The Significance of Magnetospheric Precipitation for the Coupling of Magnetosphere-Ionosphere-Thermosphere Systems: Sources and Properties

Dogacan Su Ozturk¹, Dong Lin², Christine Gabrielse³, Margaret Chen³, Maxime Grandin⁴, Nithin Sivadas^{5,6}, Robert Robinson^{5,6}, Katherine Garcia-Sage⁶, Peter Damiano¹, Lauren Blum⁷, Yiqun Yu⁸, Jiang Liu⁹, Roger Varney⁹, Theodoros Sarris^{7,10}, Weijia Zhan⁷, Sarah Vines¹¹, Allison Jaynes¹², Yu Lin¹³, Aaron Ridley¹⁴, Stephen R. Kaeppler¹⁵

- 1: University of Alaska Fairbanks, AK, USA
- 2: National Center for Atmospheric Research, CO, USA
- 3: The Aerospace Corporation, El Segundo, CA, USA
- 4: University of Helsinki, Finland
- 5: The Catholic University of America, MD, USA
- 6: NASA Goddard Space Flight Center, MD, USA
- 7: University of Colorado Boulder, CO, USA
- 8: Beihang University, Beijing, China8: University of California Los Angeles, CA, USA
- 9: University of California, Los Angeles, CA, USA
- 10: Democritus University of Thrace, Xanthi, Greece
- 11: John Hopkins Applied Physics Laboratory, MD, USA
- 12: University of Iowa, Iowa City, IA, USA
- 13: Auburn University, AL, USA
- 14: University of Michigan, MI, USA
- 15: Clemson University, SC, USA

Synopsis:

Magnetospheric precipitation plays an important role for the coupling of Magnetosphere, Ionosphere, and Thermosphere (M-I-T) systems. Particles from different origins could be energized through various physical mechanisms and in turn disturb the Ionosphere, the ionized region of the Earth's atmosphere that is important for telecommunication and spacecraft operations. Known to cause aurora, bright displays of light across the night sky, magnetospheric particle precipitation, modifies ionospheric conductance further affecting the plasma convection, field-aligned (FAC) and ionospheric currents, and ionospheric/thermospheric temperature and densities. Therefore, understanding the properties of different sources of magnetospheric precipitation and their relative roles on electrodynamic coupling of M-I across a broad range of spatiotemporal scales is crucial. In this paper, we detail some of the important open questions regarding the origins of magnetospheric particle precipitation and how precipitation affects ionospheric conductance. In a companion paper titled "The Significance of Magnetospheric Precipitation for the Coupling of Magnetosphere-Ionosphere-Thermosphere Systems: Effects on Ionospheric Conductance", we describe how particle precipitation affects the vertical structure of the ionospheric conductivity and provide recommendations to improve its modelling.

1. The complexity of the coupled M-I-T system electrodynamics

The geospace response to the solar wind-driven convection electric field in the magnetosphere strongly depends on ionospheric conductivity, which results from coupled complex processes in the Magnetosphere-Ionosphere-Thermosphere (M-I-T) system that are governed by the laws of electrodynamics. Determined mainly by the solar EUV and particle precipitation- induced ionization and plasma-neutral interactions, ionospheric conductivity affects the ionospheric convection and field-aligned current patterns, thereby modulating the magnetosphere's response to the solar wind. However, due to the difficulty in measuring the neutral and plasma parameters in the lower thermosphere–ionosphere, where conductivities peak, large uncertainties exist regarding their characterization under different driving conditions (Palmroth et al., 2021). Understanding variations of ionospheric conductivity on global, meso, and small scales is a prerequisite for advancing the ability to quantify ionospheric and magnetospheric electric fields and the many physical processes throughout the M-I-T system that are influenced by these electric fields. Thus, a comprehensive understanding of ionospheric conductivity is needed for realistic geospace modeling and space weather prediction of the M-I-T system.

Magnetospheric particle precipitation is one controlling factor for the ionospheric conductance. There are various open questions associated with the characteristics of magnetopsheric precipitation that determines the spatial, temporal and energy ranges of the precipitating particles, however lack of global, high-resolution, multi-dimensional, and coordinated measurements hinders our ability to make further progress on these topics. Collaborations among different domain scientists that are focused on particle precipitation are necessary to better understand ionospheric conductance and improve its modelling (Ozturk et al., 2020). Therefore, we advocate for advancements in the following science questions that will help our field achieve a global, self-consistent, and multi-scale understanding of the coupled M-I-T system.

- 1. What are the magnetospheric processes associated with various types of auroral particle precipitation? What are the characteristics of these magnetospheric processes?
- 2. How do precipitating energetic ions and electrons associated with different auroral forms contribute to the ionospheric conductance across multiple scales as a result of these magnetospheric processes?
- 3. How does varying ionospheric conductance affect the I-T system response?

Two companion white papers, one on the sources of magnetospheric precipitation (this white paper) and another on their effects on ionospheric conductance and its modelling, are presented for this purpose. This white paper will focus on the science questions needed to be addressed to characterize magnetospheric particle precipitation.

2. Open questions related to Magnetospheric Particle Precipitation

2.1. Origins and characteristics of magnetospheric particle precipitation

There are three main auroral electron precipitation mechanisms: wave scattering of plasma sheet electrons into the loss cone (diffuse), acceleration by interactions with Alfvén waves (broadband), and acceleration due to a quasi-static parallel electric field (monoenergetic). Based on statistical analysis of FAST data, Dombeck et al. (2018) reported that intense electron precipitation events are often caused by a combination of two or more of the main mechanisms noted above. Therefore, it is important to focus on studies that target the origins and characteristics of the three aurora types.

2.1.1. Diffuse aurora

The diffuse electron aurora, typically concentrated on the midnight to morning side over a broad latitudinal range, contributes about 60% of the energy into the auroral oval (Newell et al., 2009) and is therefore crucial to the magnetosphere-ionosphere energy budget. There are several components that can affect electron precipitation into the ionosphere that produces diffuse aurora: the plasma sheet source distributions (Lui et al., 1977), electron drift (Khazanov et al., 2015, 2019), electron pitch-angle scattering—which is the dominant loss process for inner magnetospheric electrons (Shprits, Elkington, et al., 2008; Shprits, Subbotin, et al., 2008; Thorne, 2010)—and magnetosphere-ionosphere energy coupling that includes backscatter, production of secondary electrons in the atmosphere, and multiple downward precipitation and upward backscatter of electrons in the loss cone between conjugate hemisphere (Khazanov et al., 2015, 2019; Khazanov & Chen, 2021). Although, it is the most dominant type of aurora observed, there are various open questions regarding the origin and modelling of particles leading to diffuse aurora.

Magnetospheric Waves:

At a geocentric radial distance r<=8 RE, the resonant scattering of plasma sheet electrons (~100 eV-20 keV) by whistler mode chorus has been shown to be the major contributor to diffuse aurora precipitation (Ni et al., 2016). In contrast, using THEMIS observations and numerical analysis of scattering rates, Ni et al. (2012) reported a case in which enhanced electron cyclotron harmonic (ECH) waves were the dominant cause of electron diffuse precipitation at $r \ge 8$ RE. The ability to globally and dynamically quantify storm-time electron losses due to pitch-angle scattering with waves is challenging because the rate of pitch-angle diffusion for a given electron energy depends on the wave amplitude, wave frequency and wave normal distributions, as well as the plasma density and background magnetic field. Since these quantities are not measured globally, researchers have had to rely on theoretical or empirical models even if wave measurements are available from a few satellites for a particular event. An array of spatially separated satellites that cover multiple MLTs simultaneously could provide a global context of wave parameters observationally. A potential alternative way is to use multiple simultaneous NOAA/POES satellites measurements of electron fluxes to infer global wave characteristics under certain assumptions (Ni et al. 2014). A real-time wave model is necessary in the determination of eventspecific, global diffusion rates for modeling dynamic electron precipitation globally (Yu et al. 2022).

To account for diffuse aurora generated by magnetospheric waves, the numerical models have incorporated parameterized electron loss rates of whistler chorus waves and of hiss (e.g., Chen et al., 2015, 2019; Yu et al. 2016, 2018), but have been unable to incorporate electron loss rates from ECH waves due to the current lack of parameterization. **Parameterized electron loss rates of ECH waves in the magnetosphere are needed**. Furthermore, development of a more complex electron loss characterization that also includes self-consistent generation of waves globally is desirable to narrow the uncertainties in the wave scattering rates.

Lastly, questions remain about the origins of the **dayside diffuse aurora**. Han et al., (2017) reported the first observations of ECH waves associated with the diffuse aurora on the dayside in absence of chorus waves. However these observations showed that precipitation events can have significantly different particle populations, dispersion forms, and can map to different regions in the ionosphere. Further coordinated studies using magnetospheric and ionospheric plasma measurements spanning a range of magnetic latitudes and MLTs are needed to understand the formation and evolution of the dayside diffuse aurora.

