup 12

Coox(0a] TH (|V(m)X| + |V(m)Y|) < M.
0 )
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Moreover, when h(t) = 7V%(h(1)) as in Theorem 3.2, X and Y are
self-similar in the sense that

(4.5) X(r) = 7Vr(X(1)), Y(r)=7V(Y(1)).

The decay (4.4) and self-similarity (4.5) of X and Y follow from the
corresponding properties of h, and the observation that the components
of X and Y scale the same as h. The verification of (4.3) is close to
that of Lemma 3.1 in [32]; see Proposition 4.4 below. We include some
of the computations on which it relies since we will need them in any
case when we modify this system in the next section.

4.2.1. Evolution equations. Here and below we will use V * W to
denote linear combinations of contractions of V @ W or V @ W for
any tensors V and W identified with V and W via the isomorphisms
TC — T*C and T*C — TC induced by g. The coefficients in these linear
combinations are understood to be bounded by dimensional constants.

We will first recall standard formulas for the difference of the Levi-
Civita connections and curvature tensors of different metrics.

Lemma 4.2. Let g, g be any two metrics and h = g — g. Then

(4.6) 77— g7 = =3¢ hay = 5" b,
(4.7) Vig? =—g' gJ Vihay = 5~ % Vh,
(4.8) Rm — Rm = VVA + ! % (Vh)? + Rm xh,

where Rm and Rm denote the (4,0) curvature tensors of g and §.
In addition,

(4.9) VV —VV =G '« Vh«V,

(410) AV — AV = 9*2 * Vh*VV 4§73 % (Vh)??xV
24« VVh*V+§ txhxVVV,

for any tensor V of rank at least 1.

Proof. We only prove (4.8). Writing, temporarily,

~ 1 5
Al =T, =T, = §glp (Vihgp + Vihjp — Vphi)

and
Bjkl = gmlAﬂ: = 5 (V hkl + vkhjl Vlh‘jk) )
we have
Ry — Ry, = VAT, — VAR + AL A — AL AT

ijk
=g" (V Bjkp V; szp) g"g mr(v hrsBJkp thrsBikp)
+ qm(Ap ipqg AikBjPQ)'
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So the difference of the (4, 0)-tensors satisfies

Rijri — Rijrt = Gum (R, — Rijk) + Rijghim
= ViBjk — V;Bii — §"(VilisBjkp — Vjhis Bikp)
+ A?]CBipl — Akajpl + Rg‘bkhlm-
=VVh+§ ' (Vh)?+Rmxh

as claimed. q.e.d.

Now (referring to, e.g., Section 6.1 of [14]), we recall the evolution
equations

O ~ o S O
and
9 -\ - 5 3 5 N
9 + A ) Riji = —2(Bijii — Bijik + Binji — Bijk)
+ g% (Rip[%qjkl + RjpRighi + Rip Rijqu + RlpRijkq> ;
where

Biji = —§""§% RyijqRokis-
Combining these equations with a bit of further computation, we arrive
at the following equation for the evolution of VRm.

Lemma 4.3. If g satisfies (1.6), then
<687 + A) 6aRijkl =\ (Bijkl - Bz‘jlk + Bikjl = Biljk)
+2g"" g% <Riqap%rstkl + RjgapVrRiski + RigapVirRijal
+ quap%rf%ijks>
+g" <Rap6q—éijkl + Ripﬁaéqjkl + RjpVaRign + Rkpeaéiqu
n Rlﬁamjkq> .

Note that, according to our normalization, the curvature tensor of
the cylindrical metric g satisfies
k
2(k —1)72°
The first assertion in Proposition 4.1 is now a consequence of the decay

assumption (4.1), Lemma 4.2, and the following schematic evolution
equations.

|Rm |* =
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Proposition 4.4. The tensors h and VRm satisfy

(411)  D;h=gG '« VVh+§ 2% (Vh)?+ g« Rm*h + Rm *h,

(412) D.Vh=§ '« VRm+ § 2%« Vh*VVh+§ 3« (Vh)?
‘ +§72 « Rm*h * Vh + Rm*Vh,
D,VVh=g§2+«Vh+VRm+§ '+ VVRm
+ G 3% VYV« (Vh)? + 574« (VR)* + 572 % (VVh)?

(4.13)
+ Q*S * Rm *h * (Vh)2 + §72 * Rm*h * VVh
+ 32« Rm*(Vh)2 + § 2« Rm *VVh + Rm xVVh,
and
(D; +A)VBRm =§ '« VORm « h+ §~' * VVRm * Vh
+§ 2% VRm * (Vh)? + 3! % VRm * VVh
(4.14) g (Vh)"+3

—i—g*Q*(%—Rm)*%ﬁrﬁ—kgﬂ*h*fim*%ﬁ\rﬁ
+§_2*Rm*%l/%;1.

Proof. For (4.11), we have

D-hij = 2Rij — R}Gp; — RGip = 2(Rij — Rij) — Rihy; — Rih

= 20" (Ripgj — Ripqs) — 29" 9" Ripgjhrs — R hy; — Ri‘)him

which yields the desired expression after applying (4.8) to the first term

on the right. Equations (4.12) and (4.13) follow similarly, using that the

Levi-Civita connection V of the cylindrical metric is time-independent.
For (4.14), observe that, by Lemma 4.3,

(DT + A) %aéijkl = -2V, (Bz‘jkl - Bz‘jlk + Bikjl - Bz‘ljk:)
+2g"" g% (Riqapﬁrf%sjkl + quapﬁréiskl + quaperéijsl
+ RigapV e Rijis) + (37 Rap — ROV Riju + (37 Rip — RY)VaRgju
+ (37" Rjp — RY)VaRign + (3" Rip — R VaRijq
+ (g Ryp — RV o Rijig-
The desired expression then follows from (4.10) and the observation that

the terms on the left on the first two lines are all of the schematic form
372« Rm * VRm. q.e.d.
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5. Exponential decay and a refined system

In order to apply the Carleman inequalities in Section 7 which imply
the vanishing of X and Y, we need to know that these sections decay
near spatial infinity and 7 = 0 at at least an exponential rate. The goal
of the next two sections will be to prove the following local estimate,
which establishes this uniform exponential decay on regions of fixed size.

Below, we will write

D, () = S* x B, (%)
for r > 0 and zy € R" ¥, and use the shorthand dm = dipg(ry dT.

Theorem 5.1. There exist positive constants Ny, N1 depending only
onn, k, ro and finitely many of the constants M, from (4.1) such that

1
(5.1) / / (X2 + VX + [Y?) e dm < N,
0 D1(z0)

for any 2o € R" %\ Bg,,(0).

In Proposition 7.2 we will use the self-similarity of X and Y to deduce
an estimate on the space-time vanishing rate of the sections from (5.1).
However, the self-similarity of X and Y will not be used in the proof of
Theorem 5.1 or elsewhere in the the next two sections.

As discussed in the introduction, it does not seem possible here to
deduce the exponential decay of X and Y from a direct application of
our Carleman estimates (Theorems 6.2 and 6.3 below) to the system
(4.3) since these estimates cannot absorb the coefficients of X on the
right side of (4.3) which blow up at a rate proportional to 1/7. However,
this obstacle is really only an artifact of the coarse way in which we have
so far estimated the reaction terms in the evolution equation for VRm
in (4.3).

We will now analyze the algebraic structure of these terms more care-
fully and introduce a replacement for X in which the components of
VRm relative to the splitting of T'C are grouped and rescaled according
to their own individual rates of decay. We will define this replacement
in Proposition 5.8 once the preliminary calculations are out of the way.
Though involved, the computations in this section are guided by a fairly
simple underlying strategy. See Section 5.2.1 for a short explanation.
We summarize the properties of the resulting “refined” system we will
need in Proposition 5.9 at the end of the section.

5.1. Notational conventions. We will not make use the self-similarity
of g in the computations below, so for the rest of this section, g = g(7)
will simply represent a smooth solution to the backward Ricci flow (1.6)
satisfying (4.1) on Cy, x (0,1]. We will continue to use g = g(7) to rep-
resent the normalized shrinking cylindrical solution on C x (0, 1].
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Let H and K denote the subbundles of TC with fibers Hg ) =
T(p..)(S* x {z}) and K gy = T(p..)({0} x R**), and let P : TC — H

and P : TC — K denote the corresponding g-orthogonal projections
onto these subbundles. The projections P and P are smooth, globally

defined families of (1, 1)-tensor fields on C x (0, 1] satisfying
P?=pP, P*=P, P+P=Idre, g(P,P)=0,

and 9 5
VP=VP=0, ——P=_—-P=D,P=D,P=0.

or or
Using P and P, we can track the components of any tensor relative to
the splitting TC = H @ K. We will use a notational system of underlined
and barred indices to distinguish these components. Underlined indices
will denote components acting on directions tangent to the spherical
factor and barred indices will denote components acting on directions

tangent to the Euclidean factor. Thus, for example, we will write

Ry = RijPyP), Ry = RijP,P), Ray = Ri;PyF], Ry = RijF,F).

An unadorned index will represent an unmodified component, e.g.,
Ry = Ry PL.

We emphasize that each of the above expressions represent globally-
defined tensor fields and that the underlined and barred indices denote
modifications to the tensor field, not the expression of the components
of the tensor relative to a particular local frame.

In general, we will not need to pay careful attention to the algebraic
structure of terms that are quadratic or better in factors of h and its
derivatives, and it will be convenient to have an economical notation for

tensors with rapid space-time decay whose precise form we can safely
ignore.

Notation 5.2. The ezpression o(oo) will denote various families of
tensor fields V- = V(1) that vanish to infinite order in space and time
in the sense that

|Z’2l
sup | — ) IVI[(0,2,7) < o0
Crgx(0,1] \ T

for all1 > 0. Here |-|=]-|y7) as before.

Finally, we will also use a repeated index to denote a contraction with
the metric g, and write out explicitly any contraction with g.

5.2. The gradient of the scalar curvature. We begin our analysis
by examining the evolution of the differential of the scalar curvature.
In this and the calculations that follow, we will focus our attention on
the structure of the linearization of the reaction terms based at the
cylindrical solution g.
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Proposition 5.3. The differential VR of the scalar curvature of g
satisfies
(5.2) [(Dy+A)T2V,R| < |o(00)|(|h]+|Vh|+|VRe|)+2vn — kr|V, Ry
on Cyp, x (0,1].

Proof. From the standard formula

0
A = -2
<8T + > |Rc|

P ~ . ~ . . .
<aT 1 A) VR = —4G757V s Ryp Rys + 71 RapV o R,

we have

and then
(DT + A) VaR = —457157V o Ryr Rgs + (37" Rap — 9P Rap)V .
Using (4.1) and (4.10), and the fact that R;; = (1/27’)]%, where Pw =
gjkP = gij, we may rewrite this as
(D; + A) V4R = AV,R — AV, R — 45795V 4 Ry Rys
+ (§" Rap — 9" Rap) V4R
= 0(00) * (b + Vh + VRc) — 4V Ry Rpy
— 0(c0) * (h + Vh + VRc) — iv RpPrq
and, using our indexing convention, again as
(Ds + A)Valt = o(o0) % (h + VA + VRe) — %%GRPE
= 0(00) * (h+ Vh + VRc) — %%aépp + %%aéﬁp
(5.3) = 0(00) * (h + Vh + VRe) — %%R + %%aéﬁﬁ.
Here, to obtain the second line in the above computation, we used that
%aRpp = gpq%a}?pq = (g7 - f]pq)%aépq + VR = o(00) * VRe + Val.

We then multiply VR by 72 so that an application of D, will pick off
the second term on the right in (5.3). This yields equation (5.2). q.e.d.

5.2.1. A remark on the strategy. Above, in the computation lead-
ing to (5.3), we have traded the singular term proportional to %af%pp
for a singular term proportional to 6#;’,1313, exchanging a tensor with
two underlined indices for one with two barred indices. Although we
have not eliminated the singular coefficient, we have reassigned it from
a primarily spherical component of VRe to a primarily Euclidean one.
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The computations for VRe and VRm that follow are essentially just
more elaborate versions of this “under-for-over” chhangg, aimeMd | at
rearranging appropriately rescaled components of VR, VRe¢, and VRm
into a system whose singular part has a strictly triangular structure.
This structure will allow us to transfer the blow-up in the equations for
the spherical and mixed components of the system to the equations of
components with fewer spherical directions. At the end of the line are
the principally Euclidean components of VRm which satisfy evolution
equations with reaction terms that are quadratic-or-better in the other
elements of the system and have the capacity to absorb the blow-up
that we have sent in their direction.

5.3. Decomposition of VRe. We next examine the evolution of the
covariant derivative of the Ricci tensor. Define

Gij = ViRjx — V;Rig,

and, for convenience,

Proposition 5.4. The components of VRe satisfy the equations
(5.4) (D7 + A)T%&Rjﬂ S ’%ﬁéij[k’a

(5:5) (D + D)7 Vel S 7Vl + [VaRy| + [VaRiul),

(5.6) (Dr + )TV o Ry | S [VaRigl,
5) (D + M) =V, Rz
5.7 ~ . . ~ ~ -
ST VaR| + Gl + [VaRg| + [VaRig ),
and
|(Dr + AT 7%V, Ry
(5.8) ’

S 7736(‘6111%‘ + ’Ggﬂc‘ + W@Rﬁﬂ + |%@Rgl_c‘ + ’691]:215@07
where the notation |U| < |V| indicates that

U < Jo(o0)[(|A] + |Vh| + [VRm|) + C|V|
for some constant C = C(n) > 0. The components of égjk satisfy
(5.9) (D, + A)TH'CC?J-E‘ < TC|V(1RQ,‘J|7
(5.10) [(Dr + A)Tégjlc‘ S I%RI + |651le5‘ + ’%&Ryﬂ + |€ERQEZ‘~
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Proof. Starting from the equation

o N\ L 5 - - -
( + A) Rjk = —29"" 9% RjpqrRrs + 297 Rjp Rigs

(‘9 n A) Valtyy = 3 (RupS B+ By + Ryt
—2g"g" (%aéqukérs + RjpgkVaRrs + RpajqViRer + Rpakq%résj) :
and hence

(D, + A)VaRj, = AV.Rji — AV, R

+ (gquap - Rg)ﬁqéjk + (gqujp - R?)%aéqk + (gqukp - RZ)eaqu
—2g"g" (6aijqurs + RjpghVaRes + Rpajq ViR, + Rpakqe'r’ésj> :
So, in view of (4.1) and (4.10), we have

(Dy + A) VaRji = 0(00) % (h+ Vh + VRm) + Egjg,
where
Eaji. = _2(%aquijqk + 6quj Rpakq + %DquRpajq
+ VaRjpg Ryq).

