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ABSTRACT. For a fixed regular cone in Euclidean space with small entropy we show that
all smooth self-expanding solutions of the mean curvature flow that are asymptotic to the
cone are in the same isotopy class.

1. INTRODUCTION

A hypersurface, i.e., a properly embedded codimension-one submanifold, Σ ⊂ Rn+1,
is a self-expander if

(1.1) HΣ =
x⊥

2
.

Here
HΣ = ∆Σx = −HΣnΣ = −divΣ(nΣ)nΣ

is the mean curvature vector, nΣ is the unit normal, and x⊥ is the normal component of the
position vector. Self-expanders arise naturally in the study of mean curvature flow. Indeed,
Σ is a self-expander if and only if the family of homothetic hypersurfaces

{Σt}t>0 =
{√

tΣ
}
t>0

is a mean curvature flow (MCF), that is, a solution to the flow(
∂x

∂t

)⊥
= HΣt .

Self-expanders model the behavior of a MCF as it emerges from a conical singularity [1].
They also model possible long time behavior of the flow [19].

Given a hypersurface Σ ⊂ Rn+1 the Gaussian surface area of Σ is

F [Σ] = (4π)−
n
2

∫
Σ

e−
|x|2

4 dHn

where Hn denotes the n-dimensional Hausdorff measure. In [16], Colding and Minicozzi
introduced a notion of entropy for hypersurfaces which is given by

λ[Σ] = sup
y∈Rn+1,ρ>0

F [ρΣ + y].

Entropy is invariant under dilations and translations and is a natural measure of geometric
complexity; see [3], [4], [5], [6], [13], [15], [22], [27], [30], [37] and [42]. It follows from
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Huisken’s monotonicity formula [23] that entropy is non-increasing under the MCF. It is
easily checked that λ[Rn] = 1. Moreover, by computations of Stone [36],

2 > λ[S1] >
3

2
> λ[S2] > · · · > λ[Sn] > λ[Sn+1] > · · · →

√
2.

Given an integer k ≥ 2, Σ is a Ck-asymptotically conical hypersurface in Rn+1 with
asymptotic cone C = C(Σ) if limρ→0+ ρΣ = C in Ckloc(Rn+1 \ {0}), where C is a Ck-
regular cone. Let L(Σ) = L(C) = C ∩ Sn be the link of the asymptotic cone, and observe
that L(Σ) is a Ck-hypersurface in Sn. If Σ is a C2-asymptotically conical self-expander,
then it follows from Huisken’s monotonicity formula and the lower semi-continuity of
entropy that λ[Σ] = λ[C(Σ)] – see, for instance, [8, Lemma 3.5].

Self-expanders in R2 have been studied in work of Ecker-Huisken [19] and so we restrict
attention to n ≥ 2. It can be readily shown, e.g., [19], that for a smooth graphical cone,
C, there is a unique self-expander asymptotic to C. In contrast, in [9, Section 8] (cf. [1]),
we showed that there is an open subset in the space of regular cones in R3 so that for any
cone in the subset there are at least three distinct self-expanders asymptotic to the cone –
two that are topologically annuli and one that is a pair of disks. Our main result is that this
topological non-uniqueness cannot occur for self-expanders that are asymptotic to a low
entropy cone.

Theorem 1.1. For k ≥ 2 and 2 ≤ n ≤ 6, let C be a Ck+1-regular cone in Rn+1 that
satisfies

λ[C] < λ[Sn−1 × R].

If Γ1,Γ2 are both Ck+1-asymptotically conical self-expanders with C(Γ1) = C(Γ2) = C,
then Γ1 and Γ2 are Ck a.c.-isotopic with fixed cone.

Here two asymptotically conical hypersurfaces are said to be a.c.-isotopic with fixed
cone if there is an isotopy that respects the asymptotically conical behavior and fixes the
asymptotic cone – see Section 2.7 for the precise definition. In particular, Γ1 and Γ2 are
diffeomorphic.

The dimension restriction comes from our use of the regularity theory of stable minimal
hypersurfaces. In fact under, additional, possibly stronger assumptions on the entropy of
the asymptotic cone, one has the same result in dimension n ≥ 7. In order to state this
extra assumption, first letRMCn denote the space of regular minimal cones in Rn+1, that
is C ∈ RMCn if and only if it is a proper subset of Rn+1 and C is a hypersurface in
Rn+1 \{0} that is invariant under dilation about 0 and with vanishing mean curvature. Let
RMC∗n denote the set of non-flat elements ofRMCn – i.e., cones with non-zero curvature
somewhere. For any Λ > 0, let

RMCn(Λ) = {C ∈ RMCn : λ[C] < Λ} andRMC∗n(Λ) = RMC∗n ∩RMCn(Λ).

Now fix a dimension n ≥ 3 and a value Λ > 1. Consider the following hypothesis:

(?n,Λ) For all 3 ≤ l ≤ n,RMC∗l (Λ) = ∅.

Observe that all regular minimal cones in R2 consist of unions of rays and so RMC∗1 =
∅. Likewise, as great circles are the only closed geodesics in S2, RMC∗2 = ∅. As a
consequence of Allard’s regularity theorem and a dimension reduction argument, there is
always some Λ > 1 so that (?n,Λ) holds. Let

Λn = sup {Λ ∈ (1, 2) : (?n,Λ) holds}
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and

Λ∗n =

{
λ[Sn−1 × R] 2 ≤ n ≤ 6

min
{

Λn, λ[Sn−1 × R]
}

n ≥ 7
.