Ion precipitation:

Ions of tens of keV can precipitate down to the upper atmosphere as, especially in the night-dusk sector, carrying considerable energy source (Tian et al. 2020). Precipitating ions of magnetospheric origin can be resonantly scattered by EMIC waves, or chaotically scattered when the ion's gyroradius is comparable to a field line's curvature radius, that is, in regions with highly stretched magnetic field lines. Comparative studies of these two mechanisms suggested that EMIC wave-induced ion precipitation predominantly occurs in the dusk sector of inner magnetosphere, the statistically preferred source region of EMIC waves, whereas field line curvature scattering of ions is effective in the stretched nightside magnetosphere (Shreedevi et al. 2021; Zhu et al. 2021). It is further found that heavy ions tend to experience the field line curvature scattering and subsequent precipitation in wider L and MLT regions than light ions (Yu et al. 2020). Investigating other direct/indirect mechanisms causing ion precipitation and quantifying their relative contributions are essential; for a comprehensive understanding of particle precipitation.

Pulsating Aurora:

One particular type of diffuse aurora, pulsating aurora, has been known to include a high-energy tail in the associated precipitation (Miyoshi et al., 2020). A building sequence of observational studies have confirmed the concept that modulated equatorial VLF chorus waves create the periodic pulsations observed (Nishimura et al., 2010, Jaynes et al., 2013, Kasahara et al., 2018). Additionally, pulsating aurora can be long-lasting and widespread (Jones et al., 2013) making this a significant source of energy transfer from the magnetosphere to the ITM system. Pulsating aurora can contain electron precipitation up to 1 MeV or higher (Miyoshi et al., 2021); although the relativistic energies do not contribute to the optical emission, the association of low and high energy precipitation illustrate the importance of pulsating aurora to the overall dynamics of both radiation belt variations and energy deposition into the D and E regions of the ionosphere and below. The canonical study of auroral energy flux into the topside ionosphere, Newell et al. (2009), found that the diffuse aurora (which included pulsating aurora) constitutes 84% of the energy flux into the ionosphere during low solar wind driving conditions and 71% during high solar wind driving conditions. Interestingly, this empirical model relied on DMSP spacecraft data, which did not extend upwards of 30 keV in electron flux measurements. Thus, the entirety of the highenergy tail of pulsating/diffuse aurora is missing in this estimation, positioning these statistics as a lower boundary on the significance of auroral energy input.

Relativistic Electrons:

Sub-relativistic (~100-500 keV) and relativistic (~>500 keV) electron precipitation are not only present within pulsating auroral precipitation but also observed within non-pulsating but structured diffuse aurora. Field-aligned curvature or current sheet scattering (CSS) can lead to the pitch angle scattering of trapped relativistic electrons into the loss-cone at the outer radiation belt boundary (Pytte and West, 1978, Sergeev et al., 1983, Artemyev et al., 2013). Evidence of relativistic electron precipitation correlated with structured diffuse aurora was reported by Sivadas et al., 2019. These features, which are magnetically conjugate with the outer radiation belt boundary, appear to be associated with constant leakage of relativistic electrons from the outer boundary of the outer radiation belts. An important open question is **how long does precipitation from CSS last and whether the duration makes it a more prominent radiation belt loss mechanism** than more intermittent wave scattering. The precipitation is associated with faint auroral emissions, which are pronounced during the substorm growth phase when the field lines are stretched into a thin magnetotail. CSS occurs around midnight MLT and between L-shells ~6-10 RE (in the dipolar transition region). However, EMIC waves are also observed in this region due to proton anisotropy in the dipolar transition region and can cause relativistic and sub-relativistic electron precipitation

(Capannolo et al., 2022, Capannolo et al., 2019, Sivadas et al., 2017). They are prominent in the dipolar transition region during substorm onset and expansion phases, and hence overlap with CSS. Furthermore, a large proportion of relativistic electron precipitation happens during active periods. Due to limitations in the global spatial and temporal coverage of relativistic electron precipitation, we are still uncertain about the proportion of total energy brought into the ionosphere from relativistic electron precipitation.

One might distinguish the likely source of relativistic precipitation by following the energy spectrum, spatial structure, and duration. However, it is unclear what is the contribution of high-latitude relativistic electron precipitation from different sources e.g. Chorus Waves, EMIC waves, Hiss, and CSS. In addition to the above, sub-relativistic precipitation can cause substantial D-region ionization. The contribution of sub-relativistic electron precipitation from CSS to total hall conductance during the growth phase is ~25% and ~60% during the expansion phase (Sivadas 2020). The sub-relativistic and relativistic electrons can also lead to ozone loss through NOx production in the ionosphere that makes its way down to the stratosphere (Sinnhuber et al., 2012, Turunen et al., 2016, Maliniemi et al., 2022). These findings provide us with additional important open questions: what is the contribution of sub-relativistic and relativistic electron precipitation to ozone depletion and total ionospheric conductance? The former has the potential to impact climate, while the latter can affect space weather through magnetosphere-ionosphere coupling and needs to be better understood in the next decade.

2.1.2. Discrete aurora

Monoenergetic precipitation:

"Monoenergetic" or inverted V precipitation spectra, often represented as sharply peaked Gaussian distributions with a mean energy of E_0 , are associated with parallel electric fields. The auroral acceleration region (AAR) is the portion of closed auroral field lines with field-aligned electric fields (McIlwain, 1960; Evans et al., 1967) that accelerate auroral electrons up to keV energies. It has been suggested from observations of accelerated electrons and ions in the aurora (Lundin & Eliasson, 1991; Reiff et al., 1988) and electric field measurements (Mozer & Hull, 2001) that the AAR occurs at altitudes of 2-3 $R_{\rm E}$. One mechanism supporting the formation of a potential drop along an auroral field line is the mirror force in a converging dc magnetic field (Alfven, 1963). Knight (1973) described the current-voltage relation for a Maxwellian distribution and others (Chiu et al., 1981; Janhunen & Olsson, 1998; Khazanov et al., 1998; Lemaire & Scherer, 1974; Pierrard, 1996) refined the description for different representative electron distributions for space plasmas. Based on experimental work by Lyons et al. (1979) and theoretical analysis by Fridman & Lemaire (1980), it's assumed that the monoenergetic electron fluxes with an energy peak at E_0 are produced by a distributed potential drop V where $E_0 = eV$. This relates the mean energy to the potential drop, so if the mean energy is known, the potential drop can be inferred. Because it is difficult to model the discrete precipitation self-consistently, the mean energy could be extracted from observations of discrete, precipitating energy flux but observations with coverage on a continental scale for hours-long time durations are necessary to supply inputs for an entire event.

The uncertainties of the location and mechanism of the field-aligned potential drops present obstacles for modeling discrete auroral electron precipitation in a self-consistent manner. Furthermore, many inner magnetospheric models use the Vasyliunas equation (1970) that relates the electrodynamics of ionospheric conductance, ionospheric electric field, FACs, perpendicular currents from particle drifts in the inner magnetosphere, and inner magnetospheric electric (E) and

magnetic (**B**) fields under an assumption of the electrostatic condition of $\mathbf{E} \cdot \mathbf{B} = 0$. While this condition is valid for diffuse auroral precipitation, it breaks down for discrete aurora precipitation. This makes it challenging to map ionospheric potentials to the magnetosphere for discrete aurora.

Broadband precipitation:

The broadband aurora (also known as the Alfvénic aurora) are defined by broadband electron spectra with energies extending from tens of eV to a keV in magnitude (e.g. Chaston et al. 2002) and are associated with the action of dispersive Alfven waves (e.g. Lysak and Lotko, 1996; Staciewicz, 2000). These waves are Alfvén waves with perpendicular scales on the order of the electron inertial length, the ion acoustic scale length or the ion gyroradius. They are termed dispersive as they permit propagation of wave energy across magnetic field lines (Lysak and Lotko, 1996). Due to electron mass effects (for inertial Alfvén waves) and electron pressure effects (kinetic Alfven waves) these waves can support parallel electric fields that lead to the energization of electrons that form the broadband aurora. Inertial Alfvén wave effects dominate at high latitudes (e.g. Kletzing, 1994; Watt et al., 2005, 2006) while the kinetic Alfvén wave regime is at higher altitudes along the field line. There are still open questions regarding the details and relative contributions of these different wave limits to the electron energization that results in the broadband aurora. Inertial Alfvén waves can lead to both resonant (Fermi) and non-resonant energization (Kletzing, 1994) of electrons and both test particle (Chaston et al., 2002) and selfconsistent flux tube simulations (Watt et al., 2005; 2006) illustrate a very good correspondence with satellite observations. Electron trapping effects between the wave potential of the kinetic Alfven and the magnetic mirror of the dipolar magnetic field are also thought to lead to substantial electron energization (Watt and Rankin, 2009; Artemyev et al., 2015; 2016). While the parallel electric field in KAWs is directly proportional to the electron temperature, it is inversely proportional to the ion temperature and so the high values of the latter can act to limit the electron energization (Chaston et al., 2003; Damiano et al. 2015; 2016). Thus stochastic ion heating by kinetic Alfvén waves (Johnson and Cheng, 2001) may act as a regulating mechanism of the broadband auroral emissions (Damiano et al., 2015).