Now, according to our normalization, on the evolving cylinder we
have

(5.11)

C o o o o 1 o
—(PuPjr — PiPy), Rij = —Py,

Riju = 27'( 2T

so (5.11) becomes
1~ =~ o C~ ~ o o o o
Eajk = _;Vaijqupq + ;vaqu<ijPpk - ijqu)
C~ =~ o o o o
+ ;vaqj(Pkaaq - quPak)
C ~ ~ o o o o
+ ;vaqk(ijPaq - quPaj)
1~ -~ C =~ =~ o~ o~
= _*vaijpk + 7(VGRJ']_€ - ijvGRpp)
(5.12) Z~ o ~T~ o c~~ﬁ I
+ ;(VERQJ' — va;ngak) + ;(Vjng — v;ngkPaj)-
Computing as in the proof of Proposition 5.3, we see that
6aRjZ’Ek = O(OO) * 61?{\11/1 + ﬁaRJ’k — ﬁaﬁjﬁﬁka
and
V.R p = 0(00) * VRe + VR — Vo Ry,
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Returning, then, to (5.12) and putting things together, we obtain

~— 1~ - lg =
Eqji = 0(00) * VRm — ;VaRjk + ;VaRj;ﬁﬁk

c ~ ~ ~ ~ ~ ~
+ = (Valtys + ViR + VR )
C e ~ =~ ~ = C o ~ =~ 1=~
(5.13) + <Py <VaRm; - VaR) + =Pk <vapj - 2ij>
C o ~ ~ 1~ -~
1 R =
+ ~taj <VpRpk 2ka)

= 0(00) * VRm + Fojk,

where, by inspection, the components of the tensor F,;; satisfy

1~ =~ 1~ -
(514) Fa]—k == —;VaRj—k + ;Vaijﬁk,

(5.15) T T
+ £ Py (Valts — Vakt) .
5.16 LS.k + 19,0
(5.16) Fogie = =~ Valtg + —Va Ly,
1—c\ &~ = c =~ 1~ -~
F,]k = — ( - > VQ‘RJE - ;GQ]E + *Vgijpk
1
(5.17) . o 1. .
—|— Paj V]’)Rﬁ];. - EVER 5
and
1-3c\ = = c ~ 1~ -~
F,jlc == < - > Va jk + ;(Ggszlf + Gkgj) + ;VgRjﬁﬁk
C e ~ ~ ~ ~ C o ~ - 1~ -~
(5.18) + ;ij <VQRpp — V(_ZR> + ;Pak <v;‘)Rpj — 2VjR>

+ ;13“1 <%pépk - ;6;&%) .
The relations (5.4) - (5.8) then follow directly from the identities
(5.14) - (5.18) for F,jj. For example, using that
D,P=D,P=AP=AP=0,

we have

(Dq— + A)Va Tk

5 ]q(D’T =+ A)vaqk
0(c0) % (h+ Vh 4+ VRm) + Fuj..
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Then, using (5.14), we see that
(Dy + A)(7VaRz,) = 0(c0) * (h+ Vh+ VRm) + ViR, + 7Faz
= O(OO) * (h + Vh+ 6%) + 6@[%5151—)]@,

which implies (5.4). Relations (5.5)- (5.8) can be verified similarly. For
(5.7), we use the Bianchi identities to estimate the third term in (5.17).
The identities (5.9) - (5.10) follow in the same way from the identities

and (5.18) and the Bianchi identities.
q.e.d.

which are consequences of (5.17

5.4. Decomposition of VRm. Finally we examine the full covariant
derivative of Rm. We will only need expressions for some of the com-
ponents to obtain a closed system of inequalities.

Proposition 5.5. The components of VRm satisfy
(5.19) |(Dr + A)VaRypl S0,
(5.20) |(Dr + A) VRl S
(5:21) |(Dr + A)TVq R”kzl S
(Dr + A)T™V; szkz’
<

(5.22) e [

~T (I+e) <|v Rzgk‘l‘ + ’v Rz]kl’ + ’v Rl]’)

(5:23) (D + 8)VaRyyul S 7 (VaRigitl + [Vakal )

(5:24) (D + A)VaRyl S 71 (IVaRgl + VaRil)

[(Dr + )75V, Ry

(5.29
S 770 (WaRyal + VRl + Valt) + Vol

(D~ + A)T_zcvt_lRijki‘

(5.26) (120

S 770 ([Valiyul + [VaRl + [Valigl +Valtyl)

(5:27) 1(D; + A2V Rigul S 7702 (Vo Ryl + Vol )
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where, here, by |U| < |V|, we mean
U] lo(oo)[(Ih] + [Vh] + [VRm]) + C|V|
for some constant C = C(n) > 0.

We will break the proof of Proposition 5.5 into a few smaller pieces.
First, note that, from the proof of Lemma 4.3, we have

<DT + A) VaRiji = =2V, ( ikt — Bijik + Bigi — Biljk)
+ 26" 5% (RiqapVr Rajit + RiqapV s Riskt + RigapVr Rija
+ RigapVr Rijis) + (57 Bap — ROV o Rijwt + (57 Rip — RI)VaRyjm
+ (§PRjp — RN VaRigu + (37" Ry — RY)VaRijq
+ (3" Rip — R)VaRijhg)-
Thus, as a preliminary step, we may write
(5.28) (Dr + A)VaRije = 0(00) * (b + Vh + VRm) + Jaijr + Laijris
where
Jaijit = —2V4 ( it — Bijie + Birji — Biljk)
and
Laijrt = Q(Riqapﬁpéqjkl "’quap%péiqkl+quap%péiqu"‘quap%pp%jkq)‘

So, for the inequalities (5.19) - (5.27), we only need to analyze the
structure of the tensors J and L. We consider the tensor J first.

Proposition 5.6. The components of the tensor
Jaijkl = —2V, ( ikt — Bijik + Biji — Bz‘ljk) ;
satisfy the relations

(5.29) Jyizer =0,

(5.30) Jaight = _g%aégm‘,
(5.31) Ty = ; (%aég—l + VR + (VR — Va Nj—)z%,) :
(5'32) Ja@jkl— = ; ((611 ~jl__ 6alfzz;ﬁ-l‘)lgzlc - (%a le‘— 6(11:21-;31‘)]5%) s
(5.3 Jaijii =~ ; <(%aRg_l — VaRjm) P + (VaRix — Va ~1le_~c)PJl)

- g ((% Ry = VaRipp) P + (VaRjx — Va ~g';a*,)f’u) :

where, here, U ~ V signifies that
U = o(c0) * VRm + V.
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Proof. We first compute that

6aéz’jkl =

for any a, i, j,
we obtain

g " (6aRpiqurkls + Rpijqﬁa-érkls)
= o(00) * VRm — 6aﬁp’iqupqu - 6aRp/Lclqu‘jq
= 0(00) * VRm — %%a}épijq(ﬁpqﬁkl - ﬁplﬁkq)

- %ﬁaépqu(ppqéj - ﬁpjﬁ)iq)
= 0(00) * VRm — % (%aéiggjﬁ)kl + %aékpglﬁ)ij)
+ % (VaRuisn + VaRiu)

k, I. Permuting the indices in this identity and summing,

Jaijrl = 0(00) * VRm

+
.
that is, _
Jaijkl =
(5.34)
where

ﬁaéiy_ojpkl + ﬁaék@l)lﬁi‘j - ﬁaR_lich - %aéjkll‘

6(beziyz)jplk + 6(JL}él]glokﬁij - 6obfzkij;l - %alekj

9

NNl lano

N—— N N

(
(
(6(11%@%’21 + ﬁaéjgglﬁ)ik - 6aj%,likg - %aRkjli
(

eaRigglﬁ)jk + eaRjggkﬁil - eaRkilj - %alekj

0(00) * VRm — f(trP(V Rm) ©® P)ijii
- ; (% Ryiji +V lekz — VaRyiji — VaRg’kli)
+ ; ( szlj +V Rzgm 6#%’1@ - ﬁa—é@jlz‘)
= 0(c0) * VRm

trP (VaRm) © P)ijet + VaRijut + VR

_l’_

‘]\Q‘I\O
/—\/—\

Zl_] + V lekz vaRlikj - vaﬁzljﬂi) ’

trﬁ(ﬁaﬁ;{l)m = 6aRippj7

and U ® V denotes the Kulkarni-Nomizu product

U

O V)ijkt = Ua Vi + Uj Vi — U Vit — U Vig.

A case by case examination of of (5.34), using the first Bianchi iden-
tity and the observation that

trlg(ﬁaf{}/n)ij = 6QRZ‘&U‘ = O(OO) * 61:{?1 + 6,14&@]‘ — ﬁaﬁip’j,
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yields (5.29) - (5.33). q.e.d.
Now we perform a similar analysis for the tensor L.
Proposition 5.7. The components of the tensor
Laijr =2 (Riqap%pﬁqj kit quapﬁpéiqkl + quapﬁpéij g+ quap%pﬁij kq)
satisfy the relations
(5.35) Laijr ~ 0,
(5.36) Lyt = 0,

C ~ ~ ~ ~
Lyigia = = (Vaigi + ViR
(5.37) ST
+ ;Pw (Vﬁ sl — Villi; + V,;Rﬁ) ,
cx = c ~ ~
Lyijii = —Valiji + —Fia (VﬁR@'kl Viltg; + kag‘f)
(5.38) e T
— —Pia (Vﬁ ikl — Vil Vlez) )
C ~ ~ ~ ~ ~ ~
Laigh =~ (2% ikt — Vi laitk — VERM)
C o ~ o~ ~ ~ ~
(5.39) + =P (VoRygia = Vil + Vi)
c ~ ~ ~ ~ ~ ~
— ~ P (VpRgtsy = Vit + Vil )
C ~ ~ ~ ~
Lgljlfi ~ ; <2Vg 1_’1;[+ V;RQMD
Co (= = ~ = ~ =
+ = P (Volyus — Viltys + Vi)
(5.40) C o o o
— —Fia (Vﬁ pikl — Viltic + VERLJ
Ceo (= = ~ - = ~
+ = Pua (Vg = Vil + Vilkyy)
2c~ = Ceo (= =~ = = = -
Laijur = = Valtig + =P (VpRpja = ViRt + ViR
— 2B (%R-z@_ ~ ViR, + Vi ~l_)
(5.41) T
Co (= = = = =~ =
+ = Pra (v;ﬁRﬁﬁj — V;Ry +V; g_l)
- ;ﬁ’za (%Rﬁiﬂg ~ V;Ry + Vi lec) )

where here U >~V signifies that
U = o(00) * VRm + V.
Proof. Note that
Riqap%ppbqkjl = %(Pz ijqa - ﬁiaﬁqp)ﬁpéqjkl
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= %(%jokz — PiaVpRyji),
and so
Laijnl = Q(Riqapepéqjkl - quap%p}?qikl + quap%pﬁiqlij
- quap%péqkij )
= ; (%Rijl - %j}?gikzl - éa%pﬁmkl + f)ja6pé;gikzl>

+ = (ViR = ViRtaris = PraVpBoiis + PruVpliphis ) -

Using the identity
3"V Ryini = ViRy; — ViR,
we may rewrite the terms of the form 69}?@“ in the above equation as
%PRPJ“ = 0(00) * VRm + 61}:{@ — 6/6}?% — 613]5%“.

The relations (5.35)-(5.41) then follow from a case-by-case inspection
of the above identity for L;;x; using the Bianchi identities to combine
terms. q.e.d.

Now we combine the above computations to complete the proof of
the main result of the section.

Proof of Proposition 5.5. As in the proof of Proposition 5.4, the in-
equalities in (5.19)-(5.27) follow from (5.28) and an inspection of the
expressions (5.29)-(5.33) and (5.35)-(5.41) for the corresponding com-
ponents of the tensors J and L. We further use the Bianchi identi-
ties to estimate |VoR | < 2|VaR ] and [V R,j5| < 2[VaR, ;] in
(5.25), |V Rzl < 2/VaR| and Wa}é_ij,;ﬂ < 2|VaR,5| in (5.26), and
VaRyjil < 2[VaRyg| in (5.27). q.e.d.

5.5. Assembling the components of the system. Next we use
Propositions 5.3, 5.4, and 5.5 to organize the rescaled components of
ﬁf%, ﬁRc, and VRm into groupings which satisfy a closed system of
inequalities whose singular part has a triangular structure.

Define W = (WO, Wt ... W5) by
wo = (%Rﬁ,;lf, 6@]@]—,}[, Tcﬁaégg),
Wl = T%aézj, T%&-Rjja Tl+cégl'j),

= (12V R, T “VaR, VaR,j),
(5.42)
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where, as before, ¢ =1/(k — 1).

