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Abstract

We prove that a shrinking gradient Ricci soliton which agrees to
infinite order at spatial infinity with one of the standard cylinders
Sk × Rn−k for k ≥ 2 along some end must be isometric to the
cylinder on that end. When the underlying manifold is complete,
it must be globally isometric either to the cylinder or (when k =
n− 1) to its Z2-quotient.

1. Introduction

A shrinking Ricci soliton is a Riemannian manifold (M, g) for which

(1.1) 2 Rc(g) + LXg = g

for some smooth vector field X on M . The soliton is gradient if X = ∇f
for some f ∈ C∞(M). When a shrinking soliton is complete and of
bounded curvature, it is always possible to find f such that X − ∇f
is Killing [45, 47], and so, for most applications, there is no loss of
generality in considering only gradient shrinking solitons. (By contrast,
there are expanding Ricci solitons of bounded geometry which are non-
gradient in an essential way: see, e.g., [1, 36].) Below, we will assume
that all shrinking solitons (or, simply, shrinkers) are gradient and are
normalized to satisfy the equations

Rc(g) +∇∇f =
g

2
, R+ |∇f |2 = f,(1.2)

on M . The contracted second Bianchi identity implies that

∇(R+ |∇f |2 − f) ≡ 0

whenever the first equation is satisfied, so it is always possible to achieve
the normalization in the second equation by adding a constant to f on
each connected component of M .
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We will use either (M, g,X) or (M, g, f) to denote a soliton structure,
depending on our emphasis. When there is no ambiguity about which
particular structure is meant, we will refer to (M, g), or simply M , as
“the” soliton.

Shrinking solitons are of some intrinsic geometric interest both as
generalizations of positive Einstein manifolds and as models in the the-
ory of smooth metric measure spaces. We are interested here in their
connection to the Ricci flow

(1.3)
∂

∂t
g = −2 Rc(g),

where they correspond to shrinking self-similar solutions : generalized
fixed points of the equation which move only under the natural actions
of R+ and Diff(M) on the space of metrics. When (M, g) is complete,
the vector field ∇f is complete [55] and the system{

∂φ
∂t = −1

t∇f ◦ φ
φ−1 = Id

may be solved to obtain a family of diffeomorphisms φt : M → M
defined for t ∈ (−∞, 0). The family of rescaled pull-backs g(t) = −tφ∗t g
of the original metric then solve (1.3) on M × (−∞, 0).

The study of shrinking solitons is central to the analysis of the sin-
gular behavior of solutions to the Ricci flow. Solutions which develop
a singularity at a finite time T are expected “generically” to satisfy a
so-called Type-I curvature bound supM×[0,T )(T − t)|Rm | < ∞. From

the work of Hamilton [25], Perelman [47], Šešum [50], Naber [45], and
Enders, Müller (Buzano), and Topping [20], it is now known that, about
any point in the high-curvature region of such a Type-I singular solution,
one can extract a sequence of blow-ups converging to a complete non-
trivial shrinking gradient Ricci soliton. In this sense, shrinkers represent
potential models for the geometry of a solution in the neighborhood of a
developing singularity. It is a fundamental problem to understand what
possible forms these model geometries may take.

1.1. The classification problem for shrinking Ricci solitons.
Shrinking solitons are completely classified in dimensions two and three.
In dimension two, Hamilton [24] proved that the only complete shrinkers
are the flat plane R2 with the Gaussian soliton structure and the stan-
dard round metrics on S2 and RP2. (Alternative proofs that compact
2-D shrinkers have constant positive curvature were later given in [14]
and [11]; the latter, being independent of the Uniformization Theo-
rem, can be used with the convergence results in [13, 24] to show that
the Ricci flow uniformizes compact surfaces.) In three dimensions, the
combined results of Hamilton [25], Ivey [28], Perelman [47], Ni-Wallach
[46], and Cao-Chen-Zhu [6] show that the only complete shrinkers are
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the Gaussian soliton on R3 and finite quotients of the round sphere S3

and standard round cylinder S2 × R.
These classifications are made possible by some additional a priori

structure peculiar to two and three dimensions: in dimension two, ori-
entable gradient solitons are necessarily rotationally symmetric (the ro-
tation of the potential vector field ∇f by the complex structure is a
Killing vector field) and in dimension three, complete shrinkers are nec-
essarily of nonnegative sectional curvature (on account of the Hamilton-
Ivey estimate [25, 28]). In higher dimensions, the class of shrinkers–
which includes all Einstein manifolds with positive scalar curvature–is
simply too large to expect an exhaustive classification.

The three-dimensional classification has nevertheless been extended
to a variety of restricted classes. For example, the work of Cao-Wang-
Zhang [8], Eminenti-LaNave-Mantegazza [19], Fernández-López and
Garćıa-Ŕıo[23], Munteanu-Sesum [38], Ni-Wallach [46], Petersen-Wylie
[49], and Zhang [56], has shown that the only complete shrinkers with
vanishing (even harmonic) Weyl tensor are either the Gaussian soliton
Rn or finite quotients of Sn or Sn−1 × R. Other results in this direc-
tion include the classification of four-dimensional half-conformally flat
shrinking solitons due to X.-X. Chen and Y. Wang [12], later general-
ized by H.-D. Cao and Q. Chen [5] to shrinkers with vanishing Bach
tensor in all higher dimensions.

Some classifications have also been established for shrinkers satisfy-
ing additional curvature positivity conditions. By a theorem of B.-L.
Chen [10] (cf. [17]), every complete shrinker must at least have non-
negative scalar curvature, however, beginning in dimension four, there
are examples that have Ricci curvatures of mixed sign [22]. As a corol-
lary of the work of Böhm-Wilking [2], Brendle [3], and Brendle-Schoen
[4], it is known that any compact shrinker whose curvature operator
is 2-positive or which satisfies the so-called PIC1 condition must be a
quotient of the round sphere. In four dimensions, X. Li, L. Ni, and K.
Wang [34] have shown recently that a complete gradient shrinker with
positive isotropic curvature must be a quotient of the standard sphere
S4 or standard cylinder S3 × R. In another direction, Munteanu and
J. Wang [44] (generalizing results of Perelman [48] and Naber [45] in
dimensions three and four) have shown that any complete shrinker with
positive sectional curvature must be compact.

The body of literature on shrinking Ricci solitons is too large to
adequately summarize here, and our discussion has left out many im-
portant recent results. As entry points to further related work, we refer
the reader to [7], [9], [26], [27], [35], [39], and the references therein.

1.2. Complete noncompact shrinking solitons. Given the formal
similarity of (1.2) to the condition of nonnegative Ricci curvature, the
geometry of a noncompact shrinker near infinity might be expected to
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be comparatively inflexible, constrained by strong and opposing ten-
dencies toward incompleteness and reducibility. A growing body of
evidence now appears to support this heuristic, and to suggest that
the structural possibilities for the asymptotic geometry of a complete
noncompact shrinker may indeed be few.

Every nontrivial complete noncompact shrinking soliton currently
known either splits locally as a product or has a single end smoothly
asymptotic to a cone. So far, examples of the latter type are scarce.
The construction of Feldman-Ilmanen-Knopf [22] produces a family of
complete U(n)-invariant asymptotically conical Kähler shrinkers on the
tautological line bundle of CPn−1 with Ricci curvatures of mixed sign.
This construction was later generalized by Dancer-Wang [18] and Yang
[54] to line bundles over products of Kähler-Einstein metrics with pos-
itive scalar curvature. These examples, too, have quadratic curvature
decay and a single asymptotically conical end.

In four dimensions, it is conjectured that any complete shrinker must
fit one of the two above descriptions, at least asymptotically. The recent
work of Munteanu-Wang [41, 42, 43] allows for a neat phrasing of this
proposed dichotomy in terms of the scalar curvature. On one hand, in
[41, 42], Munteanu and Wang show that if the scalar curvature tends
to zero at spatial infinity, then every end of (M4, g) must be smoothly
asymptotic to a cone. On the other hand, in [43], they show that if the
scalar curvature is bounded below by a positive constant, then either
every end of (M4, g) is smoothly asymptotic to a quotient of S3×R, or,
for any sequence of points xi going to infinity along an integral curve of
∇f , the sequence of pointed manifolds (M4, g, xi) will subconverge in
the smooth Cheeger-Gromov sense to a quotient of S2 × R2. (See also
[16] for a general splitting criterion for limits of pointed sequences of
shrinkers.) When (M4, g) is Kähler and the scalar curvature is bounded,
it is proven in [43] that these are the only two alternatives for the scalar
curvature.

What connects this proposed dichotomy to a potential classification
of complete noncompact four-dimensional solitons – and what moti-
vates the present paper – is a question of uniqueness of interest in all
dimensions: to what extent is a shrinker determined by its asymptotic
geometry?

The authors have previously addressed this question for conical as-
ymptotic geometries. In [32], it is shown that if two shrinkers are C2-
asymptotic to the same cone on some ends of each, then the shrinkers
must themselves be isometric to each other near infinity on those ends.
This is an analog of a theorem of the second author for asymptotically
conical self-shrinkers to the mean curvature flow [51], and it reduces the
classification of asymptotically conical shrinking solitons to that of the
potential asymptotic cones.
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At present, there are few restrictions known to hold on the cones
which admit an asymptotic shrinker. Lott-Wilson [37] have shown that
there are at least no formal obstructions to the existence of a shrinker
or an expander asymptotic to any regular cone, and it is a consequence
of the uniqueness result in [32] that any isometry of the cone must
correspond to an isometry of the shrinker. The first author has also
shown in [31] that if the cone is Kähler the shrinker must also be Kähler.

In this paper, we revisit the above question of uniqueness in the case
of asymptotically cylindrical geometries.

1.3. Asymptotically cylindrical shrinking Ricci solitons. Let us
establish the notation we need to state our main result. For each k ≥ 2,
we will write Ck = Sk × Rn−k and let

gk = (2(k − 1)̊g)⊕ ḡ, fk(θ, z) =
|z|2

4
+
k

2
,

where g̊ is the round metric on Sk of constant sectional curvature 1 and
ḡ is the Euclidean metric on Rn−k. We will call the soliton structure
(Ck, gk, fk) the standard cylinder ; the constants in the definitions for gk
and fk have been chosen so that the normalizations in (1.2) are met.

For each r > 0, let Ckr denote the end of the cylinder given by

Ckr =

{
Sk × (Rn−k \Br(0)) 2 ≤ k < n− 1,

Sn−1 × (r,∞) k = n− 1.

More generally, by an end of a Riemannian manifold (M, g), we will
mean an unbounded connected component of the complement of a com-
pact set in M .

The following definition makes precise the sense in which we mean
that a metric “agrees to infinite order” with the cylinder at infinity.

Definition 1.1. Let r > 0. We will say that (Ckr , g̃) is strongly
asymptotic to (Ck, gk) if, for all l, m ≥ 0,

(1.4) sup
Ckr

(
|z|l|∇(m)

gk
(g̃ − gk)|gk(θ, z)

)
<∞.

We will say that (M̃, g̃) is strongly asymptotic to (Ck, gk) along the end

V ⊂ (M̃, g̃) if there exists r > 0 and a diffeomorphism Ψ : Ckr → V such
that (Cr,Ψ∗g̃) is strongly asymptotic to (Ck, gk).

The main result of this paper is the following local uniqueness result.

Theorem 1.2. Suppose (M̃, g̃, f̃) is a shrinking gradient Ricci soliton

for which (M̃, g̃) is strongly asymptotic to (Ck, gk) along the end V ⊂
(M̃, g̃) for some k ≥ 2. Then (V, g̃|V ) is isometric to (Ckr , gk|Ckr ) for
some r > 0.
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The local nature of the statement should be kept in mind when eval-
uating the strength of the hypothesis of infinite order decay. Only the
geometry of the shrinker near infinity on the end V is involved, and
(M̃, g̃) is required neither to be complete nor to satisfy any a priori re-
striction on the number of its topological ends. In this generality, there
are heuristic reasons to believe the infinite order decay of g̃ − gk may
actually be necessary. The theorem is an analog of an earlier result of
the second author [52] for the mean curvature flow, which shows that
an embedded self-shrinker which is asymptotic of infinite order to one
of the standard cylinders must actually coincide with the cylinder. In
this case, the assumption of infinite order decay is known to be effec-
tively optimal– the paper [52] includes the construction of a family of
self-shrinkers on Sn−1 × (a,∞) ↪→ Rn+1 which are not themselves ro-
tationally symmetric but which nevertheless decay to the cylinder at
arbitrarily high fixed polynomial rates.

When the underlying manifold (M̃, g̃) is complete, however, one ex-
pects to be able to say more; in this case, Theorem 1.2 implies that
(M̃, g̃) must be globally isometric to a quotient of (Ck, gk).

Corollary 1.3. Suppose that, in addition to the assumptions in The-
orem 1.2, the manifold (M̃, g̃) is complete. Then, either (M̃, g̃) is iso-

metric to (Ck, gk), or k = n− 1 and (M̃, g̃) is isometric to the quotient
(Cn−1, gn−1)/Γ where Γ = {Id, γ} and γ(θ, z) = (−θ,−z).

The techniques of this paper are rather specialized to address the local
problem of uniqueness in Theorem 1.2. We expect that when (M̃, g̃) is
complete, it should be possible to weaken (or eliminate entirely) the
assumption on the rate of convergence to the cylinder. In fact, even
here we haven’t fully optimized the formulation of condition (1.4), nor
do we really require its full strength to obtain the conclusion of Theorem
1.2. For example, using an interpolation argument, it isn’t hard to see
that a metric g̃ on Ckr is strongly asymptotic to (Ck, gk) provided only
that

(1.5) sup
Ckr
|z|l|(g̃ − gk)|gk(θ, z) <∞, sup

Ckr
|∇(m)

gk
(g̃ − gk)|gk(θ, z) <∞,

for all l ≥ 0 and m ≥ 1. An inspection of the proof shows, moreover,
that our argument actually only requires that the pull-back of the metric
g̃ satisfy (1.5) for m less than some universal constant m0.

1.4. Overview of the proof. As in [32], [52], our basic strategy is to
use the correspondence between shrinkers and self-similar solutions to
transform Theorem 1.2 into an equivalent problem of parabolic unique
continuation for solutions to the Ricci flow, which we ultimately treat
with the method of Carleman inequalities. However, the resulting prob-
lem of unique continuation we face here – for a nonlinear, weakly par-
abolic system at the singular time – is more complicated than those
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addressed in either [32] or [52]. (In [32], by contrast, the problem is
fundamentally nonsingular since the solutions extend smoothly to the
terminal time slice– in that case, the end of the common asymptotic
cone. In [52], the problem, though singular in a similar way, reduces
to the analysis of a solution to scalar parabolic inequality.) Our imple-
mentation of this strategy involves a number of new ingredients needed
to overcome obstacles not present in these related problems. We sum-
marize the major steps in our proof now.

For the remainder of this section, we will assume that k ≥ 2 is fixed
and write simply C = Ck, Cr = Ckr , g = gk, and f = fk, using | · | = | · |gk
and ∇ = ∇gk to denote the norms and connections induced by g and
its Levi-Civita connection on tensor bundles over C.

1.4.1. Normalizing the soliton structure. It is sufficient to prove
Theorem 1.2 in the case that g̃ and f̃ are actually defined on Cr0 for
some r0 > 0, that is, when (Cr0 , g̃) is strongly asymptotic to (C, g).
Taking this as our starting point, our first concern is to put the entire
soliton structure (Cr0 , g̃, f̃) into a canonical form. The hypotheses of
Theorem 1.2 only explicitly constrain the asymptotic behavior of g̃,

and, by themselves, do not even guarantee that the difference of X̃ and
X = ∇f tends to zero at infinity.

In Proposition 2.2, we first show that we can arrange for X̃ −X to

vanish to infinite order at infinity by pulling back g̃ and X̃ by an appro-
priate translation on the Euclidean factor. We then show in Theorem
2.5 that it is possible to construct a further injective diffeomorphism

Φ : Cr1 → Cr0 for some r1 > r0 such that Φ∗X̃ = X and for which
(Cr1 ,Φ∗g̃) is still strongly asymptotic to (C, g). To ensure the latter
property requires that we construct Φ with some care. We postpone
the details of this construction (which are independent of the rest of the
paper) to Appendix A.

1.4.2. Reducing to a problem of backward uniqueness. Having

reduced Theorem 1.2 to the case that X̃ and X coincide on Cr1 for some
r1 > 0, our next step is to recast it as a problem of parabolic unique con-
tinuation for solutions to the Ricci flow. The family of diffeomorphisms
Ψ : Cr1 × (0, 1]→ Cr1 given by Ψτ (θ, z) = (θ, z/

√
τ) solve

∂Ψ

∂τ
= −1

τ
X ◦Ψ, Ψ1 = Id,

and (since X = ∇f = ∇̃f̃), we may use them to construct from g̃ and
g smooth self-similar families of metrics

g̃(τ) = τΨ∗τ g̃, g(τ) = τΨ∗τg = (2(k − 1)τ g̊)⊕ ḡ,
which solve the backward Ricci flow

(1.6)
∂g

∂τ
= 2 Rc(g)
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on Cr1 for τ ∈ (0, 1]. The normalizations we have performed to this
point ensure that the difference h(τ) = (g̃ − g)(τ) = τΨ∗τ (h(1)) of these
solutions is itself self-similar. This will be critical to us in Section 7.
Moreover, since (Cr1 , g̃) is strongly asymptotic to (C, g), the tensor h
will vanish to infinite order as |z| → ∞ and τ ↘ 0 in the sense that

sup
Cr1×(0,1]

|z|2l

τ l
|∇(m)h|(θ, z, τ) <∞

for all l, m ≥ 0. Here and below, we write | · | = | · |g(τ) and ∇ = ∇g(τ)

(in fact, the connection ∇g(τ) of the evolving cylinder is independent of
time).

To prove Theorem 1.2, then, it is enough to show that h(τ0) ≡ 0 on Cr
for some τ0 and r > 0. For, if so, g̃(1)− g(1) = h(1) = τ−1

0 (Ψ−1
τ0 )∗h(τ0)

vanishes on Cr′ for r′ = r/
√
τ0, and it follows from a continuation argu-

ment that g̃ and g are isometric on Cr0 . We give this parabolic restate-
ment in Theorem 3.2 and verify that it indeed implies Theorem 1.2 at
the end of Section 3.

1.4.3. Prolonging the system. To prove Theorem 3.2, we must first
address the lack of strict parabolicity of equation (1.3). The degeneracy
of the equation, a consequence of its diffeomorphism invariance, is not
rectifiable here by the use of DeTurck’s trick as it is in the problem of
forward uniqueness of solutions to the Ricci flow: the diffeomorphisms
needed to pass to a problem of backward uniqueness for the strictly par-
abolic Ricci-DeTurck flow are naturally solutions to a ill-posed terminal-
value problem for a harmonic map-type heat flow. See, e.g., [30] for a
discussion of these and related issues.

To work around the degeneracy of (1.3), we instead employ a device
used by the first author in [30] which encodes the vanishing of h in
terms of the vanishing of solutions to a prolonged “PDE-ODE” system
of differential inequalities. The implementation of this device, however,
is rather more involved than in [30] and [32] since the system used in
these references turns out to be slightly too coarse to track by itself
the blow-up which here occurs anisotropically at the singular time. We
instead make use of two prolonged systems: a “basic” system which, on
account of its relative simplicity, we use to frame and prove the backward
uniqueness theorem which implies the vanishing of h, and a “refined”
system whose higher granularity allows us to track the blow-up rate of

individual components of ∇̃R̃m.
The basic system is equivalent to those considered in [30, 32], and

consists of the families of sections

X = ∇̃R̃m = ∇̃R̃m−∇Rm, Y = (h,∇h,∇∇h),
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of X = T (5,0)Cr1 and Y = T (2,0)Cr1 ⊕ T (3,0)Cr1 ⊕ T (4,0)Cr1 , respectively.
These sections satisfy a system of inequalities of the form

|(Dτ + ∆) X| ≤ B

τ
|X|+B|Y|, |DτY| ≤ B (|X|+ |∇X|) +

B

τ
|Y|,

for some constant B on Cr1 × (0, 1]. Here, Rm = Rm(g(τ)), R̃m =

Rm(g̃(τ)), ∇̃ = ∇g̃(τ), and ∆ = ∆g(τ), and Dτ indicates a derivative
taken relative to evolving g(τ)-orthogonal frames. We describe this
system in greater detail and derive the above equations in Section 4.

However, our basic system is inadequate for what is perhaps the most
important step in the proof of Theorem 3.2: to parlay the infinite order
decay that we assume on h and its derivatives (and hence on X and
Y) into an exponential-quadratic rate of decay for X and Y (and hence
on h and its derivatives). The Carleman estimate (6.7) we use for this
purpose cannot directly absorb the coefficient of τ−1 which appears on
the right side of the equation for X.

In Section 5, we will replace the parabolic component X of our basic
system with a more elaborate choice W = (W 0,W 1, . . . ,W 5) in an
attempt to address this issue. The components W i consist of collections

of components of ∇̃R̃m (relative to the g-orthogonal splitting TM =
TSk ⊕ TRn−k) rescaled by powers of τ which together satisfy a system
of the form∣∣(Dτ + ∆)W i

∣∣ ≤ Bτβ(|W|+ |Y|) +B
∑
j<i

τ−γj |W j |(1.7)

for some nonnegative constants β, γj , and B. The strict triangular
structure of the singular terms in (1.7) allows us to absorb the un-
bounded coefficients on the right side of the equation for any W i using
appropriately weighted applications of the inequalities for i′ < i.

1.4.4. Promoting the rate of decay to exponential. The Carle-
man inequalities (7.9) and (7.10) we ultimately use to prove the vanish-
ing of X and Y involve a weight which, for large |z| and small τ , grows
on the order of exp(C|z|2δ/τ δ) for some δ ∈ (0, 1). In order to apply
these inequalities, we first need to verify that X and Y decay rapidly
enough to be integrable against this weight. To this end, in Theorem
5.1 (proven in Section 6) we show that there are constants N0, N1 > 0
such that∫ 1

0

∫
Ar,2r

(
|X|2 + |∇X|2 + |Y|2

)
e
N0r

2

τ dµg(τ) dτ ≤ N1

for all sufficiently large r. Here Ar,2r = Cr \ C2r. This argument, in-
cluding the derivation of the system (1.7) above, is perhaps the most
delicate in the paper.
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We establish the decay of W and Y inductively, using the Carle-
man inequality (6.7) in tandem with (6.8) and (6.9) to obtain up-
per bounds of the form CLmr−2mm! of successively higher order on
the weighted L2-norms of W and Y on Sk × Br(z0) for small r and
z0 ∈ Cr0 . These estimates involve a weight approximately of the form
τ−m exp(−|z − z0|2/(4τ)) localized about z0. Since the components of

W are merely rescaled components of ∇̃R̃m, the estimates on W di-
rectly yield corresponding estimates for X, which can be summed and
rescaled to obtain the asserted rate of exponential decay. The main in-
equality (6.7), analogous to one established by the second author in [52],
is ultimately modeled on the inequality proven in [21] for an application
to solutions to linear parabolic inequalities on Euclidean half-spaces.

1.4.5. Establishing the vanishing of X and Y. In Section 7, we
return to an analysis of the basic system. Knowing now that X and
Y decay at an at-least exponential-quadratic rate, we use Carleman
inequalities analogous to those in [30] and [52] to show that they must
vanish identically. This part of the argument is modeled closely on the
corresponding argument in [52], with some modifications to handle the
ODE component Y, and it is here that we make essential use of the
self-similarity of h (and hence of X and Y). The Carleman inequalities
needed here and above in the proof of the exponential decay of X and
Y are proven in Section 8.

Acknowledgment. The authors wish to thank Ben Chow, Ovidiu
Munteanu, Lei Ni, and Jiaping Wang for their interest, encouragement,
and valuable suggestions. They also wish to thank the anonymous ref-
erees for their many helpful recommendations.

2. Normalizing the soliton

Let us now fix 1 < k < n once and for all, and, for the rest of the
paper, continue to write simply C = Ck = Sk × Rn−k and Cr = Ckr . For
a, b, r > 0, we define

Aa,b = Ca \ Cb, Sr =

{
Sk × ∂Br(0) k < n− 1,
Sn−1 × {r} k = n− 1.

We will also continue to use

g = gk = (2(k − 1)̊g)⊕ ḡ, f(θ, z) = fk(θ, z) =
|z|2

4
+
k

2
,

to denote the metric and potential of the normalized cylindrical soliton
structure on C and to use the unadorned notation

| · | = | · |g, ∇ = ∇g,
for the norms and connections induced by g and its Levi-Civita connec-
tion on the tensor bundles T (p,q)C.
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Frequently, we will use spherical coordinates on the Euclidean factor
Rn−k to identify Ca with Sk × Sn−k−1 × (a,∞) via (θ, z) 7→ (θ, σ, r),
where σ = z/|z| and r = |z|.

2.1. Some preliminary estimates. To prove Theorem 1.2, it suffices
to consider the situation that M = V = Cr0 for some r0 > 0 and
(Cr0 , g̃) is strongly asymptotic to (C, g). We first record some elementary
consequences of (1.4) for the soliton metric g̃.

Lemma 2.1. Suppose that (Cr0 , g̃, f̃) is a shrinking Ricci soliton
where

(2.1) sup
Cr0

r3|∇(m)(g̃ − g)| <∞

for m = 0, 1, 2. Then there are r1 ≥ r0 and k0, K0 > 0 such that

(2.2)
1

2
g ≤ g̃ ≤ 2g, |∇̃f̃ | ≤ K0(r + 1), |∇f̃ | ≤ K0(r + 1),

and

(2.3)
1

8
r2 ≤ f̃ ≤ 1

4
(r + k0)2,

on Cr1.