The broadband aurora peak at substorm onset (e.g. Wing et al, 2013) and observations (Keiling et al., 2003) illustrate substantial Alfvénic Poynting flux on both the nightside and within the cusp. In the magnetotail, both observations (e.g. Chaston et al., 2012) and MHD (Zhang et al., 2012) and hybrid (Cheng et al., 2020) illustrate the presence and generation of kinetic Alfvén waves within reconnection driven fast flows where the energy then propagates along the magnetic field lines to the ionosphere. **The exact details of the transfer of wave energy to dispersive (kinetic) scales to facilitate the energization is not completely resolved.** The distribution of Alfvénic energy in the broadband aurora illustrates a power law distribution (Chaston et al. 2008) that is often associated with a turbulent cascade and similar power law distributions are also evident in hybrid model simulations (Cheng et al., 2020). Phase mixing effects (e.g. Lysak and Song, 2000; 2008; Mann et al. 1995; Damiano et al., 2003) and ionospheric feedback (e.g. Lysak, 1991; Streltsov and Lotko, 2005) are also thought to contribute to the cross-scale coupling of wave energy to dispersive scales. Observations also illustrate quasi-static systems of field aligned currents are able to form from Alfvenic regions (Hull et al., 2010) which suggests that these regions may be an early stage of development for quasi-static systems, but the details are not fully understood.

Auroral forms associated with discrete precipitation:

As mentioned above, discrete auroral forms result from upward field-aligned currents. The more intense the FAC is, the larger the field-aligned potential drop it leads to (Knight 1973), and thus

the more significant the discrete aurora is. Therefore, the major sources of discrete precipitation are intense FAC-carrying dynamic phenomena in the magnetosphere. On the dayside, these phenomena are flux transfer events generated by magnetopause reconnection, and their FACs lead to discrete poleward-moving auroral forms (Sandholt et al., 1992). On the nightside, the magnetotail reconnection drives the dynamic phenomena. When the reconnection ejecta first appears near the reconnection site, its intense FAC leads to a discrete auroral known as the poleward boundary intensification (Lyons et al., 1999). When the ejecta travel earthward as a flow channel, its discrete auroral form is a streamer (Nakamura et al., 2001). When the ejecta arrives at the inner edge of the plasma sheet, it will lead to enhanced FACs called embedded Region 1 and 2 currents, which cause bright, east-west aligned discrete auroral arcs (Liu et al., 2021).

A discrete arc is collocated with a narrow region of very high conductivity because of its electron precipitation. This conductivity will lead to intense polarization effect around the arc, and the resultant electric field and flows may significantly impact the M-I system. For example, the high conductivity arc caused by the embedded Region 2 current in the dawn sector leads to a dawnside auroral polarization stream, an eastward flow of several km/s, immediately poleward of the arc (Liu et al., 2020). This flow has a steep gradient at the edge of the arc and maps to the magnetotail transition region. The flow and its gradient, which directly result from ionospheric conductivity distribution, can lead to instabilities responsible for dramatic reconfigurations of the M-I system—auroral Omega bands and substorm onset (Liu et al., 2018; Lyons et al., 2021). **Therefore, it is important to understand how different auroral forms occur and propagate in relation to geomagnetic activity.**

2.2. Effects of magnetospheric particle precipitation on the ionospheric conductance 2.2.1. Role of diffuse aurora on ionospheric conductance

The diffuse precipitating electron flux can be used to infer auroral ionospheric conductance during quiet geomagnetic conditions. Figure 4 from Khazanov et al., 2019 shows an example of RCM-E simulations results of Hall conductance intensity at 850 km mapped to the equatorial plane with and without using modifications from the SuperThermal Electron Transport (STET) model that accounts for complex backscatter effects during the early main phase and late recovery phase of a large storm. The conductance was calculated using Robinson et al. (1987) equations. One can see the stark difference in conductance depending on whether the backscattering electrons are included (with STET) or not (without STET)—and therefore how important capturing the various inputs is to correctly modeling conductance.

Diffuse electron precipitation has also been found to play an important role in the generation of mesoscale ionospheric structures. For example, using the MAGE model and controlled numerical experiments, Lin et al. (2021) reveal that properly characterizing the relative location of diffuse electron precipitation to the Region-2 field-aligned current is critical to resolving the mesoscale flow structures of subauroral polarization streams, which would require a treatment of kinetics based approaches that are underlying to the generation of diffuse electron precipitation.

Diffuse ion precipitation needs to be taken into account as it can augment the conductance on the dusk sector and alter electric potential patterns on a global scale (Zhu et al. 2021; Tian et al. 2022). The addition of ion precipitation-induced conductance would further cause feedback effects on magnetospheric dynamics and subsequently wave excitation. Figure 3 from Tian et al., 2023 shows an example of RAM-SCB-GLOW coupled simulation results of precipitating particle flux (both electrons and protons) and E/F region conductivity with and without adding the EMIC wave-

induced ion precipitation. The conductivity in the E/F region on the dusk sector is significantly enhanced.

2.2.2. Role of discrete aurora on ionospheric conductance

Low-Earth-Orbiting satellites (like DMSP) are able to observe the required energy flux and mean energy of the precipitating populations in order to calculate conductance. However, their orbits necessarily mean that they only observe the same area for a limited amount of time (minutes to 10s of minutes), meaning they cannot observe the storm or substorm evolution. Instead, previous studies have relied on statistics using solar wind parameters as input to estimate the location and intensity of the discrete aurora (e.g., the Oval Variation, Assessment, Tracking, Intensity, and Online Nowcasting (OVATION) models (e.g., Newell et al., 2009, 2010a, 2010b). To avoid the dependence on statistics, 2D auroral imaging capable of resolving mesoscale aurora (10s to 100s km wide) is key. Some work has begun in this direction, utilizing the THEMIS all-skyimager mosaic across Canada and Alaska to monitor and resolve the aurora on mesoscales at 3 s cadence for hours at a time (e.g., Gabrielse et al., 2021; Nishimura et al., 2021). Such work is promising and is demonstrated in Figure 8 of Gabrielse et al. 2021, which compares the Hall conductance determined using ASI energy flux and mean energies as inputs to two models (the B3C auroral transport code and the Robinson formulae) with the Poker Flat incoherent scatter radar (PFISR)-observed Hall conductance. The observational data are needed to extract spatial and spectral information about the monoenergetic precipitating spectra as input to auroral transport models to calculate ionospheric conductivity.

2.2.3. Role of Field-aligned currents on ionospheric conductance

Ultimately, the aurora is an electrical phenomenon that is closely associated with magnetospheric and ionospheric currents linked by field-aligned currents. The correlation between FACs and auroral conductances was examined by Ridley et al. (2004) using the Assimilative Mapping of Ionospheric Electrodynamics model. This simple relationship between conductances and FACs was further refined by Mukhopadhyay et al. (2020). Robinson et al. (2020) derived relationships between field-aligned current and conductances using observations from AMPERE and the PFISR. The correlations were strongly dependent on magnetic local time. Wang and Zou (2022) performed a similar study based on PFISR and the SWARM satellites. Figure 11 from Wang and Zou (2021) compares the results from these different approaches. Although there are some differences, all show that conductances can be estimated from the field-aligned current densities in both upward and downward current regions. This provides a very powerful tool for modeling auroral electrodynamic parameters. By combining the FACs with the derived conductances, the electric potential and electric fields can be calculated. Robinson et al. (2021) showed that this technique can be used to replicate the SuperMAG magnetic indices. However, this approach is unable to capture the fine spatial and temporal scale structures in conductances associated with extreme and dynamic auroral events. This drives the need for in situ measurements of precipitating particles and other electrodynamic parameters to complement the large-scale scale view made possible by global field-aligned current maps from AMPERE and its current operation on Iridium NEXT.

3. Conclusion

In summary, there are various open questions about the origins of diffuse and discrete aurora and their role on the ionospheric conductance which require further attention in the next decade to further our understanding of the coupled Magnetosphere-Ionosphere-Thermosphere system and our capabilities of forecasting space weather.

References

Ahn, B.-H., A. Richmond, Y. Kamide, H. Kroehl, B. Emery, O. de la Beaujardiére, and S.-I. Akasofu (1998), An ionospheric conductance model based on ground magnetic disturbance data, J. Geophys. Res., 103, 14,769.

Alfven, H. (1963). Cosmical Electrodynamics. Рипол Классик.

Alho, M., Battarbee, M., Pfau-Kempf, Y., Khotyaintsev, Yu. V., Nakamura, R., et al. (2022). Electron signatures of reconnection in a global eVlasiator simulation. Geophysical Research Letters, 49, e2022GL098329. https://doi.org/10.1029/2022GL098329.

Artemyev, A. v., Orlova, K. G., Mourenas, D., Agapitov, O. v., & Krasnoselskikh, V. v. (2013). Electron pitch-angle diffusion: resonant scattering by waves vs. nonadiabatic effects. Annales Geophysicae, 31(9), 1485–1490. https://doi.org/10.5194/angeo-31-1485-2013

Artemyev, A. V., R. Rankin, & M. Blanco (2015), Electron trapping and acceleration by kinetic Alfvén waves in the inner magnetosphere, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021781.

Artemyev, A. V., R. Rankin, & I. Y. Vasko (2016), Upper limit of electron fluxes generated by kinetic Alfvén waves in Maxwellian plasma, J. Geophys. Res. Space Physics, 121, doi:10.1002/2016JA023076.