Proposition 5.8. The components W of W satisfy the system

)
YW g WO 4 Gre iy,
)W3’ < 7_7(1+3c)|W0‘ + 7_7(2+36)‘W1| 4 max{1+3c,2+c}|W2‘7
)W4’ < T_(H_Sc)’Wl‘ + 7'_(2+3C)‘W2‘ 47 max{1+30,2—c}’W3‘7
)W5’ < 7_—(1+c)|W2| + T—(2+c)|W3| 47 max{1+20,2—c}’W4|,
0,1]. Here, |U| < |V| means that
U] < fo(c0)|(|h] + [VA[ + [VRm]) + C|V|
for some constant C = C(n) > 0. Moreover, we have
(5.43) IVRm| + |[VVRm| < C(|W| + |[VW))
on Cr, % (0,1] for some C' = C(n).
Proof. Let us observe that (5.43) is satisfied first. Using the symme-
tries of VRm and the Bianchi identities, we have
IVaRijul < C(IVaRgl + IVaRgl + [VaRinl + |Vgjogz‘\
+ Vo Rijl)
< C(IWO| + 74 W2| + 72 |W3| + 72 |WP))
for some C = C(n) > 0. Similarly, [VVRm| can be controlled by the
sum of [VW?O|, [VW?2|, [VIW3|, and [VIW?|.
Now we verify the system of inequalities satisfied by the components

of W. Denoting the components of W* by W/ we first see from (5.19)-
(5.21) that

(D7 + )W 50

for j = 0,1,2. The inequality for W° follows. Next, from (5.4) and
(5.6), we have

(D7 + A)WH0| < Vo Ryg| = (WO,
and
(D + A)WH < ﬁz‘zégicﬂ = (WO,
while, from (5.9), that
(D + A)WH?| S 79\ Va Ry = (WO

Taken together, these inequalities yield the relation for W1,
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For W2, we start with (5.2), which implies
(D7 + M)W < 7|VoRyg| = WO
Then (5.22) and (5.23) yield, respectively, that
(Dr + AW < 77U (Va Ryl + [ VaRypl + [ VaRyl)
< 7= (WO pr00) | 7= (1420 02| | =240 10|

and

(D7 + A)W?2| S 71 (|VaRygg] + [VaRyl) S v WO+ 772w,

and the inequality for W2 follows.
Similarly, using (5.5) and (5.7), we see that

(D + M)W < 77| Vak| + [Va Ryl + [VaR)
S 7_—(1+c)|W1,0| +T_(2+C)|W2’O| + |W2’1|,

and
(D7 + M)W S 77 VaR| + |Gyil + [VaRsz| + [VaRgl)
< 7_7(1+c)|W1,0‘ +Tf(1+20)‘W1,2‘ + 7_7(2+c)|W2,0| + |W2’1|,
while, using (5.10) and (5.25), we see that
(D + A)W?| S [VoR| + [VaRy| + [VaRyg| + [ VaRyul
S Tfl‘Wl,O‘ + 7_71’W1,1’ +7_72‘W2,0 + ‘W2’2‘,

and
(D7 + A)W33) < 77 (1H50) <|%aé_z‘j5l| + |VaRggrl + [VaRy| + \ﬁzézﬂ)

5 7_7(1+3c)(‘W0,1’ + ’WZ’QD + 7_7(2+30)(‘W1,0‘ + ‘Wl’l )

Combining these relations yields the inequality for W?3.
Next, from (5.8) and (5.24), we have

(D7 + M)W
ST (I VaR| + [Gagil + [VaRy| + [VaRjg| + [VaRil)
< 7_—(2+3c)|W2,0| +T—(1+3c)(|W1,0| 4 |W1’1| + |W3’2|) + |W3’3|,
and
Dy + )W < 77 ([Valtl + [Valiy))
< Tf(lfc)’WZ,ll _1_7_7(2%)“/1/3,0‘7

which together yield the inequality for W4.
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Finally, to obtain the inequality for W?, we use
(D + 250 £ 70029 ([FaRgul + FaRal + sl + Vot
S 7_—(1+c)|W2,1
from (5.26), and
(D7 + M)W < 77042 (19, Ryl + [V Ry
< T—(l—c)|W3,3| + T_(2_C)|W4’0

+ 7_—(2+c)|W3,0| + T_(2+C)|W3’1| + 7_—(14—20)“/1/4,1’7

9

from (5.27).
q.e.d.

Note that the largest exponent of 7 which appears in the denominator
of the coefficients of |W?¢| on the right side of the above relations is
v = 2 + 3c. Returning to Proposition 5.8 and unwinding the notation
<, we summarize the findings of this section as follows.

Proposition 5.9. For all B > 0, there is a constant By = By(p)
depending on finitely many of the constants M;,, in (4.4) such that
W =W Wl ... W5 and Y = (h,Vh,VVh) together satisfy

i—1
(5.44) (Dr + M)W < Bor®(IW| +[Y]) + By > 77|W|
§=0
fori=0,1,...5, and
(5.45) |D.Y| < Bo(|[W|+ [VW|) + Byr'[Y]|
on Cp, x (0,1]. Here, v =2+ 3/(k —1). Moreover,
X]+[VX]| < C(IW] + [VW])

for some constant C = C(n).

6. Exponential Decay: The induction argument

The advantage of the system (5.44)-(5.45) over the system (4.3) is
that the terms with singular coefficients in (5.44) appear in a strictly
triangular form. In this section, we will prove decay estimates for general
systems with this triangular structure, and use these estimates to deduce
Theorem 5.1. These estimates will use the weights

lz—20[2

(6.1) o(r)=1e 3, Gulz,7)=e o,

for fixed zg € R *. Note that o is comparable to 7 in the sense that

(6.2) T <o(r) < et

for 0 < 7 < T, and that ¢/(7) > 0 and o(7) < 1 on [0,7] as long as
T<1.
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Proposition 6.1. Let the bundles W = @ T*ul)(C) and Y =
EB?/:OT(IWJZ’)(C) be equipped with the family of metrics and connections
induced by g = g(1). Suppose that W = (WO ... W9) and Y =
(YO,..., YY) are families of sections of W and Y over Cyp, x (0,1] sat-
isfying the following two conditions:

(a) There are nonnegative constants (3, v, u, and B such that

. 271 .
(Dr + A)W'| < B (W[ +[Y) + By 7w,
(6.3) =0
|D;Y| < Br *(|W|+ |[VW|) + Br Y],
for each i =0,...,q on Cy, x (0,1].
(b) For eachl >0,
22
(6.4) sup  —— ([W[+ |[VW|+[Y]) < M,
Crgx(0,1] T
for some constant M; > 0.

Then, there are positive constants By = Po(k,n,q,v,p1) and Ay =
Xo(k,n, 1), and Ly, Ko, and Ty < 1 depending on k, n, v, u, B, and
finitely many of the constants M;, such that, if B > Bo, the inequality

T
/ / (FIWP + P2IVW + 70| ) 077Gy dim
(6.5) 0 JD(20)
< KoL7'r—2™m)
holds for all m > 0 and all v, T, and zy with 0 < r? < T < Ty and
B4T(Zo) c Rk \ BT0 (0)

The point is that the constants 8y, Ao, Lg, Ko, and Ty do not depend
on m.

6.1. Proof of Theorem 5.1. We will prove Proposition 6.1 by an
induction argument in the next subsection. First we show that it indeed
implies Theorem 5.1.

Proof of Theorem 5.1, assuming Proposition 6.1. By choosing the con-
stant By = By(f) appropriately large in (5.44) and (5.45), we may
assume that (6.3) is satisfied with 8 > 5y, v =2+3/(k—1), and u = 0.
Let zg € R\ Bg;,(0) and 0 < T < Tp. Since 79 > 1, we are assured
that By, (w) € R" ¥\ B,,(0) whenever w € By(z) and 0 < r < /T < 1.
At any such w, we may then combine (5.43) with (6.5) to obtain that,
for all » < /T and m > 0, the inequality

T
/ / (X2 4+ VX2 + [Y[2)o "Gy dm < NLTr~2™m!
0 r(w)

holds for some N = N(Kj) and fixed integer p = max{\o, 2}.
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Using that o(7) < /er, we then have

1 T 7“2 m—p N/mp
e X |2 XZ2+Y]D) [ — wdm < ——
e /W)u 24 VX2 + | |><4LT) Cudm < 0

for L = max{+y/eLg,1} and some N’ = N'(p, N, Lp). Summing both
sides of this inequality over all m > p yields

/ / (IXP + [VXP 4 [Y[2)e" 5 dm < N2,
for some N” = N”(p, N'), and, consequently, that

T2
(6.6) / / (XP + |VXP + [Y[2)edir dm < N'r—2.
D r ( )

Returning to the statement of Theorem 5.1, consider first the interval
[0,7] where T' = min{1,Ty}. We may cover Dj(zp) with finitely many
sets of the form D,.(w;), i = 1,...,v, where r = VT /(2V/L) and w; €
Bi(z9) C B2(zp). This can be done so that the number of sets in the
cover satisfies v < C(L/T)"™ (n=k)/2 for some dimensional constant C.
Since By, (w;) C R*™*\ B, ( ) for each i, we may apply the estimate in
(6.6) on each Bf/@f)(wz) and sum to obtain that

T
/ / (X[ + |[VX|? + [Y[})estr dm < ON"L"2" T—P="2".
0 Dl Z0

If Ty = 1, we are done. Otherwise, if Ty < 1, we may obtain an estimate
of the same form on [Ty, 1] since

1 1
/ / (X[ + [VXP + [Y[2)estz dm < N"(1 - Tp)e¥T
To YD1

for some N depending on My, for m < 4. Combining this estimate
with the one on the interval [0, Tp] then proves (5.1). q.e.d.

6.2. Three Carleman-type estimates. We will prove Proposition
6.1 by induction on the degree m of polynomial decay. The induc-
tion step is based on the application of the following Carleman-type
estimates to W and Y. The estimates apply to arbitrary compactly
supported families of sections of bundles Z of the form Z =T (kili) o
on C x (0,1] with metrics and connections induced by g = g(7).

The first Carleman estimate will be applied to a suitably cut-off ver-
sion of the “PDE” component W of our system. A similar estimate was
proven by the second author in [52], following [21].
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Theorem 6.2. Assume 0 < T < 2. Then, for any a > 1 and
20 € R the estimate

// 027 (a|Z)? + 7|VZI2)Gy dm

(6.7)
<10 // o272 (D; + A)Z*G, dm

holds for any smooth family of sections Z of Z with compact support in
C x (0,7).

We will use the next two estimates to control the component Y.

Theorem 6.3. Assume 0 < T < 2 and let D, U C C be open sets
such that D is precompact and D C U. For any X\ > 0, there is ag =
ao(\, k) > 1 such that, for all o > o and zg € R"™* the estimates

T
2a/ /T’\U_2a|Z|2GZO dm
0 D

T
(6.8) < / / P20 o PZ2G, dm
0 D

T
+ 500! / / 26722 D 72 G, dm,
0 D

and

T T
(6.9) a2 / / o207 dm < 16 / / 220D 712 gy
0 D 0 D

hold for all smooth families of sections Z of Z over U x (0,T) with
suppZ C U X [a,b] for some 0 <a<b<T.

Here the support of Z need not be contained inside D X [a,b]. We
will prove Theorems 6.2 and 6.3 in Section 8.2 below.

6.3. A delocalization procedure. Ideally, we would next apply the
Gaussian-localized estimates (6.7) and (6.8) directly to (suitably cut-off
versions of ) W and Y and sum the resulting inequalities to obtain the
decay estimate needed for the induction step. However, the estimate
(6.8) turns out to be too lossy to allow us to do this in a single applica-
tion. We will need to supplement it with estimates of W and Y relative
to the purely time-dependent weight ¢ on regions of spacetime where
|z — 20]2/7 > em for some c.

The lack of a sufficiently strong counterpart to (6.7) for the ODE
component is in fact the reason we need to employ an induction argu-
ment at all. By contrast, in [32], where the background metric converges
smoothly to a conical metric as 7 — 0, and in [52], where the analysis
reduces to that of a strictly parabolic inequality for a scalar equation,
the exponential decay can be deduced in a single step.
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In our proof of Proposition 6.1 in the next subsection, we will use the
following two technical lemmas to blend the localized estimates with
the unlocalized ones. The purpose of the first of these is to convert
Gaussian-weighted L2-bounds on W, VW and Y on sets D,(z) of a
fixed radius r into slightly weaker bounds minus the Gaussian weights
on sets Dy(z) with s < r. The proof is by an elementary covering
argument.

Lemma 6.4. Suppose 0 < T’ < 1 and F is a positive smooth function
on Cry x (0, T") with |F| < M for some M > 0. For all e € (0,1/4) and
a > (n—k)/2, there exists a constant C, = Cqy(n, k) with the following
property:

Whenever, for some integer m > 0, the inequality

T
(6.10) / / Fo ™G, dm < NL™r~ 2"
0 r(20)

holds for some N > M and L > 1/(4€)? and all v, T, 2y satisfying
0<7r?<T <T and By (20) C R" %\ B,,(0), the inequality

T
(6.11) / / T Fo ™ dm < CoNL™((1 — €)r) " 2™m)
0 D4e7‘(20)

holds for the same such r, T, and zy.

Proof. Fix € € (0,1/4) and a > (n — k)/2 and suppose the inequality
(6.10) holds for some m > 0 and L > 1/(4€)*> and N > M, for all
0<7r?2<T <T and all zg € R"* with By.(20) C R" %\ B,,(0).

Then fix a specific such r, T, and zp and let us verify that (6.11)
continues to hold. To begin, let 0 < § < 16€2r2, and split up the time

interval to obtain the preliminary estimate

T
/ / T°Fo™ ™ dm
d  JDaer(20)
16272 T
(6.12) = (/ —|—/ ) / T'Fo™ ™ dm
16€272 Daer(20)

0
16€2r2
< / TFo~™ dm + CM (4er) 2™
0 D4ET(ZO)

for some C' = C(n, k).

To estimate the first term on the right in (6.12), observe that, for any
0 < s < 4er, we can cover By (29) by a collection of balls {Bs(w;)}Y_,
with w; € Baer(20). The w; can be chosen so that their total number

v = v(s) will satisfy the bound

v(s) < c (48")“
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for some ¢ = c(n, k). We now define s; = 4er/27 and v; = v(s;) for j =
0,1,2,..., and apply this observation to choose collections {w; ;},2, C
Byer(z0) of such points.