Quadratic bounds for the potential with sharp coefficient 1/4 have
been established for general complete shrinking solitons by Cao-Zhou
[7] (see also [26]). The weaker bounds for f̃ in (2.3) (which we must
verify from scratch, given the incompleteness of Cr0) will be sufficient
for our purposes, however.

Proof. It follows directly from (2.1) that we can arrange for (1/2)g ≤
g̃ ≤ 2g and R̃ ≥ k/4 to hold on Ca by choosing a ≥ r0 large enough.

The identity R̃+ |∇̃f̃ |2g̃ = f̃ then implies that we will have f̃ ≥ k/4 and

|∇f̃ |2 ≤ 2|∇̃f̃ |2g̃ ≤ 2f̃ on the same set. Integrating along along integral

curves of ∂
∂r we then see that

(2.4) f̃1/2(θ, σ, r)− f̃1/2(θ, σ, a) ≤
∫ r

a
|∇f̃1/2| ≤ r − a,

for all (θ, σ) ∈ Sk × Sn−k−1. In particular, |∇̃f̃ | ≤ 2|∇f̃ | ≤ 4(r + K)

on Ca for some K depending on supCa f̃ . This proves the the last two
inequalities in (2.2) provided r1 ≥ a.

Next, using the soliton equation, we have

∇i∇j f̃ = ∇i∇j f̃ − ∇̃i∇̃j f̃ − R̃ij +
g̃ij
2

= (Γ̃kij − Γkij)∇kf̃ − (R̃ij −Rij) +
1

2
(g̃ij − gij)−Rij +

gij
2

= Akij∇kf̃ + Sij −Rij +
gij
2
,
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where Akij and Sij are polynomials in g−1, g̃−1, and ∇(m)(g̃ − g) for

m ≤ 2. So, using (2.1) and that |∇f̃ | ≤ 4(r +K), we have

(2.5)
1

2
− K

r2
≤ ∂2f̃

∂r2
≤ 1

2
+
K

r2
,

for some possibly larger K. Integrating both inequalities in (2.5) along
integral curves of ∂

∂r starting at points in Sa, we obtain

r

2
−K ′ ≤

〈
∇f̃, ∂

∂r

〉
≤ r

2
+K ′,

for some K ′ > 0 depending on a. Hence

r2

4
−K ′r−a

2

4
≤ f̃(θ, σ, r) ≤ r2

4
+K ′r+f̃(θ, σ, r1) ≤ r2

4
+K ′r+(r1+K ′′)2,

for any r1 ≥ a and some K ′′ depending on a. Here we have used (2.4)

to estimate f̃(θ, σ, r1). Choosing then r1 ≥ a large enough to ensure
that the left side is larger than r2/8 on Cr1 , and then choosing k0 large
enough depending on r1 to bound the right side by (r+k0)2/4, we obtain
(2.3). q.e.d.

2.2. Correcting the vector field by a translation. Our next step
is motivated by the observation that the assumption that (Cr0 , g̃) is
strongly asymptotic to (C, g) – even with the implicit normalizations in

(1.2) – does not uniquely determine the vector field ∇̃f̃ in the soliton

structure (Cr0 , g̃, ∇̃f̃). In general, the difference ∇̃f̃ −∇f need not tend
to zero as |z| → ∞, much less decay to infinite order.

For example, the soliton structure (C, g, fz0) with the potential

fz0(θ, z) =
|z − z0|2

4
+
k

2

satisfies (1.2) for any z0 ∈ Rn−k (and (C0, g) is, of course, strongly
asymptotic to itself), but the difference

∇f −∇fz0 =
n−k∑
i=1

zi0
2

∂

∂zi

is constant. At the same time, the two soliton structures here can
be made to agree by pulling back one by a suitable translation of the
Euclidean factor.

We show next that a similar adjustment can be made in general: by
pulling back g̃ and f̃ by an appropriate translation of Rn−k, we can

arrange for ∇̃f̃ − ∇f to decay to infinite order at infinity. Since the
translation is an isometry of g, the pullback of g̃ will still be strongly
asymptotic to g on some neighborhood of infinity of the end.
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Proposition 2.2. Let p ≥ 2 and suppose that (Cr0 , g̃, f̃) satisfies
(1.2) and

(2.6) sup
Cr0

rl|∇(m)(g̃ − g)| <∞

for all l ≥ 0 and m ≤ p. Then there is a constant vector field V tangent
to the Rn−k factor such that

(2.7) ∇̃f̃ =
r

2

∂

∂r
+ V + E,

where E satisfies

(2.8) sup
Cr0

rl|∇(m)E| <∞

for all l ≥ 0 and 0 ≤ m ≤ p− 1.

Proof. Let X = ∇f = r
2
∂
∂r and X̃ = ∇̃f̃ . From (1.2), we compute

that

∇iX̃j = ∇̃iX̃j + (Γjik − Γ̃jik)X̃
k

= ∇iXj + (gjkRik − g̃jkR̃ik) + (Γjik − Γ̃jik)X̃
k.

Using (2.6) and that |X̃| ≤ K0(r+1) from Lemma 2.1, we thus see that

W = X̃ −X satisfies

sup
Cr0

rl|∇(m)W | <∞

for all l ≥ 0 and 1 ≤ m ≤ p− 1.
Fix any q = (θ, z) ∈ Cr0 , and let {Fq,i}ni=1 be any orthonormal basis

for TqC. Extend this basis by parallel transport to a frame {Fq,i(r)}ni=1
along the radial line γq(r) = (θ, rz/|z|). For any |z| ≤ r1 ≤ r2, and any
l ≥ 0, we have

|〈W,Fq,i〉(γq(r2))− 〈W,Fq,i〉(γq(r1))| ≤
∫ r2

r1

|∇W |(γq(r)) dr

≤ Ml

rl1

(2.9)

for some Ml, and it follows that, for each i = 1, 2, . . . n, we have

lim
r→∞
〈W,Fq,i〉(γq(r)) = V i(q) <∞

for some numbers V i(q). Define

V (q) = V i(q)Fq,i ∈ TqC,
and suppose we repeat this process starting from another orthonormal

basis {F̃q,i}ni=1. Then F̃q,i(r) = AjiFq,j(r) for some fixed orthogonal
transformation A, and

Ṽ i(q) = lim
r→∞
〈W, F̃q,i〉(γq(r)) = (AT )ijV

j(q),
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so the limit V (q) = Ṽ (q) depends only on q. Taking such a limit at each
q thus defines a (rough) vector field on Cr0 .

By construction, for all θ and σ and all r0 ≤ r1 ≤ r2, the value of
V (θ, σ, r2) will coincide with that of the parallel transport of V (θ, σ, r1)
along the radial line connecting (θ, σ, r1) and (θ, σ, r2).

We claim that V is actually parallel. To see this, fix any (θ, σ) and

(θ̃, σ̃) in Sk × Sn−k−1 and any r1 ≥ r0. For r ≥ r1, consider the points

qr = (θ, σ, r), q̃r = (θ̃, σ̃, r) ∈ Sr. Let α : [0, 1] → Sk × Sn−k−1 be any

smooth path with α(0) = (σ, θ) and α(1) = (σ̃, θ̃). Then, for r ≥ r1,
define the curve λr : [0, 1] → Sr ⊂ C by λr(s) = (α(s), r) ∈ Sr for
r ≥ r1. Note that the speed of λr will be bounded by C0(r+1) for some
C0 depending on α.

For each r ≥ r1 and s ∈ [0, 1], Let Pr;s : TqrC → Tλr(s)C denote
parallel translation along λr. We claim that Pr1;1(V (qr1)) = V (q̃r1).
For this, observe first that the vector field W above is bounded on
account of the decay of |∇W |, and, by the definition of V and equation
(2.9), we have

(2.10) |V −W | ≤ Ml

rl

for each l for some constant Ml. Hence,

|Pr;1(V (qr))−W (q̃r)|2 = |V (qr)−W (qr)|2

− 2

∫ 1

0

〈
(D ∂

∂s
W )(λr(s)), Pr;s(V (qr))−W (λr(s))

〉
ds

≤ |V (qr)−W (qr)|2

+ 2C0(r + 1)

∫ 1

0
|∇W |(|V (qr)|+ |W (λr(s))|) ds

≤ C1

r

for some C1 independent of r. So, using (2.10) again, we see that

(2.11) |Pr;1(V (qr))− V (q̃r)| ≤
C2√
r
,

for some C2 independent of r. But, by the structure of the cylindrical
metric and the fact that V is parallel along radial lines,

|Pr1;1(V (qr1))− V (q̃r1)| = |Pr;1(V (qr))− V (q̃r)|.

Consequently, sending r →∞ in (2.11), we obtain that Pr1;1(V (qr1)) =
V (q̃r1).

Fixing σ = σ̃ and r ≥ r0, and applying this conclusion for arbitrary
θ, θ̃ ∈ Sk, we see that each of the vector fields V (·, σ, r) are parallel
relative to the round metric on Sk. Since k ≥ 2, these vector fields must
be trivial and thus V is tangent to the Rn−k factor.
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Now we argue that V = V (σ, r), regarded as a vector field on Rn−k \
Br0(0), is parallel. We already know that V is invariant under paral-
lel translation along any path in which either the r-coordinate or σ-
coordinate is fixed, and therefore is also invariant along the concatena-
tion of such paths. Since Rn−k \ Br0(0) has trivial local holonomy it
follows that V is parallel and represented by a constant vector on Rn−k.

q.e.d.

2.3. Aligning the vector fields. The previous proposition suggests
the following refinement of our notion of asymptotic cylindricity which
incorporates the vector field as well as the metric.

Definition 2.3. We will say that (Cr0 , g̃, X̃) is strongly asymptotic
to (C, g,X) as a soliton if

(2.12) sup
Cr0
|z|l
(
|∇(m)(g̃ − g)|+ |∇(m)(X̃ −X)|

)
<∞

for all l, m ≥ 0.

We may then restate Proposition 2.2 as follows.

Proposition 2.4. Suppose (Cr0 , g̃, ∇̃f̃) is a gradient shrinking soliton
for which (Cr0 , g̃) is strongly asymptotic to (C, g). Then there is r1 ≥ r0

and a translation τz0(θ, z) = (θ, z − z0) such that (Cr1 , τ∗z0 g̃, τ
∗
z0(∇̃f̃)) is

strongly asymptotic to (C, g,∇f) as a soliton.

Proof. Let X̃ = ∇̃f̃ and X = ∇f . By Proposition 2.2, we may write

X̃ = X + V +E where V is a constant vector field tangent to the Rn−k
factor and E satisfies

sup
Cr0
|z|l|∇(m)E|(θ, z) <∞

for all l, m ≥ 0.
Let us write the components of V as V i = zi0/2, and define the

translation map τz0 : C → C by τz0(θ, z) = (θ, z − z0). Provided r1 >
r0 + |z0|, we will have τz0(Cr1) ⊂ τz0(Cr0). Since τz0 is an isometry of g,
the restriction of τ∗z0 g̃ to Cr1 will continue to be strongly asymptotic to
g, but we will now have in addition that

τ∗z0X̃(θ, z) = X(θ, z − z0) + V + E(θ, z − z0) = X(θ, z) + Ẽ(θ, z),

where Ẽ(θ, z) = E(θ, z − z0) satisfies

sup
Cr1
|z|l|∇(m)Ẽ|(θ, z) <∞

for all l, m ≥ 0. q.e.d.

In fact, after adjusting metric and potential by a further diffeomor-
phism, we can arrange for the gradient vector field of (Cr0 , g̃, f̃) to co-
incide with the vector field of the standard cylindrical structure.
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Theorem 2.5. Suppose (Cr0 , g̃, ∇̃f̃) is strongly asymptotic to the
cylinder (Cr0 , g,∇f) as a soliton. Then there is r1 ≥ r0 and an in-
jective local diffeomorphism Φ : Cr1 → Cr0 for which C2r1 ⊂ Φ(Cr1),
(Cr1 ,Φ∗g̃) is strongly asymptotic to (C, g), and

(2.13) Φ∗(∇̃f̃) = ∇f =
r

2

∂

∂r

on Cr1.

The construction of the map Φ is straightforward but somewhat tech-
nical and also conceptually independent of the rest of the paper. We
postpone it until Appendix A.

3. Reduction to a problem of parabolic unique continuation

Now, we recast Theorem 1.2 as a problem of uniqueness for the back-
ward Ricci flow, by converting the cylinder and the unknown soliton into
their shrinking self-similar counterparts. The reduction in the previous
section will allow us to assume that both solutions are flowing relative
to a family of diffeomorphisms generated by the same vector field and
thus that their difference is also self-similar.

Proposition 3.1. Write X = ∇f and suppose that (Cr0 , g̃, X) is
strongly asymptotic to (Cr0 , g,X) as a soliton. Let Ψ : Cr0 × (0, 1]→ Cr0
be the map Ψ(θ, z, τ) = (θ, z/

√
τ) and put Ψτ = Ψ(·, ·, τ). Then

g(τ) = τΨ∗τg = (2(k − 1)τ g̊)⊕ ḡ, g̃(τ) = τΨ∗τ g̃,

solve (1.6) on Cr0 × (0, 1], and h(τ) = (g̃ − g)(τ) = τΨ∗τh(1) satisfies

(3.1) sup
Cr0×(0,1]

|z|2l

τ l
|∇(m)

g(τ)h(τ)|g(τ) <∞

for each l, m ≥ 0.

Proof. The map Ψ satisfies

(3.2)
∂Ψ

∂τ
(θ, z, τ) = −1

τ
(X ◦Ψ)(θ, z, τ), Ψ(θ, z, 1) = (θ, z),

and it is a standard calculation (see, e.g., [14]) that g(τ) = τΨ∗τg and
g̃(τ) = τΨ∗τ g̃ solve (1.6) . Equation (3.1) follows then by scaling: fixing
l, m ≥ 0, we have

|z|2l

τ l
|∇(m)

g(τ)h(τ)|g(τ)(θ, z, τ) =
|z|2l

τ l+
m
2

|∇(m)
g(1)h(1)|g(1)

(
θ,

z√
τ

)
≤
Ml,m

rm0

on Cr0 for some constant Ml,m by our assumption on h. q.e.d.

Going forward, we will write simply

g̃ = g̃(τ), g = g(τ), h = h(τ), | · | = | · |g(τ), ∇ = ∇g(τ).
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3.1. A reformulation of Theorem 1.2. Our parabolic restatement
of Theorem 1.2 asserts that any shrinking self-similar solution to the
backward Ricci flow which is flowing along the cylindrical vector field
and agrees to infinite order with the shrinking cylinder near spatial
infinity and τ = 0 in the sense of (3.1) must coincide with the shrinking
cylinder.

Theorem 3.2. Suppose g̃(τ) = τΨ∗τg(1) is a self-similar solution to
(1.3) on Cr0 × (0, 1] for some r0 > 0, where Ψ : Cr0 × (0, 1]→ Cr0 is the
map Ψτ (θ, z) = (θ, z/

√
τ), and g = g(τ) = (2(k − 1)τ g̊) ⊕ ḡ. If, for all

l, m ≥ 0, there exist constants Ml,m > 0 such that h = g − g̃ satisfies

(3.3) sup
Cr0×(0,1]

|z|2l

τ l
|∇(m)h| ≤Ml,m,

then h ≡ 0 on Cr1 × (0, τ0] for some r1 ≥ r0 and 0 < τ0 ≤ 1.

In fact, g(τ) and g̃(τ) will be isometric on all of Cr0 × (0, 1]. We will
prove Theorem 3.2 in Section 7 once we have the necessary ingredients
in place. For now, we note that it indeed implies Theorem 1.2 and show
how to derive Corollary 1.3 from Theorem 1.2.

Proof of Theorem 1.2 assuming Theorem 3.2. Let (M̃, g̃, f̃) be a shrink-

ing Ricci soliton for which (M̃, g̃) is strongly asymptotic to (C, g) along

the end V ⊂ (M̃, g̃). Then, for some r0 > 0, there is a diffeomorphism
ϕ : Cr0 → V such that (Cr0 , ϕ∗g) is strongly asymptotic to (C, g̃). By
Proposition 2.4, there is r1 > r0 and an injective local diffeomorphism

ψ : Cr1 → Cr0 such that (Cr1 , (ϕ ◦ ψ)∗g̃, (ϕ ◦ ψ)∗∇̃f̃) is strongly asymp-
totic to (C, g,∇f) as a soliton structure. Finally, by Theorem 2.5, there
is r2 > r1 and an injective local diffeomorphism Φ : Cr2 → Cr1 such that
(Cr2 , (ϕ ◦ ψ ◦ Φ)∗g̃,∇f) is strongly asymptotic to (C, g,∇f).

Write ĝ = (ϕ ◦ ψ ◦ Φ)∗g̃. Using Proposition 3.1, we can construct a
self-similar solution ĝ(τ) = τΨτ ĝ(1) on Cr1 × (0, 1] from ĝ = ĝ(1) and
∇f for which h = ĝ − g satisfies

sup
Cr2×(0,1]

|z|2l

τ l
|∇(m)h| <∞

for all l, m ≥ 0.
By Theorem 3.2, h ≡ 0 on Cr3 × (0, τ0] for some τ0 > 0 and r3 ≥ r2.

Fixing any a ∈ (0, τ0], we then have ĝ(a) = aΨ∗aĝ(1) = aΨ∗ag(1) =
g(a) on Cr3 , so ĝ = (ϕ ◦ ψ ◦ Φ)∗g̃ = g on Cr4 where r4 = r3/

√
a.

However, as Ricci solitons, both ĝ and g are real-analytic relative to
atlases consisting of their own geodesic normal coordinate charts [29],
and the isometry between them on Cr4 can be extended to an isometry
on Cr2 by continuation along paths. So ĝ and g̃ are in fact isometric on
Cr2 . Similarly, ϕ∗g̃ and g are isometric on Cr0 , and (V, g̃) is isometric to
(Cr0 , g). q.e.d.
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Proof of Corollary 1.3. Suppose now that (M̃, g̃) is complete. By The-
orem 1.2, (V, g̃) is isometric to (Cr0 , g) for some r0 > 0. Then the lift

(M ′, g′) of (M̃, g̃) to the universal cover M ′ of M is complete, real-
analytic, and isometric to (C, g) on an open set. Since C and M ′ are
simply connected, it follows that (M ′, g′) is globally isometric to (C, g).

So (M̃, g̃) must be a quotient of (C, g) by a discrete subgroup Γ of isome-
tries acting freely and properly on C.

To identify this quotient, let π : C → M̃ be the covering map, and
consider V ′ = π−1(V ). By [53], the fundamental group of M̃ is finite,
so π is proper, and we may write V ′ as the disjoint union of finitely
many connected components V ′i , i = 1, 2, . . . , N . Each V ′i is itself an
end of (C, g), and, since V is open and simply connected, the restriction
of π to any V ′i is a diffeomorphism.

When 2 ≤ k < n − 1, we must have N = 1 since (C, g) is connected

at infinity. Thus π : C → M̃ is a diffeomorphism and Γ = {Id} in
this case. When k = n − 1, (C, g) has two ends, and we must have
N ≤ 2 and |Γ| ≤ 2. Any isometry γ of (C, g) must take the form
γ(θ, r) = (F (θ), G(r)), and, if γ ∈ Γ, we know that both F and G
have order no more than two. For G this means that G(r) = r or
G(r) = −r+c for some c. If G(r) = r, then either γ = Id or F (θ) = −θ.
However, the latter is impossible since no end of RPn−1×R is isometric
to Sn−1 × (a,∞) for any a. If instead G(r) = −r+ c for some c, then γ
fixes Sn−1×{c/2}. This forces F to have the form F (θ) = −θ, if γ is not
to fix any points. Thus, when k = n− 1, either Γ = {Id} or Γ = {Id, γ}
where γ(θ, r) = (−θ,−r + c) is a reflection on both factors. q.e.d.

4. The basic system

Next we transform Theorem 3.2 into a problem that we can treat
with Carleman inequalities. Following the method used in [30], we will
first define a simple prolonged “PDE-ODE” system whose components
satisfy a coupled system of mixed parabolic and ordinary differential
inequalities amenable to the application of inequalities (7.9) and (7.10)
in Section 7.

4.1. The setting. First we need to establish some notation. Here, as
before, g(τ) = (2(k − 1)τ g̊)⊕ ḡ will represent the normalized shrinking
cylindrical solution to (1.6) on C × (0,∞). We will use g = g(τ) and
∇ = ∇g(τ) as the reference metric and connection in our computations,
and write τ | · | = | · |g(τ), suppressing τ .

Since the structural properties of the system we will describe are
independent of the self-similarity of g̃, we will assume in this section
(except within the context of the last assertion in Proposition 4.1) only
that g̃ = g̃(τ) is a solution to the backward Ricci flow (1.6) on Cr0×(0, 1]
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for which h = g̃ − g satisfies

(4.1) sup
Cr0

|z|2l

τ l
|∇(m)h|(θ, z, τ) <∞

for all l, m ≥ 0.
It will be convenient to introduce the operator

Dτ =
∂

∂τ
−RpqΛqp

acting on families of (k, l) tensors V = V (τ), where

Λqp(V )a1a2···alb1b2···bk = δqb1V
a1a2...al
pb2...bk

+ δqb2V
a1a2...al
b1p...bk

+ · · ·+ δqbkV
a1a2...al
b1b2...p

− δa1p V
qa2...al
b1b2...bk

− δa2p V
a1q...al
b1b2...bk

− · · · − δalp V
a1a2...q
b1b2...bk

.

Here Rpq = gprRrq. (We have two metrics lurking in the background, so
to avoid confusion, we will only implicitly raise and lower indices with
the metric g, and explicitly include any instances of g̃ and g̃−1.) When
{ei(τ)}ni=1 is a smooth family of local orthonormal frames evolving so as
to remain orthonormal relative to g(τ), the components of DτV express
the total derivatives

DτV
a1a2...al
b1b2...bk

=
∂

∂τ

(
V (eb1 , eb2 , . . . , ebk , e

∗
a1 , e

∗
a2 , . . . , e

∗
al

)
)
.

In particular, Dτg ≡ 0.

4.2. Definition of the system. Now consider the bundles

X = T (5,0)(C), Y = T (2,0)(C)⊕ T (3,0)(C)⊕ T (4,0)(C),
over C equipped with the smooth families of metrics and connections
induced by g. Let X and Y be the family of sections of X and Y over
Cr0 × (0, 1] defined by

(4.2) X = ∇̃R̃m = ∇̃R̃m−∇Rm, Y = (Y0, Y1, Y2) = (h,∇h,∇∇h).

The system (X,Y) is equivalent to that considered in [30], [32]. The
components of Y are chosen to ensure that, together, X and Y satisfy
a closed system of differential inequalities.

Proposition 4.1. Let X and Y denote the sections of X and Y
defined above. There is a constant B > 0 such that

|(Dτ + ∆)X| ≤ B

τ
|X|+B|Y|,

|DτY| ≤ B(|X|+ |∇X|) +
B

τ
|Y|,

(4.3)

on Cr0 × (0, 1], and, for each l, m ≥ 0, constants Ml,m such that

(4.4) sup
Cr0×(0,1]

|z|2l

τ l

(
|∇(m)X|+ |∇(m)Y|

)
≤Ml,m.
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Moreover, when h(τ) = τΨ∗τ (h(1)) as in Theorem 3.2, X and Y are
self-similar in the sense that

(4.5) X(τ) = τΨ∗τ (X(1)), Y(τ) = τΨ∗τ (Y(1)).

The decay (4.4) and self-similarity (4.5) of X and Y follow from the
corresponding properties of h, and the observation that the components
of X and Y scale the same as h. The verification of (4.3) is close to
that of Lemma 3.1 in [32]; see Proposition 4.4 below. We include some
of the computations on which it relies since we will need them in any
case when we modify this system in the next section.

4.2.1. Evolution equations. Here and below we will use V ∗ W to
denote linear combinations of contractions of V ⊗ W or Ṽ ⊗ W̃ for
any tensors Ṽ and W̃ identified with V and W via the isomorphisms
TC → T ∗C and T ∗C → TC induced by g. The coefficients in these linear
combinations are understood to be bounded by dimensional constants.

We will first recall standard formulas for the difference of the Levi-
Civita connections and curvature tensors of different metrics.

Lemma 4.2. Let g, g̃ be any two metrics and h = g − g̃. Then

g̃ij − gij = −g̃iagjbhab = g̃−1 ∗ h,(4.6)

∇kg̃ij = −g̃iag̃jb∇khab = g̃−2 ∗ ∇h,(4.7)

R̃m− Rm = ∇∇h+ g̃−1 ∗ (∇h)2 + Rm ∗h,(4.8)

where Rm and R̃m denote the (4, 0) curvature tensors of g and g̃.
In addition,

∇̃V −∇V = g̃−1 ∗ ∇h ∗ V,(4.9)

∆̃V −∆V = g̃−2 ∗ ∇h ∗ ∇V + g̃−3 ∗ (∇h)2 ∗ V
+ g̃−2 ∗ ∇∇h ∗ V + g̃−1 ∗ h ∗ ∇∇V,

(4.10)

for any tensor V of rank at least 1.

Proof. We only prove (4.8). Writing, temporarily,

Aljk = Γ̃ljk − Γljk =
1

2
g̃lp (∇jhkp +∇khjp −∇phjk) ,

and

Bjkl = g̃mlA
m
jk =

1

2
(∇jhkl +∇khjl −∇lhjk) ,

we have

R̃mijk −Rmijk = ∇iAmjk −∇jAmik +ApjkA
m
ip −A

p
ikA

m
jp

= g̃pm(∇iBjkp −∇jBikp)− g̃pq g̃mr(∇ihrsBjkp −∇jhrsBikp)
+ g̃qm(ApjkBipq −A

p
ikBjpq).
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So the difference of the (4, 0)-tensors satisfies

R̃ijkl −Rijkl = g̃lm(R̃mijk −Rmijk) +Rmijkhlm

= ∇iBjkl −∇jBikl − g̃pq(∇ihlsBjkp −∇jhlsBikp)
+ApjkBipl −A

p
ikBjpl +Rmijkhlm.