Bao, S., Toffoletto, F., Yang, J., Sazykin, S., & Wiltberger, M. (2021). Coupling the Rice convection model-equilibrium to the Lyon-Fedder-Mobarry global magnetohydrodynamic model. Journal of Geophysical Research: Space Physics, 126, e2020JA028973. https://doi.org/10.1029/2020JA028973

Buchert, S. C., Tsuda, T., Fujii, R., & Nozawa, S. (2008). The Pedersen current carried by electrons: a non-linear response of the ionosphere to magnetospheric forcing (Vol. 26). www.ann-geophys.net/26/2837/2008/

Buzulukova, N., Fok, M.-C., Pulkkinen, A., Kuznetsova, M., Moore, T. E., Glocer, A., Brandt, P. C., Tóth, G., and Rastätter, L. (2010), Dynamics of ring current and electric fields in the inner magnetosphere during disturbed periods: CRCM–BATS-R-US coupled model, J. Geophys. Res., 115, A05210, doi:10.1029/2009JA014621.

Capannolo, L., Li, W., Ma, Q., Chen, L., Shen, X. C., Spence, H. E., Sample, J., Johnson, A., Shumko, M., Klumpar, D. M., & Redmon, R. J. (2019). Direct Observation of Subrelativistic Electron Precipitation Potentially Driven by EMIC Waves. Geophysical Research Letters, 46(22), 12711–12721. https://doi.org/10.1029/2019GL084202

Capannolo, L., Li, W., Millan, R., Smith, D., Sivadas, N., Sample, J., & Shekhar, S. (2022). Relativistic Electron Precipitation Near Midnight: Drivers, Distribution, and Properties. Journal of

- Geophysical Research: Space Physics, 127(1), e2021JA030111. https://doi.org/10.1029/2021JA030111
- Chartier, A. T., J. D. Huba, D. P. Sitaram, V. G. Merkin, B. J. Anderson, and S. K. Vines (2022), High-latitude electrodynamics specified in SAMI3 using AMPERE field-aligned currents, Space Weather, 20, e2021SW002890, doi:10.1029/2021SW002890.
- Chaston, C. C., Bonnell, J. W., Peticolas, L. M., Carlson, C. W., McFadden, J. P., & Ergun, R. E. (2002). Driven Alfvén waves and electron acceleration: A FAST case study. Geophysical Research Letters, 29(11), 1535. https://doi.org/10.1029/2001GL013842
- Chaston, C. C., J. W. Bonnell, C. W. Carlson, J. P. McFadden, R. J. Strangeway, and R. E. Ergun (2003), Kinetic effects in the acceleration of auroral electrons in small scale Alfven waves: A FAST case study, Geophys. Res. Lett., 30, 1289, doi:10.1029/2002GL015777.
- Chaston, C. C., C. Salem, J. W. Bonnell, C. W. Carlson, R. E. Ergun, R. J. Strangeway, and J. P. McFadden (2008), The Turbulent Alfvénic Aurora, Physical Review Letters, 100(17), 175,003–+, doi:10.1103/PhysRevLett.100.175003.
- Chaston, C. C., J. W. Bonnell, L. Clausen, and V. Angelopoulos (2012), Energy transport by kinetic-scale electromagnetic waves in fast plasma sheet flows, J. Geophys. Res., 117, A09202, doi:10.1029/2012JA017863.
- Chen, Y., Tóth, G., Hietala, H., Vines, S. K., Zou, Y., Nishimura, Y. T., et al. (2020). Magnetohydrodynamic with embedded particle-in-cell simulation of the geospace environment modeling dayside kinetic processes challenge event. Earth and Space Science. 7, e2020EA001331. https://doi.org/10.1029/2020EA001331
- Chen, M. W., Lemon, C. L., Hecht, J., Sazykin, S., Wolf, R. A., Boyd, A., & Valek, P. (2019). Diffuse Auroral Electron and Ion Precipitation Effects on RCM-E Comparisons With Satellite Data During the 17 March 2013 Storm. Journal of Geophysical Research: Space Physics, 124(6), 4194–4216. https://doi.org/10.1029/2019JA026545
- Chen, M. W., Lemon, C. L., Orlova, K., Shprits, Y., Hecht, J., & Walterscheid, R. L. (2015). Comparison of simulated and observed trapped and precipitating electron fluxes during a magnetic storm: SIMULATED AND OBSERVED ELECTRON FLUXES. Geophysical Research Letters, 42(20), 8302–8311. https://doi.org/10.1002/2015GL065737
- Chen, M. W. (2005). Storm time distributions of diffuse auroral electron energy and X-ray flux: Comparison of drift-loss simulations with observations. Journal of Geophysical Research, 110(A3). https://doi.org/10.1029/2004JA010725
- Chen, M. W., & Schulz, M. (2001). Simulations of storm time diffuse aurora with plasmasheet electrons in strong pitch angle diffusion. Journal of Geophysical Research: Space Physics, 106(A2), 1873–1886. https://doi.org/10.1029/2000JA000161

- Cheng, L., Lin, Y., Perez, J. D., Johnson, J. R., & Wang, X. (2020). Kinetic Alfvén waves from magnetotail to the ionosphere in global hybrid simulation associated with fast flows. Journal of Geophys- ical Research: Space Physics, 125, e2019JA027062. https://doi.org/10.1029/2019JA027062
- Chiu, Y. T., Newman, A. L., & Cornwall, J. M. (1981). On the structures and mapping of auroral electrostatic potentials. Journal of Geophysical Research: Space Physics, 86(A12), 10029–10037. https://doi.org/10.1029/JA086iA12p10029
- Conde, M., Craven, J. D., Immel, T., Hoch, E., Stenbaek-Nielsen, H., Hallinan, T., Smith, R. W., Olson, J., Sun, W., Frank, L. A., Sigwarth, J. (2001). Assimilated observations of thermospheric winds, the aurora, and ionospheric currents over Alaska. Journal of Geophysical Research, 106(A6), 10,493–10,508.
- Connor, H. K., Raeder, J., Sibeck, D. G., Trattner, K. J. (2015). Relation between cusp ion structures and dayside reconnection for four IMF clock angles: OpenGGCM-LTPT results. Journal of Geophysical Research: Space Physics, 120(6): 4890–4906. https://doi.org/10.1002/2015JA021156.
- Damiano, P. A., R. D. Sydora, & J. C. Samson (2003), Hybrid magnetohydrodynamic-kinetic model of standing shear Alfvén waves, J. Plasma Phys., 69, 277–304.
- Damiano, P. A., J. R. Johnson, & C. C. Chaston (2015), Ion temperature effects on magnetotail Alfvén wave propagation and electron energization, J. Geophys. Res. Space Physics, 120, 5623–5632, doi:10.1002/2015JA021074.
- Damiano, P. A., J. R. Johnson, & C. C. Chaston (2016), Ion gyroradius effects on particle trapping in kinetic Alfvén waves along auroral field lines, J. Geophys. Res. Space Physics, 121, 10,831–10,844, doi:10.1002/2016JA022566.
- Damiano, P. A., Chaston, C. C., Hull, A. J., & Johnson, J. R. (2018). Electron distributions in kinetic scale field line resonances: A comparison of simulations and observations. Geophysical ResearchLetters, 45, 5826–5835. https://doi.org/10.1029/2018GL077748
- Deng, Y., Fuller-Rowell, T. J., Ridley, A. J., Knipp, D., and Lopez, R. E. (2013), Theoretical study: Influence of different energy sources on the cusp neutral density enhancement, J. Geophys. Res. Space Physics, 118, 2340-2349, doi:10.1002/jgra.50197.
- Dimant, Y. S., Khazanov, G. V., & Oppenheim, M. M. (2021). Effects of electron precipitation on E-region instabilities: Theoretical analysis. Journal of Geophysical Research: Space Physics, 126, e2021JA029884. https://doi.org/10.1029/2021JA029884
- Dombeck, J., Cattell, C., Prasad, N., Meeker, E., Hanson, E., & McFadden, J. (2018). Identification of Auroral Electron Precipitation Mechanism Combinations and Their Relationships to Net Downgoing Energy and Number Flux. Journal of Geophysical Research: Space Physics, 123(12), 10,064-10,089. https://doi.org/10.1029/2018JA025749

Evans, J.E., R.G. Johnson, R.D. Sharp, J.B. Reagan, Recent results from satellite measurements of low-energy particles precipitated at high latitudes, Space Science Reviews, 10.1007/BF00215601, 7, 2-3, (263-277), (1967).

Fogg, A. R., M. Lester, T. K. Yeoman, A. G. Burrell, S. M. Imber, S. E. Milan, E. G. Thomas, H. Sangha, and B. J. Anderson (2020), An improved estimation of SuperDARN Heppner-Maynard boundaries using AMPERE data, J. Geophys. Res. Space Phys., 125(5), doi:10.1029/2019JA027218.