Since w; j € Buaer(20),

By-gr(wij) C Bar(z0) € R"™F\ By (0),

and so the estimate (6.10) for F" is valid over B(;_),(w; ;). In particular,
for each wj ;, j > 1, we have

52

j—1
/ / T*Fo "™ dm

85 s; (wi5)
1
eis / / Fo "Gy, ; dm
s (wi,j)
2
i <86T> a/ / 7mGw1]
D(l er (w; ])

7 (8er)2e N L™m)
4‘1 ((1 —¢e)r)2m
(In the second inequality, we have used that s; < 2er < (1 — €)r since
€ < 1/4.) We then may apply (6.13) to obtain that

e /
TFo~ ™ dm < / / ™M dm
/5? D4€T(ZO) Z 55 wz ])

< 7 ced (86r)2aNme'
22a44%+k ((1 __e)r)2n1

| /\

| /\

N

(6.13)

IN

(&

for each j > 1.
Summing over j, we see that

16272
T'Fo™ " dm < / / ™ dm
/6 /D467‘(Z0) Z D4€’V‘ zO

. NL™m!
(6.14) < Cai((1 ~ o

for some C!, = C! (n, k). Combining this with (6.12), and sending § — 0,

we obtain
T !
C!' NL™m/! CM
T°Fo ™dm < 2 +
/o /D%(ZO) (T—e)r)?>™ " (der)?m

NL™m!
((ErRE
since we have assumed that L > 1/(4¢)? and N > M. So (6.11) holds
with the choice C, = C/ + C. q.e.d.

<(C+C)



42 BRETT KOTSCHWAR & LU WANG

6.4. Advancing the unlocalized bounds. For the next lemma, we
return to the setting of the statement of Proposition 6.1 and let W and
Y be families of sections of W and ) over C,, x (0, 1] satisfying (6.3)
and (6.4) for some constants (3, u, B, and M;. We will use this lemma
to convert L?-bounds with time-dependent weights of degree m on W
and VW into corresponding bounds of degree m + 1 on Y. The proof
is a simple application of the estimate (6.9), using the pointwise control
of D;Y by W and VW implied by (6.3).

Lemma 6.5. Fixa >0 and A > 2u+ a. There is an integer mg > 0
depending on A, k, B, and My, such that whenever, for some m > mg,
L >2, and N > 1, the inequality

T
(6.15) / / T¢ (\W|2 + 7'|VW|2) o™ dm < NL™r 2"
0 r(20)

holds for some v, T, and 2z satisfying 0 < r> < T < 1 and Ba,(z) C
R"*\ B,,(0), the inequality

T
(6.16) / / Y20 ) dm < NL™r 2™ (m — 1)!
0 r(20)

also holds for the same v, T, and zg.

Proof. For now, we will take mg to be some large fixed integer; we
will set lower bounds for it over the course of the proof. Suppose that
(6.15) holds for some m > my and L > 2, and N > 1 at some 7, T', 2
satisfying 0 < 72 < T < 1 and Ba,(20) C R" %\ B,,(0).

For any 0 < € < T/4, let & € C*°(R) be a bump function with
support in (e,37'/4) which is identically one on [2¢,7/2] and satisfies
I€] < Ce ! on [e,2¢] and |¢| < CT~! on [T/2,3T/4]. Here and below,
C will denote various positive constants depending at most on n and k.

Define W, = (W and Y, = &Y. Then, by (6.3),

DY [* < CB*r2[Y* + OB r (W * + 7|VW ") + Cle [Y .

The first constraint we impose on my is that mg > 2a9(k, A), where oy
is as in Theorem 6.3. This allows us to apply (6.9) with D = D, (z9),
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Z=Y,. and a = (m+ 1)/2 to obtain

T
/ / 7'>‘0'_(m+1)|YE|2 dm
0 r(zo)

2 T
S Rl
m 0 r(20)

C B2 T
T [ P W R W) dim
(m+1)2Jo Jp(20)

2 2e
+ CB 07(m+1)7_)\+2’Y|2 dm
2 2
€ (m + 1) € r(20)

CB2 % —(m+1), _A+2 2
P r(20)

Provided my is taken greater still (say, mo > v2CB), we may hide
the first term on the right in the term on the left. Having done this,
we see that all of the integrands on the right are integrable on (0, 7] by
our decay assumption (6.4), and the third term will tend to 0 when we
send € N\, 0. Taking this limit thus yields

T
/2 / T’\U_(m+1)|Y|2dm
0 r(20)

2 3T
< / 4 / oA W 4 7 YW ) dim
(m + 1) 0 T(ZO)

CB2 /iT/ (A1) A2
e — o~ (mALl) A+ |Y]2dm.
T2(m + 1)2 % r(20)

Since we assume A > 2u + a, we may use (6.15) (and that 7 < o) to
estimate

3T
7 e Wi s W) d
0 r(20)

T
< / / o (W2 + 7|VW|2) dm < NL™r~2Mm).
0 r(20)
We may also estimate directly that
3T
/ 1 / 07(m+1)7,\+2‘Y|2 dm < CMgrnfk2mT)\+%+2fm
z r(20)
2

< CMET?2my—2m,

Putting these two pieces together, we obtain

T
z 1+ Mg
/2 / oMY 2 dm < B2 <+ 0 ) NL™ =27 (g — 1)1,
0 - (20) m+1
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On the other hand,
T
/ / Ao MY 2 dm < CMET 2™ 2™ < CMEN L™ r ™,
(20

which, when added to the previous inequality, yields (6.16), provided
my is chosen larger still to ensure

mo > 1+ C(B? + (1 + B*)MY).
This completes the proof. q.e.d.

6.5. The induction argument. In this section we prove Proposition
6.1 using Lemmas 6.4 and 6.5. We will use the notation

AT,S(ZO) = Ds(20) \ Dr(20) = sk x (Bs(20) \ Br(20))
for 0 < r < s and zy € R"*. Note that A s(0) = A; 5.

Proof of Proposition 6.1. Define \g = 2u + (n — k)/2 4+ 2 and fix any
b > Aog/2. Then choose 5y = (¢+1)b+¢q, and let mg = mo(No, k, B, My)
be the constant guaranteed by Lemma 6.5. Here M is the constant from
(6.4). (This choice ensures as well that mg > 2ag, where ag = ap( Mo, k)
is as in Theorem 6.3.)

Our proof is by induction on m. In view of the assumption (6.4) of
infinite-order decay, we may start our induction at as large an integer
mq as we like. It will be convenient to specify the value m; over the
course of the proof, and to do the same for the constants Ky, Lo, and
Ty in the statement. The choices of these constants will depend only
on the external parameters k, n, q, 8, u, B, and My, however, we will
specify Ky in terms of mq, so logically it should be understood that m;
is defined first.

To help keep track of these dependencies, we’ll use C to denote a
sequence of positive constants depending only on k, n, and ¢, and use
N to denote a sequence of positive constants potentially depending also
on B and Mjy. To begin, we’ll assume at least that my > mg, Ko, Ly > 0,
and 0 < Tp < 1.

Using the assumption (6.4), we may assume there is K > 1 depending
on mi, n, k and finitely many of the constants M; such that

sup 7 (W2 + VW2 + (Y%
Crg % (0,1]

/ / (W2 + VW + [Y]?) dm < K.

In particular, for any w, r, and T satisfying 0 < r?> < T < T and
By (w) € R\ B, (0), we will have

(6.17) / / \W!2+72\VW!2+7A0\Y| >Gwdm§K.
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Provided Ky > M and Ly > 1, at least, the inequality (6.5) will hold
for all such admissible choices of , w, and T and all m < m;.

Proceeding by induction, assume that m > m; and that (6.5) holds
for all integers up to m — 1. Fix r, 2y, and T satisfying 0 < 2 < T < Ty
and By, (20) € R**\ B,,(0). We will show that (6.5) also holds with
exponent m for r, zg, and T'.

We start by applying the Carleman inequality (6.7) to a fixed com-
ponent W' of W that has been cut-off in space and time. Let ¢ €
C>®(R"*) be a smooth bump function with support in Ba,(z0) which
is identically one on B,(zp). Regarding ¢ as a function on C that is in-
dependent of § € S¥, we have ¢ = 1 on D,(zg) and supp(¢) C Da,(20).
For each € < T/4, let £ € C*°(R) be a bump function with support
in (€,37'/4) which is identically one on [2¢,7/2]. These functions may
chosen to satisfy the inequalities

Vol +r?|A¢| < C, €l&Xe2q + TIEX T /2,3774) < C

for some C. (Note that |V¢|3(0,2,7) = |Velz(z) and (A¢)(0,z,7) =

(Ag)(2).)
Define W, = ¢{ W and Y, = ¢£. Y. Using (6.3), we compute that

1—1
(D- + M) W/? < CB*rP(|W.* + [Y[*) + CB? ) 2 [W/|?
j=0
+ CEX(IVOP VI + |AP W %) + CH* (€)W,

for each i = 0,...,q. For each 4, define v; = (¢ —4)(y + b) and apply
the Carleman estimate (6.7) to W! with a; = m/2 + v; to obtain

// o205 (o |[WE 4 7| VW) Gy dim

<Ny / / 222204 I G, dm

j<t

+NY / / T2 20 WG, dm
jzi

(6.18) + N// T2B+2072ai|Ye|2Gz0 dm

c [T
+ 2/ / o PN (WP + VW) G, dm
r € AT,ZT(ZO)

2e
+ 92 / / TQJ_QO‘i\Wi\? G, dm
€ € DQT(ZO)

c [
+ = / / 7'20_20"'|I/Vi|2 G, dm.
T L JDar(20)
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For the integrals in the first term on the right, we have immediately
that

// 7_272'y0_72a¢|W€j‘2Gzo dm < N// TQU*Q(ijb)’Wej’szo dm,

using (6.2) and that a; > a; +v + b for j < i. For the integrals in the
second term, our choice of 3y ensures that

(6.19) B—a;))=(b—a;)>(g+i—j)b+~v) >0,
and hence g2(6—ai) < 02(b_"‘1), forall0 <¢<j<gqandf >y Thus

// 7'25”0_2‘”|VVg|2GZO dm < // 7'2(;'_2(0‘3'_b)|Wg|2GZ0 dm

for i < j, again using (6.2). Therefore, we may combine the first two
terms to obtain

Z// 2B g2 |2 Gzodm—i—Z// 2624 WP Gy dim

i<t Jj>t

q
< NTZH Z // To 2% |\WI2G,, dm.
=0

Equation (6.19) also shows that § —a; > b— ay =b—m/2 for all ¢, so
that we can estimate the third term in (6.18) by

/ / 242,204y 2, dm < / / o2 MY 2 dm.

Returning to (6.18), using that o2 < 77205~™ in the last three
terms, and summing over i, we obtain that

q
S [[ o 2t Wi 4 VWG i
=0
q
< NTFHY / / o 2% |WI2G,, dm
j=0

+N// 7’0 Y [’ G, dm

C 3T
4

+ 2/ / 27205 (W2 4 VWA G, dm
r € Ar2r 20

2e
+92 / / 720 WP G, dm
€ € Dar(20)

C [
+ = / / 2205 W2 G, dm.
T L JDar(20)

(6.20)
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If T} is sufficiently small (depending on N and b), we may bring the
first term on the right side over to the left. Then, we may split the
domain of integration in the second term to obtain that

q
> // o 2% (7|Wi2 + 72| VWA G, dm
=0

T
§N/2/ 20| Y |?G,, dm
2e r(20)

3T
N
(6.21) +r2/4/ 220 (W2 4+ VW2 + [Y )G,y dm
Ar27‘
N 2e
+2/ / 27205 (W2 4+ |Y?) G, dm
€ DZT‘ ZO)

3T
N
+T2/4/ 220 (W2 + Y %) G, dm.
L JDyr(20)

On account of our decay assumption (6.4), we may send € \, 0 in (6.21)
and the third term on the right will vanish. Then, using that c=% <
o~ %, we have

// (W2 4 72 VW, [2) Gy dm

- // o727 W2 + 72 VW [*) Gy dm

q

e ——

1=0

and so

/ / (W2 + 72 VW) Gy dm
T ZO

gNTg/Q/ ™06 M Y|2G,, dm
0 r(20)

(6.22) N

+ 2/ / 2T (W2 + VW 4 [ YD G, dm
r 0 Ar o ZO)
N E

+ 2/ ) / 272057 (W2 4+ VW + | Y2 G, dm.
T DQT(ZO)

(Above, in the first term on the right, we have used our assumption that
b> X\ / 2.)
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Now we switch gears to estimate Y. With & defined as before, it
follows from (6.3) that

D-(6Y)[? < OB (r 2 (|W]* + [VW ) + 772 Y[?) + CleP Y .

Since m > mj > mg, we may apply the Carleman estimate (6.8) to
Z =£.Y on D,(zp) with & = m/2 to obtain that

3T
m/ ! / 05 me2 Y 2@, dm
0 r(20)
%
< / / T)‘Oflafm|z — ZO|2§3|Y’2GZ() dm
0 r(20)
N [T
+ = / / A2 25mme2 (W2 4 [VW?)G., dm
0 2
N [ O
+ = / / 00 Y PG, dm
m Jo r(20)
C 2e
2/ / 02 m Y 12 G, dm
€e“m Je r(ZO)

c [T
+ T2, /T / 027 Y 2 G, dm.
m P r(20)

Provided m; has been chosen large enough to satisfy that N/m?2 < 1/2
we may hide the third term on the right in the left-hand side. Then
sending e \, 0, and using that Ag > 2u, we arrive at the inequality

T
/2/ ™06 M| Y|2G,, dm
r ZO)
< / / My o2 [Y PGy dm
4 T ZO

/ / 26" ((W] 4+ |YW|?) Gy dim
r ZO

(6.23)

(6.2

2 o™ 2 2
W VW Y|?) G,, dm.
+ T2m2/ /T(ZO (IW[* + ?+[Y[*) Gz,

Here we have also absorbed part of the second term on the right of
(6.23) into the last term of (6.24).