= ∇∇h+ g̃−1 ∗ (∇h)2 + Rm ∗h

as claimed. q.e.d.

Now (referring to, e.g., Section 6.1 of [14]), we recall the evolution
equations

∂

∂τ
Γ̃kij = g̃mk

(
∇̃iR̃jm + ∇̃jR̃im − ∇̃mR̃ij

)
,

and(
∂

∂τ
+ ∆̃

)
R̃ijkl = −2(B̃ijkl − B̃ijlk + B̃ikjl − B̃iljk)

+ g̃pq
(
R̃ipR̃qjkl + R̃jpRiqkl + R̃kpR̃ijql + R̃lpR̃ijkq

)
,

where

B̃ijkl = −g̃prg̃qsR̃pijqR̃rkls.
Combining these equations with a bit of further computation, we arrive

at the following equation for the evolution of ∇̃R̃m.

Lemma 4.3. If g̃ satisfies (1.6), then(
∂

∂τ
+ ∆̃

)
∇̃aR̃ijkl = −2∇̃a

(
B̃ijkl − B̃ijlk + B̃ikjl − B̃iljk

)
+ 2g̃prg̃qs

(
R̃iqap∇̃rR̃sjkl + R̃jqap∇̃rR̃iskl + R̃kqap∇̃rR̃ijsl

+ R̃lqap∇̃rR̃ijks
)

+ g̃pq
(
R̃ap∇̃qR̃ijkl + R̃ip∇̃aR̃qjkl + R̃jp∇̃aR̃iqkl + R̃kp∇̃aR̃ijql

+ R̃lp∇̃aR̃ijkq
)
.

Note that, according to our normalization, the curvature tensor of
the cylindrical metric g satisfies

|Rm |2 =
k

2(k − 1)τ2
.

The first assertion in Proposition 4.1 is now a consequence of the decay
assumption (4.1), Lemma 4.2, and the following schematic evolution
equations.
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Proposition 4.4. The tensors h and ∇̃R̃m satisfy

Dτh = g̃−1 ∗ ∇∇h+ g̃−2 ∗ (∇h)2 + g̃−1 ∗ Rm ∗h+ Rm ∗h,(4.11)

Dτ∇h = g̃−1 ∗ ∇̃R̃m + g̃−2 ∗ ∇h ∗ ∇∇h+ g̃−3 ∗ (∇h)3

+ g̃−2 ∗ Rm ∗h ∗ ∇h+ Rm ∗∇h,
(4.12)

Dτ∇∇h = g̃−2 ∗ ∇h ∗ ∇̃R̃m + g̃−1 ∗ ∇∇̃R̃m

+ g̃−3 ∗ ∇∇h ∗ (∇h)2 + g̃−4 ∗ (∇h)4 + g̃−2 ∗ (∇∇h)2

+ g̃−3 ∗ Rm ∗h ∗ (∇h)2 + g̃−2 ∗ Rm ∗h ∗ ∇∇h
+ g̃−3 ∗ Rm ∗(∇h)2 + g̃−2 ∗ Rm ∗∇∇h+ Rm ∗∇∇h,

(4.13)

and

(Dτ + ∆)∇̃R̃m = g̃−1 ∗ ∇̃(3)R̃m ∗ h+ g̃−1 ∗ ∇̃∇̃R̃m ∗ ∇h

+ g̃−2 ∗ ∇̃R̃m ∗ (∇h)2 + g̃−1 ∗ ∇̃R̃m ∗ ∇∇h

+ g̃−2 ∗ (R̃m− Rm) ∗ ∇̃R̃m + g̃−2 ∗ h ∗ Rm ∗∇̃R̃m

+ g̃−2 ∗ Rm ∗∇̃R̃m.

(4.14)

Proof. For (4.11), we have

Dτhij = 2R̃ij −Rpi g̃pj −R
p
j g̃ip = 2(R̃ij −Rij)−Rpi hpj −R

p
jhip

= 2g̃pq(R̃ipqj −Ripqj)− 2g̃prgqsRipqjhrs −Rpi hpj −R
p
jhip,

which yields the desired expression after applying (4.8) to the first term
on the right. Equations (4.12) and (4.13) follow similarly, using that the
Levi-Civita connection ∇ of the cylindrical metric is time-independent.

For (4.14), observe that, by Lemma 4.3,(
Dτ + ∆̃

)
∇̃aR̃ijkl = −2∇̃a

(
B̃ijkl − B̃ijlk + B̃ikjl − B̃iljk

)
+ 2g̃prg̃qs

(
R̃iqap∇̃rR̃sjkl + R̃jqap∇̃rR̃iskl + R̃kqap∇̃rR̃ijsl

+ R̃lqap∇̃rR̃ijks
)

+ (g̃pqR̃ap −Rqa)∇̃qR̃ijkl + (g̃pqR̃ip −Rqi )∇̃aR̃qjkl
+ (g̃pqR̃jp −Rqj)∇̃aR̃iqkl + (g̃pqR̃kp −Rqk)∇̃aR̃ijql
+ (g̃pqR̃lp −Rql )∇̃aR̃ijkq.

The desired expression then follows from (4.10) and the observation that
the terms on the left on the first two lines are all of the schematic form
g̃−2 ∗ R̃m ∗ ∇̃R̃m. q.e.d.
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5. Exponential decay and a refined system

In order to apply the Carleman inequalities in Section 7 which imply
the vanishing of X and Y, we need to know that these sections decay
near spatial infinity and τ = 0 at at least an exponential rate. The goal
of the next two sections will be to prove the following local estimate,
which establishes this uniform exponential decay on regions of fixed size.

Below, we will write

Dr(z0) = Sk ×Br(z0)

for r > 0 and z0 ∈ Rn−k, and use the shorthand dm = dµg(τ) dτ .

Theorem 5.1. There exist positive constants N0, N1 depending only
on n, k, r0 and finitely many of the constants Ml,m from (4.1) such that

(5.1)

∫ 1

0

∫
D1(z0)

(
|X|2 + |∇X|2 + |Y|2

)
e
N0
τ dm ≤ N1,

for any z0 ∈ Rn−k \B8r0(0).

In Proposition 7.2 we will use the self-similarity of X and Y to deduce
an estimate on the space-time vanishing rate of the sections from (5.1).
However, the self-similarity of X and Y will not be used in the proof of
Theorem 5.1 or elsewhere in the the next two sections.

As discussed in the introduction, it does not seem possible here to
deduce the exponential decay of X and Y from a direct application of
our Carleman estimates (Theorems 6.2 and 6.3 below) to the system
(4.3) since these estimates cannot absorb the coefficients of X on the
right side of (4.3) which blow up at a rate proportional to 1/τ . However,
this obstacle is really only an artifact of the coarse way in which we have

so far estimated the reaction terms in the evolution equation for ∇̃R̃m
in (4.3).

We will now analyze the algebraic structure of these terms more care-
fully and introduce a replacement for X in which the components of

∇̃R̃m relative to the splitting of TC are grouped and rescaled according
to their own individual rates of decay. We will define this replacement
in Proposition 5.8 once the preliminary calculations are out of the way.
Though involved, the computations in this section are guided by a fairly
simple underlying strategy. See Section 5.2.1 for a short explanation.
We summarize the properties of the resulting “refined” system we will
need in Proposition 5.9 at the end of the section.

5.1. Notational conventions. We will not make use the self-similarity
of g̃ in the computations below, so for the rest of this section, g̃ = g̃(τ)
will simply represent a smooth solution to the backward Ricci flow (1.6)
satisfying (4.1) on Cr0 × (0, 1]. We will continue to use g = g(τ) to rep-
resent the normalized shrinking cylindrical solution on C × (0, 1].
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Let H and K denote the subbundles of TC with fibers H(θ,z) =

T(θ,z)(Sk × {z}) and K(θ,z) = T(θ,z)({θ} × Rn−k), and let P̊ : TC → H
and P̄ : TC → K denote the corresponding g-orthogonal projections
onto these subbundles. The projections P̊ and P̄ are smooth, globally
defined families of (1, 1)-tensor fields on C × (0, 1] satisfying

P̊ 2 = P̊, P̄ 2 = P̄, P̊ + P̄ = IdTC , g(P̊ ·, P̄ ·) = 0,

and

∇P̊ = ∇P̄ = 0,
∂

∂τ
P̊ =

∂

∂τ
P̄ = Dτ P̊ = Dτ P̄ = 0.

Using P̊ and P̄ , we can track the components of any tensor relative to
the splitting TC = H⊕K. We will use a notational system of underlined
and barred indices to distinguish these components. Underlined indices
will denote components acting on directions tangent to the spherical
factor and barred indices will denote components acting on directions
tangent to the Euclidean factor. Thus, for example, we will write

R̃
¯
a
¯
b = R̃ijP̊

i
aP̊

j
b , R̃

¯
ab̄ = R̃ijP̊

i
aP̄

j
b , R̃ā

¯
b = R̃ijP̄

i
aP̊

j
b , R̃āb̄ = R̃ijP̄

i
aP̄

j
b .

An unadorned index will represent an unmodified component, e.g.,

R̃
¯
ab = R̃ibP̊

i
a.

We emphasize that each of the above expressions represent globally-
defined tensor fields and that the underlined and barred indices denote
modifications to the tensor field, not the expression of the components
of the tensor relative to a particular local frame.

In general, we will not need to pay careful attention to the algebraic
structure of terms that are quadratic or better in factors of h and its
derivatives, and it will be convenient to have an economical notation for
tensors with rapid space-time decay whose precise form we can safely
ignore.

Notation 5.2. The expression o(∞) will denote various families of
tensor fields V = V (τ) that vanish to infinite order in space and time
in the sense that

sup
Cr0×(0,1]

(
|z|2l

τ l

)
|V |(θ, z, τ) <∞

for all l ≥ 0. Here | · | = | · |g(τ) as before.

Finally, we will also use a repeated index to denote a contraction with
the metric g, and write out explicitly any contraction with g̃.

5.2. The gradient of the scalar curvature. We begin our analysis
by examining the evolution of the differential of the scalar curvature.
In this and the calculations that follow, we will focus our attention on
the structure of the linearization of the reaction terms based at the
cylindrical solution g.
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Proposition 5.3. The differential ∇̃R̃ of the scalar curvature of g̃
satisfies

(5.2) |(Dτ+∆)τ2∇̃aR̃| ≤ |o(∞)|(|h|+|∇h|+|∇̃R̃c|)+2
√
n− kτ |∇̃aR̃b̄c̄|

on Cr0 × (0, 1].

Proof. From the standard formula(
∂

∂τ
+ ∆̃

)
R̃ = −2|R̃c|2g̃,

we have (
∂

∂τ
+ ∆̃

)
∇̃aR̃ = −4g̃pq g̃rs∇̃aR̃prR̃qs + g̃pqR̃ap∇̃qR̃,

and then(
Dτ + ∆̃

)
∇̃aR̃ = −4g̃pq g̃rs∇̃aR̃prR̃qs + (g̃pqR̃ap − gpqRap)∇̃qR̃.

Using (4.1) and (4.10), and the fact that Rij = (1/2τ)P̊ij , where P̊ij =

gjkP̊
k
i = g

¯
i
¯
j , we may rewrite this as

(Dτ + ∆) ∇̃aR̃ = ∆∇̃aR̃− ∆̃∇̃aR̃− 4g̃pq g̃rs∇̃aR̃prR̃qs
+ (g̃pqR̃ap − gpqRap)∇̃qR̃

= o(∞) ∗ (h+∇h+ ∇̃R̃c)− 4∇̃aR̃pqRpq

= o(∞) ∗ (h+∇h+ ∇̃R̃c)− 2

τ
∇̃aR̃pqP̊pq,

and, using our indexing convention, again as

(Dτ + ∆) ∇̃aR̃ = o(∞) ∗ (h+∇h+ ∇̃R̃c)− 2

τ
∇̃aR̃

¯
p
¯
p

= o(∞) ∗ (h+∇h+ ∇̃R̃c)− 2

τ
∇̃aR̃pp +

2

τ
∇̃aR̃p̄p̄

= o(∞) ∗ (h+∇h+ ∇̃R̃c)− 2

τ
∇̃aR̃+

2

τ
∇̃aR̃p̄p̄.(5.3)

Here, to obtain the second line in the above computation, we used that

∇̃aR̃pp = gpq∇̃aR̃pq = (gpq − g̃pq)∇̃aR̃pq + ∇̃aR̃ = o(∞) ∗ ∇̃R̃c + ∇̃aR̃.

We then multiply ∇̃R̃ by τ2 so that an application of Dτ will pick off
the second term on the right in (5.3). This yields equation (5.2). q.e.d.

5.2.1. A remark on the strategy. Above, in the computation lead-

ing to (5.3), we have traded the singular term proportional to ∇̃aR̃
¯
p
¯
p

for a singular term proportional to ∇̃aR̃p̄p̄, exchanging a tensor with
two underlined indices for one with two barred indices. Although we
have not eliminated the singular coefficient, we have reassigned it from

a primarily spherical component of ∇̃R̃c to a primarily Euclidean one.
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The computations for ∇̃R̃c and ∇̃R̃m that follow are essentially just
more elaborate versions of this “under-for-over” exchange, aimed at

rearranging appropriately rescaled components of ∇̃R̃, ∇R̃c, and ∇̃R̃m
into a system whose singular part has a strictly triangular structure.
This structure will allow us to transfer the blow-up in the equations for
the spherical and mixed components of the system to the equations of
components with fewer spherical directions. At the end of the line are

the principally Euclidean components of ∇̃R̃m which satisfy evolution
equations with reaction terms that are quadratic-or-better in the other
elements of the system and have the capacity to absorb the blow-up
that we have sent in their direction.

5.3. Decomposition of ∇̃R̃c. We next examine the evolution of the
covariant derivative of the Ricci tensor. Define

G̃ijk = ∇̃iR̃jk − ∇̃jR̃ik,

and, for convenience,

c =
1

k − 1
.

Proposition 5.4. The components of ∇̃R̃c satisfy the equations

|(Dτ + ∆)τ∇̃āR̃̄k| . |∇̃āR̃ı̄̄l̄k|,(5.4)

|(Dτ + ∆)τ1−c∇̃āR̃
¯
j
¯
k| . τ−c(|∇̃āR̃|+ |∇̃āR̃̄k̄|+ |∇̃āR̃

¯
i̄k̄

¯
l|),(5.5)

|(Dτ + ∆)τ∇̃
¯
aR̃̄k̄| . |∇̃

¯
aR̃ı̄̄k̄l̄|,(5.6)

|(Dτ + ∆)τ1−c∇̃
¯
aR̃

¯
jk̄|

. τ−c(|∇̃āR̃|+ |G̃
¯
a
¯
jk̄|+ |∇̃āR̃̄k̄|+ |∇̃āR̃

¯
i̄k̄

¯
l|),

(5.7)

and

|(Dτ + ∆)τ1−3c∇̃
¯
aR̃

¯
j
¯
k|

. τ−3c
(
|∇̃

¯
aR̃|+ |G̃

¯
a
¯
j
¯
k|+ |∇̃

¯
aR̃̄k̄|+ |∇̃āR̃

¯
jk̄|+ |∇̃

¯
aR̃

¯
i̄k̄

¯
l|
)
,

(5.8)

where the notation |U | . |V | indicates that

|U | ≤ |o(∞)|(|h|+ |∇h|+ |∇̃R̃m|) + C|V |

for some constant C = C(n) > 0. The components of G̃
¯
a
¯
jk satisfy

|(Dτ + ∆)τ1+cG̃
¯
a
¯
jk̄| . τ c|∇̃āR̃

¯
i
¯
jk̄l̄|,(5.9)

|(Dτ + ∆)τG̃
¯
a
¯
j
¯
k| . |∇̃

¯
aR̃|+ |∇̃

¯
aR̃̄k̄|+ |∇̃āR̃

¯
jk̄|+ |∇̃āR̃

¯
i
¯
j
¯
kl̄|.(5.10)
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Proof. Starting from the equation(
∂

∂τ
+ ∆̃

)
R̃jk = −2g̃prg̃qsR̃jpqkR̃rs + 2g̃pqR̃jpR̃kq,

we obtain(
∂

∂τ
+ ∆̃

)
∇̃aR̃jk = g̃pq

(
R̃ap∇̃qR̃jk + R̃jp∇̃aR̃qk + R̃kp∇̃aR̃jq

)
− 2g̃prg̃qs

(
∇̃aR̃jpqkR̃rs + R̃jpqk∇̃aR̃rs + R̃pajq∇̃rR̃sk + R̃pakq∇̃rR̃sj

)
,

and hence

(Dτ + ∆) ∇̃aR̃jk = ∆∇̃aR̃jk − ∆̃∇̃aR̃jk
+ (g̃pqR̃ap −Rqa)∇̃qR̃jk + (g̃pqR̃jp −Rqj)∇̃aR̃qk + (g̃pqR̃kp −Rqk)∇̃aR̃jq

− 2g̃prg̃qs
(
∇̃aR̃jpqkR̃rs + R̃jpqk∇̃aR̃rs + R̃pajq∇̃rR̃sk + R̃pakq∇̃rR̃sj

)
.

So, in view of (4.1) and (4.10), we have

(Dτ + ∆) ∇̃aR̃jk = o(∞) ∗ (h+∇h+ ∇̃R̃m) + Eajk,

where

Eajk = −2
(
∇̃aR̃pqRjpqk + ∇̃pR̃qjRpakq + ∇̃pR̃qkRpajq
+ ∇̃aR̃jpqkRpq

)
.

(5.11)

Now, according to our normalization, on the evolving cylinder we
have

Rijkl =
c

2τ
(P̊ilP̊jk − P̊ikP̊jl), Rij =

1

2τ
P̊ij ,

so (5.11) becomes

Eajk = −1

τ
∇̃aR̃jpqkP̊pq +

c

τ
∇̃aR̃pq(P̊jqP̊pk − P̊jkP̊pq)

+
c

τ
∇̃pR̃qj(P̊pkP̊aq − P̊pqP̊ak)

+
c

τ
∇̃pR̃qk(P̊pjP̊aq − P̊pqP̊aj)

= −1

τ
∇̃aR̃jppk +

c

τ
(∇̃aR̃

¯
j
¯
k − P̊jk∇̃aR̃

¯
p
¯
p)

+
c

τ
(∇̃

¯
kR̃

¯
aj − ∇̃

¯
pR̃

¯
pjP̊ak) +

c

τ
(∇̃

¯
jR̃

¯
ak − ∇̃

¯
pR̃

¯
pkP̊aj).

(5.12)

Computing as in the proof of Proposition 5.3, we see that

∇̃aR̃j
¯
p
¯
pk = o(∞) ∗ ∇̃R̃m + ∇̃aR̃jk − ∇̃aR̃jp̄p̄k,

and

∇̃aR̃
¯
p
¯
p = o(∞) ∗ ∇̃R̃c + ∇̃aR̃− ∇̃aR̃p̄p̄,

∇̃
¯
pR̃

¯
pj = o(∞) ∗ ∇̃R̃c +

1

2
∇̃jR̃− ∇̃p̄R̃p̄j .
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Returning, then, to (5.12) and putting things together, we obtain

Eajk = o(∞) ∗ ∇̃R̃m− 1

τ
∇̃aR̃jk +

1

τ
∇̃aR̃jp̄p̄k

+
c

τ

(
∇̃aR̃

¯
j
¯
k + ∇̃

¯
kR̃

¯
aj + ∇̃

¯
jR̃

¯
ak

)
+
c

τ
P̊jk

(
∇̃aR̃p̄p̄ − ∇̃aR̃

)
+
c

τ
P̊ak

(
∇̃p̄R̃p̄j −

1

2
∇̃jR

)
+
c

τ
P̊aj

(
∇̃p̄R̃p̄k −

1

2
∇̃kR̃

)
= o(∞) ∗ ∇̃R̃m + Fajk,

(5.13)

where, by inspection, the components of the tensor Fajk satisfy

Fā̄k = −1

τ
∇̃āR̃̄k +

1

τ
∇̃āR̃̄p̄p̄k,(5.14)

Fā
¯
j
¯
k = −

(
1− c
τ

)
∇̃āR̃

¯
j
¯
k +

1

τ
∇̃āR̃

¯
jp̄p̄

¯
k

+
c

τ
P̊jk

(
∇̃āR̃p̄p̄ − ∇̃āR̃

)
,

(5.15)

F
¯
a̄k̄ = −1

τ
∇̃

¯
aR̃̄k̄ +

1

τ
∇̃

¯
aR̃̄p̄p̄k̄,(5.16)

F
¯
a
¯
jk̄ = −

(
1− c
τ

)
∇̃

¯
aR̃

¯
jk̄ −

c

τ
G̃

¯
a
¯
jk̄ +

1

τ
∇̃

¯
aR̃

¯
jp̄p̄k̄

+
c

τ
P̊aj

(
∇̃p̄R̃p̄k̄ −

1

2
∇̃k̄R̃

)
,

(5.17)

and

F
¯
a
¯
j
¯
k = −

(
1− 3c

τ

)
∇̃

¯
aR̃

¯
j
¯
k +

c

τ
(G̃

¯
j
¯
a
¯
k + G̃

¯
k
¯
a
¯
j) +

1

τ
∇̃

¯
aR̃

¯
jp̄p̄

¯
k

+
c

τ
P̊jk

(
∇̃

¯
aR̃p̄p̄ − ∇̃

¯
aR̃
)

+
c

τ
P̊ak

(
∇̃p̄R̃p̄

¯
j −

1

2
∇̃

¯
jR̃

)
+
c

τ
P̊aj

(
∇̃p̄R̃p̄

¯
k −

1

2
∇̃

¯
kR̃

)
.

(5.18)

The relations (5.4) - (5.8) then follow directly from the identities
(5.14) - (5.18) for Fajk. For example, using that

Dτ P̊ = Dτ P̄ = ∆P̊ = ∆P̄ = 0,

we have

(Dτ + ∆)∇̃āR̃̄k = P̄ pa P̄
q
j (Dτ + ∆)∇̃pR̃qk

= o(∞) ∗ (h+∇h+ ∇̃R̃m) + Fā̄k.
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Then, using (5.14), we see that

(Dτ + ∆)(τ∇̃āR̃̄k) = o(∞) ∗ (h+∇h+ ∇̃R̃m) + ∇̃āR̃̄k + τFā̄k

= o(∞) ∗ (h+∇h+ ∇̃R̃m) + ∇̃āR̃̄p̄p̄k,
which implies (5.4). Relations (5.5)- (5.8) can be verified similarly. For
(5.7), we use the Bianchi identities to estimate the third term in (5.17).

The identities (5.9) - (5.10) follow in the same way from the identities

F
¯
a
¯
jk̄ − F

¯
j
¯
ak̄ = −

(
1 + c

τ

)
G̃

¯
a
¯
jk̄ −

1

τ
∇̃p̄R̃

¯
a
¯
jp̄k̄,

F
¯
a
¯
j
¯
k − F

¯
j
¯
a
¯
k = −1

τ
G̃

¯
a
¯
j
¯
k +

1

τ
∇̃p̄R̃

¯
a
¯
j
¯
kp̄

+
c

τ
P̊ak

(
∇̃p̄R̃p̄

¯
j − ∇̃

¯
jR̃p̄p̄ +

1

2
∇̃

¯
jR̃

)
− c

τ
P̊jk

(
∇̃p̄R̃p̄

¯
a − ∇̃

¯
aR̃p̄p̄ +

1

2
∇̃

¯
aR̃

)
,

which are consequences of (5.17) and (5.18) and the Bianchi identities.
q.e.d.

5.4. Decomposition of ∇̃R̃m. Finally we examine the full covariant

derivative of R̃m. We will only need expressions for some of the com-
ponents to obtain a closed system of inequalities.

Proposition 5.5. The components of ∇̃R̃m satisfy

|(Dτ + ∆)∇̃aR̃ı̄̄k̄l̄| . 0,(5.19)

|(Dτ + ∆)∇̃āR̃
¯
i̄k̄l̄| . 0,(5.20)

|(Dτ + ∆)τ c∇̃āR̃
¯
i
¯
jk̄l̄| . 0,(5.21)

|(Dτ + ∆)τ−c∇̃āR̃
¯
i̄k̄

¯
l|

. τ−(1+c)
(
|∇̃āR̃

¯
i
¯
jk̄l̄|+ |∇̃āR̃ı̄̄k̄l̄|+ |∇̃āR̃ı̄̄|

)
,

(5.22)

|(Dτ + ∆)∇̃āR̃
¯
i
¯
j
¯
kl̄| . τ−1

(
|∇̃āR̃

¯
i̄k̄l̄|+ |∇̃āR̃

¯
i̄|
)
,(5.23)

|(Dτ + ∆)∇̃āR̃
¯
i
¯
j
¯
k
¯
l| . τ−1

(
|∇̃āR̃

¯
i̄k̄

¯
l|+ |∇̃āR̃

¯
i
¯
j |
)
,(5.24)

|(Dτ + ∆)τ−3c∇̃
¯
aR̃

¯
i̄k̄

¯
l|

. τ−(1+3c)
(
|∇̃āR̃

¯
i
¯
j
¯
kl̄|+ |∇̃āR̃

¯
i̄k̄l̄|+ |∇̃āR̃

¯
i̄|+ |∇̃

¯
aR̃ı̄̄|

)
,

(5.25)

|(Dτ + ∆)τ−2c∇̃
¯
aR̃

¯
i
¯
j
¯
kl̄|

. τ−(1+2c)
(
|∇̃āR̃

¯
i
¯
j
¯
k
¯
l|+ |∇̃āR̃

¯
i̄k̄

¯
l|+ |∇̃

¯
aR̃

¯
i̄|+ |∇̃āR̃

¯
i
¯
j |
)
,

(5.26)

|(Dτ + ∆)τ−2c∇̃
¯
aR̃

¯
i
¯
j
¯
k
¯
l| . τ−(1+2c)

(
|∇̃

¯
aR̃

¯
i̄k̄

¯
l|+ |∇̃

¯
aR̃

¯
i
¯
j |
)
,(5.27)
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where, here, by |U | . |V |, we mean

|U | . |o(∞)|(|h|+ |∇h|+ |∇̃R̃m|) + C|V |

for some constant C = C(n) > 0.