Fridman, M., & Lemaire, J. (1980). Relationship between auroral electrons fluxes and field aligned electric potential difference. Journal of Geophysical Research: Space Physics, 85(A2), 664–670. https://doi.org/10.1029/JA085iA02p00664

Fuller-Rowell, T. J., & Evans, D. S. (1987). Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data. Journal of Geophysical Research, 92, 7606–7618. https://doi.org/10.1029/JA092iA07p07606

Gabrielse C., T. Nishimura, M. Chen, J. H. Hecht, S. R. Kaeppler, D. M. Gillies, A. S. Reimer, L. R. Lyons, Y. Deng, E. Donovan and J. S. Evans (2021), Estimating Precipitating Energy Flux, Average Energy, and Hall Auroral Conductance From THEMIS All-Sky-Imagers With Focus on Mesoscales, Frontiers in Physics, Vol 9, DOI: 10.3389/fphy.2021.744298, https://www.frontiersin.org/article/10.3389/fphy.2021.744298

Galand, M., and Richmond, A. D. (2001), Ionospheric electrical conductances produced by auroral proton precipitation, J. Geophys. Res., 106(A1), 117–125, doi:10.1029/1999JA002001.

Germany, G. A., M. R. Torr, D. G. Torr, and P. G. Richards (1994b), Use of FUV Auroral Emissions as Diagnostic Indicators, J. Geophys. Res., 99(A1), 383–388.

Grandin, M., Turc, L., Battarbee, M., Ganse, U, Johlander, A, et al. (2020). Hybrid-Vlasov simulation of auroral proton precipitation in the cusps: Comparison of northward and southward interplanetary magnetic field driving. Journal of Space Weather and Space Climate, 10, 51. https://doi.org/10.1051/swsc/2020053.

Grubbs II, G., Michell, R., Samara, M., Hampton, D., & Jahn, J.-M. (2018). Predicting electron population characteristics in 2-D using multispectral ground-based imaging. Geophysical Research Letters, 44. https://doi.org/10.1002/2017GL075873

Han, D.-S., et al. (2017), Coordinated observations of two types of diffuse auroras near magnetic local noon by Magnetospheric Multiscale mission and ground all-sky camera, Geophys. Res. Lett., 44, 8130–8139, doi:10.1002/2017GL074447.

Hardy, D. A., Gussenhoven, M. S., & Holeman, E. (1985). A statistical model of auroral electron precipitation. Journal of Geophysical Research, 90(A5), 4229—4248. https://doi.org/10.1029/JA090iA05p04229Galand, M., Richmond, A.D., 2001. Ionospheric

electrical conductances produced by auroral proton precipitation. Journal of Geophysical Research: Space Physics 106, 117–125. https://doi.org/10.1029/1999JA002001

Hosokawa, K., & Ogawa, Y. (2010). Pedersen current carried by electrons in auroral D-region. Geophysical Research Letters, 37(18), n/a-n/a. https://doi.org/10.1029/2010GL044746
Jaynes, A.N., Lessard, M.R., Rodriguez, J.V., Donovan, E., Loto'Aniu, T.M. and Rychert, K., 2013. Pulsating auroral electron flux modulations in the equatorial magnetosphere. Journal of Geophysical Research: Space Physics, 118(8), pp.4884-4894.

Hull, A. J., M. Wilber, C. C. Chaston, J. W. Bonnell, J. P. McFadden, F. S. Mozer, M. Fillingim, & M. L. Goldstein (2010), Time development of field-aligned currents, potential drops, and plasma associated with an auroral poleward boundary intensification, J. Geophys. Res., 115, A06211, doi:10.1029/2009JA014651.

Janhunen, P., & Olsson, A. (1998). The current-voltage relationship revisited: Exact and approximate formulas with almost general validity for hot magnetospheric electrons for bi-Maxwellian and kappa distributions. Annales Geophysicae, 16(3), 292–297. https://doi.org/10.1007/s00585-998-0292-6

Jaynes, A. N., Lessard, M. R., Rodriguez, J. V., Donovan, E., Loto'aniu, T. M., and Rychert, K. (2013), Pulsating auroral electron flux modulations in the equatorial magnetosphere, J. Geophys. Res. Space Physics, 118, 4884–4894, doi:10.1002/jgra.50434.

Johnson, J.R. and C.Z. Cheng (2001), Stochastic ion heating at the magnetopause due to kinetic Alfven waves, Geophysical Research Letters, 28, 4421-4424, doi:10.1029/2001GL013509.

Jones, S.L., Lessard, M.R., Rychert, K., Spanswick, E., Donovan, E. and Jaynes, A.N., 2013. Persistent, widespread pulsating aurora: A case study. Journal of Geophysical Research: Space Physics, 118(6), pp.2998-3006.

Kaeppler, S. R., Hampton, D. L., Nicolls, M. J., Strømme, A., Solomon, S. C., Hecht, J. H., and Conde, M. G. (2015), An investigation comparing ground-based techniques that quantify auroral electron flux and conductance, J. Geophys. Res. Space Physics, 120, 9038–9056, doi:10.1002/2015JA021396.

Kamide, Y., and J. F. Vickrey, Relative contribution of ionospheric conductivity and electric field to the auroral electrojets, J. Geophys. Res., 88, 7989–7996, 1983.

Kasahara, S., Miyoshi, Y., Yokota, S., Mitani, T., Kasahara, Y., Matsuda, S., Kumamoto, A., Matsuda, A., Kazama, Y., Frey, H.U. and Angelopoulos, V., 2018. Pulsating aurora from electron scattering by chorus waves. Nature, 554(7692), pp.337-340.

Keiling, A., Wygant, J. R., Cattell, C. A., Mozer, F. S., & Russell, C. T. (2003). The global morphology of wave Poynting flux: Powering the aurora. Science, 299(5605), 383–386. https://doi.org/10.1126/science.1080073

Kervalishvili, G. N. and Lühr, H.: The relationship of thermospheric density anomaly with electron temperature, small-scale FAC, and ion up-flow in the cusp region, as observed by CHAMP and DMSP satellites, Ann. Geophys., 31, 541–554, https://doi.org/10.5194/angeo-31-541-2013, 2013.

Khazanov, G. V., & Chen, M. W. (2021). Why Atmospheric Backscatter Is Important in the Formation of Electron Precipitation in the Diffuse Aurora. Journal of Geophysical Research: Space Physics, 126(5), e2021JA029211. https://doi.org/10.1029/2021JA029211

Khazanov, G. V., Chen, M. W., Lemon, C. L., & Sibeck, D. G. (2019). The Magnetosphere-Ionosphere Electron Precipitation Dynamics and Their Geospace Consequences During the 17 March 2013 Storm. Journal of Geophysical Research: Space Physics, 124(8), 6504–6523. https://doi.org/10.1029/2019JA026589

Khazanov, G. V., Tripathi, A. K., Sibeck, D., Himwich, E., Glocer, A., & Singhal, R. P. (2015). Electron distribution function formation in regions of diffuse aurora: ELECTRON DISTRIBUTION IN DIFFUSE AURORA. Journal of Geophysical Research: Space Physics, 120(11), 9891–9915. https://doi.org/10.1002/2015JA021728

Khazanov, G. V., Liemohn, M. W., Krivorutsky, E. N., & Moore, T. E. (1998). Generalized kinetic description of a plasma in an arbitrary field-aligned potential energy structure. Journal of Geophysical Research: Space Physics, 103(A4), 6871–6889. https://doi.org/10.1029/97JA03436

Kirkwood, S., Eliasson, L., & Haggstrom, I. (1989). Enhanced Electron Density Layers in the High-Latitude

Lower

Ionosphere.

http://www.iaea.org/inis/collection/NCLCollectionStore/ Public/21/052/21052687.pdf#page=53

Knight, S. (1973). Parallel electric fields. Planetary and Space Science, 21(5), 741–750. https://doi.org/10.1016/0032-0633(73)90093-7

Kletzing, C. A. (1994). Electron acceleration by kinetic Alfvén waves. Journal of Geophysical Research, 99(A6), 11095–11104. https://doi.org/10.1029/94JA00345

Kunduri, B. S. R., J. B. H. Baker, J. M. Ruohoniemi, A. J. Coster, S. K. Vines, B. J. Anderson, S. G. Shepherd, and A. T. Chartier (2021), An examination of magnetosphere-ionosphere influences during a SAPS event, Geophys. Res. Lett., 48, e2021GL095751, doi:10.1029/2021GL095751.

Laundal, K.M., Cnossen, I., Milan, S.E. et al. North–South Asymmetries in Earth's Magnetic Field. Space Sci Rev 206, 225–257 (2017). https://doi.org/10.1007/s11214-016-0273-0

Lemaire, J., & Scherer, M. (1974). Ionosphere-plasmasheet field-aligned currents and parallel electric fields. Planetary and Space Science, 22(11), 1485–1490. https://doi.org/10.1016/0032-0633(74)90013-0

Li, W.-H., Raeder, J., Thomsen, M. F., Lavraud, B., Lü, L.-Z., and Liang, E.-W. (2017), The formation of superdense plasma sheet in association with the IMF turning from northward to southward, J. Geophys. Res. Space Physics, 122, 2936–2955, doi:10.1002/2016JA023373.