Adding (6.22) to (6.24), we see that if m; is taken large enough and
Tp small enough (depending on N) we may bring some terms from the
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right to the left and arrive at the inequality
/ / o (W 4 T2 VW2 4 0¥ [2)Gay di
r(ZO)

/ /A P20 (W2 4 VW] + [Y[2)Gay dim
(6.25) ol

/ / 220, (WP 4 YW + [Y]?)Gay dim
D2r(20)

+/4 / 2071 ™m 2 — 202 Y 2G., dm.
mJo r(0)

We now estimate each term on the right side of (6.25) in turn. For

7‘2
the first, note that we have G.,(z,7) < e”% on A, 2,(20) x (0,37/4)
and, hence

2 _ m—2
07 "G,, < M2 < (4(m2 2)) e (m=2)
r

4 m—2
< <7”2> (m — 2)!
by Stirling’s formula. Also, by (6.4), we have
(WP + VW[ +|Y]P)r 20 < K

on Cp, x (0,7, provided m; > 21y = 2q(y+b). So the first term on the
right side of (6.25) may be estimated from above by

3
|
(6.26) T2/4/ 2205 (W2 4+ VW2 4 [ Y )G, dm
. 0 Ar2r(Z0)

< NKr=2m4™(m — 2)\.

For the second term, we simply note that

1 4
T2/ / 2205 (W2 4+ VW + | Y %) G, dm
T JDyr(20)

S N2m,r_—2m

(6.27)

The third term in (6.25) will require more work. First, we fix some
0 < § < 1/4 and split the domain of integration into three spacetime



50 BRETT KOTSCHWAR & LU WANG

3T
4 1
/ / Polg=mis RV G, dm
mJo (20)
4 [T
_ / / P le =m0 PIY 26, dm
m 0 A45T,T(ZO)
4 3T
4
+/ / T)‘Oflafm\z—zol2|Y\2GZO dm
M JT JDusr(20)
4 E
2
+ — / / T)‘O_la_m|z - 20\2|Y|2GZO dm.
M Jo  JDysr(20)

The first and second terms in (6.28) can be estimated exactly as their
counterparts in (6.25) above, to yield

— 202IY]?G,, d
(6.29) m/ /AMM e = 20 Y[ Gy dm
< N(26r)"2"(m — 1)!

regions:

(6.28)

and

3T
L e
(6.30) /4 / 2071 Tm 2 — 202 Y PG, dm < N2 2m,
m Dasr (20

To estimate the third term on the right of (6.28), we will split the
domain of integration further into the spacetime regions

mT

Q = (Dasr(20) x (0,T/2)) N {|Z —alt < 8 }

and
Q' = (Dasr(20) x (0,T/2)) N Q°.

Then |z — 20|?G., /7 < (m/8)e™™/3% on ', provided at least that m; >
32, and so

T
4 2
— / / 0 eTm 2 — 202 Y 2G., dm
M Jo  JDysr(20)
e_%

1
<5/ . %06~y [2 dm

2/ J)a

1 T

2

<= / ™06 M Y|2G,, dm

2 0 'DT(ZO
+ 4 32/ / 00" Y | dm.

2 Dars(20)
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Putting things together, we see that the third term on the right side
of (6.25) admits the bound

3T
4 4
/ / 2071 7m 2 — 202 Y2 G., dm
m Jo r(zo)

T
1 (2 N
< = 0™ Y 2G,, dm
(6.31) ‘2/ / Y1

07 Y[ dm

Dars(z0)

+ N2m5 2my=2m ()]
for any ¢ € (0,1/4). Incorporating (6.26), (6.27), and (6.31) into (6.25)
then yields

/ / (| W|? + 72| VW2 + 72| Y H) G, dm
r(Zo)

6.32
( ) <e 32/ / )\0 m|Y]2dm
Dyrs(20)
+ Kod™52mr=2m (m — 1)),

provided K is sufficiently large (depending on K and N).

We now estimate the first term on the right of (6.32). We start by
applying Lemma 6.4 with F = 7|[W[?+72|[VW|? and a = \g—2u—1 =
1+ (n—k)/2. Choose ¢ so small that

0<d<1—e o

Then, since we already have assumed that Kq > M, if, in addition,
Lo > 1/(46)%, Lemma 6.4 and the induction hypothesis (6.17) together
imply that

T
/ / o~ Dt (WP 4 7| VW?) dm
0V Dysr(20)

<o% () v

for some C' = C, (which, with our choice of a, only depends on n and
k). Then, since m > mj > my, provided Ly > 2, we may apply Lemma
6.5 with A = A\g and a + 1 in place of a to obtain that

m [T A 2 " Lo m
e 32 T MY |* dm < CKpe™ 32 () (m —2)!
/0 /D45r(20) (1—=46)>r?
< OKoLy ™ 'r2™(m — 2)\.
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Returning to (6.32), we see that

/ / W2 £ 22 TW] 4 79 Y[2) Gy dim
[ ZO)

Kng( - 1)! g n i m
- r2m Lo 0Lg
< K0L6”(m - 1)!
- 2r2m

provided Lo is taken large enough depending on C' and the universal
constant . On the other hand,

/ / (W2 + 72| VW2 + 72| Y |2 G, dm < CM2™ 2™,
T ZO

Summing these two inequalities completes the proof of Proposition 6.1
provided Ky and Ly are taken larger still.
q.e.d.

7. Backward uniqueness

In this section, we will prove Theorem 3.2 via an analysis of the
system composed of X = VRm and Y = (Y? Y! Y?) from Section 4.
Our analysis will only make use of the following properties of X and Y:

1) There exists a constant B such that
|(Dr + A)X| < Br X[ + BIY],
|D-Y| < B(|IX| +|VX]) + Br Y],

on Cp, x (0,1]. -
2) The sections X and Y are self-similar in the sense that, if X =
X|Cr0><{1} and Y = Y|CTOX{1}7 and U, (0,2) = (0,2/+/T), then

X =7UX, Y=r71V'Y,

(7.1)

and
(7.2) XP =7 Xy oWy, [YP =) 77V 200y
i=0
3) There is a constant My such that
(7.3) sup  (IXP + VX + [YP) < M.

Cry % (0,1]

4) There are constants No, N3 > 0 and r1 > rg such that

1 2
(7.4) / / (X2 + [VXP + [Y2) e % dm < Ny
0 A'I‘ZT

for all r > ry.
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The exact values of the exponents of 7 in the scale factors in (2) are
not important for the analysis; all that we need is for X and Y to be
self-similar and satisfy some relationship akin to (7.2). We will show
that these four conditions imply that X and Y must vanish identically
on Cr, x (0,T4] for some rg > 7 and 0 < T < 1.

Theorem 7.1. Suppose that X and Y are smooth sections of X and
Y defined on C,, x (0,1] satisfying conditions (1) - (4) above. Then
there exists r9 > 0 and 0 < T1 < 1 such that X =0 and Y = 0 on
CTQ X (O,Tl]

We have already seen in Proposition 4.1 that X and Y defined by
(4.2) satisty (1) - (3). The following proposition, which is essentially a
corollary of Theorem 5.1, shows that they also satisfy the exponential
decay estimate in the precise form given in (4). Theorem 3.2 is thus a
consequence of Theorem 7.1.

7.1. Space-time exponential decay revisited. Combined with the
self-similarity of X and Y and the reference metric g, Theorem 5.1
implies that X and Y also decay in space at an exponential-quadratic
rate.

Proposition 7.2. There exist Ny and N3 (depending on Ny, N1, and
ro) such that

1 -2
(7.5) / / (1X[? + |VX|? + [Y]?) e F dm < Ny
0 AT,QT‘

or any r > 16rg.

Proof. For simplicity, let r1 = 1679. The set A, 2, can be covered by

a finite collection of sets of the form Dj(z;) where z; € R* 7%\ B, /2(0)
and so we obtain from Theorem 5.1 the inequality

1
(7.6) / / (X2 + [VX]? + [Y]?) ™ dm < ONyp ™
0 Arl,er
for some C' = C(n, k).
Now fix r > r;. Then
X [2(0, 2,7) = 77| VRm[2 1) (U160, 2), 1), dpgiry = 72 dpyqy,
and so, for any 0 < a < 1, by the change of variables

2
T1 T

=0 2=—2 7= —;7',
r r

we have

2
1 Nor? P\ o
™
/ / 1X|%e "7 dm = () /"2 / IX|%e = dm.
a JAr2r ! b A 2

w2
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Taking Ny = No/(2r}) = No/(512r3), then, and sending a — 0, we
obtain

2
1 Nop 2 —N07‘2 n—4 :—% N,
/ / X[?e 7 dm<e 1 <r> / / IX[2e " dm
0 JA, 2 1 0 Ary2rq
1 N
< N/ / IX[2e = dm
0o Ja

71,271
for some N = N(Ny). The estimate (7.5) for X then follows from

(7.6). Analogous scaling arguments prove (7.5) for the other terms in
the integrand. q.e.d.

7.2. Carleman estimates. To prove Theorem 7.1, we will use two
Carleman-type inequalities with weights that grow at an approximately
exponential-quadratic rate at infinity. Following [52], for a > 0, 0 <
T <1,and § € (7/8,1), we define ¢, : C x (0,00) = R by

z|? J
(7.7) bol0, 2, 7) = an(r) ('J) |
and 7 : [0,7] — [0, 1] by
1 lf T E [07’7'0]7
2
(78) () ={ 1-H045=3) (£ -1)" it e [m,2n),

1+ 56(46—3) (3 %) if 7 € 270, T],
L 20(40-3)T
07 3540 — 3) + 32

The function 7 has been engineered to be monotone decreasing on [0, 77,
identically one near 7 = 0, and proportional to T — 7 near 7 = T with
n(T) = 0.

Below, Z will denote an arbitrary bundle of the form @ T®*:k)C
equipped with the family of metrics and connections induced by g(7).

Theorem 7.3. For any 6 € (7/8,1) and T < 1, there exists r3 > 1
depending on n, k, and & such that, for all smooth families of sections
Z of the bundle Z with support compactly contained in Cr, x (0,T), we
have the inequality

T (07
/ / (5512 + V2P ) e dm
0 Cr

T
gm/ / 72[(Dy 4+ A)Z[*e*% dm
0 Cr

for all o > 0 and r > r3.

(7.9)
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We will apply this estimate to the PDE component X of our system.
To control the ODE component Y, we will use the following matching
estimate.

Theorem 7.4. For any § € (7/8,1), and T < 1 there exists r4 > 0,
depending on n, k, and 9§, such that, for all smooth families of sections
Z of Z with support compactly contained in C, x (0,T), we have the
mequality

T oy T
(7.10) / / —|Z[*e** dm < / / 72D, Z*e* dm
o Je T 0 Jer

foralla>1 and r > ry.

We will prove Theorems 7.3 and 7.4 in Section 8. For now, we will
take them for granted and use them to prove Theorem 7.1.

Proof of Theorem 7.1. Our argument is a modification of that of The-
orem 3.3 in [52]. Let ro > max{ry,r3,r4} and fix some R > ro and
0<T <.

We will need two cutoff functions. For all & > 8 and 0 < e < T/8,
let xqa, be a smooth bump function on [0,1] with support in (¢, 7" —
T/a) satisfying xa,. = 1 on [2¢,T — 2T/al, |x,| < 2/€ on (e, 2e),
and |Xp| < 20/T on (T — 2T/, T — T)/cr). For the spatial cutoff,
choose, for each r > R + 1, a bump function v, on R"* with support
in B,(0) \ Br(0) which satisfies ¢, = 1 on B,(0) \ Br4+1(0) and the
bounds |V, |; + [A,|; < C. We regard ¢, = 1,.(6,2) as a function
on C which is independent of 6, in which case, |V¢,| = |V, |5 and
A = Aty

Now define

Xa,e,r - Xa,ei/JrX, Ya,e,r - Xa,ew’rY~
From (7.1), we have

(D7 + A)Xaer| < BT Xaerl + B[ Yaerl + ¢rlxa.X]
+ 2Xaoe (| Ve[ + [A9 ) (IX] + [VX]),

and

[D:Yaerl < B(Xaerl + VXaerl) + BT [Yaer| + trlxa Y]
+ BXa,| V| X],

on Cgr x (0,T].



56 BRETT KOTSCHWAR & LU WANG

Applying the inequalities (7.9) and (7.10) to X, ., and Yo, and
summing the result, we arrive at the inequality

// A (K aer 2 + [Yaer2) + T|VXQ7E,T\2)62¢adm
Cr

< K/ / (|Xa,e,7’ 2
0 Cr

C 2¢
*@// 2 (X2 4 [Y P + [VX[2) 20 dm
R2r

+ Yaerl® + 72 VXaer[?) €27 dm

(7.11)

C’
v [ / (X[ + (Y2 +[TX2) e dm

7L
+ K/ / 2 (IX[ + [VX]?) €% dm
AR Rt1

T_,
+K/ / 2 (1X[? + |VX|?) 2% dm.

Here and below, we use C' to denote a constant depending at most on
n and k, and K a constant depending possibly in addition on §, B, My,
NQ, and Ng.

Now, provided T is chosen small enough (depending on n, k, B and
9), we can hide the first term on the right in the term on the left at the
expense of enlarging the constants on the right, say, by a factor of two.
Also, using the decay estimate (7.4), we can estimate the second term
on the right via

1 2€
2/ / 7’ (|X|2 +|Y[? 4+ [VX[?) 2% dm
€ R,27
2 N2R2 2€ 2
< 46( : / / (X + Y] + |[VX]?) 5 dm

NoR2

< Koz,rei de

for some K, , depending on «, d, r, R, N2, and N3. In particular, this
term tends to 0 as € \ 0 for any fixed o and r.
Similarly, on Ag ry1 x (0,7) and A, 2, x (0,7), we have e?Pe <

NpR? 9 Nor® . .
Koe = and e2%» < K e -, respectively, for some K, depending on

a and 0. So, using (7.4), we see that the fourth and fifth terms on the
right in (7.11) converge to finite values as € N\, 0. After taking this limit,
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then, we obtain from (7.11) that

/ / X+ [Y) + 7| VX[2) €20 dm
AR+1r

7T
- QT/ (X2 + [Y]? +|VX]?) €% dm
(7.12)

+K/ / 72(|X|2+|VX|2) e dm
0 JARR+1

T
+K// 7 (|X[? + |[VX[?) €2 dm.
0 -AT,Q'I‘

Estimating as above, we see also that

Nor?