We will break the proof of Proposition 5.5 into a few smaller pieces.
First, note that, from the proof of Lemma 4.3, we have(
Dτ + ∆̃

)
∇̃aR̃ijkl = −2∇̃a

(
B̃ijkl − B̃ijlk + B̃ikjl − B̃iljk

)
+ 2g̃prg̃qs

(
R̃iqap∇̃rR̃sjkl + R̃jqap∇̃rR̃iskl + R̃kqap∇̃rR̃ijsl

+ R̃lqap∇̃rR̃ijks
)

+
(
(g̃pqR̃ap −Rqa)∇̃qR̃ijkl + (g̃pqR̃ip −Rqi )∇̃aR̃qjkl

+ (g̃pqR̃jp −Rqj)∇̃aR̃iqkl + (g̃pqR̃kp −Rqk)∇̃aR̃ijql
+ (g̃pqR̃lp −Rql )∇̃aR̃ijkq

)
.

Thus, as a preliminary step, we may write

(Dτ + ∆)∇̃aR̃ijkl = o(∞) ∗ (h+ ∇̃h+ ∇̃R̃m) + Jaijkl + Laijkl,(5.28)

where

Jaijkl = −2∇̃a
(
B̃ijkl − B̃ijlk + B̃ikjl − B̃iljk

)
and

Laijkl = 2
(
Riqap∇̃pR̃qjkl+Rjqap∇̃pR̃iqkl+Rkqap∇̃pR̃ijql+Rlqap∇̃pR̃ijkq

)
.

So, for the inequalities (5.19) - (5.27), we only need to analyze the
structure of the tensors J and L. We consider the tensor J first.

Proposition 5.6. The components of the tensor

Jaijkl = −2∇̃a
(
B̃ijkl − B̃ijlk + B̃ikjl − B̃iljk

)
,

satisfy the relations

Jai̄k̄l̄ ' 0,(5.29)

Ja
¯
i
¯
jk̄l̄ ' −

c

τ
∇̃aR̃

¯
i
¯
jk̄l̄,(5.30)

Ja
¯
i̄k̄

¯
l '

c

τ

(
∇̃aR̃

¯
i̄k̄

¯
l + ∇̃aR̃

¯
i
¯
l̄k̄ + (∇̃aR̃̄p̄p̄k̄ − ∇̃aR̃̄k̄)P̊il

)
,(5.31)

Ja
¯
i
¯
j
¯
kl̄ '

c

τ

(
(∇̃aR̃

¯
jl̄ − ∇̃aR̃

¯
jp̄p̄l̄)P̊ik − (∇̃aR̃

¯
il̄ − ∇̃aR̃

¯
ip̄p̄l̄)P̊jk

)
,(5.32)

Ja
¯
i
¯
j
¯
k
¯
l '

c

τ

(
(∇̃aR̃

¯
j
¯
l − ∇̃aR̃

¯
jp̄p̄

¯
l)P̊ik + (∇̃aR̃

¯
i
¯
k − ∇̃aR̃

¯
ip̄p̄

¯
k)P̊jl

)
− c

τ

(
(∇̃aR̃

¯
i
¯
l − ∇̃aR̃

¯
ip̄p̄

¯
l)P̊jk + (∇aR̃

¯
j
¯
k − ∇̃aR̃

¯
jp̄p̄

¯
k)P̊il

)
,

(5.33)

where, here, U ' V signifies that

U = o(∞) ∗ ∇̃R̃m + V.
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Proof. We first compute that

∇̃aB̃ijkl = −g̃prg̃qs
(
∇̃aR̃pijqR̃rkls + R̃pijq∇̃aR̃rkls

)
= o(∞) ∗ ∇̃R̃m− ∇̃aR̃pijqRpklq − ∇̃aR̃pklqRpijq

= o(∞) ∗ ∇̃R̃m− c

2τ
∇̃aR̃pijq(P̊pqP̊kl − P̊plP̊kq)

− c

2τ
∇̃aR̃pklq(P̊pqP̊ij − P̊pjP̊iq)

= o(∞) ∗ ∇̃R̃m− c

2τ

(
∇̃aR̃i

¯
p
¯
pjP̊kl + ∇̃aR̃k

¯
p
¯
plP̊ij

)
+

c

2τ

(
∇̃aR̃

¯
lij

¯
k + ∇̃aR̃

¯
jkl

¯
i

)
for any a, i, j, k, l. Permuting the indices in this identity and summing,
we obtain

Jaijkl = o(∞) ∗ ∇̃R̃m

+
c

τ

(
∇̃aR̃i

¯
p
¯
pjP̊kl + ∇̃aR̃k

¯
p
¯
plP̊ij − ∇̃aR̃

¯
lij

¯
k − ∇̃aR̃

¯
jkl

¯
i

)
− c

τ

(
∇̃aR̃i

¯
p
¯
pjP̊lk + ∇̃aR̃l

¯
p
¯
pkP̊ij − ∇̃aR̃

¯
kij

¯
l − ∇̃aR̃

¯
jlk

¯
i

)
+
c

τ

(
∇̃aR̃i

¯
p
¯
pkP̊jl + ∇̃aR̃j

¯
p
¯
plP̊ik − ∇̃aR̃

¯
lik

¯
j − ∇̃aR̃

¯
kjl

¯
i

)
− c

τ

(
∇̃aR̃i

¯
p
¯
plP̊jk + ∇̃aR̃j

¯
p
¯
pkP̊il − ∇̃aR̃

¯
kil

¯
j − ∇̃aR̃

¯
ljk

¯
i

)
,

that is,

Jaijkl = o(∞) ∗ ∇̃R̃m− c

τ
(trP̊ (∇̃aR̃m)� P̊ )ijkl

+
c

τ

(
∇̃aR̃

¯
kij

¯
l + ∇̃aR̃

¯
jlk

¯
i − ∇̃aR̃

¯
lij

¯
k − ∇̃aR̃

¯
jkl

¯
i

)
+
c

τ

(
∇̃aR̃

¯
kil

¯
j + ∇̃aR̃

¯
ljk

¯
i − ∇̃aR̃

¯
lik

¯
j − ∇̃aR̃

¯
kjl

¯
i

)
= o(∞) ∗ ∇̃R̃m

− c

τ

(
(trP̊ (∇̃aR̃m)� P̊ )ijkl + ∇̃aR̃

¯
i
¯
jkl + ∇̃aR̃ij

¯
k
¯
l

)
+
c

τ

(
∇̃aR̃

¯
kil

¯
j + ∇̃aR̃

¯
ljk

¯
i − ∇̃aR̃

¯
lik

¯
j − ∇̃aR̃

¯
kjl

¯
i

)
,

(5.34)

where

trP̊ (∇̃aR̃m)ij = ∇̃aR̃i
¯
p
¯
pj ,

and U � V denotes the Kulkarni-Nomizu product

(U � V )ijkl = UilVjk + UjkVil − UikVjl − UjlVik.
A case by case examination of of (5.34), using the first Bianchi iden-

tity and the observation that

trP̊ (∇̃aR̃m)ij = ∇̃aR̃i
¯
p
¯
pj = o(∞) ∗ ∇̃R̃m + ∇̃aR̃ij − ∇̃aR̃ip̄p̄j ,



32 BRETT KOTSCHWAR & LU WANG

yields (5.29) - (5.33). q.e.d.

Now we perform a similar analysis for the tensor L.

Proposition 5.7. The components of the tensor

Laijkl = 2
(
Riqap∇̃pR̃qjkl+Rjqap∇̃pR̃iqkl+Rkqap∇̃pR̃ijql+Rlqap∇̃pR̃ijkq

)
satisfy the relations

Lāijkl ' 0,(5.35)

L
¯
aı̄̄k̄l̄ ' 0,(5.36)

L
¯
a
¯
i̄k̄l̄ '

c

τ

(
∇̃

¯
aR̃

¯
i̄k̄l̄ + ∇̃̄R̃

¯
a
¯
ik̄l̄

)
+
c

τ
P̊ia

(
∇̃p̄R̃p̄̄k̄l̄ − ∇̃l̄R̃k̄̄ + ∇̃k̄R̃̄l̄

)
,

(5.37)

L
¯
a
¯
i
¯
jk̄l̄ '

c

τ
∇̃

¯
aR̃

¯
i
¯
jk̄l̄ +

c

τ
P̊ia

(
∇̃p̄R̃p̄

¯
jk̄l̄ − ∇̃l̄R̃k̄

¯
j + ∇̃k̄R̃

¯
jl̄

)
− c

τ
P̊ja

(
∇̃p̄R̃p̄

¯
ik̄l̄ − ∇̃l̄R̃k̄

¯
i + ∇̃k̄R̃

¯
il̄

)
,

(5.38)

L
¯
a
¯
i̄k̄

¯
l '

c

τ

(
2∇̃

¯
aR̃

¯
i̄k̄

¯
l − ∇̃̄R̃

¯
a
¯
i
¯
lk̄ − ∇̃k̄R̃

¯
a
¯
l
¯
i̄

)
+
c

τ
P̊ia

(
∇̃p̄R̃p̄̄k̄

¯
l − ∇̃

¯
lR̃k̄̄ + ∇̃k̄R̃

¯
l̄

)
− c

τ
P̊la

(
∇̃p̄R̃p̄k̄

¯
i̄ − ∇̃̄R̃

¯
ik̄ + ∇̃

¯
iR̃̄k̄

)
,

(5.39)

L
¯
a
¯
i
¯
j
¯
kl̄ '

c

τ

(
2∇̃

¯
aR̃

¯
i
¯
j
¯
kl̄ + ∇̃l̄R̃

¯
a
¯
k
¯
i
¯
j

)
+
c

τ
P̊ia

(
∇̃p̄R̃p̄

¯
j
¯
kl̄ − ∇̃l̄R̃

¯
j
¯
k + ∇̃

¯
kR̃l̄

¯
j

)
− c

τ
P̊ja

(
∇̃p̄R̃p̄

¯
i
¯
kl̄ − ∇̃l̄R̃

¯
i
¯
k + ∇̃

¯
kR̃l̄

¯
i

)
+
c

τ
P̊ka

(
∇̃p̄R̃p̄l̄

¯
i
¯
j − ∇̃

¯
jR̃

¯
il̄ + ∇̃

¯
iR̃

¯
jl̄

)
,

(5.40)

L
¯
a
¯
i
¯
j
¯
k
¯
l '

2c

τ
∇̃

¯
aR̃

¯
i
¯
j
¯
k
¯
l +

c

τ
P̊ia

(
∇̃p̄R̃p̄

¯
j
¯
k
¯
l − ∇̃

¯
lR̃

¯
j
¯
k + ∇̃

¯
kR̃

¯
l
¯
j

)
− c

τ
P̊ja

(
∇̃p̄R̃p̄

¯
i
¯
k
¯
l − ∇̃

¯
lR̃

¯
i
¯
k + ∇̃

¯
kR̃

¯
l
¯
i

)
+
c

τ
P̊ka

(
∇̃p̄R̃p̄

¯
l
¯
i
¯
j − ∇̃

¯
jR̃

¯
i
¯
l + ∇̃

¯
iR̃

¯
j
¯
l

)
− c

τ
P̊la

(
∇̃p̄R̃p̄

¯
k
¯
i
¯
j − ∇̃

¯
jR̃

¯
i
¯
k + ∇̃

¯
iR̃

¯
j
¯
k

)
,

(5.41)

where here U ' V signifies that

U = o(∞) ∗ ∇̃R̃m + V.

Proof. Note that

Riqap∇̃pR̃qkjl =
c

2τ
(P̊ipP̊qa − P̊iaP̊qp)∇̃pR̃qjkl
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=
c

2τ
(∇̃

¯
iR̃

¯
ajkl − P̊ia∇̃

¯
pR̃

¯
pjkl),

and so

Laijkl = 2
(
Riqap∇̃pR̃qjkl −Rjqap∇̃pR̃qikl +Rkqap∇̃pR̃qlij

−Rlqap∇̃pR̃qkij
)

=
c

τ

(
∇̃

¯
iR̃

¯
ajkl − ∇̃

¯
jR̃

¯
aikl − P̊ia∇̃

¯
pR̃

¯
pjkl + P̊ja∇̃

¯
pR̃

¯
pikl

)
+
c

τ

(
∇̃

¯
kR̃

¯
alij − ∇̃

¯
lR̃

¯
akij − P̊ka∇̃

¯
pR̃

¯
plij + P̊la∇̃

¯
pR̃

¯
pkij

)
.

Using the identity

g̃pq∇̃pR̃qjkl = ∇̃lR̃kj − ∇̃kR̃lj ,

we may rewrite the terms of the form ∇̃
¯
pR̃

¯
pjkl in the above equation as

∇̃
¯
pR̃

¯
pjkl = o(∞) ∗ ∇̃R̃m + ∇̃lR̃kj − ∇̃kR̃lj − ∇̃p̄R̃p̄jkl.

The relations (5.35)-(5.41) then follow from a case-by-case inspection
of the above identity for Laijkl using the Bianchi identities to combine
terms. q.e.d.

Now we combine the above computations to complete the proof of
the main result of the section.

Proof of Proposition 5.5. As in the proof of Proposition 5.4, the in-
equalities in (5.19)-(5.27) follow from (5.28) and an inspection of the
expressions (5.29)-(5.33) and (5.35)-(5.41) for the corresponding com-
ponents of the tensors J and L. We further use the Bianchi identi-

ties to estimate |∇̃
¯
aR̃ı̄̄k̄l̄| ≤ 2|∇̃āR̃

¯
i̄k̄l̄| and |∇̃

¯
aR̃

¯
i
¯
jk̄l̄| ≤ 2|∇̃āR̃

¯
i
¯
j
¯
kl̄| in

(5.25), |∇̃
¯
aR̃

¯
i̄k̄l̄| ≤ 2|∇̃āR̃

¯
i̄k̄

¯
l| and |∇̃āR̃

¯
i
¯
jk̄l̄| ≤ 2|∇̃āR̃

¯
i̄k̄

¯
l| in (5.26), and

|∇̃āR̃
¯
i
¯
j
¯
kl̄| ≤ 2|∇̃

¯
aR̃

¯
i̄k̄

¯
l| in (5.27). q.e.d.

5.5. Assembling the components of the system. Next we use
Propositions 5.3, 5.4, and 5.5 to organize the rescaled components of

∇̃R̃, ∇̃R̃c, and ∇̃R̃m into groupings which satisfy a closed system of
inequalities whose singular part has a triangular structure.

Define W = (W 0,W 1, . . . ,W 5) by

W 0 = (∇̃aR̃ı̄̄k̄l̄, ∇̃āR̃
¯
i̄k̄l̄, τ

c∇̃āR̃
¯
i
¯
jk̄l̄),

W 1 = (τ∇̃aR̃ı̄̄, τ∇̃āR̃
¯
i̄, τ

1+cG̃
¯
a
¯
i̄),

W 2 = (τ2∇̃aR̃, τ−c∇̃āR̃
¯
i̄k̄

¯
l, ∇̃āR̃

¯
i
¯
j
¯
kl̄),

W 3 = (τ1−c∇̃āR̃
¯
i
¯
j , τ

1−c∇̃
¯
aR̃

¯
i̄, τ G̃

¯
a
¯
i
¯
j , τ
−3c∇̃

¯
aR̃

¯
i̄k̄

¯
l),

W 4 = (τ1−3c∇̃
¯
aR̃

¯
i
¯
j , ∇̃āR̃

¯
i
¯
j
¯
k
¯
l),

W 5 = (τ−2c∇̃
¯
aR̃

¯
i
¯
j
¯
kl̄, τ

−2c∇̃
¯
aR̃

¯
i
¯
j
¯
k
¯
l),

(5.42)
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where, as before, c = 1/(k − 1).

Proposition 5.8. The components W i of W satisfy the system

|(Dτ + ∆)W 0| . 0,

|(Dτ + ∆)W 1| . |W 0|,

|(Dτ + ∆)W 2| . τ−(1+2c)|W 0|+ τ−(2+c)|W 1|,

|(Dτ + ∆)W 3| . τ−(1+3c)|W 0|+ τ−(2+3c)|W 1|+ τ−max{1+3c,2+c}|W 2|,

|(Dτ + ∆)W 4| . τ−(1+3c)|W 1|+ τ−(2+3c)|W 2|+ τ−max{1+3c,2−c}|W 3|,

|(Dτ + ∆)W 5| . τ−(1+c)|W 2|+ τ−(2+c)|W 3|+ τ−max{1+2c,2−c}|W 4|,

on Cr0 × (0, 1]. Here, |U | . |V | means that

|U | ≤ |o(∞)|(|h|+ |∇h|+ |∇̃R̃m|) + C|V |

for some constant C = C(n) > 0. Moreover, we have

(5.43) |∇̃R̃m|+ |∇∇̃R̃m| ≤ C(|W|+ |∇W|)

on Cr0 × (0, 1] for some C = C(n).

Proof. Let us observe that (5.43) is satisfied first. Using the symme-

tries of ∇̃R̃m and the Bianchi identities, we have

|∇̃aR̃ijkl| ≤ C
(
|∇̃āR̃ı̄̄k̄l̄|+ |∇̃āR̃

¯
i̄k̄l̄|+ |∇̃aR̃

¯
i̄k̄

¯
l|+ |∇̃

¯
aR̃

¯
i
¯
j
¯
kl̄|

+ |∇̃
¯
aR̃

¯
i
¯
j
¯
k
¯
l|
)

≤ C
(
|W 0|+ τ c|W 2|+ τ3c|W 3|+ τ2c|W 5|

)
for some C = C(n) > 0. Similarly, |∇∇̃R̃m| can be controlled by the
sum of |∇W 0|, |∇W 2|, |∇W 3|, and |∇W 5|.

Now we verify the system of inequalities satisfied by the components
of W. Denoting the components of W i by W i,j , we first see from (5.19)-
(5.21) that

|(Dτ + ∆)W 0,j | . 0

for j = 0, 1, 2. The inequality for W 0 follows. Next, from (5.4) and
(5.6), we have

|(Dτ + ∆)W 1,0| . |∇̃aR̃ı̄̄k̄l̄| = |W 0,0|,

and

|(Dτ + ∆)W 1,1| . |∇̃āR̃
¯
i̄k̄l̄| = |W 0,1|,

while, from (5.9), that

|(Dτ + ∆)W 1,2| . τ c|∇̃āR̃
¯
i
¯
jk̄l̄| = |W 0,2|.

Taken together, these inequalities yield the relation for W 1.
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For W 2, we start with (5.2), which implies

|(Dτ + ∆)W 2,0| . τ |∇̃aR̃ı̄̄| = |W 1,0|.

Then (5.22) and (5.23) yield, respectively, that

|(Dτ + ∆)W 2,1| . τ−(1+c)(|∇̃āR̃ı̄̄k̄l̄|+ |∇̃āR̃
¯
i
¯
jk̄l̄|+ |∇̃āR̃ı̄̄|)

. τ−(1+c)|W 0,0|+ τ−(1+2c)|W 0,2|+ τ−(2+c)|W 1,0|,

and

|(Dτ + ∆)W 2,2| . τ−1(|∇̃āR̃
¯
i̄k̄l̄|+ |∇̃āR̃

¯
i̄|) . τ−1|W 0,1|+ τ−2|W 1,1|,

and the inequality for W 2 follows.
Similarly, using (5.5) and (5.7), we see that

|(Dτ + ∆)W 3,0| . τ−c(|∇̃āR̃|+ |∇̃āR̃̄k̄|+ |∇̃āR̃
¯
i̄k̄

¯
l|)

. τ−(1+c)|W 1,0|+ τ−(2+c)|W 2,0|+ |W 2,1|,

and

|(Dτ + ∆)W 3,1| . τ−c(|∇̃āR̃|+ |G̃
¯
a
¯
jk̄|+ |∇̃āR̃̄k̄|+ |∇̃āR̃

¯
i̄k̄

¯
l|)

. τ−(1+c)|W 1,0|+ τ−(1+2c)|W 1,2|+ τ−(2+c)|W 2,0|+ |W 2,1|,

while, using (5.10) and (5.25), we see that

|(Dτ + ∆)W 3,2| . |∇̃
¯
aR̃|+ |∇̃

¯
aR̃̄k̄|+ |∇̃āR̃

¯
jk̄|+ |∇̃āR̃

¯
i
¯
j
¯
kl̄|

. τ−1|W 1,0|+ τ−1|W 1,1|+ τ−2|W 2,0|+ |W 2,2|,

and

|(Dτ + ∆)W 3,3| . τ−(1+3c)

(
|∇̃āR̃

¯
i
¯
j
¯
kl̄|+ |∇̃āR̃

¯
i̄k̄l̄|+ |∇̃āR̃

¯
i̄|+ |∇̃

¯
aR̃ı̄̄|

)
. τ−(1+3c)(|W 0,1|+ |W 2,2|) + τ−(2+3c)(|W 1,0|+ |W 1,1|).

Combining these relations yields the inequality for W 3.
Next, from (5.8) and (5.24), we have

|(Dτ + ∆)W 4,0|

. τ−3c
(
|∇̃

¯
aR̃|+ |G̃

¯
a
¯
j
¯
k|+ |∇̃

¯
aR̃̄k̄|+ |∇̃āR̃

¯
jk̄|+ |∇̃

¯
aR̃

¯
i̄k̄

¯
l|
)

. τ−(2+3c)|W 2,0|+ τ−(1+3c)(|W 1,0|+ |W 1,1|+ |W 3,2|) + |W 3,3|,

and

|(Dτ + ∆)W 4,1| . τ−1
(
|∇̃āR̃

¯
i̄k̄

¯
l|+ |∇̃āR̃

¯
i
¯
j |
)

. τ−(1−c)|W 2,1|+ τ−(2−c)|W 3,0|,

which together yield the inequality for W 4.
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Finally, to obtain the inequality for W 5, we use

|(Dτ + ∆)W 5,0| . τ−(1+2c)

(
|∇̃āR̃

¯
i
¯
j
¯
k
¯
l|+ |∇̃āR̃

¯
i̄k̄

¯
l|+ |∇̃

¯
aR̃

¯
i̄|+ |∇̃āR̃

¯
i
¯
j |
)

. τ−(1+c)|W 2,1|+ τ−(2+c)|W 3,0|+ τ−(2+c)|W 3,1|+ τ−(1+2c)|W 4,1|,
from (5.26), and

|(Dτ + ∆)W 5,1| . τ−(1+2c)
(
|∇̃

¯
aR̃

¯
i̄k̄

¯
l|+ |∇̃

¯
aR̃

¯
i
¯
j |
)

. τ−(1−c)|W 3,3|+ τ−(2−c)|W 4,0|,
from (5.27).

q.e.d.

Note that the largest exponent of τ which appears in the denominator
of the coefficients of |W i| on the right side of the above relations is
γ = 2 + 3c. Returning to Proposition 5.8 and unwinding the notation
., we summarize the findings of this section as follows.

Proposition 5.9. For all β > 0, there is a constant B0 = B0(β)
depending on finitely many of the constants Ml,m in (4.4) such that
W = (W 0,W 1, . . . ,W 5) and Y = (h,∇h,∇∇h) together satisfy

(5.44) |(Dτ + ∆)W i| ≤ B0τ
β(|W|+ |Y|) +B0

i−1∑
j=0

τ−γ |W j |

for i = 0, 1, . . . 5, and

(5.45) |DτY| ≤ B0(|W|+ |∇W|) +B0τ
−1|Y|

on Cr0 × (0, 1]. Here, γ = 2 + 3/(k − 1). Moreover,

|X|+ |∇X| ≤ C(|W|+ |∇W|)
for some constant C = C(n).

6. Exponential Decay: The induction argument

The advantage of the system (5.44)-(5.45) over the system (4.3) is
that the terms with singular coefficients in (5.44) appear in a strictly
triangular form. In this section, we will prove decay estimates for general
systems with this triangular structure, and use these estimates to deduce
Theorem 5.1. These estimates will use the weights

(6.1) σ(τ) = τe
T−τ
3 , Gz0(z, τ) = e−

|z−z0|
2

4τ ,

for fixed z0 ∈ Rn−k. Note that σ is comparable to τ in the sense that

(6.2) τ ≤ σ(τ) ≤ e
T
3 τ

for 0 ≤ τ ≤ T , and that σ′(τ) > 0 and σ(τ) ≤ 1 on [0, T ] as long as
T ≤ 1.
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Proposition 6.1. Let the bundles W = ⊕qi=0T
(ki,li)(C) and Y =

⊕q
′

i=0T
(ki,li)(C) be equipped with the family of metrics and connections

induced by g = g(τ). Suppose that W = (W 0, . . . ,W q) and Y =

(Y 0, . . . , Y q′) are families of sections of W and Y over Cr0 × (0, 1] sat-
isfying the following two conditions:

(a) There are nonnegative constants β, γ, µ, and B such that

|(Dτ + ∆)W i| ≤ Bτβ(|W|+ |Y|) +B
i−1∑
j=0

τ−γ |W j |,

|DτY| ≤ Bτ−µ(|W|+ |∇W|) +Bτ−1|Y|,

(6.3)

for each i = 0, . . . , q on Cr0 × (0, 1].
(b) For each l ≥ 0,

(6.4) sup
Cr0×(0,1]

|z|2l

τ l
(|W|+ |∇W|+ |Y|) ≤Ml

for some constant Ml ≥ 0.