- Lin, D., Wang, W., Scales, W. A., Pham, K., Liu, J., Zhang, B., et al. (2019). SAPS in the 17 March 2013 storm event: Initial results from the coupled magnetosphere-ionosphere-thermosphere model. Journal of Geophysical Research: Space Physics, 124, 6212–6225. https://doi.org/10.1029/2019JA026698
- Lin, D., Sorathia, K., Wang, W., Merkin, V., Bao, S., Pham, K., et al. (2021). The role of diffuse electron precipitation in the formation of subauroral polarization streams. Journal of Geophysical Research: Space Physics, 126, e2021JA029792. https://doi.org/10.1029/2021JA029792
- Lin, Y., and Wang, X. (2005), Three-dimensional global hybrid simulation of dayside dynamics associated with the quasi-parallel bow shock, J. Geophys. Res., 110, A12216, doi:10.1029/2005JA011243.
- Lin, Y., Wang, X. Y., Lu, S., Perez, J. D., and Lu, Q. (2014), Investigation of storm time magnetotail and ion injection using three-dimensional global hybrid simulation, J. Geophys. Res. Space Physics, 119, 7413–7432, doi:10.1002/2014JA020005.
- Liu, J., Wang, W., Oppenheim, M., Dimant, Y., Wiltberger, M., and Merkin, S. (2016), Anomalous electron heating effects on the E region ionosphere in TIEGCM, Geophys. Res. Lett., 43, 2351–2358, doi:10.1002/2016GL068010.
- Liu, J., Lyons, L. R., Archer, W. E., Gallardo-Lacourt, B., Nishimura, Y., Zou, Y., Gabrielse, C., & Weygand, J. M. (2018). Flow shears at the poleward boundary of omega bands observed during conjunctions of Swarm and THEMIS ASI. Geophysical Research Letters, 45, 1218–1227. https://doi.org/10.1002/2017gl076485
- Liu, J., Lyons, L. R., Wang, C.-P., Hairston, M. R., Zhang, Y., & Zou, Y. (2020). Dawnside auroral polarization streams. Journal of Geophysical Research: Space Physics, 125, e2019JA027742. https://doi.org/10.1029/2019JA027742
- Liu, J., Lyons, L. R., Wang, C.-P., Ma, Y., Strangeway, R. J., Zhang, Y., et al. (2021). Embedded Regions 1 and 2 field-aligned currents: Newly recognized from low-altitude spacecraft observations. Journal of Geophysical Research: Space Physics, 126, e2021JA029207. https://doi.org/10.1029/2021JA029207
- Lotko, W., & Zhang, B. (2018). Alfvénic heating in the cusp ionosphere-thermosphere. Journal of Geophysical Research: Space Physics, 123, 10,368– 10,383. https://doi.org/10.1029/2018JA025990
- Lu, G. (2016). Energetic and Dynamic Coupling of the Magnetosphere-Ionosphere-Thermosphere System (pp. 61–77). American Geophysical Union (AGU). https://doi.org/10.1002/9781119066880.ch5
- Lui, A. T. Y., Venkatesan, D., Anger, C. D., Akasofu, S.-I., Heikkila, W. J., Winningham, J. D., & Burrows, J. R. (1977). Simultaneous observations of particle precipitations and auroral

emissions by the ISIS 2 satellite in the 1900–2400 MLT sector. Journal of Geophysical Research, 82(16), 2210–2226. https://doi.org/10.1029/JA082i016p02210

Lundin, R., & Eliasson, L. (1991). Auroral energization processes. Annales Geophysicae, 9, 202–223.

Lyons, L. R., Evans, D. S., & Lundin, R. (1979). An observed relation between magnetic field aligned electric fields and downward electron energy fluxes in the vicinity of auroral forms. Journal of Geophysical Research: Space Physics, 84(A2), 457–461. https://doi.org/10.1029/JA084iA02p00457

Lyons, L. R., T. Nagai, G. T. Blanchard, J. C. Samson, T. Yamamoto, T. Mukai, A. Nishida, S. Kokubun, Association between Geotail plasma flows and auroral poleward boundary intensifications observed by CANOPUS photometers, J. Geophys. Res., 104, 4485, 1999.

Lyons, L. R., Liu, J., Nishimura, Y., Wang, C.-P., Reimer, A. S., Bristow, W. A., et al. (2021). Radar observations of flows leading to longitudinal expansion of substorm onset over Alaska. Journal of Geophysical Research: Space Physics, 126, e2020JA028148. https://doi.org/10.1029/2020JA028148

Lysak, R. L., & Lotko, W. (1996). On the kinetic dispersion relation for shear Alfvén waves. Journal of Geophysical Research, 101(A3), 5085–5094. https://doi.org/10.1029/95JA03712

Lysak, R. L., and Y. Song (2000), The Role of Alfvén Waves in the Formation of Auroral Parallel Electric Fields, in Magnetospheric Current Systems, edited by Ohtani, S.-I., Fujii, R., Hesse, M., & Lysak, R. L., pp. 147–+, the American Geophysical Union.

Lysak, R. L., and Y. Song (2008), Propagation of kinetic Alfvén waves in the ionospheric Alfvén resonator in the presence of density cavities, Geophys. Res. Lett., 352, L20,101, doi: 10.1029/2008GL035728.

Lummerzheim, D., Rees, H. M., Craven, J. D., Frank, L. A., (1991), Ionospheric conductances derived from DE-1 auroral images, Journal of Atmospheric and Terrestrial Physics, Volume 53, Issues 3–4, 281-292, https://doi.org/10.1016/0021-9169(91)90112-K

Marchaudon, A., and Blelly, P.-L. (2015), A new interhemispheric 16-moment model of the plasmasphere-ionosphere system: IPIM. Journal of Geophysical Research: Space Physics, 120, 5728–5745, doi:10.1002/2015JA021193.

Maliniemi, V., Arsenovic, P., Seppälä, A., & Nesse Tyssøy, H. (2022). The influence of energetic particle precipitation on Antarctic stratospheric chlorine and ozone over the 20th century. Atmospheric Chemistry and Physics, 22(12), 8137–8149. https://doi.org/10.5194/ACP-22-8137-2022

Matsuo, T., (2020), Recent Progress on Inverse and Data Assimilation Procedure for High-Latitude Ionospheric Electrodynamics, in Ionospheric Multi-Spacecraft Analysis Tools, ISSI

Scientific Report Series, 17, edited by M. Dunlop and H. Lühr, Springer, pp. 219 – 232, Cham, Switzerland, doi:10.1007/978-3-030-26732-2 10.

Maute, A., A. D. Richmond, G. Lu, D. Knipp, Y. Shi, and B. J. Anderson (2021), Magnetosphere-ionosphere coupling via prescribed field-aligned current simulated by the TIEGCM, J. Geophys. Res. Space Phys., 126(1), doi:10.1029/2020JA028665.

McGranaghan, R., Knipp, D. J., Matsuo, T., Godinez, H., Redmon, R. J., Solomon, S. C., & Morley, S. K. (2015). Modes of high-latitude auroral conductance variability derived from DMSP energetic electron precipitation observations: Empirical orthogonal function analysis, J. Geophys. Res. Space Physics, 120, 11,013–11,031, doi:10.1002/2015JA021828.

McGranaghan, R., Knipp, D. J., and Matsuo, T. (2016), High-latitude ionospheric conductivity variability in three dimensions, Geophys. Res. Lett., 43, 7867–7877, doi:10.1002/2016GL070253. Mozer, F. S., & Hull, A. (2001). Origin and geometry of upward parallel electric fields in the auroral acceleration region. Journal of Geophysical Research: Space Physics, 106(A4), 5763–5778. https://doi.org/10.1029/2000JA900117

McIlwain, C. E. (1960), Direct measurement of particles producing visible auroras, J. Geophys. Res., 65(9), 2727–2747, doi:10.1029/JZ065i009p02727.

Miyoshi, Y., Hosokawa, K., Kurita, S., Oyama, S.I., Ogawa, Y., Saito, S., Shinohara, I., Kero, A., Turunen, E., Verronen, P.T. and Kasahara, S., 2021. Penetration of MeV electrons into the mesosphere accompanying pulsating aurorae. Scientific reports, 11(1), pp.1-9.

Miyoshi, Y., Saito, S., Kurita, S., Asamura, K., Hosokawa, K., Sakanoi, T., Mitani, T., Ogawa, Y., Oyama, S.I., Tsuchiya, F. and Jones, S.L., 2020. Relativistic electron microbursts as high-energy tail of pulsating aurora electrons. Geophysical Research Letters, 47(21), p.e2020GL090360.

Mukhopadhyay, A., Welling, D. T., Liemohn, M. W., Ridley, A. J., Chakraborty, S., & Anderson, B. J. (2020). Conductance Model for Extreme Events: Impact of auroral conductance on space weather forecasts. Space Weather, 18, e2020SW002551. https://doi.org/10.1029/2020SW002551

Mukhopadhyay, A., Welling, D., Liemohn, M., Ridley, A., Burleigh, M., Wu, C., et al. (2022). Global driving of auroral precipitation: 1. Balance of sources. Journal of Geophysical Research: Space Physics, 127, e2022JA030323. https://doi.org/10.1029/2022JA030323

Nakamura, R., Baumjohann, W., Schödel, R., Brittnacher, M., Sergeev, V. A., Kubyshkina, M., Mukai, T., and Liou, K. (2001), Earthward flow bursts, auroral streamers, and small expansions, J. Geophys. Res., 106(A6), 10791–10802, doi:10.1029/2000JA000306.