T
/ / 72 (X2 + |[VX[?) €29 dm < K,e™ o1,
0 ArQr

so the last term on the right of (7.12) tends to zero as r — oco. The
first term on the right of (7.12) can also be seen to be bounded above
independently of r; we will verify this now and further show that it is
bounded independently of a.

Let us assume from now on that o > «; where a; = aq(9) is large
enough that 7' — 2T /a; > 279. (The constant 7y here is from the
definition of 7 in (7.8).) Then n(r) = ¢o(T — 7)/T on the interval
[T — 2T /a, T — T/a] for some constant ¢y = ¢o(d) and, consequently,
bo < 2¢|z|?°/7° for T in the same range. Choosing m so large that
2™ R > r, we may estimate that

T_,
/ / (X2 + Y]+ |[VX]?) €% dm
ARQT

T—a ) 5 oy Aeolzl?
S/ / (yX| + Y]+ |VX[F) e  #  dm

I 12
<K/ / (X2 + Y]+ |VX[?) e " m
270

R2m+1R

N. (2 R) No(2'R)?
sKZ{ T / / (X2 + Y2+ [VX[2) e s dm}
=0

2lR 2l+1p

<K,
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for any a > a1 and r > ry. Thus we may take the limit as » — oo on
both sides of (7.12) to obtain that

T
/2 / (ar (X + [Y[2) + 7| VX[?) 2 dm
0 JCrt1
(7.13) o .
< -5+ K/ / 2 (IX[* + |VX[?) €% dm.
T 0 JARR+1

To estimate the second term on the right side of (7.13), note that, by
construction, n(7) = 1 for 7 € (0, 79]. Using the self-similarity of X and
VX from (4) above, we have

70
/4/ 72 (IX? + |VXP?) €22 dm
0 AR,Rt1
70
g/“/ 72 (X% + |VX[?) eX dm
0 Cr
70
SC/ / 2 (IX]? + |VX[?) €** dm
0 Cor

T
< 0/2 / 2 (IX[* + |VX[?) €% dm.
0 JCry1

Thus, for T small enough, depending on n, k, B, and L, we can convert
(7.13) into

T
/2/ (X2 + [Y[?) % dm
0 JCrt1

KO&Q T
< —5 +K// 2 (IX]? + |VX[?) €*** dm
T 0 J AR Rs1
.
SK(;Q—}—ea % RTk .

On the other hand,

5 26
2 8°(R+1) 70
. « T(()S /3 / (|X|2+|Y’2) dm
0 Cry1

so we find that

)

R+1 26
Ka2 _ae( 6)
3 e

0
/8/ (X2 + [Y[?) dm < 3
0 Cry1 T
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for all o > a3, where € = 2-4%(2° — 1). Sending o — oo, we conclude
at last that X =0 and Y =0 on Cry1 X [0,70/8]. q.e.d.

8. The Carleman estimates

In this section, we will prove the Carleman estimates in Theorems
6.2, 6.3, 7.3, and 7.4. We start by establishing some general integral
identities for families of tensors on a manifold evolving by the backward
Ricci flow.

8.1. Integral identities. In this subsection, we will use g = g(7) to
denote an arbitrary solution to (1.6) on a smooth manifold M = M"
for 7 € (0,7T), and Z to denote a tensor bundle over M. We will use
V = V) and dp = dpugy;) to represent the Levi-Civita connection
and Riemannian density associated to g, and define the operator D, in
terms of g as in Section 4. We will also continue to use the shorthand
dm = d,ug(T) dr.

Let ¢ : M x (0,T7) — R be a smooth positive function and consider
the operator

L=71e?(Dy +A)e?

acting on smooth families of sections of Z. Explicitly, then, we have

LV =71 (ymp\? - gf_) = Aqﬁ) V+7(Dr + A)V = 27Vy,V,
and the formal L?(dm)-adjoint of £ is given by
1
LV =r <|v¢>|2 +A¢ - % ——- R) V —7(D; — A)V + 27V, V.

Writing £ in terms of its symmetric and antisymmetric parts

LV LV s 09 R 1
Av_EV_Q’CV_7—<§—A¢—|—21>V+TDTV—2TVV¢V,
T

yields the identity

//72\DTZ+AZ|262¢dm://\£V|2dm

(8.1)
= [[ VP +1AVE + (5. 4V, V)) dim,

for any smooth family Z = e~?V of sections of Z with compact support
inC x (0,7).

Provided (with a judicious choice of ¢) we can effectively estimate
the commutator [S, . A], the above identity will yield an estimate of the
L%-norm of (D, + A)Z from below by that of Z. The basis of this
estimate is the following explicit expression for the commutator.
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Proposition 8.1. If V is any smooth family of sections of Z with
compact support in M x (0,T), we have

//([S,A]V, VY dm

(8.2)
// (wv.vv)+ QP Iv 2+ P (v, V)) dm

where

QY (VV,VV) =272 (2V.V,0 — Ryj + g”) (ViV,V;V),

o) = 7 <8 0 A% 2—|V¢!2 5 (aR +AR) —(VR, V¢>>

or? 0
[Vg|?
2T

+ 272 <2vv¢>(v¢, V¢) —Re(Vo, Vo) +
99 2 R

and
QP (VY V) = —272 (viRja — V;Ria + 2R§javl¢) (ALV, Y, V).
Proof. For the time-being, write S and A as
S=7(A+FId), A=r71(D;—-2Vy,+GId).
Then

S(AV) = 7*(AD,V —2A(Vy,V) + A(GV) + FD,V - 2F(Vy,V)
+ FGV),
and
A(SV) = 7%(D;AV + D (FV) = 2Vyg(AV) = 2Vy, (FV) + GAV
+ FGV) +7(AV + FV),

SO

S, AV = 72 ([A, D,V +2[Vyg, AV + < (VE, Vo) — ‘;f) 1%

1
+AGV +2VyaV — —(AV + FV)).
T

Since V' has compact support, we may integrate ([S,A]V,V) over
C x (0,T) and integrate by parts in the integrals corresponding to the
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fourth and sixth terms of the above identity to obtain that

//([&A]V, V) dm

(8.3) = //72([A,DT}V+2[VV¢,A]V, V) dm+//7\vw2dm

//( ( VFV¢>—(Z]:)—TF> VP dm.

We now simplify the commutator terms on the right side of (8.3).
First,

J[ 708001y am
// <va,D V.V, V) + (D~ Va]V,VaV>>dm

// ( [Va, DAVa|V? + 2(|D;, V]V, V, V>>d
and since
[Va, Dy )Va| V2 = Ry Vo Va|V |2 + (VaRae — VeRaa)Ve|V|?
= Vu(RaoValV]?) = (VR, V|V [?),

and

(D7, Vo]V = =Ry VoV — (VyRae — VeRap)AL(V),
we have

//72<[A,DT]V, V) dm
(8.4) // ( AR|V|? = 2R (VaV, V3 V)

—9 <(vaac — VR AL(V), vav> > dm.
Likewise, for the second commutator term in (8.3), we compute that

/ 72(Vye(AV), V) dm = — // 72{A¢<AV, V) 4+ (VvsV, AV>} dm,

and
/ / A(VyeV),V)dm

_ //72{A¢|VV|2 [V, VoV, Va V) Vi

- 2vavb¢<vava vbv> - <VV<Z>‘/7 AV>} dm.
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Using that
Vid[Va, ValV = —RicadVapA2(V),
we then have

2 [[ 72 ((F50 A1V, V) dm

w5 =] 72{4vavb¢><vav, ViV) — 4RicaaVad(AUV), VaV)
— A%;V\?} dm.
Now we expand the third term on the right of (8.3). Since
o6 R 1
F= 2 _ L _—_ —
Vel or 2 27’

we compute that

2(VF,V¢) = 4VVp(Vp, V) — 2 <Vg¢ V¢> —(VR,V¢)

— IVV6(V6,V6) - 2Re(Vo, V6) — Vo[ - (VR,Ve).

and
8F

or 87’

0%y 10R 1
2 00 1ok L
Vol or? 20t +27'2’

O
OF
// <2T2<VF, Vo) — 725 — 7F> [V|? dm

://272 <2VV¢(V¢,V¢)—RC(V¢,V¢) |V¢|2> V[? dm

//{ (‘%— 2102 + ;?f—wa)

+7 (‘;¢ + = - 2|v¢2) }|V|2 dm.

Combining this with (8.3), (8.4), and (8.5) yields (8.2). q.e.d.

Remark 8.2. When g(T) is a shrinking self-similar solution to (1.6)
in the sense that (M,g(1), f(1)) satisfies (1.2) and g(1) = T7¥ig(1),
f(r) = foWrif(1) where 3¢ = —77Y(Vy1)f(1)) o ¥ and ¥y = Id, the
quantities Q((;), i =1,2,3, on the right side of (8.2) vanish identically

with the choice ¢ = —J;. This can be seen immediately for Q((;) and
Q((;’) given the identities

Rij +V;V;f = %7 ViRjy — VR, = Réjkvlf’
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satisfied by g and f on M x (0,T). The vanishing of fo) follows from
the additional identities

0 OR R
Af+R=2 —f:—|Vf|2, S (VR Vf) - =,
2T or or T

since

2
o® = ((gf +(VR,Vf) + R> +A(Af+R))

270 1\ [0f ,
—2<aT+T><aT+’Vf'>

(Rc(g) +VVf - %) (VF, V)

We will use the simple energy estimate in the next proposition to
control |VZ| by |(Dr + A)Z| in combination with our estimate for |Z].

Proposition 8.3. If Z is any smooth family of sections of Z with
compact support in M x (0,T), then, for any j, 1 >0, and b > 0,

// |V Z[2e* dm

. o R 1-1
86 < [[7(deraver- 50— T4 G ) 2P i
it
+//%’(DT + A)Z|** dm.

Proof. Write V = e?Z as before and consider the identities

J 2 _ - 2L J12y 2 _ g
HOVE =5 (54 a) VP = v - (0,4 AV)
and
T{(Dr + AV, V) =777 HLV, V) + 77 <A¢+ %ﬁb - |V¢>\2> 145
T

+ 7V, VIV[%).

Combining these identities, integrating over M x (0,7"), and integrating
by parts, we obtain

— // LV, V) ;m
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9p R br'l—j
< [[+ (wz -y ) W dn
b [ S i0s+ mzye

for any b > 0 and [ > 0. On the other hand,
VV? = (V21" + (Yo, VIZP) + Vo ! Z]),

//7']|VZQdm //TJ|VV|2 20 dm
//TJ A¢+ V) | Z[*e*? dm.
Combining (8.7) and (8.8), we obtain (8.6). q.e.d.

(8.7)

8.2. Carleman estimates to imply exponential decay. For the
rest of the section, we will specialize to the cylinder M = C with

Vr(0,2) = (0,2/v7), g(r) =7¥79(1) = 2(k - 1)79) & g,

and )
zZ— 2 k
lz= =" k&

fZO(H,Z,T):fzo(\I/T(Q,Z),l) = Ar 2’

for 7 > 0 and some zg € R"* as before.

8.2.1. An estimate for the PDE component. We start with the
proof of Theorem 6.2. Following [21], [52], we define for « > 0 and
20 € R"¥ the weight function ¢ = ¢, ., : C x (0,00) — R by

|z:—zo|2

8T

1 k
= —§fZ0(z, 0,7) —alogo(r) + T

T—T)/3‘

o(z,0,7) = — —alogo(r)

(8.9)

where o(7) = Tel

Proof of Theorem 6.2. Fix 0 < T <2, o> 1, and zy € R**. Tt suffices
to prove the estimate for the case that Z has a single summand (i.e., is
a tensor bundle over C). Let Z be a smooth family of sections of Z with
compact support in C x (0,7) and write V = e¥Z. Consider (8.2) with

the choice ¢ = ¢. Since ¢ differs from —f,,/2 by a function depending
only on 7, it follows from Remark 8.2 that the quantities Qg) in (8.2)
satisfy
art
o) =0, Q¥ = —ar (r(logo) + (logo)) = =, Q) =0.

According to (8.1) and Proposition 8.1, we then have

(8.10) //T|Z|2 22 dm < // 2|(D; + A)Z)?e*? dm.
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To incorporate the derivative of Z, we use Proposition 8.3 with ¢ = ¢,
j=2,1=1, and b = 2. Using the soliton identities (see Remark 8.2),
we can simplify the integrand of the first integral on the right of (8.6)
to find

0 2 T
Af, IVfol? 10f. R «
_ 2 0 0 - 0 P v et
-7 ( y t1 T, teleso) -4

9 <a7+n)
= [0 —_ —_— —_
T T 3 4 5

and hence that

T
// TV Z|2e*?dm < 2a //T\Z\Qewdm-f—ll//T2|(DT+A)Z]262“’dm.
«

Combining this with (8.10) and using that 7" < 2, we arrive at

//(M|Z|2 + 2V ZP)e2* dm < 10 // 22|(Ds + A) 2262 dm,
which implies (6.7). q.e.d.

8.2.2. Estimates for the ODE component. Both of the Carleman-
type estimates (6.8) and (6.9) are consequences of the simple identity

% ( 9 7|% e2? d,u)

(8.11) Y
=7 << +2—- + R) |Z|* +2(D, Z, Z>> e dp,
T

or

where Z is a smooth family of tensor fields over C, j > 0 is a fixed
number, and ¢ : C x (0,7') — R is an arbitrary smooth function.

Proof of Theorem 6.3. Again it suffices to consider the case that Z is a
tensor bundle over C. Let Z be a smooth family of sections of Z with
compact support in U x (0,T") for some open U C C. Let D C C be
any open set with D ¢ U and fix @ > 1, A > 0, and zy € R* %, (The
support of Z(-,7) need not be contained in D.)