Then, there are positive constants β0 = β0(k, n, q, γ, µ) and λ0 =
λ0(k, n, µ), and L0, K0, and T0 ≤ 1 depending on k, n, γ, µ, B, and
finitely many of the constants Ml, such that, if β ≥ β0, the inequality∫ T

0

∫
Dr(z0)

(
τ |W|2 + τ2|∇W|2 + τλ0 |Y|2

)
σ−mGz0 dm

≤ K0L
m
0 r
−2mm!

(6.5)

holds for all m ≥ 0 and all r, T , and z0 with 0 < r2 ≤ T ≤ T0 and
B4r(z0) ⊂ Rn−k \Br0(0).

The point is that the constants β0, λ0, L0, K0, and T0 do not depend
on m.

6.1. Proof of Theorem 5.1. We will prove Proposition 6.1 by an
induction argument in the next subsection. First we show that it indeed
implies Theorem 5.1.

Proof of Theorem 5.1, assuming Proposition 6.1. By choosing the con-
stant B0 = B0(β) appropriately large in (5.44) and (5.45), we may
assume that (6.3) is satisfied with β ≥ β0, γ = 2 + 3/(k−1), and µ = 0.

Let z0 ∈ Rn−k \ B8r0(0) and 0 < T ≤ T0. Since r0 > 1, we are assured

that B4r(w) ⊂ Rn−k\Br0(0) whenever w ∈ B2(z0) and 0 ≤ r ≤
√
T ≤ 1.

At any such w, we may then combine (5.43) with (6.5) to obtain that,

for all r ≤
√
T and m ≥ 0, the inequality∫ T

0

∫
Dr(w)

τp(|X|2 + |∇X|2 + |Y|2)σ−mGw dm ≤ NLm0 r−2mm!

holds for some N = N(K0) and fixed integer p = max{λ0, 2}.
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Using that σ(τ) ≤
√
eτ , we then have

1

(m− p)!

∫ T

0

∫
Dr(w)

(|X|2 + |∇X|2 + |Y|2)

(
r2

4Lτ

)m−p
Gw dm ≤

N ′mp

4mr2p

for L = max{
√
eL0, 1} and some N ′ = N ′(p,N,L0). Summing both

sides of this inequality over all m ≥ p yields∫ T

0

∫
Dr(w)

(|X|2 + |∇X|2 + |Y|2)e
r2−L|z−w|2

4Lτ dm ≤ N ′′r−2p,

for some N ′′ = N ′′(p,N ′), and, consequently, that

(6.6)

∫ T

0

∫
D r

2
√
L

(w)

(|X|2 + |∇X|2 + |Y|2)e
r2

8Lτ dm ≤ N ′′r−2p.

Returning to the statement of Theorem 5.1, consider first the interval
[0, T ] where T = min{1, T0}. We may cover D1(z0) with finitely many

sets of the form Dr(wi), i = 1, . . . , ν, where r =
√
T/(2

√
L) and wi ∈

B1(z0) ⊂ B2(z0). This can be done so that the number of sets in the

cover satisfies ν ≤ C(L/T )(n−k)/2 for some dimensional constant C.

Since B4r(wi) ⊂ Rn−k \Br0(0) for each i, we may apply the estimate in
(6.6) on each B√T/(2

√
L)(wi) and sum to obtain that∫ T

0

∫
D1(z0)

(|X|2 + |∇X|2 + |Y|2)e
1

8Lτ dm ≤ CN ′′L
n−k
2 T−p−

n−k
2 .

If T0 = 1, we are done. Otherwise, if T0 < 1, we may obtain an estimate
of the same form on [T0, 1] since∫ 1

T0

∫
D1(z0)

(|X|2 + |∇X|2 + |Y|2)e
1

8Lτ dm ≤ N ′′′(1− T0)e
1

8LT0

for some N ′′′ depending on M0,m for m ≤ 4. Combining this estimate
with the one on the interval [0, T0] then proves (5.1). q.e.d.

6.2. Three Carleman-type estimates. We will prove Proposition
6.1 by induction on the degree m of polynomial decay. The induc-
tion step is based on the application of the following Carleman-type
estimates to W and Y. The estimates apply to arbitrary compactly
supported families of sections of bundles Z of the form Z =

⊕
T (ki,li)C

on C × (0, 1] with metrics and connections induced by g = g(τ).
The first Carleman estimate will be applied to a suitably cut-off ver-

sion of the “PDE” component W of our system. A similar estimate was
proven by the second author in [52], following [21].
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Theorem 6.2. Assume 0 < T ≤ 2. Then, for any α ≥ 1 and
z0 ∈ Rn−k, the estimate∫∫

σ−2ατ(α|Z|2 + τ |∇Z|2)Gz0 dm

≤ 10

∫∫
σ−2ατ2|(Dτ + ∆)Z|2Gz0 dm

(6.7)

holds for any smooth family of sections Z of Z with compact support in
C × (0, T ).

We will use the next two estimates to control the component Y.

Theorem 6.3. Assume 0 < T ≤ 2 and let D, U ⊂ C be open sets
such that D is precompact and D ⊂ U . For any λ > 0, there is α0 =
α0(λ, k) ≥ 1 such that, for all α ≥ α0 and z0 ∈ Rn−k the estimates

2α

∫ T

0

∫
D
τλσ−2α|Z|2Gz0 dm

≤
∫ T

0

∫
D
τλ−1σ−2α|z − z0|2|Z|2Gz0 dm

+ 50α−1

∫ T

0

∫
D
τλ+2σ−2α|DτZ|2Gz0 dm,

(6.8)

and

α2

∫ T

0

∫
D
τλσ−2α|Z|2 dm ≤ 16

∫ T

0

∫
D
τλ+2σ−2α|DτZ|2 dm,(6.9)

hold for all smooth families of sections Z of Z over U × (0, T ) with
supp Z ⊂ U × [a, b] for some 0 < a < b < T .

Here the support of Z need not be contained inside D × [a, b]. We
will prove Theorems 6.2 and 6.3 in Section 8.2 below.

6.3. A delocalization procedure. Ideally, we would next apply the
Gaussian-localized estimates (6.7) and (6.8) directly to (suitably cut-off
versions of) W and Y and sum the resulting inequalities to obtain the
decay estimate needed for the induction step. However, the estimate
(6.8) turns out to be too lossy to allow us to do this in a single applica-
tion. We will need to supplement it with estimates of W and Y relative
to the purely time-dependent weight σ on regions of spacetime where
|z − z0|2/τ > cm for some c.

The lack of a sufficiently strong counterpart to (6.7) for the ODE
component is in fact the reason we need to employ an induction argu-
ment at all. By contrast, in [32], where the background metric converges
smoothly to a conical metric as τ → 0, and in [52], where the analysis
reduces to that of a strictly parabolic inequality for a scalar equation,
the exponential decay can be deduced in a single step.
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In our proof of Proposition 6.1 in the next subsection, we will use the
following two technical lemmas to blend the localized estimates with
the unlocalized ones. The purpose of the first of these is to convert
Gaussian-weighted L2-bounds on W, ∇W and Y on sets Dr(z) of a
fixed radius r into slightly weaker bounds minus the Gaussian weights
on sets Ds(z) with s � r. The proof is by an elementary covering
argument.

Lemma 6.4. Suppose 0 < T ′ ≤ 1 and F is a positive smooth function
on Cr0 × (0, T ′) with |F | ≤M for some M > 0. For all ε ∈ (0, 1/4) and
a > (n− k)/2, there exists a constant Ca = Ca(n, k) with the following
property:

Whenever, for some integer m ≥ 0, the inequality∫ T

0

∫
Dr(z0)

Fσ−mGz0 dm ≤ NLmr−2mm!(6.10)

holds for some N ≥ M and L ≥ 1/(4ε)2 and all r, T , z0 satisfying

0 < r2 ≤ T ≤ T ′ and B4r(z0) ⊂ Rn−k \Br0(0), the inequality∫ T

0

∫
D4εr(z0)

τaFσ−m dm ≤ CaNLm((1− ε)r)−2mm!(6.11)

holds for the same such r, T , and z0.

Proof. Fix ε ∈ (0, 1/4) and a > (n− k)/2 and suppose the inequality
(6.10) holds for some m ≥ 0 and L ≥ 1/(4ε)2 and N ≥ M , for all

0 < r2 ≤ T ≤ T ′ and all z0 ∈ Rn−k with B4r(z0) ⊂ Rn−k \Br0(0).
Then fix a specific such r, T , and z0 and let us verify that (6.11)

continues to hold. To begin, let 0 < δ < 16ε2r2, and split up the time
interval to obtain the preliminary estimate∫ T

δ

∫
D4εr(z0)

τaFσ−m dm

=

(∫ 16ε2r2

δ
+

∫ T

16ε2r2

)∫
D4εr(z0)

τaFσ−m dm

≤
∫ 16ε2r2

δ

∫
D4εr(z0)

τaFσ−m dm + CM(4εr)−2m

(6.12)

for some C = C(n, k).
To estimate the first term on the right in (6.12), observe that, for any

0 < s ≤ 4εr, we can cover B4εr(z0) by a collection of balls {Bs(wi)}νi=1

with wi ∈ B4εr(z0). The wi can be chosen so that their total number
ν = ν(s) will satisfy the bound

ν(s) ≤ c
(

4εr

s

)n−k
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for some c = c(n, k). We now define sj = 4εr/2j and νj = ν(sj) for j =

0, 1, 2, . . ., and apply this observation to choose collections {wi,j}
νj
i=1 ⊂

B4εr(z0) of such points.

Since wi,j ∈ B4εr(z0),

B4(1−ε)r(wi,j) ⊂ B4r(z0) ⊂ Rn−k \Br0(0),

and so the estimate (6.10) for F is valid over B(1−ε)r(wi,j). In particular,
for each wi,j , j ≥ 1, we have∫ s2j−1

s2j

∫
Dsj (wi,j)

τaFσ−m dm

≤ e
1
4 s2a
j−1

∫ s2j−1

s2j

∫
Dsj (wi,j)

Fσ−mGwi,j dm

≤ e
1
4

(
8εr

2j

)2a ∫ T

0

∫
D(1−ε)r(wi,j)

Fσ−mGwi,j dm

≤ e
1
4

(
1

4a

)j (8εr)2aNLmm!

((1− ε)r)2m
.(6.13)

(In the second inequality, we have used that sj ≤ 2εr < (1 − ε)r since
ε < 1/4.) We then may apply (6.13) to obtain that∫ s2j−1

s2j

∫
D4εr(z0)

τaFσ−m dm ≤
νj∑
i=1

∫ s2j−1

s2j

∫
Dsj (wi,j)

τaFσ−m dm

≤
(

1

22a−n+k

)j ce 1
4 (8εr)2aNLmm!

((1− ε)r)2m

for each j ≥ 1.
Summing over j, we see that∫ 16ε2r2

δ

∫
D4εr(z0)

τaFσ−m dm ≤
∞∑
j=1

∫ s2j−1

s2j

∫
D4εr(z0)

τaFσ−m dm

≤ C ′a
NLmm!

((1− ε)r)2m
,(6.14)

for some C ′a = C ′a(n, k). Combining this with (6.12), and sending δ → 0,
we obtain ∫ T

0

∫
D4ε(z0)

τaFσ−m dm ≤ C ′aNL
mm!

((1− ε)r)2m
+

CM

(4εr)2m

≤ (C + C ′a)
NLmm!

((1− ε)r)2m
,

since we have assumed that L ≥ 1/(4ε)2 and N ≥ M . So (6.11) holds
with the choice Ca = C ′a + C. q.e.d.
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6.4. Advancing the unlocalized bounds. For the next lemma, we
return to the setting of the statement of Proposition 6.1 and let W and
Y be families of sections of W and Y over Cr0 × (0, 1] satisfying (6.3)
and (6.4) for some constants β, µ, B, and Ml. We will use this lemma
to convert L2-bounds with time-dependent weights of degree m on W
and ∇W into corresponding bounds of degree m + 1 on Y. The proof
is a simple application of the estimate (6.9), using the pointwise control
of DτY by W and ∇W implied by (6.3).

Lemma 6.5. Fix a ≥ 0 and λ ≥ 2µ+ a. There is an integer m0 ≥ 0
depending on λ, k, B, and M0, such that whenever, for some m ≥ m0,
L ≥ 2, and N ≥ 1, the inequality

∫ T

0

∫
Dr(z0)

τa
(
|W|2 + τ |∇W|2

)
σ−m dm ≤ NLmr−2mm!(6.15)

holds for some r, T , and z0 satisfying 0 < r2 ≤ T ≤ 1 and B2r(z0) ⊂
Rn−k \Br0(0), the inequality

∫ T

0

∫
Dr(z0)

τλ|Y|2σ−(m+1) dm ≤ NLmr−2m(m− 1)!(6.16)

also holds for the same r, T , and z0.

Proof. For now, we will take m0 to be some large fixed integer; we
will set lower bounds for it over the course of the proof. Suppose that
(6.15) holds for some m ≥ m0 and L ≥ 2, and N ≥ 1 at some r, T , z0

satisfying 0 < r2 ≤ T ≤ 1 and B2r(z0) ⊂ Rn−k \Br0(0).
For any 0 < ε < T/4, let ξε ∈ C∞(R) be a bump function with

support in (ε, 3T/4) which is identically one on [2ε, T/2] and satisfies
|ξ′ε| ≤ Cε−1 on [ε, 2ε] and |ξ′ε| ≤ CT−1 on [T/2, 3T/4]. Here and below,
C will denote various positive constants depending at most on n and k.

Define Wε = ξεW and Yε = ξεY. Then, by (6.3),

|DτYε|2 ≤ CB2τ−2|Yε|2 + CB2τ−2µ(|Wε|2 + τ |∇Wε|2) + C|ξ′ε|2 |Y|2.

The first constraint we impose on m0 is that m0 ≥ 2α0(k, λ), where α0

is as in Theorem 6.3. This allows us to apply (6.9) with D = Dr(z0),
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Z = Yε, and α = (m+ 1)/2 to obtain∫ T

0

∫
Dr(z0)

τλσ−(m+1)|Yε|2 dm

≤ CB2

(m+ 1)2

∫ T

0

∫
Dr(z0)

τλσ−(m+1)|Yε|2 dm

+
CB2

(m+ 1)2

∫ T

0

∫
Dr(z0)

σ−(m+1)τλ−2µ(τ |Wε|2 + τ2|∇Wε|2) dm

+
CB2

ε2(m+ 1)2

∫ 2ε

ε

∫
Dr(z0)

σ−(m+1)τλ+2|Y|2 dm

+
CB2

T 2(m+ 1)2

∫ 3T
4

T
2

∫
Dr(z0)

σ−(m+1)τλ+2|Y|2 dm.

Provided m0 is taken greater still (say, m0 >
√

2CB), we may hide
the first term on the right in the term on the left. Having done this,
we see that all of the integrands on the right are integrable on (0, T ] by
our decay assumption (6.4), and the third term will tend to 0 when we
send ε↘ 0. Taking this limit thus yields∫ T

2

0

∫
Dr(z0)

τλσ−(m+1)|Y|2 dm

≤ CB2

(m+ 1)2

∫ 3T
4

0

∫
Dr(z0)

σ−(m+1)τλ−2µ(τ |W|2 + τ2|∇W|2) dm

+
CB2

T 2(m+ 1)2

∫ 3T
4

T
2

∫
Dr(z0)

σ−(m+1)τλ+2|Y|2 dm.

Since we assume λ ≥ 2µ+ a, we may use (6.15) (and that τ ≤ σ) to
estimate∫ 3T

4

0

∫
Dr(z0)

σ−(m+1)τλ−2µ(τ |W|2 + τ2|∇W|2) dm

≤
∫ T

0

∫
Dr(z0)

σ−mτa(|W|2 + τ |∇W|2) dm ≤ NLmr−2mm!.

We may also estimate directly that∫ 3T
4

T
2

∫
Dr(z0)

σ−(m+1)τλ+2|Y|2 dm ≤ CM2
0 r

n−k2mT λ+ k
2

+2−m

≤ CM2
0T

22mr−2m.

Putting these two pieces together, we obtain∫ T
2

0

∫
Dr(z0)

τλσ−(m+1)|Y|2 dm ≤ CB2

(
1 +M2

0

m+ 1

)
NLmr−2m(m− 1)!.
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On the other hand,∫ T

T
2

∫
Dr(z0)

τλσ−(m+1)|Y|2 dm ≤ CM2
0T

λ2mr−2m ≤ CM2
0NL

mr−2m,

which, when added to the previous inequality, yields (6.16), provided
m0 is chosen larger still to ensure

m0 ≥ 1 + C(B2 + (1 +B2)M2
0 ).

This completes the proof. q.e.d.

6.5. The induction argument. In this section we prove Proposition
6.1 using Lemmas 6.4 and 6.5. We will use the notation

Ar,s(z0) = Ds(z0) \ Dr(z0) = Sk × (Bs(z0) \Br(z0))

for 0 < r < s and z0 ∈ Rn−k. Note that Ar,s(0) = Ar,s.

Proof of Proposition 6.1. Define λ0 = 2µ + (n − k)/2 + 2 and fix any
b > λ0/2. Then choose β0 = (q+1)b+qγ, and let m0 = m0(λ0, k, B,M0)
be the constant guaranteed by Lemma 6.5. Here M0 is the constant from
(6.4). (This choice ensures as well that m0 ≥ 2α0, where α0 = α0(λ0, k)
is as in Theorem 6.3.)

Our proof is by induction on m. In view of the assumption (6.4) of
infinite-order decay, we may start our induction at as large an integer
m1 as we like. It will be convenient to specify the value m1 over the
course of the proof, and to do the same for the constants K0, L0, and
T0 in the statement. The choices of these constants will depend only
on the external parameters k, n, q, β, µ, B, and M0, however, we will
specify K0 in terms of m1, so logically it should be understood that m1

is defined first.
To help keep track of these dependencies, we’ll use C to denote a

sequence of positive constants depending only on k, n, and q, and use
N to denote a sequence of positive constants potentially depending also
on B and M0. To begin, we’ll assume at least that m1 ≥ m0, K0, L0 > 0,
and 0 < T0 ≤ 1.

Using the assumption (6.4), we may assume there is K ≥ 1 depending
on m1, n, k and finitely many of the constants Ml such that

sup
Cr0×(0,1]

τ−m1(|W|2 + |∇W|2 + |Y|2)

+

∫ 1

0

∫
Cr0

σ−m1
(
|W|2 + |∇W|2 + |Y|2

)
dm ≤ K.

In particular, for any w, r, and T satisfying 0 < r2 ≤ T ≤ T0 and
B4r(w) ⊂ Rn−k \Br0(0), we will have∫ T

0

∫
Dr(w)

σ−m1

(
τ |W|2 + τ2|∇W|2 + τλ0 |Y|2

)
Gw dm ≤ K.(6.17)
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Provided K0 ≥ M and L0 ≥ 1, at least, the inequality (6.5) will hold
for all such admissible choices of r, w, and T and all m ≤ m1.

Proceeding by induction, assume that m > m1 and that (6.5) holds
for all integers up to m−1. Fix r, z0, and T satisfying 0 < r2 ≤ T ≤ T0

and B4r(z0) ⊂ Rn−k \ Br0(0). We will show that (6.5) also holds with
exponent m for r, z0, and T .

We start by applying the Carleman inequality (6.7) to a fixed com-
ponent W i of W that has been cut-off in space and time. Let φ ∈
C∞(Rn−k) be a smooth bump function with support in B2r(z0) which

is identically one on Br(z0). Regarding φ as a function on C that is in-

dependent of θ ∈ Sk, we have φ ≡ 1 on Dr(z0) and supp(φ) ⊂ D2r(z0).
For each ε < T/4, let ξε ∈ C∞(R) be a bump function with support
in (ε, 3T/4) which is identically one on [2ε, T/2]. These functions may
chosen to satisfy the inequalities

r|∇φ|+ r2|∆φ| ≤ C, ε|ξ′ε|χ[ε,2ε] + T |ξ′ε|χ[T/2,3T/4] ≤ C

for some C. (Note that |∇φ|g̃(θ, z, τ) = |∇φ|g(z) and (∆φ)(θ, z, τ) =
(∆̄φ)(z).)

Define Wε = φξεW and Yε = φξεY. Using (6.3), we compute that

|(Dτ + ∆)W i
ε |2 ≤ CB2τ2β(|Wε|2 + |Yε|2) + CB2

i−1∑
j=0

τ−2γ |W j
ε |2

+ Cξ2
ε (|∇φ|2|∇W i|2 + |∆φ|2|W i|2) + Cφ2(ξ′ε)

2|W i|2,

for each i = 0, . . . , q. For each i, define νi = (q − i)(γ + b) and apply
the Carleman estimate (6.7) to W i

ε with αi = m/2 + νi to obtain∫∫
σ−2αiτ(αi|W i

ε |2 + τ |∇W i
ε |2)Gz0 dm

≤ N
∑
j<i

∫∫
τ2−2γσ−2αi |W j

ε |2Gz0 dm

+N
∑
j≥i

∫∫
τ2β+2σ−2αi |W j

ε |2Gz0 dm

+N

∫∫
τ2β+2σ−2αi |Yε|2Gz0 dm

+
C

r2

∫ 3T
4

ε

∫
Ar,2r(z0)

τ2σ−2αi(|W i|2 + |∇W i|2)Gz0 dm

+
C

ε2

∫ 2ε

ε

∫
D2r(z0)

τ2σ−2αi |W i|2Gz0 dm

+
C

T 2

∫ 3T
4

T
2

∫
D2r(z0)

τ2σ−2αi |W i|2Gz0 dm.

(6.18)
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For the integrals in the first term on the right, we have immediately
that∫∫

τ2−2γσ−2αi |W j
ε |2Gz0 dm ≤ N

∫∫
τ2σ−2(αj−b)|W j

ε |2Gz0 dm,

using (6.2) and that αj ≥ αi + γ + b for j < i. For the integrals in the
second term, our choice of β0 ensures that

(6.19) (β − αi)− (b− αj) ≥ (q + i− j)(b+ γ) ≥ 0,

and hence σ2(β−αi) ≤ σ2(b−αj), for all 0 ≤ i ≤ j ≤ q and β ≥ β0. Thus∫∫
τ2β+2σ−2αi |W j

ε |2Gz0 dm ≤
∫∫

τ2σ−2(αj−b)|W j
ε |2Gz0 dm

for i ≤ j, again using (6.2). Therefore, we may combine the first two
terms to obtain∑

j<i

∫∫
τ2−2γσ−2αi |W j

ε |2Gz0 dm +
∑
j≥i

∫∫
τ2β+2σ−2αi |W j

ε |2Gz0 dm

≤ NT 2b+1
0

q∑
j=0

∫∫
τσ−2αj |W j

ε |2Gz0 dm.

Equation (6.19) also shows that β − αi ≥ b− αq = b−m/2 for all i, so
that we can estimate the third term in (6.18) by∫∫

τ2β+2σ−2αi |Yε|2Gz0 dm ≤
∫∫

τ2σ2b−m|Yε|2Gz0 dm.

Returning to (6.18), using that σ−2αi ≤ τ−2ν0σ−m in the last three
terms, and summing over i, we obtain that

q∑
i=0

∫∫
σ−2αiτ(αi|W i

ε |2 + τ |∇W i
ε |2)Gz0 dm

≤ NT 2b+1
0

q∑
j=0

∫∫
τσ−2αj |W j

ε |2Gz0 dm

+N

∫∫
τ2σ2b−m|Yε|2Gz0 dm

+
C

r2

∫ 3T
4

ε

∫
Ar,2r(z0)

τ2−2ν0σ−m(|W|2 + |∇W|2)Gz0 dm

+
C

ε2

∫ 2ε

ε

∫
D2r(z0)

τ2−2ν0σ−m|W|2Gz0 dm

+
C

T 2

∫ 3T
4

T
2

∫
D2r(z0)

τ2−2ν0σ−m|W|2Gz0 dm.

(6.20)
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If T0 is sufficiently small (depending on N and b), we may bring the
first term on the right side over to the left. Then, we may split the
domain of integration in the second term to obtain that

q∑
i=0

∫∫
σ−2αi(τ |Wi

ε|2 + τ2|∇Wi
ε|2)Gz0 dm

≤ N
∫ T

2

2ε

∫
Dr(z0)

τ2σ2b−m|Yε|2Gz0 dm

+
N

r2

∫ 3T
4

ε

∫
Ar,2r(z0)

τ2−2ν0σ−m(|W|2 + |∇W|2 + |Y|2)Gz0 dm

+
N

ε2

∫ 2ε

ε

∫
D2r(z0)

τ2−2ν0σ−m(|W|2 + |Y|2)Gz0 dm

+
N

T 2

∫ 3T
4

T
2

∫
D2r(z0)

τ2−2ν0σ−m(|W|2 + |Y|2)Gz0 dm.