Newell, P. T., Sotirelis, T., & Wing, S. (2009). Diffuse, monoenergetic, and broadband aurora: The global precipitation budget: GLOBAL PRECIPITATION BUDGET. *Journal of Geophysical Research: Space Physics*, 114(A9), n/a-n/a. https://doi.org/10.1029/2009JA014326

Newell PT, Sotirelis T, Liou K, Lee AR, Wing S, Green J, et al. Predictive Ability of Four Auroral Precipitation Models as Evaluated Using Polar UVI Global Images. Space Weather (2010) 8:a–n. doi:10.1029/2010sw000604

Newell PT, Lee AR, Liou K, Ohtani S-I, Sotirelis T, Wing S. Substorm Cycle Dependence of Various Types of aurora. J Geophys Res (2010) 115:a–n. doi:10.1029/2010ja015331

Ni, B., Thorne, R.M., Zhang, X. et al. Origins of the Earth's Diffuse Auroral Precipitation. Space Sci Rev 200, 205–259 (2016). https://doi.org/10.1007/s11214-016-0234-7

Ni, B., Liang, J., Thorne, R. M., Angelopoulos, V., Horne, R. B., Kubyshkina, M., Spanswick, E., Donovan, E. F., & Lummerzheim, D. (2012). Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the outer magnetosphere: A detailed case study. Journal of Geophysical Research, 117, A01218. https://doi.org/10.1029/2011JA017095

Nishimura, Y., Bortnik, J., Li, W., Thorne, R.M., Lyons, L.R., Angelopoulos, V., Mende, S.B., Bonnell, J.W., Le Contel, O., Cully, C. and Ergun, R., 2010. Identifying the driver of pulsating aurora. science, 330(6000), pp.81-84.

Nishimura Y, Deng Y, Lyons LR, McGranaghan RM, Zettergren MD. Multiscale Dynamics in the High-Latitude Ionosphere. In: C Huang, G Lu, Y Zhang, and LJ Paxton, editors. Ionosphere Dynamics and Applications (2021) p. 49–65. doi:10.1002/9781119815617.ch3

Nowada, M., A. Grocott, Q.-Q. Shi (2022), Ionospheric plasma flows associated with the formation of the distorted nightside end of a transpolar arc, Ann. Geophys., 40, 299-314, https://doi.org/10.5194/angeo-40-299-2022

Omidi, N., and Sibeck, D. G. (2007). Flux transfer events in the cusp. Geophysical Research Letters, 34(4), L04,106. https://doi.org/10.1029/2006GL028698.

Öztürk, D. S., K. Garcia-Sage, and H. K. Connor (2020), All hands on deck for ionospheric modeling, *Eos*, 101, https://doi.org/10.1029/2020E0144365. Published on 20 May 2020.

Palmroth, M., Janhunen, P., Germany, G., Lummerzheim, D., Liou, K., et al. (2006). Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations. Annales Geophysicae, 24(3), 861–872. https://doi.org/10.5194/angeo-24-861-2006.

Palmroth, M., Grandin, M., Sarris, T., Doornbos, E., Tourgaidis, S., et al. (2021). Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models. *Annales Geophysicae*, *39*, 189–237. https://doi.org/10.5194/angeo-39-189-2021.

Pedersen, M. N., H. Vanhamäki, A. T. Aikio, S. Käki, A. B. Workayehu, C. L. Waters, and J. W. Gjerloev (2021), Field-aligned and ionospheric currents by AMPERE and SuperMAG during HSS/SIR-driven storms, J. Geophys. Res. Space Phys., 127, e2021JA029437, doi:10.1029/2021JA029437.

- Pierrard, V. (1996). New model of magnetospheric current-voltage relationship. Journal of Geophysical Research: Space Physics, 101(A2), 2669–2675. https://doi.org/10.1029/95JA00476
- Pytte, T., & West, H. I. (1978). Ground-satellite correlations during presubstorm magnetic field configuration changes and plasma sheet thinning in the near-Earth magnetotail. Journal of Geophysical Research, 83(A8), 3791. https://doi.org/10.1029/ja083ia08p03791
- Reiff, P. H., Collin, H. L., Craven, J. D., Burch, J. L., Winningham, J. D., Shelley, E. G., Frank, L. A., & Friedman, M. A. (1988). Determination of auroral electrostatic potentials using high- and low-altitude particle distributions. Journal of Geophysical Research: Space Physics, 93(A7), 7441–7465. https://doi.org/10.1029/JA093iA07p07441
- Richmond, A. D., and A. Maute (2013), Ionospheric electrodynamics modeling, in Modeling the Ionosphere-Thermosphere System, Geophys. Monogr. 201, edited by J. Huba, R. Schunk, and G. Khazanov, pp. 57–71, AGU, Washington, D. C., doi:10.1029/2012GM001331
- Ridley, A. J., T. I. Gombosi, and D. L. DeZeeuw (2004), Ionospheric control of the magnetosphere: Conductance, Ann. Geophys., 22(2), 567–584, doi:10.5194/angeo-22-567-2004.
- Robinson, R.M., Vondrak, R.R., Miller, K., Dabbs, T., Hardy, D., 1987. On calculating ionospheric conductances from the flux and energy of precipitating electrons. Journal of Geophysical Research: Space Physics 92, 2565–2569. https://doi.org/10.1029/JA092iA03p02565
- Robinson, R. M., Kaeppler, S. R., Zanetti, L., Anderson, B., Vines, S. K., Korth, H., & Fitzmaurice, A. (2020). Statistical relations between auroral electrical conductances and field-aligned currents at high latitudes. Journal of Geophysical Research: Space Physics, 125, e2020JA028008. https://doi.org/10.1029/2020JA028008
- Robinson, R. M., Zanetti, L., Anderson, B., Vines, S., & Gjerloev, J. (2021). Determination of auroral electrodynamic parameters from AMPERE field-aligned current measurements. Space Weather, 19, e2020SW002677. https://doi.org/10.1029/2020SW002677
- Sadler, F. B., Lessard, M., Lund, E., Otto, A., and Luhr, H.: Auroral precipitation/ion upwelling as a driver of neutral density enhancement in the cusp, J. Atmos. Sol.-Terr. Phys., 87–88, 82–90, 2012
- Sandholt, P.E., Magnetopause plasma transients: mapping into the auroral ionosphere, IEEE Transactions on Plasma Science, 10.1109/27.199520, 20, 6, (715-725), (1992).
- Sarris, T. E., et al. (2020), Daedalus: a low-flying spacecraft for in situ exploration of the lower thermosphere–ionosphere, Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020
- Sergeev, V. A., Sazhina, E. M., Tsyganenko, N. A., Lundblad, J. Å., & Søraas, F. (1983). Pitch-angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere. Planetary and Space Science, 31(10), 1147–1155. https://doi.org/10.1016/0032-0633(83)90103-4

- Shprits, Y. Y., Elkington, S. R., Meredith, N. P., & Subbotin, D. A. (2008). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: Radial transport. Journal of Atmospheric and Solar-Terrestrial Physics, 70(14), 1679–1693. https://doi.org/10.1016/j.jastp.2008.06.008
- Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70(14), 1694–1713. https://doi.org/10.1016/j.jastp.2008.06.014
- Shreedevi, P. R., Yu, Y., Ni, B., Saikin, A., & Jordanova, V. K. (2021). Simulating the ion precipitation from the inner magnetosphere by H-band and He-band electromagnetic ion cyclotron Waves. Journal of Geophysical Research: Space Physics, 126, e2020JA028553. https://doi.org/10.1029/2020JA028553
- Sinnhuber, M., Nieder, H., & Wieters, N. (2012). Energetic Particle Precipitation and the Chemistry of the Mesosphere/Lower Thermosphere. Surveys in Geophysics, 33(6), 1281–1334. https://doi.org/10.1007/s10712-012-9201-3
- Sivadas, N., Semeter, J., Nishimura, Y., & Kero, A. (2017). Simultaneous Measurements of Substorm-Related Electron Energization in the Ionosphere and the Plasma Sheet. Journal of Geophysical Research: Space Physics, 122(10), 10,528-10,547. https://doi.org/10.1002/2017JA023995
- Sivadas, N., Semeter, J., Nishimura, Y., & Mrak, S. (2019). Optical Signatures of the Outer Radiation Belt Boundary. Geophysical Research Letters, 46(15), 8588–8596. https://doi.org/10.1029/2019GL083908
- Sivadas, N. (2020). Remote sensing of energetic electron precipitation. https://open.bu.edu/handle/2144/41486
- Sheng, C., Deng, Y., Lu, Y., and Yue, X. (2017), Dependence of Pedersen conductance in the E and F regions and their ratio on the solar and geomagnetic activities, Space Weather, 15, 484–494, doi:10.1002/2016SW001486.
- Solomon, S. C. (1993). Auroral electron transport using the Monte Carlo Method. Geophysical Research Letters, 20(3), 185–188. https://doi.org/10.1029/93GL00081
- Sorathia, K. A., Merkin, V. G., Panov, E. V., Zhang, B., Lyon, J. G., & Garretson, J., et al. (2020). Ballooning-interchange instability in the near-Earth plasma sheet and auroral beads: Global magnetospheric modeling at the limit of the MHD approximation. Geophysical Research Letters, 47, e2020GL088227. https://doi.org/10.1029/2020GL088227
- Shprits, Y. Y., Elkington, S. R., Meredith, N. P., & Subbotin, D. A. (2008). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: Radial transport. Journal