For the first inequality (6.8), we apply (8.11) with ¢ = p and j = A+1
at some fixed p = (0, z), obtaining

9 ( a1 2 2¢ _ (. |z =20  k 2a 2
8T(T |Z]%e du)— T A+14 i t5 - 3(3—7') |Z|

+ 277D, Z, Z>> X dy.
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Since Z vanishes identically near 7 = 0 and 7 = T', we may integrate
the above identity over D x [0,T] to obtain

T
/ /TA (80‘—4A—2k;—4> |Z|2%? dm
o Jp 3
T
S/ /7')‘_1 (12 — 20*| 2 + 87%(D- Z, Z)) €** dm.
0o Jp

Estimating

4873

874D, 2, 7) < %|Z|2 +——|D, 2P,

we see that

T
2a/ / ™| Z €% dm
o Jp

’ A-1 2172 48 o 2 2
< T |z — 20|%|Z|* + —7°|D:Z|* ) e*¥ dm
0 JD @

for o > o/(k, \) sufficiently large. This implies (6.8) for such « and D.
For (6.9), we apply (8.11) again with ¢ = —«alogo and j = A+ 1 at
some fixed p = (6, z), obtaining

O ([ At11712 ~2 (. k’_Qa _ 2
5(7 |Z|%o du)— T )\—1—1—|—§ ?(3 7)) 1Z|

+ 2D, Z, Z>> o 2%dp.

Integrating over D x [0,T], we obtain

T
/ / ™ <20‘ okl 1) |Z|2072% dm
o Jp 3 2
T
<2 / / U D, Z, Z)o 72 dm.
0 D

Since

87_)\—4-2

D-Z)?,
«

A
20 MUD, 7, 7) < O%yZP +

we have

a [T g [T
/ /T’\|Z|20_2°‘ dm < / /’7’>\+2|D7-Z|2O'_2a dm,
2Jo Jp aJo Jp

provided o > o (k, \) is sufficiently large. This implies (6.9) for such
a. Putting ap = max{a’, &"} finishes the proof. q.e.d.
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8.3. Carleman estimates to imply backward uniqueness. Now
we prove the second set of Carleman estimates from Section 7. Here,
as in [52], we fix some 0 < 7' < 1 and construct our weight from the
function ¢o = ¢a,s : C X (0,7) — R given by

butet ) =onte) (1 (00 - £)) = ane) (E)

as in (7.7) with n : [0,T] — [0,1] defined as in (7.8). The function 7
is piecewise-differentiable, twice weakly-differentiable, and satisfies the
following inequalities.

Lemma 8.4 ([52]). The function n is nonincreasing and satisfies
1
(8.12) 0<n<1, én—7q >0 72"> —0(45 = 3),

for T €10,T].

These inequalities are verified in Lemma 2.5 of [52] for the function
7(7) = n(7/T). They are invariant under rescaling of 7 and are hence
also valid in our situation.

8.3.1. An estimate for the PDE component. To apply the integral
identities in the preceding section, we first need to collect formulas for
the various derivative expressions that appear in the quantities Qf;i, 1=
1,2,3, in (8.2). The necessary expressions have already been computed
in [52]. (The computations there, made relative to the Euclidean metric
are valid for the evolving cylindrical metric here since ¢, is independent
of the spherical variables.)

Lemma 8.5 (Lemma 2.4, [52]). For any « > 0, the derivatives of
the function ¢o satisfy the expressions

2a0 _
Voo = Tnfz\% %2,
4a26%n? _
|V¢a’2 = TLZ‘M 27
200 _
YV, = %WH (12PP+2(5 — 1)z ® 2),
206 (20 —1)+n—k)n _
A¢a: ( ( 7_; ) |Z’26 2,
9¢a _ a(ty’ —0n), s
or T7o+1 |17,
Pda _ alt?y” =20y +6(6 + 1)n) 122
or2 T7o+2 S

0 s 8a28%n(tn —6n) | u5_0
E‘V%’ = —25+1 2777,
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406(60 —1)(2(0 —1)+n—k)(2(0 —2)+n—k _
AZg, = 2290 -DEE -1 - )(2(6 = 2) )U‘Z‘za 1
on Cp x (0,T) for any r > 0.

Above, in the first and third equations we identify z with the differ-
ential of the function (6, z) +— \z| /2 and, in the expression for VV¢,,
we identify the endomorphism P with the two-tensor PU = P Jkj- Now
we prove Theorem 7.3.

Proof of Theorem 7.3. Fix 6 € (7/8,1) and T € (0,1], and let r > r3
where r3 > 1 is to be specified over the course of the proof. We will
assume, as before, that Z is a fixed tensor bundle over C. Let Z be
a smooth family of sections of Z on C, defined for 7 € (0,7") and let
V =eb 7.

With an eye toward (8.2), let us define

Sy, = % — Re(g) + 2VVé,.
Then, using Lemma 8.5, we have
p P 400n | 954
= — 2 = — [

St o + 2VVo, 5 H (
Since 6 > 1/2, the second term, and hence the sum, is nonnegative-
definite when considered as a two-tensor on T'C over C,.. In particular,

the quantity Q 1)(VV VV) from (8.2) is nonnegative.
For the quantity Q bo> WE have similarly that

Q! 2) > 72 (‘ba — A%, — 2|v¢a|2> ( %a 2|v¢ay2>
or

where we have used that VR = 0, AR = 0, and g—f + R/7 = 0. Now,
two of the terms on the right are proportional to o?. Using Lemmas 8.4
and 8.5, we see that we may estimate them below by

o 8042527”2’4672
—27 <T(9T|V%|2 + |V¢>a2) T — (2(rn' = bn) +n)

60425277‘2‘4572
- 7-26—1

|ZzPP+2(6 — 1)z ® z).

The remaining terms are proportional to «, and we may estimate them
similarly:

%9 ¢
2 OZ_ 2 «
T (a? A%)”af

26
= ‘T| <2” 26t + 80+ 1)n+ (0 — dm) —

al2|® (3577+ (1 —4d)n’ C(&k,n)T%)

70 4 | 2]
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So, if r3 = r3(d,n, k) is taken sufficiently large, we will have

a\z]% 60[2527”2’4672

(2)
Q¢a 2 27_5 (677 — 7'77/) + 7_25_1 y

on C, x (0,7).
Finally, Q((;;) = 0 on the cylinder since VRe = 0 and Rm(+, -, -, V¢,) =
0. Putting things together and using (8.1) and (8.2), we thus see that

T 25 2621, 46—2
alz| / 60°0°n|z| 2 2¢a
/0 /r< 53 (577—777)+T | Z]%e*P> dm
T
g/ /7-2|DTZ+AZ|262¢°‘dm,
0 r

for all « > 0 and r > rs.
Now we use Proposition 8.3 to add in the derivative term. Taking
¢ =¢qand b=j=1=1in (8.6) yields

T
//T|VZ|2€2¢adm
0
(8.14) // <A¢a+2|v¢a12 a‘ba—lj) 1Z|262% dm

+/ /2|(DT+A)Z|262¢“dm.
0 r

Then, by Lemmas 8.4 and 8.5,

T (A% +2[Vdal? - 9a R> _ 206200 —1)+n—k) o2

(8.13)

or 2 T
8025 n? 2|42 _ a(rn’ —577)‘Z|25 Kk
726 To+1 4t
a\z|25 , T(n — k) 8a262772|z|45_2
== ((577 —7)+ 22 —26—1
O5|Z|26 , ) 801252772’2‘45_2
<= <(577—”7)+2 T

for rs sufficiently large. Returning to (8.14) with this, multiplying both
sides by 1/4, and combining the result with (8.13), we obtain

26
//(O“M 2% + \VZ|2>62¢adm

g/ /7-2|DTZ+AZ]262¢“dm,
o Jer

for r > r3 and all & > 0. The estimate (7.9) follows. q.e.d.
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8.3.2. An estimate for the ODE component. For the proof of the
matching estimate for the ODE component, we again use the identity

(8.11).

Proof of Theorem 7.4. Fix a > 1, 0 < T < 1, and let r > ry for some
r4 to be specified later. Let Z be a smooth family of sections the tensor
bundle Z with compact support in C, x (0,7"). Starting from (8.11)
with j =1 and ¢ = ¢, we have

9 (rl22e2edp) = 7 <<1 99 ) 122 + 2(D, 2, Z>> €24y,
T

or or
By Lemmas 8.4 and 8.5,
0
;a = ot — on)T 07 2|P < —adr 02|,
-
so, integrating over C, x (0,7") and using Cauchy-Schwarz, we see that

o 4
// 72| D, Z|?e** dm > — //< 0o | Kt >|Z|2 200 gm
2
> 2a0|z| _k:—i—4 12|22 dm,
0 Cr 7'(S 2

Thus, provided r4 = r4(n, k, ) is sufficiently large, we will have

T T §lz1?
/ /TQIDTZ|262¢D‘dm2/ / DIz 72200 g
0 Je, o Je. T

as claimed. q.e.d.

Appendix A. Normalizing the soliton vector field.

In this section, we prove Theorem 2.5, which provides the diffeomor-
phism ® we use to identify the soliton vector field with that of the
standard cylindrical soliton structure.

A.1. Preliminaries. Let us first review the prerequisites we need from
ODE theory, following Chapter 9 of [33]. Recall that a flow-domain on
a manifold M is an open set D C M x R satisfying that, for each p € M,
the set of ¢ for which (p,t) belongs to D is an open interval containing
0. (Here, the order of the time and space variables is opposite to that in
[33].) A smooth flow is a smooth map © : D — M from a flow domain
D which satisfies the group laws

O(p,0) =p, O(O(p,s),t)=0O(p,s+1),
for all p € M and s, t € R for which (p,s), (O(p,s),t), and (p,s + t)
belong to D.
The infinitesimal generator %—(?( 0) of a smooth flow © : D — M is
a smooth flow is a smooth vector ﬁeld on M, and it is a consequence of
the local theory of ODE that, to each smooth vector field V, there is
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a maximally defined smooth flow © whose infinitesimal generator is V.
(See Theorem 9.12 in [33].)

The main tool we need is the Flowout Theorem (Theorem 9.20 in
[33]), which asserts that if S C M is a compact hypersurface and V' is
nowhere tangent to S, then the restriction of the flow © of V to O =
(S xR)ND is a smooth immersion which pushes forward the coordinate
vector field % along R to V. When S is a compact hypersurface, there
is 0 > 0 such that ®| 5x(—s,5) 18 a diffeomorphism onto its image.

A.2. A sequence of maps identifying the vector fields. Now we
specialize to the setting Theorem 2.5. We will assume below that
(Cro» G,V f) is strongly asymptotic to (C,g,Vf) as a soliton structure
and write, as before,

r 0
20r’
By assumption, there are constants M; ,, such that

h=g—g, X=Vf X=Vf= E=X-X.

(A1) sup 2| {|V™h| + [V B} < My,
Cro
for all I, m > 0.

Using the notation and terminology of the previous section, let © :
D C Cqy x R — C be the maximal smooth flow of X. There are a
variety of ways to use © to construct an injective local diffeomorphism
Sk x S"7F x (0,00) — C by identifying S* x S*7#~! with an appropriate
hypersurface in C,, to which X is nowhere tangent. Each of these local
diffeomorphisms can be adjusted to pull X back to X. The trick is
to choose an identification for which it is convenient to see that the
pull-back of § by the map this identification produces is still strongly
asymptotic to the cylindrical metric. We will construct a sequence of
maps ®®) from the identifications of S¥ x S* %=1 with S, = 8C{f for
values of b tending to infinity. From this sequence, we will extract a
limit map which, in a sense, agrees with the identity to infinite order at
spatial infinity.

To begin, let us use the infinite order agreement of X and X to choose
ag so large that ag > 2rg and

~ 0 T ~ 0
A2 X, — > — X, —
(A-2) < ’8r>(97wﬂ)_4’ < ’8r>§

on Cq,.

Proposition A.1. There exists a constant a; > ag with the property
that, for each b > ay, there is an injective local diffeomorphism ®®)
Cay — Cq, /2 salisfying

>
(9’077.)

r
47

(A.3) dafy) (8 8) = X(@®(8,0,5), o =1Idg,

20s Sh
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(A4) C2a1 C (I)(b)(cal)7
and
(A5) s <ro0®(,0,5) < 2.
Additionally, for each I > 0, there is a constant C; such that
1 S
(A.6) [ro@®(0,0,5) = s| < Cr | = 177
(®) 1 1
(A.7) dSS((H,U,S),TrO(I) (9,0’73)) < T_Q ,
s

for all b, s > ay, where ds, is the induced distance on Ss and m = 7y :
Cay — Ss is the projection ws(0,0,1) = (0,0,s).

Proof. By (A.2), X is nowhere tangent to S, for a > ag. We use this
to construct a preliminary map ®® following Theorem 9.20 of [33].
Let © : D C Cqy x R — C be the maximal smooth flow of X, and let
ot = 0|, where Oy = DN (S, x R). By (A.2), r is increasing along
the integral curves of X, so the flow of X preserves Cao- By (A.1),
\X\ < M(r+1) for some M, so the integral curves of X starting at any
point in C,, exist for all positive ¢.

Fix some a > ag. By the compactness of S,, we will have S, x
(—=0d,00) C O, for some § > 0, and this implies that, for all b > a, we
will have S x (—(6 + a(b)),00) C Oy where

a(b) =inf {t| O(S, x {t}) NSy £ 0}

is the minimum time needed to reach S via an integral curve of X
starting in S,. 3
Now, just as in [33], each ®(®) is a local diffeomorphism, and
- ) o 8
a(g), <at> = X(@"(0,0,1)), 2")(0,0,0) = (6,0,b).
Provided § is small enough, the restriction of ®® to S, x (—d,8) will

be injective and hence a diffeomorphism onto its image. But it is not

hard to see that ®®) is actually injective on all of Co—(a(b)+5)- Indeed,

d%r(fy(s)) > ap/4 > 0 along any integral curve v of X, so each point

in the image of d® lies on an integral curve which intersects Sp in
exactly one point. Following each point (6y, 0¢, sg) in the image along
an integral curve of X to S, thus associates the point with a unique
radial translation ¢ and a unique (6,0) such that (0,0,b) € S, and
(i)(b)(& g, t) = (907 00, 30)-
Now define
3 (9,0,5) = 99, 0,21In(s/b))
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for all (0,0, s) such that (6,0,21n(s/b)) € Op. Then

s 0 5
AP <> = X(@"(0,0,9)), 2|5, =1d|s,,

and ®©® is a diffeomorphism onto its image.