(6.21)

On account of our decay assumption (6.4), we may send ε↘ 0 in (6.21)
and the third term on the right will vanish. Then, using that σ−αq ≤
σ−αi , we have∫∫

σ−m(τ |Wε|2 + τ2|∇Wε|2)Gz0 dm

=

∫∫
σ−2αq(τ |Wε|2 + τ2|∇Wε|2)Gz0 dm

≤
q∑
i=0

∫∫
σ−2αi(τ |Wi

ε|2 + τ2|∇Wi
ε|2)Gz0 dm,

and so ∫ T
2

0

∫
Dr(z0)

σ−m(τ |W|2 + τ2|∇W|2)Gz0 dm

≤ NT 2
0

∫ T
2

0

∫
Dr(z0)

τλ0σ−m|Y|2Gz0 dm

+
N

r2

∫ 3T
4

0

∫
Ar,2r(z0)

τ2−2ν0σ−m(|W|2 + |∇W|2 + |Y|2)Gz0 dm

+
N

T 2

∫ 3T
4

T
2

∫
D2r(z0)

τ2−2ν0σ−m(|W|2 + |∇W|2 + |Y|2)Gz0 dm.

(6.22)

(Above, in the first term on the right, we have used our assumption that
b > λ0/2.)
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Now we switch gears to estimate Y. With ξε defined as before, it
follows from (6.3) that

|Dτ (ξεY)|2 ≤ CB2ξ2
ε

(
τ−2µ(|W|2 + |∇W|2) + τ−2|Y|2

)
+ C|ξ′ε|2|Y|2.

Since m > m1 ≥ m0, we may apply the Carleman estimate (6.8) to
Z = ξεY on Dr(z0) with α = m/2 to obtain that

m

∫ 3T
4

0

∫
Dr(z0)

τλ0σ−mξ2
ε |Y|2Gz0 dm

≤
∫ 3T

4

0

∫
Dr(z0)

τλ0−1σ−m|z − z0|2ξ2
ε |Y|2Gz0 dm

+
N

m

∫ 3T
4

0

∫
Dr(z0)

τλ0−2µ+2σ−mξ2
ε (|W|2 + |∇W|2)Gz0 dm

+
N

m

∫ 3T
4

0

∫
Dr(z0)

τλ0σ−mξ2
ε |Y|2Gz0 dm

+
C

ε2m

∫ 2ε

ε

∫
Dr(z0)

τλ0+2σ−m|Y|2Gz0 dm

+
C

T 2m

∫ 3T
4

T
2

∫
Dr(z0)

τλ0+2σ−m|Y|2Gz0 dm.

(6.23)

Provided m1 has been chosen large enough to satisfy that N/m2
1 < 1/2

we may hide the third term on the right in the left-hand side. Then
sending ε↘ 0, and using that λ0 > 2µ, we arrive at the inequality

∫ T
2

0

∫
Dr(z0)

τλ0σ−m|Y|2Gz0 dm

≤ 2

m

∫ 3T
4

0

∫
Dr(z0)

τλ0−1σ−m|z − z0|2|Y|2Gz0 dm

+
N

m2

∫ T
2

0

∫
Dr(z0)

τ2σ−m(|W|2 + |∇W|2)Gz0 dm

+
N

T 2m2

∫ 3T
4

T
2

∫
Dr(z0)

τ2σ−m(|W|2 + |∇W|2 + |Y|2)Gz0 dm.

(6.24)

Here we have also absorbed part of the second term on the right of
(6.23) into the last term of (6.24).

Adding (6.22) to (6.24), we see that if m1 is taken large enough and
T0 small enough (depending on N) we may bring some terms from the
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right to the left and arrive at the inequality

∫ T
2

0

∫
Dr(z0)

σ−m(τ |W|2 + τ2|∇W|2 + τλ0 |Y|2)Gz0 dm

≤ N

r2

∫ 3T
4

0

∫
Ar,2r(z0)

τ2−2ν0σ−m(|W|2 + |∇W|2 + |Y|2)Gz0 dm

+
N

T 2

∫ 3T
4

T
2

∫
D2r(z0)

τ2−2ν0σ−m(|W|2 + |∇W|2 + |Y|2)Gz0 dm

+
4

m

∫ 3T
4

0

∫
Dr(z0)

τλ0−1σ−m|z − z0|2|Y|2Gz0 dm.

(6.25)

We now estimate each term on the right side of (6.25) in turn. For

the first, note that we have Gz0(z, τ) ≤ e−
r2

4τ on Ar,2r(z0) × (0, 3T/4)
and, hence

τ2σ−mGz0 ≤ τ−m+2e−
r2

4τ ≤
(

4(m− 2)

r2

)m−2

e−(m−2)

≤
(

4

r2

)m−2

(m− 2)!

by Stirling’s formula. Also, by (6.4), we have

(|W|2 + |∇W|2 + |Y|2)τ−2ν0 ≤ K

on Cr0 × (0, T ), provided m1 ≥ 2ν0 = 2q(γ+ b). So the first term on the
right side of (6.25) may be estimated from above by

1

r2

∫ 3T
4

0

∫
Ar,2r(z0)

τ2−2ν0σ−m(|W|2 + |∇W|2 + |Y|2)Gz0 dm

≤ NKr−2m4m(m− 2)!.

(6.26)

For the second term, we simply note that

1

T 2

∫ 3T
4

T
2

∫
D2r(z0)

τ2−2ν0σ−m(|W|2 + |∇W|2 + |Y|2)Gz0 dm

≤ N2mr−2m.

(6.27)

The third term in (6.25) will require more work. First, we fix some
0 < δ < 1/4 and split the domain of integration into three spacetime
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regions:

4

m

∫ 3T
4

0

∫
Dr(z0)

τλ0−1σ−m|z − z0|2|Y|2Gz0 dm

=
4

m

∫ 3T
4

0

∫
A4δr,r(z0)

τλ0−1σ−m|z − z0|2|Y|2Gz0 dm

+
4

m

∫ 3T
4

T
2

∫
D4δr(z0)

τλ0−1σ−m|z − z0|2|Y|2Gz0 dm

+
4

m

∫ T
2

0

∫
D4δr(z0)

τλ0−1σ−m|z − z0|2|Y|2Gz0 dm.

(6.28)

The first and second terms in (6.28) can be estimated exactly as their
counterparts in (6.25) above, to yield

4

m

∫ 3T
4

0

∫
A4δr,r(z0)

τλ0−1σ−m|z − z0|2|Y|2Gz0 dm

≤ N(2δr)−2m(m− 1)!

(6.29)

and

(6.30)
4

m

∫ 3T
4

T
2

∫
D4δr(z0)

τλ0−1σ−m|z − z0|2|Y|2Gz0 dm ≤ N2mr−2m.

To estimate the third term on the right of (6.28), we will split the
domain of integration further into the spacetime regions

Ω = (D4δr(z0)× (0, T/2)) ∩
{
|z − z0|2 <

mτ

8

}
,

and

Ω′ = (D4δr(z0)× (0, T/2)) ∩ Ωc.

Then |z− z0|2Gz0/τ ≤ (m/8)e−m/32 on Ω′, provided at least that m1 ≥
32, and so

4

m

∫ T
2

0

∫
D4δr(z0)

τλ0−1σ−m|z − z0|2|Y|2Gz0 dm

≤ 1

2

∫∫
Ω
τλ0σ−m|Y|2Gz0 dm +

e−
m
32

2

∫∫
Ω′
τλ0σ−m|Y|2 dm

≤ 1

2

∫ T
2

0

∫
Dr(z0)

τλ0σ−m|Y|2Gz0 dm

+
e−

m
32

2

∫ T
2

0

∫
D4rδ(z0)

τλ0σ−m|Y|2 dm.
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Putting things together, we see that the third term on the right side
of (6.25) admits the bound

4

m

∫ 3T
4

0

∫
Dr(z0)

τλ0−1σ−m|z − z0|2|Y|2Gz0 dm

≤ 1

2

∫ T
2

0

∫
Dr(z0)

τλ0σ−m|Y|2Gz0 dm

+
e−

m
32

2

∫ T
2

0

∫
D4rδ(z0)

τλ0σ−m|Y|2 dm

+N2mδ−2mr−2m(m− 1)!

(6.31)

for any δ ∈ (0, 1/4). Incorporating (6.26), (6.27), and (6.31) into (6.25)
then yields ∫ T

2

0

∫
Dr(z0)

σ−m(τ |W|2 + τ2|∇W|2 + τλ0 |Y|2)Gz0 dm

≤ e−
m
32

∫ T
2

0

∫
D4rδ(z0)

τλ0σ−m|Y|2 dm

+K04mδ−2mr−2m(m− 1)!,

(6.32)

provided K0 is sufficiently large (depending on K and N).
We now estimate the first term on the right of (6.32). We start by

applying Lemma 6.4 with F = τ |W|2 +τ2|∇W|2 and a = λ0−2µ−1 =
1 + (n− k)/2. Choose δ so small that

0 < δ < 1− e−
1
64 .

Then, since we already have assumed that K0 ≥ M , if, in addition,
L0 ≥ 1/(4δ)2, Lemma 6.4 and the induction hypothesis (6.17) together
imply that ∫ T

0

∫
D4δr(z0)

σ−(m−1)τa+1
(
|W|2 + τ |∇W|2

)
dm

≤ CK0

(
L0

(1− δ)2r2

)m−1

(m− 1)!

for some C = Ca (which, with our choice of a, only depends on n and
k). Then, since m ≥ m1 ≥ m0, provided L0 ≥ 2, we may apply Lemma
6.5 with λ = λ0 and a+ 1 in place of a to obtain that

e−
m
32

∫ T

0

∫
D4δr(z0)

τλ0σ−m|Y|2 dm ≤ CK0e
−m

32

(
L0

(1− δ)2r2

)m−1

(m− 2)!

≤ CK0L
m−1
0 r−2m(m− 2)!.
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Returning to (6.32), we see that∫ T
2

0

∫
Dr(z0)

σ−m(τ |W|2 + τ2|∇W|2 + τλ0 |Y|2)Gz0 dm

≤ K0L
m
0 (m− 1)!

r2m

(
C

L0
+

(
4

δL0

)m)
≤ K0L

m
0 (m− 1)!

2r2m

provided L0 is taken large enough depending on C and the universal
constant δ. On the other hand,∫ T

T
2

∫
Dr(z0)

σ−m(τ |W|2 + τ2|∇W|2 + τλ0 |Y|2)Gz0 dm ≤ CM2mr−2m.

Summing these two inequalities completes the proof of Proposition 6.1
provided K0 and L0 are taken larger still.

q.e.d.

7. Backward uniqueness

In this section, we will prove Theorem 3.2 via an analysis of the

system composed of X = ∇̃R̃m and Y = (Y 0, Y 1, Y 2) from Section 4.
Our analysis will only make use of the following properties of X and Y:

1) There exists a constant B such that

|(Dτ + ∆)X| ≤ Bτ−1|X|+B|Y|,
|DτY| ≤ B(|X|+ |∇X|) +Bτ−1|Y|,

(7.1)

on Cr0 × (0, 1].
2) The sections X and Y are self-similar in the sense that, if X =

X|Cr0×{1} and Y = Y|Cr0×{1}, and Ψτ (θ, z) = (θ, z/
√
τ), then

X = τΨ∗τX, Y = τΨ∗τY,

and

(7.2) |X|2 = τ−3|X|2g(1) ◦Ψτ , |Y|2 =

2∑
i=0

τ−i|Y i|2g(1) ◦Ψτ .

3) There is a constant M0 such that

(7.3) sup
Cr0×(0,1]

(
|X|2 + |∇X|2 + |Y|2

)
≤M0.

4) There are constants N2, N3 > 0 and r1 ≥ r0 such that

(7.4)

∫ 1

0

∫
Ar,2r

(
|X|2 + |∇X|2 + |Y|2

)
e
N2r

2

τ dm ≤ N3

for all r ≥ r1.
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The exact values of the exponents of τ in the scale factors in (2) are
not important for the analysis; all that we need is for X and Y to be
self-similar and satisfy some relationship akin to (7.2). We will show
that these four conditions imply that X and Y must vanish identically
on Cr2 × (0, T1] for some r2 ≥ r1 and 0 < T1 ≤ 1.

Theorem 7.1. Suppose that X and Y are smooth sections of X and
Y defined on Cr0 × (0, 1] satisfying conditions (1) - (4) above. Then
there exists r2 > 0 and 0 < T1 ≤ 1 such that X ≡ 0 and Y ≡ 0 on
Cr2 × (0, T1].

We have already seen in Proposition 4.1 that X and Y defined by
(4.2) satisfy (1) - (3). The following proposition, which is essentially a
corollary of Theorem 5.1, shows that they also satisfy the exponential
decay estimate in the precise form given in (4). Theorem 3.2 is thus a
consequence of Theorem 7.1.

7.1. Space-time exponential decay revisited. Combined with the
self-similarity of X and Y and the reference metric g, Theorem 5.1
implies that X and Y also decay in space at an exponential-quadratic
rate.

Proposition 7.2. There exist N2 and N3 (depending on N0, N1, and
r0) such that

(7.5)

∫ 1

0

∫
Ar,2r

(
|X|2 + |∇X|2 + |Y|2

)
e
N2r

2

τ dm ≤ N3

or any r ≥ 16r0.

Proof. For simplicity, let r1 = 16r0. The set Ar1,2r1 can be covered by

a finite collection of sets of the form D1(zi) where zi ∈ Rn−k \Br1/2(0)
and so we obtain from Theorem 5.1 the inequality

(7.6)

∫ 1

0

∫
Ar1,2r1

(
|X|2 + |∇X|2 + |Y|2

)
e
N0
τ dm ≤ CN1r

n−k
0

for some C = C(n, k).
Now fix r ≥ r1. Then

|X|2(θ, z, τ) = τ−3|∇̃R̃m|2g(1)(Ψτ (θ, z), 1), dµg(τ) = τk/2dµg(1),

and so, for any 0 < a < 1, by the change of variables

θ′ = θ, z′ =
r1

r
z, τ ′ =

r2
1

r2
τ,

we have∫ 1

a

∫
Ar,2r

|X|2e
N0r

2

r21τ dm =

(
r

r1

)n−4 ∫ r21
r2

ar21
r2

∫
Ar1,2r1

|X|2e
N0
τ dm.



54 BRETT KOTSCHWAR & LU WANG

Taking N2 = N0/(2r
2
1) = N0/(512r2

0), then, and sending a → 0, we
obtain∫ 1

0

∫
Ar,2r

|X|2e
N2r

2

τ dm ≤ e
−N0r

2

2r21

(
r

r1

)n−4 ∫ r21
r2

0

∫
Ar1,2r1

|X|2e
N0
τ dm

≤ N
∫ 1

0

∫
Ar1,2r1

|X|2e
N0
τ dm

for some N = N(N0). The estimate (7.5) for X then follows from
(7.6). Analogous scaling arguments prove (7.5) for the other terms in
the integrand. q.e.d.

7.2. Carleman estimates. To prove Theorem 7.1, we will use two
Carleman-type inequalities with weights that grow at an approximately
exponential-quadratic rate at infinity. Following [52], for α > 0, 0 <
T ≤ 1, and δ ∈ (7/8, 1), we define φα : C × (0,∞)→ R by

(7.7) φα(θ, z, τ) = αη(τ)

(
|z|2

τ

)δ
,

and η : [0, T ]→ [0, 1] by

(7.8) η(τ) =


1 if τ ∈ [0, τ0],

1− 1
32δ(4δ − 3)

(
τ
τ0
− 1
)2

if τ ∈ [τ0, 2τ0],

1 + 1
32δ(4δ − 3)

(
3− 2τ

τ0

)
if τ ∈ [2τ0, T ],

where

τ0 +
2δ(4δ − 3)T

3δ(4δ − 3) + 32
.

The function η has been engineered to be monotone decreasing on [0, T ],
identically one near τ = 0, and proportional to T − τ near τ = T with
η(T ) = 0.

Below, Z will denote an arbitrary bundle of the form
⊕
T (ki,li)C

equipped with the family of metrics and connections induced by g(τ).

Theorem 7.3. For any δ ∈ (7/8, 1) and T ≤ 1, there exists r3 ≥ 1
depending on n, k, and δ such that, for all smooth families of sections
Z of the bundle Z with support compactly contained in Cr3 × (0, T ), we
have the inequality∫ T

0

∫
Cr

( α
τ δ
|Z|2 + τ |∇Z|2

)
e2φα dm

≤ 10

∫ T

0

∫
Cr
τ2|(Dτ + ∆)Z|2e2φα dm

(7.9)

for all α > 0 and r ≥ r3.
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We will apply this estimate to the PDE component X of our system.
To control the ODE component Y, we will use the following matching
estimate.

Theorem 7.4. For any δ ∈ (7/8, 1), and T ≤ 1 there exists r4 > 0,
depending on n, k, and δ, such that, for all smooth families of sections
Z of Z with support compactly contained in Cr × (0, T ), we have the
inequality

(7.10)

∫ T

0

∫
Cr

α

τ δ
|Z|2e2φα dm ≤

∫ T

0

∫
Cr
τ2|DτZ|2e2φα dm

for all α ≥ 1 and r ≥ r4.

We will prove Theorems 7.3 and 7.4 in Section 8. For now, we will
take them for granted and use them to prove Theorem 7.1.

Proof of Theorem 7.1. Our argument is a modification of that of The-
orem 3.3 in [52]. Let r2 ≥ max{r1, r3, r4} and fix some R ≥ r2 and
0 < T ≤ 1.

We will need two cutoff functions. For all α > 8 and 0 < ε < T/8,
let χα,ε be a smooth bump function on [0, 1] with support in (ε, T −
T/α) satisfying χα,ε ≡ 1 on [2ε, T − 2T/α], |χ′α,ε| ≤ 2/ε on (ε, 2ε),
and |χ′α,ε| ≤ 2α/T on (T − 2T/α, T − T/α). For the spatial cutoff,

choose, for each r > R + 1, a bump function ψr on Rn−k with support
in B2r(0) \ BR(0) which satisfies ψr ≡ 1 on Br(0) \ BR+1(0) and the
bounds |∇̄ψr|ḡ + |∆̄ψr|ḡ ≤ C. We regard ψr = ψr(θ, z) as a function

on C which is independent of θ, in which case, |∇ψr| = |∇ψr|g and
∆ψr = ∆̄ψr.

Now define

Xα,ε,r = χα,εψrX, Yα,ε,r = χα,εψrY.

From (7.1), we have

|(Dτ + ∆)Xα,ε,r| ≤ Bτ−1|Xα,ε,r|+B|Yα,ε,r|+ ψr|χ′α,ε||X|
+ 2χα,ε(|∇ψr|+ |∆ψr|))(|X|+ |∇X|),

and

|DτYα,ε,r| ≤ B(|Xα,ε,r|+ |∇Xα,ε,r|) +Bτ−1|Yα,ε,r|+ ψr|χ′α,ε||Y|
+Bχα,ε|∇ψr||X|,

on CR × (0, T ].
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Applying the inequalities (7.9) and (7.10) to Xα,ε,r and Yα,ε,r and
summing the result, we arrive at the inequality

∫ T

0

∫
CR

(
ατ−δ(|Xα,ε,r|2 + |Yα,ε,r|2) + τ |∇Xα,ε,r|2

)
e2φα dm

≤ K
∫ T

0

∫
CR

(
|Xα,ε,r|2 + |Yα,ε,r|2 + τ2|∇Xα,ε,r|2

)
e2φα dm

+
C

ε2

∫ 2ε

ε

∫
AR,2r

τ2
(
|X|2 + |Y|2 + |∇X|2

)
e2φα dm

+
Cα2

T 2

∫ T−T
α

T− 2T
α

∫
AR,2r

τ2
(
|X|2 + |Y|2 + |∇X|2

)
e2φα dm

+K

∫ T−T
α

ε

∫
AR,R+1

τ2
(
|X|2 + |∇X|2

)
e2φα dm

+K

∫ T−T
α

ε

∫
Ar,2r

τ2
(
|X|2 + |∇X|2

)
e2φα dm.

(7.11)

Here and below, we use C to denote a constant depending at most on
n and k, and K a constant depending possibly in addition on δ, B, M0,
N2, and N3.

Now, provided T is chosen small enough (depending on n, k, B and
δ), we can hide the first term on the right in the term on the left at the
expense of enlarging the constants on the right, say, by a factor of two.
Also, using the decay estimate (7.4), we can estimate the second term
on the right via

1

ε2

∫ 2ε

ε

∫
AR,2r

τ2
(
|X|2 + |Y|2 + |∇X|2

)
e2φα dm

≤ 4e

(
2α

(
4r2

ε

)δ
−N2R

2

2ε

) ∫ 2ε

ε

∫
AR,2r

(
|X|2 + |Y|2 + |∇X|2

)
e
N2R

2

τ dm

≤ Kα,re
−N2R

2

4ε

for some Kα,r depending on α, δ, r, R, N2, and N3. In particular, this
term tends to 0 as ε↘ 0 for any fixed α and r.

Similarly, on AR,R+1 × (0, T ) and Ar,2r × (0, T ), we have e2φα ≤

Kαe
N2R

2

τ and e2φα ≤ Kαe
N2r

2

τ , respectively, for some Kα depending on
α and δ. So, using (7.4), we see that the fourth and fifth terms on the
right in (7.11) converge to finite values as ε↘ 0. After taking this limit,
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then, we obtain from (7.11) that

∫ T
2

0

∫
AR+1,r

(
ατ−δ(|X|2 + |Y|2) + τ |∇X|2

)
e2φα dm

≤ Cα2

T 2

∫ T−T
α

T− 2T
α

∫
AR,2r

τ2
(
|X|2 + |Y|2 + |∇X|2

)
e2φα dm

+K

∫ T

0

∫
AR,R+1

τ2
(
|X|2 + |∇X|2

)
e2φα dm

+K

∫ T

0

∫
Ar,2r

τ2
(
|X|2 + |∇X|2

)
e2φα dm.

(7.12)

Estimating as above, we see also that

∫ T

0

∫
Ar,2r

τ2
(
|X|2 + |∇X|2

)
e2φα dm ≤ Kαe

−N2r
2

2T ,

so the last term on the right of (7.12) tends to zero as r → ∞. The
first term on the right of (7.12) can also be seen to be bounded above
independently of r; we will verify this now and further show that it is
bounded independently of α.

Let us assume from now on that α ≥ α1 where α1 = α1(δ) is large
enough that T − 2T/α1 ≥ 2τ0. (The constant τ0 here is from the
definition of η in (7.8).) Then η(τ) = c0(T − τ)/T on the interval
[T − 2T/α, T − T/α] for some constant c0 = c0(δ) and, consequently,
φα ≤ 2c0|z|2δ/τ δ for τ in the same range. Choosing m so large that
2mR ≥ r, we may estimate that

∫ T−T
α

T− 2T
α

∫
AR,2r

τ2
(
|X|2 + |Y|2 + |∇X|2

)
e2φα dm

≤
∫ T−T

α

T− 2T
α

∫
AR,2r

(
|X|2 + |Y|2 + |∇X|2

)
e

4c0|z|
2δ

τδ dm

≤ K
∫ T

2τ0

∫
AR,2m+1R

(
|X|2 + |Y|2 + |∇X|2

)
e
N2|z|

2

8τ dm

≤ K
∞∑
l=0

{
e−

N2(2
lR)2

8T

∫ T

0

∫
A

2lR,2l+1R

(
|X|2 + |Y|2 + |∇X|2

)
e
N2(2

lR)2

τ dm

}
≤ K,
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for any α ≥ α1 and r ≥ r2. Thus we may take the limit as r → ∞ on
both sides of (7.12) to obtain that∫ T

2

0

∫
CR+1

(
ατ−δ(|X|2 + |Y|2) + τ |∇X|2

)
e2φα dm

≤ Kα2

T 2
+K

∫ T

0

∫
AR,R+1

τ2
(
|X|2 + |∇X|2

)
e2φα dm.

(7.13)

To estimate the second term on the right side of (7.13), note that, by
construction, η(τ) ≡ 1 for τ ∈ (0, τ0]. Using the self-similarity of X and
∇X from (4) above, we have∫ τ0

4

0

∫
AR,R+1

τ2
(
|X|2 + |∇X|2

)
e2φα dm

≤
∫ τ0

4

0

∫
CR
τ2
(
|X|2 + |∇X|2

)
e2φα dm

≤ C
∫ τ0

0

∫
C2R

τ2
(
|X|2 + |∇X|2

)
e2φα dm

≤ C
∫ T

2

0

∫
CR+1

τ2
(
|X|2 + |∇X|2

)
e2φα dm.

Thus, for T small enough, depending on n, k, B, and L, we can convert
(7.13) into∫ T

2

0

∫
CR+1

(
|X|2 + |Y|2

)
e2φα dm

≤ Kα2

T 2
+K

∫ T

τ0
4

∫
AR,R+1

τ2
(
|X|2 + |∇X|2

)
e2φα dm

≤ K

(
α2

T 2
+ e

2α

(
4δ(R+1)2δ

τδ0

)
R
n−k
2

)
.

On the other hand,

e
2α

8δ(R+1)2δ

τδ0

∫ τ0
8

0

∫
CR+1

(
|X|2 + |Y|2

)
dm

≤
∫ T

2

0

∫
CR+1

(
|X|2 + |Y|2

)
e2φα dm,

so we find that∫ τ0
8

0

∫
CR+1

(
|X|2 + |Y|2

)
dm ≤ Kα2

T 2
e
−αε(R+1)2δ

τδ0 ,
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for all α ≥ α1, where ε = 2 · 4δ(2δ − 1). Sending α → ∞, we conclude
at last that X ≡ 0 and Y ≡ 0 on CR+1 × [0, τ0/8]. q.e.d.

8. The Carleman estimates

In this section, we will prove the Carleman estimates in Theorems
6.2, 6.3, 7.3, and 7.4. We start by establishing some general integral
identities for families of tensors on a manifold evolving by the backward
Ricci flow.

8.1. Integral identities. In this subsection, we will use g = g(τ) to
denote an arbitrary solution to (1.6) on a smooth manifold M = Mn

for τ ∈ (0, T ), and Z to denote a tensor bundle over M . We will use
∇ = ∇g(τ) and dµ = dµg(τ) to represent the Levi-Civita connection
and Riemannian density associated to g, and define the operator Dτ in
terms of g as in Section 4. We will also continue to use the shorthand
dm = dµg(τ) dτ .