- of Atmospheric and Solar-Terrestrial Physics, 70(14), 1679–1693. https://doi.org/10.1016/j.jastp.2008.06.008
- Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70(14), 1694–1713. https://doi.org/10.1016/j.jastp.2008.06.014
- Stasiewicz, K, P. Bellan, C. Chaston, C. Kletzing, R. Lysak, J. Maggs, O. Pokhatelov, C. Seyler, P. Shukla, L. Stenflo, A. Streltsov & J.E. Wahlund (2000), Small scale Alfvénic Structure in the Aurora. Space Science Reviews, 92, 423-533.
- Streltsov, A. V., and W. Lotko (2005), Ultra-low-frequency electrodynamics of the magnetosphere-ionosphere interaction, Journal of Geophysical Research (Space Physics), 110, A08203, doi: 10.1029/2004JA010764.
- Strickland, D. J., Daniell, R. E., Jasperse, J. R., & Basu, B. (1993). Transport-Theoretic Model for the Electron-Proton-Hydrogen Atom Aurora, 2. Model Results. Journal of Geophysical Research, 98(A12), 21533–21548. https://doi.org/10.1029/93JA01645
- Tan, B., Lin, Y., Perez, J. D., and Wang, X. Y. (2012), Global-scale hybrid simulation of cusp precipitating ions associated with magnetopause reconnection under southward IMF, *J. Geophys. Res.*, 117, A03217, doi:10.1029/2011JA016871.
- Tian, X. B., Y. Yu, C. Yue (2020), Statistical study of energetic particle precipitation in response to storms, Journal of Atmospheric and Solar-Terrestrial Physics
- Tian, X. B., Y. Yu, Minghui Zhu, Jinbin Cao, Shreedevi, PR, V. K. Jordanova (2022), Effects of EMIC wave-driven ion precipitation on the ionosphere, Journal of Geophysical Research: Space Physics, 127, e2021JA030101. https://doi.org/10.1029/2021JA030101.
- Thorne, R. M. (2010). Radiation belt dynamics: The importance of wave-particle interactions: FRONTIER. Geophysical Research Letters, 37(22), n/a-n/a. https://doi.org/10.1029/2010GL044990
- Tóth, G., et al. (2005), Space Weather Modeling Framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi:10.1029/2005JA011126.
- Turunen, E., Kero, A., Verronen, P. T., Miyoshi, Y., Oyama, S. I., & Saito, S. (2016). Mesospheric ozone destruction by high-energy electron precipitation associated with pulsating aurora. Journal of Geophysical Research, 121(19), 11852–11861. https://doi.org/10.1002/2016JD025015
- Vasyliunas, V. M.. Mathematical Models of Magnetospheric Convection and its Coupling to the Ionosphere. In B M McCormac, editor, Particles and Fields in the Magnetosphere, volume 17, pages 60–71, Dordrecht, 1970. Dordrecht, Netherlands: D. Reidel. ISBN 978-94-010-3286-5. doi: 10.1007/978-94-010-3284-1_6.

- Virtanen, I. I., Gustavsson, B., Aikio, A. T., Kero, A., Asamura, K., & Ogawa, Y. (2018). Electron energy spectrum and auroral power estimation from incoherent scatter radar measurements. *Journal of Geophysical Research: Space Physics*, 123, 6865–6887. https://doi.org/10.1029/2018JA025636.
- Virtanen, I. I., Tesfaw, H. W., Roininen, L., Lasanen, S., & Aikio, A. (2021). Bayesian filtering in incoherent scatter plasma parameter fits. *Journal of Geophysical Research: Space Physics*, 126, e2020JA028700. https://doi.org/10.1029/2020JA028700.
- Wahlund, J.-E., Opgenoorth, H. J., Häggström, I., Winser, K. J., and Jones, G. O. L. (1992), EISCAT observations of topside ionospheric ion outflows during auroral activity: Revisited, J. Geophys. Res., 97(A3), 3019–3037, doi:10.1029/91JA02438.
- Wang, Z., & Zou, S. (2022). COMPASS: A new COnductance Model based on PFISR And SWARM Satellite observations. Space Weather, 20, e2021SW002958. https://doi.org/10.1029/2021SW002958
- Watt, C. E. J., Rankin, R., Rae, I. J., & Wright, D. M. (2005). Self-consistent electron acceleration due to inertial Alfvén wave pulses. Journal of Geophysical Research, 110(A10), A10S07. https://doi.org/10.1029/2004JA010877
- Watt, C. E. J., Rankin, R., Rae, I. J., & Wright, D. M. (2006). Inertial Alfvén waves and acceleration of electrons in nonuniform magnetic fields. Geophysical Research Letters, 33(2), L02106. https://doi.org/10.1029/2005GL024779
- Watt, C. E. J., and R. Rankin (2009), Electron trapping in shear Alfvén waves that power the aurora, Phys. Rev. Lett., 102(4), 45002, doi:10.1103/PhysRevLett.102.045002.
- Wiltberger, M., Weigel, R. S., Lotko, W., & Fedder, J. A. (2009). Modeling seasonal variations of auroral particle precipitation in a global-scale magnetosphere-ionosphere simulation. Journal of Geophysical Research, 114, A01204. https://doi.org/10.1029/2008JA013108
- Wiltberger, M., et al. (2017), Effects of electrojet turbulence on a magnetosphere-ionosphere simulation of a geomagnetic storm, J. Geophys. Res. Space Physics, 122, 5008–5027, doi:10.1002/2016JA023700.
- Wing, S., Gkioulidou, M., Johnson, J. R., Newell, P. T., & Wang, C.-P. (2013). Auroral particle precipitation characterized by the substorm cycle. Journal of Geophysical Research: Space Physics, 118(3), 1022–1039. https://doi.org/10.1002/jgra.50160
- Yu, Yiqun, V. Jordanova, A. Ridley, J. Albert, R. Horne, C. Jeffery (2016), A new ionosphereic electron precipitation module coupled with RAM-SCB within geospace general circulation model, J. Geophy. Res.,doi:10.1002/2016JA 2016JA022585

- Yu, Yiqun, V. Jordanova, M. McGranaghan, S. Solomon (2018), Self-consistent modeling of electron precipitation and response in the ionosphere: application to low-altitude energization during substorms, Geophy. Res. Lett., doi:10.1029/2018GL078828
- Yu, Y., Cao, J., Fu, H., Lu, H., and Yao, Z. (2017), The effects of bursty bulk flows on global-scale current systems, J. Geophys. Res. Space Physics, 122, 6139—6149, doi:10.1002/2017JA024168.
- Yu, Y., X. B. Tian, V. K. Jordanova (2020), The effects of field line curvature (FLC) scattering on ring current dynamics and isotropic boundary, Journal of Geophysical Research: Space Physics. doi: 10.1029/2020JA027830
- Yu, Y., K. Hosokawa, B. Ni, V. Jordanova, Y. Miyoshi, X. Tian, L. Ma, J. Cao (2022), On the importance of using event-specific chorus wave dynamics in simulating diffuse electron precipitation, Journal of Geophysical Research: Space Physics,127, e2021JA029918.https://doi.org/10.1029/2021JA029918.
- Zhan, W., Kaeppler, S. R., Larsen, M. F., Reimer, A., & Varney, R. (2021a). An Investigation of Auroral E Region Energy Exchange Using Poker Flat Incoherent Scatter Radar Observations During Fall Equinox Conditions. Journal of Geophysical Research: Space Physics, 126(10). https://doi.org/10.1029/2021JA029371.
- Zhan, W., Kaeppler, S. R., Reimer, A., & Varney, R. (2021b). Seasonal and Solar Cycle Dependence of Energy Transfer Rates in the Auroral E-Region. Journal of Geophysical Research: Space Physics, 126(12). https://doi.org/10.1029/2021JA029719.
- Zhang, Y., and L. J. Paxton (2008), An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data, J. Atmos. Sol.-Terr. Phys., 70(8-9), 1231–1242.
- Zhang, B., W. Lotko, O. Brambles, P. Damiano, M. Wiltberger, & J. Lyon (2012), Magnetotail origins of auroral Alfvénic power, Journal of Geophysical Research (Space Physics), 117, A09205, doi:10.1029/2012JA017680.
- Zhang, B., Varney, R. H., Lotko, W., Brambles, O. J., Wang, W., Lei, J., Wiltberger, M., and Lyon, J. G. (2015), Pathways of F region thermospheric mass density enhancement via soft electron precipitation, J. Geophys. Res. Space Physics, 120, 5824—5831, doi:10.1002/2015JA020999.
- Zhu, M. H., Y. Yu, Xingbin Tian, Shreedevi, P.R., V. K. Jordanova (2021), On the ion precipitation due to field line curvature (FLC) and EMIC wave scattering and their subsequent impact on ionospheric electrodynamics, Journal of Geophysical Research: Space Physics, 126, e2020JA028812. https://doi.org/10.1029/2020JA028812