Now we consider the distortion of distance under ®®). Fix (6,0) €
Sk x S*=k=1. For all s such that v()(s) = ®®)(0, 5, s) is well-defined,
we have from Proposition 2.2 that () (s) = r(7()(s)) satisfies

d [r®(s) r®(s) 2 /5 9
d( P +32<X’ar>

2 0
—52<E’ar>

Integrating from s to b, we find that

,«(b)(S)
S

7(®)(s)

YO (s)

b
1
| wa

for some ¢ independent of 6, o, and, in particular, that
(A.9) —e<r®(s) —s <,

for all s < b such that 4(®)(s) is defined. But ~®)(s) will be defined at
least as long as r(b)(s) > ag, and, so, at least for all s > ag + ¢. Choose
a1 = 2(ag + ¢). Then ®® will be defined on C,, and (A.9) says that,
for b > ay,

-1

<c

)

r®(ay) > a; — ¢ =2a9 + ¢ > %.

Consequently, ®®)(C,,) C C,, /2. Similarly,
r(b)(al) <aj+c<2a9+ 3¢ < 2aq,
50 Coq, C ®®)(Cy,). For b, s > ay, we will also have
§§a0+§ §s—c§r(b)(s) <s+c<2s,

which is (A.5). We may then estimate |Eo®®)| < Cjr—! < Cj2's7!. Re-
turning to (A.8) with this bound and integrating again along arbitrary
paths with fixed 0, o we obtain (A.6).

The estimate (A.7) is proven in the same way. Fix (0, 0) € SFxSn—F-1
and sg > a; and let p(s) = 7, 0 ®®)(0, 7, 5). For any s, we have

0 2

() = 080 () = 2an (Xo(50) = 2y (Bo(5)),

while, by estimate (A.6) above, we have |E(p(s))| < C;s~ for all [ > 0
for some C) independent of # and o. But this is enough, since

[dsy (E(p(3))lgs,, < 3 1E((s)),



74 BRETT KOTSCHWAR & LU WANG

and so

s, ((6,0,50). 750 0 000, 0,50) ) = ds., (p(b), p(50))

b b 1
/
/ 7 (Olgs,, dt‘ <C / T,
S0 S0

and (A.7) follows. q.e.d.

<

A.3. Analysis of an associated system of ODE. Next we seek uni-
form derivative estimates on the family of maps ®®) in order to extract
a limit as b — oo. The distance distortion estimates (A.6)-(A.7) guaran-
tee that the image of a point under ®®) will not wander too far from the
point itself, and therefore that we can obtain the derivative estimates
we need from an analysis of the local coordinate representations of &)
relative to a fixed finite atlas on C,,. Each of these coordinate repre-
sentations will satisfy a system of equations with a common structure
reflecting the infinite order agreement of X and X at spatial infinity.
We analyze a general version of this system now.
Consider solutions
YU x (s9,00) = W CR"™ 7:U x (s9,00) = (s1,00),

to the system

oY 2

87 = 7E¢(¢77‘)7 w(wab):l.a

s s

(A.10) or r 2

7:7+7E 77', T.fC,b :b,

L=l lBW), 1)
where U C R™™1, W C R"! are open sets and E = (Ey, E,) : W x
(ro,00) — R™ satisfies

olul+rp

C(p.1,p)
Oyrorp

9 /r.l

(A.11) r) <

for all [, p > 0 and all multiindices p = (u1,. .., tin—1)-
Here in this subsection (and only for this subsection) we will write

CI)(aj, 5) = (iﬁ(% S)? T(:U, S)),

and use (-, -) and |-| to denote the standard Euclidean inner product and
norm on R™. The collision of notation is intentional: in our eventual
application to the proof of Theorem 2.5, the neighborhoods U and W
will correspond to the images of charts on coordinate neighborhoods
of S x S**~1 The maps ® and E will correspond to the coordinate
representations of ®®) (for fixed b) and F relative to the associated
charts on C.

Our goal is to derive estimates on ® from this system on compact
subsets of U x (sg, 00) which are independent of b.
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Proposition A.2. Let V be a precompact open set with V. C U.
Then, for all k, 1 > 0, there is a constant C = C(k,l) depending on V,
but independent of b, such that

olul+p

l
(A12) sup s W

V' x (So,b}

—1d)| (z,s) < C(k,1)

for all u and p > 0 such that |u| +p = k.

Proof. Let V be a precompact open set with with V C U. Fix z € V.
Then

(A13) o (") = 2B @),

so, using the bound |E(¢,r)| < C we have
b
1
< C/ —dt < ¢
t2
S

R
S

o

S

and hence that |r(z,s) — s| < C for any z and any sg < s < b.

For all s sufficiently large, we will also have that s/2 < r(z,s) < 2s.
Hence, for each I, there is C; such that |E(¢(z,s),r(z,s))| < Cis~
Returning to (A.13), then, we can estimate

r(z, s) b9 b1 Ci
’1 -He < [ LB e )ld < O [ <
and hence that |r(z,s) — 1| < Cys~!. Using now that r and s are

comparable, we obtain similarly that

wlas) — ol < [ 1Bl )] <

Now we estimate the first derivatives of ®. Fix some [ > 0. From
what we have done above, we already know that

oY 2 C or
il < -
-2t < S |5

For the z-derivatives, it will be convenient to introduce the map

r 2 C
43\—ﬂ+gmwmns;.

st’ s

F=pi0o®:U x (s9,00) = W x (0,00),

where py(z,7) = (z, \r), ie., F(x,s) = (¢Y(z,s),r(z,s)/s). Fix 1 <i <
n — 1. Then

0 OF o (2 2 2 0o
%mw—wig@oggﬂog—gw%“wbﬁ
2 F
= g(dp% odEodps)gzi.
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Now, the matrix-valued function

| OF
s OyB
1 9B,
s2 oyP

€0

2
A:S(dplodEodps)oq):2(

satisfies |A| < Cys~ (1) for all 1, so the function ¢ =

OF I
or
10E,
s or

OF
oxt

)

2 .
— e } satisfies

o6 OF OF OF
83_2<A<8gji_€l)7axi_ez>+2<A€“axi_ez>

> —3|Alg — | Al

Fix sg < s1 < b. Then, there is C' depending only on [ such that

Jd¢ _ _
% > —Cjs 2((25 + s 2l)

for any = and all s > s;. Integrating from s; to b yields

Gz, s1)+s72) ~ b s

which, since ¢(z,b) = 0, means that

In ( ¢($,b) + 81_2l ) > Cl Cl

c_c
d(x,s1) <est P 31_2[ < Clsl_Ql,

where C' is independent of s1. Since s; was arbitrary, it follows that

1

S

o or
ozt ¢ ozt

for all s, and the desired estimate follows.

@]

The higher derivatives may be estimated similarly. We will give here
the details only for the case k = 2. Fix again [ > 0. From above, we

have already seen that

0%r o (r 2 2 od
(14 ZE. ) =2dE~—
0s?  0Os <s + s ) sd Js
and )
0%y g (2 2 2
952 = s (Ew) = g2but by
SO
%yl || _ G
0s? 0s? st
for some Cj. Similarly,
0%r 1| 0r 2 0P
: bl Bl ) ) o Wit
ox'0s| — s |0zt s d ox'| —
and )
0“1 2 o0 !
- - R — <
ox'0s| — s dEy oxr'| — Cis

for any i.

Y
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For the pure z-derivatives, we again use the map F' and compute that
o O°F 2 O*F
———— =-(d dE odps) ———
0s 0x'0x) s( PLe ° dps) 0x'0xJ
+5 (dpy 0 °B) (dpswdpsw>

for any ¢ and j. Fixing any z and integrating from s to b, we may
estimate as in the previous lemma that
O*F -

0xt0xI (z,9)) = st

| Q

using that
O*F
—(x,b) = 0.
OxtoxI (z,0)
The desired estimate on 0512 g; 5 follows immediately. q.e.d.

A.4. Convergence to a limit diffeomorphism. Now we are ready
to extract a limit as b — oo from the family ®(® of local diffeomorphisms
constructed in Proposition A.1. We first fix a finite coordinate atlas in
order to import the estimates from the previous section to the cylinder.

It follows from the distance estimates (A.7) that we can cover S¥ x
Sn=k=1 by a finite collection {U{}¥, of products

Us = B (pi) x B (a)

of coordinate balls of radius ¢ less than one fourth the injectivity radii
of S* and S* %=1 with the property that
(I)(b)(UZZS X (a2,00)> - Uéié X (a2/27oo>

for all ag > ay sufficiently large (depending on §) and all b > ay. Write
U? = Uls x (az,00) and W' = Uls x (a2/2,00) and consider the corre-
sponding atlases {(U%, @*)}Y, and {(W?, @)}Y, of C,, and Cay /2, TE-
spectively. Here we use @' to represent both the map exp,, L x exp(;1 x Id
on W and its restriction to U*.

Passing to the coordinate representations ¢*o®®o(¢)~! and d@(E)o
(¢")~ of ®®) and E (which we will continue to denote by the same
symbols) we obtain a system of the form (A.10) on ¢'(U?) with the

bounds (A.11) for some C depending on U’; these bounds follow from
(A.1) since the coordinate representation of g on R™ satisfies

C_l5jk < gjr(y,s) < 0525jk
on U? for some C > 0 depending only on ¢, and we have bounds of the
form ‘B(m)f’ék’ < C(i,m) on U’ for all m > 0. Here y = (6, 0).

From Proposition A.2, we obtain that, for fixed ¢ and as < s1 < 89,
the C*-norms of the coordinate representation of ®(®) —Id are uniformly
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bounded on the compact set K = igx [s1,s2] C U for each k > 0. From
the Ascoli-Arzela theorem, then, there is a sequence b; — oo such that
@) converges in every C¥-norm to a smooth map @g?o) on K. Covering
the annular regions A; = A by finitely many of the charts from
(00)
J

a further subsequence, we obtain a smooth limit ® = ®(>) defined on
all of C,,. We record this statement and some additional observations

in the following proposition.

az+1/j,jaz

this atlas, we can obtain a smooth limit ® on A;j for each j; taking

Proposition A.3. Let as be as in the discussion above. There ex-
ists a3 > as and a sequence b; — oo such that ®®3) converges locally
smoothly as j — oo to a smooth map ® : Cay — Cyy /o salisfying

(a) dq)(@,a,s) (X(97 g, 5)) = X o (I)(07 g, 5);

(b) ® is a diffeomorphism onto its image and Caqy C P(Cqy),

(¢) On each coordinate neighborhood U = Ug defined above, and for
each k, 1 > 0, there is C = C(i, k,l) such that, for all s > ag,

(A.14) s {H‘b —Id |lorxs,2s) + 1279 — gHCk(UX[s,Qs])} <C,
relative to the Fuclidean norm and connection.

Proof. For now, we will assume just that as > ao and further re-
strict as as we work through the argument. The identity in (a) follows
from (A.3) and the C'-convergence of ®®). The second claim in (b)
follows from (A.4), and the estimate on the first term in (A.14) follows
from Proposition A.2 and the discussion preceding the statement of this
proposition. In particular, we can choose a3 sufficiently large so that
(1/2)1d < d® < 21d on U* x [a3, 00) for each i. Among other things,
this ensures that ® will be a local diffeomorphism on C.

The argument that ® is injective goes then just as the corresponding
argument for ®®) in Proposition A.1. Here, as there, r(s) is strictly
increasing along the radial lines s — (6, 0, s), and ® is a diffeomorphism
when restricted to S; x (t — €,t + €) for some sufficiently large ¢ and
sufficiently small €. Following the radial lines forward and backward
as in the proof of Proposition A.1, we see that ® must be injective
on C,,, and hence a diffeomorphism onto its image. Using the C°-
comparison of o ® with s, we can also enlarge as if necessary to ensure
that ®(Coy) C Cyy/2 and Cogy C P(Coy).

Finally, the C* estimates on ®*g—g in (A.14) follow from the uniform
estimates we have on the derivatives of the coordinate representations
of ® — Id and the metric g on the neighborhoods U®. q.e.d.

A.5. Proof of Theorem 2.5. Now we assemble the proof of Theorem
2.5. Taking r; = ag (and recalling that as > ag > 2rg), Proposition
A.3 gives us the existence of a map @ : C;; — C, /2 C Cy, satisfying
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that &, X = X o ® and Cy,, C ®(C,,). Moreover (patching together
estimates using the local bounds on the Christoffel symbols), part (c)
of that proposition ensures that

sup SZ\V(m)(qfkg —g)| <o

s

for all [ > 0. Writing § = ®*¢ and V for the connection of §, we thus
have

(A.15) sup §' [ V(T — T)| < oo,
C

s

and, consequently,

(A.16) sup s'[ V™ (g — g)| < oo,

s

for all [ and m.
But then, for all I, we have

0*G—g| < |®*G—g|+ |9 — 9| <C|®*G—g
=Clg—glo®+|§—g| < Cis™

g t19—yl

for some Cj, using that both § and g are strongly asymptotic to g and
that r and s are comparable. We can then proceed inductively, using
(A.15) and (A.16) to estimate the covariant derivatives of § — g. For
example, since

IV(®*§—g)| < CIT = T||®*G — g| + |[V(®*G — g)|
<O =T)|®*g — g| + CIV(®* G — §)|s + V(- 9)|
=C|T —T||®* G — g| + C|V(§— 9)| o + V(5 — 9)I,

we see that we have a bound of the form |V (®*§ — g)| < C;s~ for all L.
We can argue similarly for the higher derivatives. This completes the
proof.
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