Let φ : M × (0, T ) → R be a smooth positive function and consider
the operator

L = τeφ(Dτ + ∆)e−φ

acting on smooth families of sections of Z. Explicitly, then, we have

LV = τ

(
|∇φ|2 − ∂φ

∂τ
−∆φ

)
V + τ(Dτ + ∆)V − 2τ∇∇φV,

and the formal L2(dm)-adjoint of L is given by

L∗V = τ

(
|∇φ|2 + ∆φ− ∂φ

∂τ
− 1

τ
−R

)
V − τ(Dτ −∆)V + 2τ∇∇φV.

Writing L in terms of its symmetric and antisymmetric parts

SV =
LV + L∗V

2
= τ

(
|∇φ|2 − ∂φ

∂τ
− R

2
− 1

2τ

)
V + τ∆V,

AV =
LV − L∗V

2
= τ

(
R

2
−∆φ+

1

2τ

)
V + τDτV − 2τ∇∇φV,

yields the identity∫∫
τ2|DτZ + ∆Z|2e2φ dm =

∫∫
|LV |2 dm

=

∫∫ (
|SV |2 + |AV |2 + 〈[S,A]V, V 〉

)
dm,

(8.1)

for any smooth family Z = e−φV of sections of Z with compact support
in C × (0, T ).

Provided (with a judicious choice of φ) we can effectively estimate
the commutator [S,A], the above identity will yield an estimate of the
L2-norm of (Dτ + ∆)Z from below by that of Z. The basis of this
estimate is the following explicit expression for the commutator.
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Proposition 8.1. If V is any smooth family of sections of Z with
compact support in M × (0, T ), we have∫∫

〈[S,A]V, V 〉 dm

=

∫∫ (
Q(1)
φ (∇V,∇V ) +Q(2)

φ |V |
2 +Q(3)

φ (∇V, V )
)
dm,

(8.2)

where

Q(1)
φ (∇V,∇V ) = 2τ2

(
2∇i∇jφ−Rij +

gij
2τ

)
〈∇iV,∇jV 〉,

Q(2)
φ = τ2

(
∂2φ

∂τ2
−∆2φ− 2

∂

∂τ
|∇φ|2 +

1

2

(
∂R

∂τ
+ ∆R

)
− 〈∇R,∇φ〉

)
+ 2τ2

(
2∇∇φ(∇φ,∇φ)− Rc(∇φ,∇φ) +

|∇φ|2

2τ

)
+ τ

(
∂φ

∂τ
− 2|∇φ|2 +

R

2

)
,

and

Q(3)
φ (∇V, V ) = −2τ2

(
∇iRja −∇jRia + 2Rlija∇lφ

)
〈ΛijV,∇aV 〉.

Proof. For the time-being, write S and A as

S = τ(∆ + F Id), A = τ(Dτ − 2∇∇φ +G Id).

Then

S(AV ) = τ2
(
∆DτV − 2∆(∇∇φV ) + ∆(GV ) + FDτV − 2F (∇∇φV )

+ FGV
)
,

and

A(SV ) = τ2
(
Dτ∆V +Dτ (FV )− 2∇∇φ(∆V )− 2∇∇φ(FV ) +G∆V

+ FGV
)

+ τ(∆V + FV ),

so

[S,A]V = τ2

(
[∆, Dτ ]V + 2[∇∇φ,∆]V +

(
2 〈∇F,∇φ〉 − ∂F

∂τ

)
V

+ ∆GV + 2∇∇GV −
1

τ
(∆V + FV )

)
.

Since V has compact support, we may integrate 〈[S,A]V, V 〉 over
C × (0, T ) and integrate by parts in the integrals corresponding to the
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fourth and sixth terms of the above identity to obtain that∫∫
〈[S,A]V, V 〉 dm

=

∫∫
τ2〈[∆, Dτ ]V + 2[∇∇φ,∆]V, V 〉 dm +

∫∫
τ |∇V |2 dm

+

∫∫ (
τ2

(
2〈∇F,∇φ〉 − ∂F

∂τ

)
− τF

)
|V |2 dm.

(8.3)

We now simplify the commutator terms on the right side of (8.3).
First,∫∫

τ2〈[∆, Dτ ]V, V 〉 dm

=

∫∫
τ2

(
〈[∇a, Dτ ]∇aV, V 〉+ 〈[Dτ ,∇a]V,∇aV 〉

)
dm

=

∫∫
τ2

(
1

2
[∇a, Dτ ]∇a|V |2 + 2 〈[Dτ ,∇a]V,∇aV 〉

)
dm,

and since

[∇a, Dτ ]∇a|V |2 = Rab∇b∇a|V |2 + (∇aRac −∇cRaa)∇c|V |2

= ∇b(Rab∇a|V |2)− 〈∇R,∇|V |2〉,

and

[Dτ ,∇a]V = −Rab∇bV − (∇bRac −∇cRab)Λbc(V ),

we have ∫∫
τ2〈[∆, Dτ ]V, V 〉 dm

=

∫∫
τ2

(
1

2
∆R|V |2 − 2Rab〈∇aV,∇bV 〉

− 2
〈

(∇bRac −∇cRab)Λbc(V ),∇aV
〉)

dm.

(8.4)

Likewise, for the second commutator term in (8.3), we compute that∫∫
τ2〈∇∇φ(∆V ), V 〉 dm = −

∫∫
τ2

{
∆φ〈∆V, V 〉+ 〈∇∇φV,∆V 〉

}
dm,

and ∫∫
τ2〈∆(∇∇φV ), V 〉 dm

=

∫∫
τ2

{
∆φ|∇V |2 − 2〈[∇a,∇b]V,∇aV 〉∇bφ

− 2∇a∇bφ〈∇aV,∇bV 〉 − 〈∇∇φV,∆V 〉
}
dm.
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Using that

∇dφ[∇a,∇d]V = −Rbcad∇dφΛbc(V ),

we then have

2

∫∫
τ2 〈[∇∇φ,∆]V, V 〉 dm

=

∫∫
τ2

{
4∇a∇bφ〈∇aV,∇bV 〉 − 4Rbcad∇dφ〈Λbc(V ),∇aV 〉

−∆2φ|V |2
}
dm.

(8.5)

Now we expand the third term on the right of (8.3). Since

F = |∇φ|2 − ∂φ

∂τ
− R

2
− 1

2τ
,

we compute that

2〈∇F,∇φ〉 = 4∇∇φ(∇φ,∇φ)− 2

〈
∇∂φ
∂τ
,∇φ

〉
− 〈∇R,∇φ〉

= 4∇∇φ(∇φ,∇φ)− 2 Rc(∇φ,∇φ)− ∂

∂τ
|∇φ|2 − 〈∇R,∇φ〉,

and
∂F

∂τ
=

∂

∂τ
|∇φ|2 − ∂2φ

∂τ2
− 1

2

∂R

∂τ
+

1

2τ2
,

so ∫∫ (
2τ2〈∇F,∇φ〉 − τ2∂F

∂τ
− τF

)
|V |2 dm

=

∫∫
2τ2

(
2∇∇φ(∇φ,∇φ)− Rc(∇φ,∇φ) +

|∇φ|2

2τ

)
|V |2 dm

+

∫∫ {
τ2

(
∂2φ

∂τ2
− 2

∂

∂τ
|∇φ|2 +

1

2

∂R

∂τ
− 〈∇R,∇φ〉

)
+ τ

(
∂φ

∂τ
+
R

2
− 2|∇φ|2

)}
|V |2 dm.

Combining this with (8.3), (8.4), and (8.5) yields (8.2). q.e.d.

Remark 8.2. When g(τ) is a shrinking self-similar solution to (1.6)
in the sense that (M, g(1), f(1)) satisfies (1.2) and g(τ) = τΨ∗τg(1),
f(τ) = f ◦ Ψ∗τf(1) where ∂Ψ

∂τ = −τ−1(∇g(1)f(1)) ◦ Ψ and Ψ1 = Id, the

quantities Q(i)
φ , i = 1, 2, 3, on the right side of (8.2) vanish identically

with the choice φ = −f
2 . This can be seen immediately for Q(1)

φ and

Q(3)
φ given the identities

Rij +∇i∇jf =
gij
2τ
, ∇iRjk −∇jRik = Rlijk∇lf,
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satisfied by g and f on M × (0, T ). The vanishing of Q(2)
φ follows from

the additional identities

∆f +R =
n

2τ
,

∂f

∂τ
= −|∇f |2, ∂R

∂τ
= −〈∇R,∇f〉 − R

τ
,

since

Q(2)
−f
2

=
τ2

2

((
∂R

∂τ
+ 〈∇R,∇f〉+

R

τ

)
+ ∆(∆f +R)

)
− τ2

2

(
∂

∂τ
+

1

τ

)(
∂f

∂τ
+ |∇f |2

)
− τ2

2

(
Rc(g) +∇∇f − g

2τ

)
(∇f,∇f)

= 0.

We will use the simple energy estimate in the next proposition to
control |∇Z| by |(Dτ + ∆)Z| in combination with our estimate for |Z|.

Proposition 8.3. If Z is any smooth family of sections of Z with
compact support in M × (0, T ), then, for any j, l ≥ 0, and b > 0,∫∫

τ j |∇Z|2e2φ dm

≤
∫∫

τ j
(

∆φ+ 2|∇φ|2 − ∂φ

∂τ
− R

2
+
cτ1−l

2τ

)
|Z|2e2φ dm

+

∫∫
τ j+l

2b
|(Dτ + ∆)Z|2e2φ dm.

(8.6)

Proof. Write V = eφZ as before and consider the identities

τ j |∇V |2 =
1

2

(
∂

∂τ
+ ∆

)
(τ j |V |2)− jτ j−1

2
|V |2 − τ j〈(Dτ + ∆)V, V 〉

and

τ j〈(Dτ + ∆)V, V 〉 = τ j−1〈LV, V 〉+ τ j
(

∆φ+
∂φ

∂τ
− |∇φ|2

)
|V |2

+ τ j〈∇φ,∇|V |2〉.

Combining these identities, integrating over M × (0, T ), and integrating
by parts, we obtain∫∫

τ j |∇V |2dm =

∫∫
τ j
(
|∇φ|2 − ∂φ

∂τ
− R

2
− j

2τ

)
|V |2 dm

−
∫∫

τ j−1〈LV, V 〉 dm
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≤
∫∫

τ j
(
|∇φ|2 − ∂φ

∂τ
− R

2
+
bτ1−l − j

2τ

)
|V |2 dm

+

∫∫
τ j+l

2b
|(Dτ + ∆)Z)|2e2φ dm

(8.7)

for any b > 0 and l ≥ 0. On the other hand,

|∇V |2 = e2φ(|∇Z|2 + 〈∇φ,∇|Z|2〉+ |∇φ|2|Z|2),

so ∫∫
τ j |∇Z|2 dm =

∫∫
τ j |∇V |2e2φ dm

+

∫∫
τ j
(
∆φ+ |∇φ|2

)
|Z|2e2φ dm.

(8.8)

Combining (8.7) and (8.8), we obtain (8.6). q.e.d.

8.2. Carleman estimates to imply exponential decay. For the
rest of the section, we will specialize to the cylinder M = C with

Ψτ (θ, z) = (θ, z/
√
τ), g(τ) = τΨ∗τg(1) = (2(k − 1)τ g̊)⊕ ḡ,

and

fz0(θ, z, τ) = fz0(Ψτ (θ, z), 1) =
|z − z0|2

4τ
+
k

2
,

for τ > 0 and some z0 ∈ Rn−k as before.

8.2.1. An estimate for the PDE component. We start with the
proof of Theorem 6.2. Following [21], [52], we define for α > 0 and
z0 ∈ Rn−k the weight function ϕ = ϕα,z0 : C × (0,∞)→ R by

ϕ(z, θ, τ) = −|z − z0|2

8τ
− α log σ(τ)

= −1

2
fz0(z, θ, τ)− α log σ(τ) +

k

4
,

(8.9)

where σ(τ) = τe(T−τ)/3.

Proof of Theorem 6.2. Fix 0 < T ≤ 2, α ≥ 1, and z0 ∈ Rn−k. It suffices
to prove the estimate for the case that Z has a single summand (i.e., is
a tensor bundle over C). Let Z be a smooth family of sections of Z with
compact support in C × (0, T ) and write V = eϕZ. Consider (8.2) with
the choice φ = ϕ. Since ϕ differs from −fz0/2 by a function depending

only on τ , it follows from Remark 8.2 that the quantities Q(i)
ϕ in (8.2)

satisfy

Q(1)
ϕ = 0, Q(2)

ϕ = −ατ
(
τ(log σ)′′ + (log σ)′

)
=
ατ

3
, Q(3)

ϕ = 0.

According to (8.1) and Proposition 8.1, we then have

(8.10)
α

3

∫∫
τ |Z|2e2ϕ dm ≤

∫∫
τ2|(Dτ + ∆)Z|2e2ϕ dm.
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To incorporate the derivative of Z, we use Proposition 8.3 with φ = ϕ,
j = 2, l = 1, and b = 2α. Using the soliton identities (see Remark 8.2),
we can simplify the integrand of the first integral on the right of (8.6)
to find

τ2

(
∆ϕ+ |∇ϕ|2 − ∂ϕ

∂τ
− R

2
+
α

τ

)
= τ2

(
−∆fz0

2
+
|∇fz0 |2

4
+

1

2

∂fz0
∂τ

+ α(log σ)′ − R

2
+
α

τ

)
= 2ατ − τ

(ατ
3

+
n

4

)
,

and hence that∫∫
τ2|∇Z|2e2ϕdm ≤ 2α

∫∫
τ |Z|2e2ϕdm+

T

4α

∫∫
τ2|(Dτ+∆)Z|2e2ϕdm.

Combining this with (8.10) and using that T ≤ 2, we arrive at∫∫
(ατ |Z|2 + τ2|∇Z|2)e2ϕ dm ≤ 10

∫∫
τ2|(Dτ + ∆)Z|2e2ϕ dm,

which implies (6.7). q.e.d.

8.2.2. Estimates for the ODE component. Both of the Carleman-
type estimates (6.8) and (6.9) are consequences of the simple identity

∂

∂τ

(
τ j |Z|2 e2φ dµ

)
= τ j

((
j

τ
+ 2

∂φ

∂τ
+R

)
|Z|2 + 2〈DτZ,Z〉

)
e2φ dµ,

(8.11)

where Z is a smooth family of tensor fields over C, j ≥ 0 is a fixed
number, and φ : C × (0, T )→ R is an arbitrary smooth function.

Proof of Theorem 6.3. Again it suffices to consider the case that Z is a
tensor bundle over C. Let Z be a smooth family of sections of Z with
compact support in U × (0, T ) for some open U ⊂ C. Let D ⊂ C be
any open set with D ⊂ U and fix α ≥ 1, λ > 0, and z0 ∈ Rn−k. (The
support of Z(·, τ) need not be contained in D.)

For the first inequality (6.8), we apply (8.11) with φ = ϕ and j = λ+1
at some fixed p = (θ, z), obtaining

∂

∂τ

(
τλ+1|Z|2e2ϕdµ

)
=

(
τλ
(
λ+ 1 +

|z − z0|2

4τ
+
k

2
− 2α

3
(3− τ)

)
|Z|2

+ 2τλ+1〈DτZ,Z〉
)
e2ϕdµ.
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Since Z vanishes identically near τ = 0 and τ = T , we may integrate
the above identity over D × [0, T ] to obtain∫ T

0

∫
D
τλ
(

8α

3
− 4λ− 2k − 4

)
|Z|2e2ϕ dm

≤
∫ T

0

∫
D
τλ−1

(
|z − z0|2|Z|2 + 8τ2〈DτZ,Z〉

)
e2ϕ dm.

Estimating

8τ2〈DτZ,Z〉 ≤
ατ

3
|Z|2 +

48τ3

α
|DτZ|2,

we see that

2α

∫ T

0

∫
D
τλ|Z|2e2ϕ dm

≤
∫ T

0

∫
D
τλ−1

(
|z − z0|2|Z|2 +

48

α
τ2|DτZ|2

)
e2ϕ dm

for α ≥ α′(k, λ) sufficiently large. This implies (6.8) for such α and D.
For (6.9), we apply (8.11) again with φ = −α log σ and j = λ+ 1 at

some fixed p = (θ, z), obtaining

∂

∂τ

(
τλ+1|Z|2σ−2αdµ

)
=

(
τλ
(
λ+ 1 +

k

2
− 2α

3
(3− τ)

)
|Z|2

+ 2τλ+1〈DτZ,Z〉
)
σ−2αdµ.

Integrating over D × [0, T ], we obtain∫ T

0

∫
D
τλ
(

2α

3
− λ− k

2
− 1

)
|Z|2σ−2α dm

≤ 2

∫ T

0

∫
D
τλ+1〈DτZ,Z〉σ−2α dm.

Since

2τλ+1〈DτZ,Z〉 ≤
ατλ

8
|Z|2 +

8τλ+2

α
|DτZ|2,

we have

α

2

∫ T

0

∫
D
τλ|Z|2σ−2α dm ≤ 8

α

∫ T

0

∫
D
τλ+2|DτZ|2σ−2α dm,

provided α ≥ α′′(k, λ) is sufficiently large. This implies (6.9) for such
α. Putting α0 = max{α′, α′′} finishes the proof. q.e.d.
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8.3. Carleman estimates to imply backward uniqueness. Now
we prove the second set of Carleman estimates from Section 7. Here,
as in [52], we fix some 0 < T ≤ 1 and construct our weight from the
function φα = φα,δ : C × (0, T )→ R given by

φα(z, θ, τ) = αη(τ)

(
4

(
f0(z, θ, τ)− k

2

))δ
= αη(τ)

(
|z|2

τ

)δ
,

as in (7.7) with η : [0, T ] → [0, 1] defined as in (7.8). The function η
is piecewise-differentiable, twice weakly-differentiable, and satisfies the
following inequalities.

Lemma 8.4 ([52]). The function η is nonincreasing and satisfies

(8.12) 0 ≤ η ≤ 1, δη − τη′ ≥ δ, τ2η′′ ≥ −1

4
δ(4δ − 3),

for τ ∈ [0, T ].

These inequalities are verified in Lemma 2.5 of [52] for the function
η̃(τ) = η(τ/T ). They are invariant under rescaling of τ and are hence
also valid in our situation.

8.3.1. An estimate for the PDE component. To apply the integral
identities in the preceding section, we first need to collect formulas for

the various derivative expressions that appear in the quantities Q(i)
φα

, i =

1, 2, 3, in (8.2). The necessary expressions have already been computed
in [52]. (The computations there, made relative to the Euclidean metric
are valid for the evolving cylindrical metric here since φα is independent
of the spherical variables.)

Lemma 8.5 (Lemma 2.4, [52]). For any α > 0, the derivatives of
the function φα satisfy the expressions

∇φα =
2αδη

τ δ
|z|2δ−2z,

|∇φα|2 =
4α2δ2η2

τ2δ
|z|4δ−2,

∇∇φα =
2αδη

τ δ
|z|2δ−4

(
|z|2P̄ + 2(δ − 1)z ⊗ z

)
,

∆φα =
2αδ (2(δ − 1) + n− k) η

τ δ
|z|2δ−2,

∂φα
∂τ

=
α(τη′ − δη)

τ δ+1
|z|2δ,

∂2φα
∂τ2

=
α(τ2η′′ − 2δτη′ + δ(δ + 1)η)

τ δ+2
|z|2δ,

∂

∂τ
|∇φα|2 =

8α2δ2η(τη′ − δη)

τ2δ+1
|z|4δ−2,
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∆2φα =
4αδ(δ − 1)(2(δ − 1) + n− k)(2(δ − 2) + n− k)η

τ δ
|z|2δ−4,

on Cr × (0, T ) for any r > 0.

Above, in the first and third equations, we identify z with the differ-
ential of the function (θ, z) 7→ |z|2/2 and, in the expression for ∇∇φα,
we identify the endomorphism P̄ with the two-tensor P̄ij = P̄ ki gkj . Now
we prove Theorem 7.3.

Proof of Theorem 7.3. Fix δ ∈ (7/8, 1) and T ∈ (0, 1], and let r ≥ r3

where r3 ≥ 1 is to be specified over the course of the proof. We will
assume, as before, that Z is a fixed tensor bundle over C. Let Z be
a smooth family of sections of Z on Cr defined for τ ∈ (0, T ) and let
V = eφαZ.

With an eye toward (8.2), let us define

Sφα =
g

2τ
− Rc(g) + 2∇∇φα.

Then, using Lemma 8.5, we have

Sφα =
P̄

2τ
+ 2∇∇φα =

P̄

2τ
+

4αδη

τ δ
|z|2δ−4

(
|z|2P̄ + 2(δ − 1)z ⊗ z

)
.

Since δ > 1/2, the second term, and hence the sum, is nonnegative-
definite when considered as a two-tensor on TC over Cr. In particular,

the quantity Q(1)
φα

(∇V,∇V ) from (8.2) is nonnegative.

For the quantity Q(2)
φα

, we have similarly that

Q(2)
φα
≥ τ2

(
∂2φα
∂τ2

−∆2φα − 2
∂

∂τ
|∇φα|2

)
+ τ

(
∂φα
∂τ
− 2|∇φα|2

)
,

where we have used that ∇R = 0, ∆R = 0, and ∂R
∂τ + R/τ = 0. Now,

two of the terms on the right are proportional to α2. Using Lemmas 8.4
and 8.5, we see that we may estimate them below by

−2τ

(
τ
∂

∂τ
|∇φα|2 + |∇φα|2

)
= −8α2δ2η|z|4δ−2

τ2δ−1

(
2(τη′ − δη) + η

)
≥ 6α2δ2η|z|4δ−2

τ2δ−1
.

The remaining terms are proportional to α, and we may estimate them
similarly:

τ2

(
∂2φα
∂τ2

−∆2φα

)
+ τ

∂φα
∂τ

=
α|z|2δ

τ δ

(
τ2η′′ − 2δτη′ + δ(δ + 1)η + (τη′ − δη)− C(δ, k, n)τ2η

|z|4

)
≥ α|z|2δ

τ δ

(
3δη + (1− 4δ)τη′

4
− C(δ, k, n)τ2η

|z|4

)
.
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So, if r3 = r3(δ, n, k) is taken sufficiently large, we will have

Q(2)
φα
≥ α|z|2δ

2τ δ
(δη − τη′) +

6α2δ2η|z|4δ−2

τ2δ−1
,

on Cr × (0, T ).

Finally, Q(3)
φα

= 0 on the cylinder since∇Rc = 0 and Rm(·, ·, ·,∇φα) =

0. Putting things together and using (8.1) and (8.2), we thus see that∫ T

0

∫
Cr

(
α|z|2δ

2τ δ
(δη − τη′) +

6α2δ2η|z|4δ−2

τ2δ−1

)
|Z|2e2φα dm

≤
∫ T

0

∫
Cr
τ2|DτZ + ∆Z|2e2φα dm,

(8.13)

for all α > 0 and r ≥ r3.
Now we use Proposition 8.3 to add in the derivative term. Taking

φ = φα and b = j = l = 1 in (8.6) yields∫ T

0

∫
Cr
τ |∇Z|2e2φα dm

≤
∫ T

0

∫
Cr
τ

(
∆φα + 2|∇φα|2 −

∂φα
∂τ
− R

2

)
|Z|2e2φα dm

+

∫ T

0

∫
Cr

τ2

2
|(Dτ + ∆)Z|2e2φα dm.

(8.14)

Then, by Lemmas 8.4 and 8.5,

τ

(
∆φα + 2|∇φα|2 −

∂φα
∂τ
− R

2

)
=

2αδ (2(δ − 1) + n− k) η

τ δ
|z|2δ−2

+
8α2δ2η2

τ2δ
|z|4δ−2 − α(τη′ − δη)

τ δ+1
|z|2δ − k

4τ

≤ α|z|2δ

τ δ

(
(δη − τη′) +

τ(n− k)

|z|2

)
+

8α2δ2η2|z|4δ−2

τ2δ−1

≤ α|z|2δ

τ δ

(
(δη − τη′) +

δ

2

)
+

8α2δ2η2|z|4δ−2

τ2δ−1
,

for r3 sufficiently large. Returning to (8.14) with this, multiplying both
sides by 1/4, and combining the result with (8.13), we obtain∫ T

0

∫
Cr

(
αδ|z|2δ

8τ δ
|Z|2 +

τ

4
|∇Z|2

)
e2φα dm

≤
∫ T

0

∫
Cr
τ2|DτZ + ∆Z|2e2φα dm,

for r ≥ r3 and all α > 0. The estimate (7.9) follows. q.e.d.



70 BRETT KOTSCHWAR & LU WANG

8.3.2. An estimate for the ODE component. For the proof of the
matching estimate for the ODE component, we again use the identity
(8.11).

Proof of Theorem 7.4. Fix α ≥ 1, 0 < T ≤ 1, and let r ≥ r4 for some
r4 to be specified later. Let Z be a smooth family of sections the tensor
bundle Z with compact support in Cr × (0, T ). Starting from (8.11)
with j = 1 and φ = φα, we have

∂

∂τ

(
τ |Z|2e2φαdµ

)
= τ

((
1

τ
+ 2

∂φα
∂τ

+
k

2τ

)
|Z|2 + 2〈DτZ,Z〉

)
e2φαdµ.

By Lemmas 8.4 and 8.5,

∂φα
∂τ

= α(τη′ − δη)τ−δ−1|z|2δ ≤ −αδτ−δ−1|z|2δ,

so, integrating over Cr × (0, T ) and using Cauchy-Schwarz, we see that∫ T

0

∫
Cr
τ2|DτZ|2e2φα dm ≥ −

∫ T

0

∫
Cr

(
2τ
∂φα
∂τ

+
k + 4

2

)
|Z|2e2φα dm

≥
∫ T

0

∫
Cr

(
2αδ|z|2

τ δ
− k + 4

2

)
|Z|2e2φα dm.

Thus, provided r4 = r4(n, k, δ) is sufficiently large, we will have∫ T

0

∫
Cr
τ2|DτZ|2e2φα dm ≥

∫ T

0

∫
Cr

αδ|z|2

τ δ
|Z|2e2φα dm

as claimed. q.e.d.

Appendix A. Normalizing the soliton vector field.

In this section, we prove Theorem 2.5, which provides the diffeomor-
phism Φ we use to identify the soliton vector field with that of the
standard cylindrical soliton structure.

A.1. Preliminaries. Let us first review the prerequisites we need from
ODE theory, following Chapter 9 of [33]. Recall that a flow-domain on
a manifold M is an open set D ⊂M×R satisfying that, for each p ∈M ,
the set of t for which (p, t) belongs to D is an open interval containing
0. (Here, the order of the time and space variables is opposite to that in
[33].) A smooth flow is a smooth map Θ : D →M from a flow domain
D which satisfies the group laws

Θ(p, 0) = p, Θ(Θ(p, s), t) = Θ(p, s+ t),

for all p ∈ M and s, t ∈ R for which (p, s), (Θ(p, s), t), and (p, s + t)
belong to D.

The infinitesimal generator ∂Θ
∂t (p, 0) of a smooth flow Θ : D → M is

a smooth flow is a smooth vector field on M , and it is a consequence of
the local theory of ODE that, to each smooth vector field V , there is
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a maximally defined smooth flow Θ whose infinitesimal generator is V .
(See Theorem 9.12 in [33].)

The main tool we need is the Flowout Theorem (Theorem 9.20 in
[33]), which asserts that if S ⊂ M is a compact hypersurface and V is
nowhere tangent to S, then the restriction of the flow Θ of V to O =
(S×R)∩D is a smooth immersion which pushes forward the coordinate
vector field ∂

∂t along R to V . When S is a compact hypersurface, there
is δ > 0 such that Φ|S×(−δ,δ) is a diffeomorphism onto its image.

A.2. A sequence of maps identifying the vector fields. Now we
specialize to the setting Theorem 2.5. We will assume below that

(Cr0 , g̃, ∇̃f̃) is strongly asymptotic to (C, g,∇f) as a soliton structure
and write, as before,

h = g̃ − g, X̃ = ∇̃f̃, X = ∇f =
r

2

∂

∂r
, E = X̃ −X.

By assumption, there are constants Ml,m such that

(A.1) sup
Cr0
|z|l
{
|∇(m)h|+ |∇(m)E|

}
≤Ml,m

for all l, m ≥ 0.
Using the notation and terminology of the previous section, let Θ :

D ⊂ Ca0 × R → C be the maximal smooth flow of X̃. There are a
variety of ways to use Θ to construct an injective local diffeomorphism
Sk× Sn−k× (0,∞)→ C by identifying Sk× Sn−k−1 with an appropriate

hypersurface in Cr0 to which X̃ is nowhere tangent. Each of these local

diffeomorphisms can be adjusted to pull X̃ back to X. The trick is
to choose an identification for which it is convenient to see that the
pull-back of g̃ by the map this identification produces is still strongly
asymptotic to the cylindrical metric. We will construct a sequence of
maps Φ(b) from the identifications of Sk × Sn−k−1 with Sb = ∂Ckb for
values of b tending to infinity. From this sequence, we will extract a
limit map which, in a sense, agrees with the identity to infinite order at
spatial infinity.

To begin, let us use the infinite order agreement of X̃ and X to choose
a0 so large that a0 > 2r0 and

(A.2)

〈
X̃,

∂

∂r

〉∣∣∣∣
(θ,σ,r)

≥ r

4
,

〈
X̃,

∂

∂r

〉
g̃

∣∣∣∣∣
(θ,σ,r)

≥ r

4
,

on Ca0 .

Proposition A.1. There exists a constant a1 ≥ a0 with the property
that, for each b ≥ a1, there is an injective local diffeomorphism Φ(b) :
Ca1 −→ Ca1/2 satisfying

(A.3) dΦ
(b)
(θ,σ,s)

(
s

2

∂

∂s

)
= X̃(Φ(b)(θ, σ, s)), Φ(b)

∣∣∣
Sb

= IdSb ,
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(A.4) C2a1 ⊂ Φ(b)(Ca1),

and

(A.5)
s

2
≤ r ◦ Φ(b)(θ, σ, s) ≤ 2s.

Additionally, for each l ≥ 0, there is a constant Cl such that

|r ◦ Φ(b)(θ, σ, s)− s| ≤ Cl
∣∣∣∣ 1

sl
− s

bl+1

∣∣∣∣ ,(A.6)

dSs((θ, σ, s), π ◦ Φ(b)(θ, σ, s)) ≤ Cl
∣∣∣∣ 1

sl
− 1

bl

∣∣∣∣ ,(A.7)

for all b, s ≥ a1, where dSs is the induced distance on Ss and π = πs :
Ca0 → Ss is the projection πs(θ, σ, r) = (θ, σ, s).

Proof. By (A.2), X̃ is nowhere tangent to Sa for a ≥ a0. We use this

to construct a preliminary map Φ̃(b) following Theorem 9.20 of [33].

Let Θ : D ⊂ Ca0 × R → C be the maximal smooth flow of X̃, and let

Φ̃(b) = Θ|Ob where Ob = D ∩ (Sb × R). By (A.2), r is increasing along

the integral curves of X̃, so the flow of X̃ preserves Ca0 . By (A.1),

|X̃| ≤M(r+ 1) for some M , so the integral curves of X̃ starting at any
point in Ca0 exist for all positive t.

Fix some a > a0. By the compactness of Sa, we will have Sa ×
(−δ,∞) ⊂ Oa for some δ > 0, and this implies that, for all b ≥ a, we
will have Sb × (−(δ + α(b)),∞) ⊂ Ob where

α(b) + inf { t | Θ(Sa × {t}) ∩ Sb 6= ∅ }

is the minimum time needed to reach Sb via an integral curve of X̃
starting in Sa.

Now, just as in [33], each Φ̃(b) is a local diffeomorphism, and

dΦ̃
(b)
(θ,σ,t)

(
∂

∂t

)
= X̃(Φ̃(b)(θ, σ, t)), Φ̃(b)(θ, σ, 0) = (θ, σ, b).

Provided δ is small enough, the restriction of Φ̃(b) to Sb × (−δ, δ) will
be injective and hence a diffeomorphism onto its image. But it is not
hard to see that Φ̃(b) is actually injective on all of Cb−(α(b)+δ). Indeed,
d
dsr(γ(s)) ≥ a0/4 > 0 along any integral curve γ of X̃, so each point

in the image of Φ̃(b) lies on an integral curve which intersects Sb in
exactly one point. Following each point (θ0, σ0, s0) in the image along

an integral curve of X̃ to Sb thus associates the point with a unique
radial translation t and a unique (θ, σ) such that (θ, σ, b) ∈ Sb and

Φ̃(b)(θ, σ, t) = (θ0, σ0, s0).
Now define

Φ(b)(θ, σ, s) = Φ̃(b)(θ, σ, 2 ln(s/b))
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for all (θ, σ, s) such that (θ, σ, 2 ln(s/b)) ∈ Ob. Then

dΦ
(b)
(θ,σ,s)

(
s

2

∂

∂s

)
= X̃(Φ(b)(θ, σ, s)), Φ(b)|Sb = Id |Sb ,

and Φ(b) is a diffeomorphism onto its image.
Now we consider the distortion of distance under Φ(b). Fix (θ, σ) ∈

Sk × Sn−k−1. For all s such that γ(b)(s) = Φ(b)(θ, σ, s) is well-defined,

we have from Proposition 2.2 that r(b)(s) = r(γ(b)(s)) satisfies

d

ds

(
r(b)(s)

s

)
= −r

(b)(s)

s2
+

2

s2

〈
X̃,

∂

∂r

〉∣∣∣∣
γ(b)(s)

=
2

s2

〈
E,

∂

∂r

〉∣∣∣∣
γ(b)(s)

.

(A.8)

Integrating from s to b, we find that∣∣∣∣∣r(b)(s)

s
− 1

∣∣∣∣∣ ≤ c
∣∣∣∣∫ b

s

1

t2
dt

∣∣∣∣ ,
for some c independent of θ, σ, and, in particular, that

(A.9) −c ≤ r(b)(s)− s ≤ c,
for all s ≤ b such that γ(b)(s) is defined. But γ(b)(s) will be defined at

least as long as r(b)(s) > a0, and, so, at least for all s > a0 + c. Choose

a1 = 2(a0 + c). Then Φ(b) will be defined on Ca1 and (A.9) says that,
for b ≥ a1,

r(b)(a1) ≥ a1 − c = 2a0 + c >
a1

2
.

Consequently, Φ(b)(Ca1) ⊂ Ca1/2. Similarly,

r(b)(a1) ≤ a1 + c ≤ 2a0 + 3c < 2a1,

so C2a1 ⊂ Φ(b)(Ca1). For b, s ≥ a1, we will also have
s

2
≤ a0 +

s

2
≤ s− c ≤ r(b)(s) ≤ s+ c ≤ 2s,

which is (A.5). We may then estimate |E ◦Φ(b)| ≤ Clr−l ≤ Cl2ls−l. Re-
turning to (A.8) with this bound and integrating again along arbitrary
paths with fixed θ, σ we obtain (A.6).

The estimate (A.7) is proven in the same way. Fix (θ, σ) ∈ Sk×Sn−k−1

and s0 ≥ a1 and let p(s) = πs0 ◦ Φ(b)(θ, σ, s). For any s, we have

p′(s) = dπs0 ◦ dΦ(b)

(
∂

∂s

)
=

2

s
dπs0(X̃(p(s))) =

2

s
dπs0(E(p(s))),

while, by estimate (A.6) above, we have |E(p(s))| ≤ Cls
−l for all l ≥ 0

for some Cl independent of θ and σ. But this is enough, since

|dπs0(E(p(s)))|gSs0 ≤
s0

s
|E(p(s))|,
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and so

dSs0

(
(θ, σ, s0), πs0 ◦ Φ(b)(θ, σ, s0)

)
= dSs0 (p(b), p(s0))

≤
∣∣∣∣∫ b

s0

|p′(t)|gSs0 dt
∣∣∣∣ ≤ C ∫ b

s0

1

tl+1
dt,

and (A.7) follows. q.e.d.

A.3. Analysis of an associated system of ODE. Next we seek uni-
form derivative estimates on the family of maps Φ(b) in order to extract
a limit as b→∞. The distance distortion estimates (A.6)-(A.7) guaran-

tee that the image of a point under Φ(b) will not wander too far from the
point itself, and therefore that we can obtain the derivative estimates
we need from an analysis of the local coordinate representations of Φ(b)

relative to a fixed finite atlas on Ca0 . Each of these coordinate repre-
sentations will satisfy a system of equations with a common structure

reflecting the infinite order agreement of X̃ and X at spatial infinity.
We analyze a general version of this system now.

Consider solutions

ψ : U × (s0,∞)→W ⊂ Rn−1, r : U × (s0,∞)→ (s1,∞),

to the system

∂ψ

∂s
=

2

s
Eψ(ψ, r), ψ(x, b) = x,

∂r

∂s
=
r

s
+

2

s
Er(ψ, r), r(x, b) = b,

(A.10)

where U ⊂ Rn−1, W ⊂ Rn−1 are open sets and E = (Eψ, Er) : W ×
(r0,∞)→ Rn satisfies

(A.11)

∣∣∣∣∣∂|µ|+pE∂yµ∂rp

∣∣∣∣∣ (y, r) ≤ C(µ, l, p)

rl

for all l, p ≥ 0 and all multiindices µ = (µ1, . . . , µn−1).
Here in this subsection (and only for this subsection) we will write

Φ(x, s) = (ψ(x, s), r(x, s)),

and use 〈·, ·〉 and |·| to denote the standard Euclidean inner product and
norm on Rn. The collision of notation is intentional: in our eventual
application to the proof of Theorem 2.5, the neighborhoods U and W
will correspond to the images of charts on coordinate neighborhoods
of Sk × Sn−k−1. The maps Φ and E will correspond to the coordinate
representations of Φ(b) (for fixed b) and E relative to the associated
charts on C.

Our goal is to derive estimates on Φ from this system on compact
subsets of U × (s0,∞) which are independent of b.
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Proposition A.2. Let V be a precompact open set with V ⊂ U .
Then, for all k, l ≥ 0, there is a constant C = C(k, l) depending on V ,
but independent of b, such that

(A.12) sup
V×(s0,b]

sl

∣∣∣∣∣ ∂|µ|+p∂xµ∂sp
(Φ− Id)

∣∣∣∣∣ (x, s) ≤ C(k, l)

for all µ and p ≥ 0 such that |µ|+ p = k.

Proof. Let V be a precompact open set with with V ⊂ U . Fix x ∈ V .
Then

(A.13)
∂

∂s

(
r(x, s)

s

)
=

2

s2
Er(ψ(x, s), r(x, s)),

so, using the bound |E(ψ, r)| ≤ C we have∣∣∣∣1− r(x, s)

s

∣∣∣∣ ≤ C ∫ b

s

1

t2
dt ≤ C

s
,

and hence that |r(x, s)− s| ≤ C for any x and any s0 < s ≤ b.
For all s sufficiently large, we will also have that s/2 ≤ r(x, s) ≤ 2s.

Hence, for each l, there is Cl such that |E(ψ(x, s), r(x, s))| ≤ Cls
−l.

Returning to (A.13), then, we can estimate∣∣∣∣1− r(x, s)

s

∣∣∣∣ ≤ ∫ b

s

2

t2
|E(ψ(x, t), r(x, t))| dt ≤ Cl

∫ b

s

1

tl+2
dt ≤ Cl

sl+1
,

and hence that |r(x, s) − 1| ≤ Cls
−l. Using now that r and s are

comparable, we obtain similarly that

|ψ(x, s)− x| ≤
∫ b

s

2

t
|Eψ(ψ(x, t), r(x, t))| dt ≤ Cl

sl
.

Now we estimate the first derivatives of Φ. Fix some l ≥ 0. From
what we have done above, we already know that∣∣∣∣∂ψ∂s

∣∣∣∣ =
2

s
|Eψ(ψ, r)| ≤ Cl

sl
,

∣∣∣∣∂r∂s − 1

∣∣∣∣ ≤ ∣∣∣rs − 1
∣∣∣+

2

s
|Er(ψ, r)| ≤

Cl
sl
.

For the x-derivatives, it will be convenient to introduce the map

F = ρ 1
s
◦ Φ : U × (s0,∞)→W × (0,∞),

where ρλ(x, r) = (x, λr), i.e., F (x, s) = (ψ(x, s), r(x, s)/s). Fix 1 ≤ i ≤
n− 1. Then

∂

∂s

∂F

∂xi
=

∂

∂xi

(
2

s
Eψ ◦ Φ,

2

s2
Er ◦ Φ

)
=

2

s
(dρ 1

s
◦ dE)

∂Φ

∂xi

=
2

s
(dρ 1

s
◦ dE ◦ dρs)

∂F

∂xi
.
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Now, the matrix-valued function

A =
2

s
(dρ 1

s
◦ dE ◦ dρs) ◦ Φ = 2

(
1
s

∂Eαψ
∂yβ

∂Eαψ
∂r

1
s2
∂Er
∂yβ

1
s
∂Er
∂r

)

satisfies |A| ≤ Cls−(l+1) for all l, so the function φ =
∣∣ ∂F
∂xi
− ei

∣∣2 satisfies

∂φ

∂s
= 2

〈
A

(
∂F

∂xi
− ei

)
,
∂F

∂xi
− ei

〉
+ 2

〈
Aei,

∂F

∂xi
− ei

〉
≥ −3|A|φ− |A|.

Fix s0 < s1 ≤ b. Then, there is C depending only on l such that

∂φ

∂s
≥ −Cls−2(φ+ s−2l

1 )

for any x and all s ≥ s1. Integrating from s1 to b yields

ln

(
φ(x, b) + s−2l

1

φ(x, s1) + s−2l
1

)
≥ Cl

b
− Cl
s1

which, since φ(x, b) = 0, means that

φ(x, s1) ≤ e
C
s1
−C
b s−2l

1 ≤ Cls−2l
1 ,

where C is independent of s1. Since s1 was arbitrary, it follows that∣∣∣∣∂ψα∂xi
− δαi

∣∣∣∣+
1

s

∣∣∣∣ ∂r∂xi
∣∣∣∣ ≤ Cl

sl

for all s, and the desired estimate follows.
The higher derivatives may be estimated similarly. We will give here

the details only for the case k = 2. Fix again l ≥ 0. From above, we
have already seen that

∂2r

∂s2
=

∂

∂s

(
r

s
+

2

s
Er

)
=

2

s
dEr

∂Φ

∂s
,

and
∂2ψ

∂s2
=

∂

∂s

(
2

s
Eψ

)
= − 2

s2
Eψ +

2

s
dEψ

∂Φ

∂s
,

so ∣∣∣∣∂2ψ

∂s2

∣∣∣∣+

∣∣∣∣∂2r

∂s2

∣∣∣∣ ≤ Cl
sl

for some Cl. Similarly,∣∣∣∣ ∂2r

∂xi∂s

∣∣∣∣ ≤ 1

s

∣∣∣∣ ∂r∂xi
∣∣∣∣+

2

s

∣∣∣∣dEr ∂Φ

∂xi

∣∣∣∣ ≤ Cls−l,
and ∣∣∣∣ ∂2ψ

∂xi∂s

∣∣∣∣ ≤ 2

s

∣∣∣∣dEψ ∂Φ

∂xi

∣∣∣∣ ≤ Cls−l
for any i.
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For the pure x-derivatives, we again use the map F and compute that

∂

∂s

∂2F

∂xi∂xj
=

2

s
(dρ 1

s
◦ dE ◦ dρs)

∂2F

∂xi∂xj

+
2

s

(
dρ 1

s
◦ d2E

)(
dρs

∂F

∂xi
, dρs

∂F

∂xj

)
for any i and j. Fixing any x and integrating from s to b, we may
estimate as in the previous lemma that∣∣∣∣ ∂2F

∂xi∂xj
(x, s)

∣∣∣∣ ≤ C

sl

using that
∂2F

∂xi∂xj
(x, b) = 0.

The desired estimate on ∂2Φ
∂xi∂xj

follows immediately. q.e.d.

A.4. Convergence to a limit diffeomorphism. Now we are ready
to extract a limit as b→∞ from the family Φ(b) of local diffeomorphisms
constructed in Proposition A.1. We first fix a finite coordinate atlas in
order to import the estimates from the previous section to the cylinder.

It follows from the distance estimates (A.7) that we can cover Sk ×
Sn−k−1 by a finite collection {U iδ}Ni=1 of products

U iδ = B̊k
δ (pi)× B̊n−k−1

δ (qi)

of coordinate balls of radius δ less than one fourth the injectivity radii
of Sk and Sn−k−1 with the property that

Φ(b)(U
i
2δ × (a2,∞)) ⊂ U i4δ × (a2/2,∞)

for all a2 ≥ a1 sufficiently large (depending on δ) and all b ≥ a2. Write

Ũ i = U i2δ × (a2,∞) and W̃ i = U i4δ × (a2/2,∞) and consider the corre-

sponding atlases {(Ũ i, ϕ̃i)}Ni=1 and {(W̃ i, ϕ̃i)}Ni=1 of Ca2 and Ca2/2, re-

spectively. Here we use ϕ̃i to represent both the map exp−1
pi × exp−1

qi × Id

on W̃ i and its restriction to Ũ i.
Passing to the coordinate representations ϕ̃i◦Φ(b)◦(ϕ̃i)−1 and dϕ̃i(E)◦

(ϕ̃i)−1 of Φ(b) and E (which we will continue to denote by the same

symbols) we obtain a system of the form (A.10) on ϕ̃i(Ũ i) with the
bounds (A.11) for some C depending on U i; these bounds follow from
(A.1) since the coordinate representation of g on Rn satisfies

C−1δjk ≤ gjk(y, s) ≤ Cs2δjk

on Ũ i for some C > 0 depending only on i, and we have bounds of the

form
∣∣∣∂(m)Γljk

∣∣∣ ≤ C(i,m) on Ũ i for all m ≥ 0. Here y = (θ, σ).

From Proposition A.2, we obtain that, for fixed i and a2 < s1 < s2,
the Ck-norms of the coordinate representation of Φ(b)−Id are uniformly
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bounded on the compact set K = U iδ×[s1, s2] ⊂ Ũ i for each k ≥ 0. From
the Ascoli-Arzela theorem, then, there is a sequence bj →∞ such that

Φ(bj) converges in every Ck-norm to a smooth map Φ
(∞)
K on K. Covering

the annular regions Aj = Aa2+1/j,ja2 by finitely many of the charts from

this atlas, we can obtain a smooth limit Φ
(∞)
j on Aj for each j; taking

a further subsequence, we obtain a smooth limit Φ = Φ(∞) defined on
all of Ca2 . We record this statement and some additional observations
in the following proposition.

Proposition A.3. Let a2 be as in the discussion above. There ex-
ists a3 ≥ a2 and a sequence bj → ∞ such that Φ(bj) converges locally
smoothly as j →∞ to a smooth map Φ : Ca3 → Ca3/2 satisfying

(a) dΦ(θ,σ,s) (X(θ, σ, s)) = X̃ ◦ Φ(θ, σ, s),
(b) Φ is a diffeomorphism onto its image and C2a3 ⊂ Φ(Ca3),
(c) On each coordinate neighborhood U = U iδ defined above, and for

each k, l ≥ 0, there is C = C(i, k, l) such that, for all s > a3,

(A.14) sl
{
‖Φ− Id ‖Ck(U×[s,2s]) + ‖Φ∗g − g‖Ck(U×[s,2s])

}
≤ C,

relative to the Euclidean norm and connection.

Proof. For now, we will assume just that a3 ≥ a2 and further re-
strict a3 as we work through the argument. The identity in (a) follows

from (A.3) and the C1-convergence of Φ(bj). The second claim in (b)
follows from (A.4), and the estimate on the first term in (A.14) follows
from Proposition A.2 and the discussion preceding the statement of this
proposition. In particular, we can choose a3 sufficiently large so that
(1/2) Id ≤ dΦ ≤ 2 Id on U i × [a3,∞) for each i. Among other things,
this ensures that Φ will be a local diffeomorphism on Ca3 .

The argument that Φ is injective goes then just as the corresponding
argument for Φ(b) in Proposition A.1. Here, as there, r(s) is strictly
increasing along the radial lines s 7→ (θ, σ, s), and Φ is a diffeomorphism
when restricted to St × (t − ε, t + ε) for some sufficiently large t and
sufficiently small ε. Following the radial lines forward and backward
as in the proof of Proposition A.1, we see that Φ must be injective
on Ca3 , and hence a diffeomorphism onto its image. Using the C0-
comparison of r ◦Φ with s, we can also enlarge a3 if necessary to ensure
that Φ(Ca3) ⊂ Ca3/2 and C2a3 ⊂ Φ(Ca3).

Finally, the Ck estimates on Φ∗g−g in (A.14) follow from the uniform
estimates we have on the derivatives of the coordinate representations
of Φ− Id and the metric g on the neighborhoods Ũ i. q.e.d.

A.5. Proof of Theorem 2.5. Now we assemble the proof of Theorem
2.5. Taking r1 = a3 (and recalling that a3 ≥ a0 ≥ 2r0), Proposition
A.3 gives us the existence of a map Φ : Cr1 → Cr1/2 ⊂ Cr0 satisfying
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that Φ∗X = X ◦ Φ and C2r1 ⊂ Φ(Cr1). Moreover (patching together
estimates using the local bounds on the Christoffel symbols), part (c)
of that proposition ensures that

sup
Cs

sl|∇(m)(Φ∗g − g)| <∞

for all l ≥ 0. Writing ĝ = Φ∗g and ∇̂ for the connection of ĝ, we thus
have

(A.15) sup
Cs

sl|∇(m)(Γ̂− Γ)| <∞,

and, consequently,

(A.16) sup
Cs

sl|∇̂(m)(ĝ − g)| <∞,

for all l and m.
But then, for all l, we have

|Φ∗g̃ − g| ≤ |Φ∗g̃ − ĝ|+ |ĝ − g| ≤ C|Φ∗g̃ − ĝ|ĝ + |ĝ − g|

= C|g̃ − g| ◦ Φ + |ĝ − g| ≤ Cls−l

for some Cl, using that both ĝ and g̃ are strongly asymptotic to g and
that r and s are comparable. We can then proceed inductively, using
(A.15) and (A.16) to estimate the covariant derivatives of g̃ − g. For
example, since

|∇(Φ∗g̃ − g)| ≤ C|Γ̂− Γ||Φ∗g̃ − g|+ |∇̂(Φ∗g̃ − g)|

≤ C|Γ̂− Γ||Φ∗g̃ − g|+ C|∇̂(Φ∗g̃ − ĝ)|ĝ + |∇̂(ĝ − g)|

= C|Γ̂− Γ||Φ∗g̃ − g|+ C|∇(g̃ − g)| ◦ Φ + |∇̂(ĝ − g)|,

we see that we have a bound of the form |∇(Φ∗g̃− g)| ≤ Cls−l for all l.
We can argue similarly for the higher derivatives. This completes the
proof.
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