Observe that 2 = Λ2 > Λ∗1 = λ[S1 × R] and that it follows from Marques-Neves’s [29,
Theorem B] proof of the Willmore conjecture that 2 > Λ3 > λ[S2×R] and so it is possible
that Λ∗n = λ[Sn−1 × R] for all n. However, this is still an open question when n ≥ 4.

Using Λ∗n, we are able to generalize Theorem 1.1 to all dimensions.

Theorem 1.2. For any k, n ≥ 2, let C ⊂ Rn+1 be a Ck+1-regular cone that satisfies

λ[C] < Λ∗n.

If Γ1,Γ2 are both Ck+1-asymptotically conical self-expanders with C(Γ1) = C(Γ2) = C,
then Γ1 and Γ2 are Ck a.c.-isotopic with fixed cone.

Next we discuss applications of Theorem 1.2. First we observe that Theorem 1.2 implies
that low entropy cones with disconnected link can’t resolve into connected self-expanders.

Corollary 1.3. For k, n ≥ 2, let C ⊂ Rn+1 be a Ck+1-regular cone with λ[C] < Λ∗n. If
L(C) has m connected components, then any asymptotically conical self-expander Γ with
C(Γ) = C has exactly m connected components.

Remark 1.4. Examples of Angenent-Ilmanen-Chopp [1] and Bernstein-Wang [9] show that
there are many cones C with disconnected link which flow into connected self-expanders.
Numerical computations also show that there are rotationally symmetric double cones in
R3 that have entropy below Λ∗2 = λ[S1 × R].

Proof of Corollary 1.3. Let σ1, . . . , σm be the connected components of L(C) and let Ci =
C[σi] be the corresponding cones. Observe that λ[Ci] ≤ λ[C] < Λ∗n. By a minimization
procedure sketched by Ilmanen [25] (see Ding [17, Theorem 6.3] for full details), a dimen-
sion reduction argument [40, Theorem 4] and Allard’s regularity theorem [33, Theorem
24.4], there is a self-expander Γ′i asymptotic to Ci. As each σi is connected and there are
no closed self-expanders, each Γ′i is connected. Set Γ′ =

⋃m
i=1 Γ′i. Notice that Γ′ is a

(possibly immersed) asymptotically conical self-expander that is asymptotic to C. How-
ever, λ[Γ′] = λ[C] < Λ∗n < 2 and so Γ′ is an embedded hypersurface and, hence, has m
components. Hence, Theorem 1.2 implies Γ′ and Γ have the same number of components,
proving the claim. �

In order to state the second application, we introduce the following notation for the links
of Ck-regular cones with entropy bounded by Λ,

Sk(Λ) =
{
σ ⊂ Sn : σ is a Ck-hypersurface with λ[C[σ]] < Λ

}
.

Here C[σ] is the cone whose link is equal to σ. For Λ > 1, let Sk0 (Λ) ⊆ Sk(Λ) denote the
set of all such links that are isotopic (inside Sk(Λ)) to the equatorial sphere in Sn. We prove
existence and topological uniqueness results for asymptotically conical self-expanders with
asymptotic link in Sk+1

0 (Λ∗n) for k, n ≥ 2. When 3 ≤ n ≤ 6 this entails a new existence
result for topologically trivial self-expanders asymptotic to small entropy cones.

Corollary 1.5. For any k, n ≥ 2, if σ ∈ Sk+1
0 (Λ∗n), then there is a Ck-asymptotically

conical self-expander Γ with L(Γ) = σ. Moreover, any such Γ is Ck a.c.-isotopic to
Rn × {0}.
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Proof. First of all, by the maximum principle, the only self-expanders that are asymptotic
to a given hyperplane is the hyperplane itself. When n = 2 or n ≥ 7 the existence of at
least one self-expander of the desired topological type is then an immediate consequence
of [8, Theorems 1.1 and 1.2] and the existence of a Z2-degree [7, Corollary 1.3]. When
3 ≤ n ≤ 6 one uses Theorem 7.4 to see that there is always at least one Ck-asymptotically
conical stable self-expander Γ with C(Γ) = C that is Ck a.c.-isotopic to the hyperplane for
any C with L(C) ∈ Sk+1

0 (Λ∗n) – see Appendix A for details. The topological uniqueness
follows directly from Theorem 1.2. �

A final application is to the topological properties of closed hypersurfaces of small en-
tropy. It is known by work of ourselves [3] and J. Zhu [42] that round spheres uniquely
minimize the entropy within the class of closed hypersurfaces in Rn+1. In [4], we classify
all low entropy self-shrinkers in R3 and, as a consequence, show that any closed surface
in R3 of sufficiently small entropy is isotopic, via a MCF, to the round sphere. This argu-
ment is specific to n = 2 as such a complete classification of self-shrinkers is not known
in higher dimensions. However, using a weak flow and a topological classification of low
entropy self-shrinkers in R4, we show, in [5], that any closed hypersurface in R4 of suffi-
ciently small entropy is diffeomorphic to S3. In [12], we combine Theorem 1.2 with the
weak flow of [5] to prove a stronger topological stability theorem. Namely, that any closed
hypersurface in R4 with entropy less than or equal to that of the round cylinder is isotopic
to the standard S3. That is, the 4-dimensional smooth Schoenflies conjecture holds for
closed hypersurfaces in R4 of low entropy.

The paper is organized as follows. In Section 2 we fix the notation for the remainder of
the paper and discuss background about the question under consideration. In Section 3 we
construct a universal barrier which is used in later sections to show the existence of self-
expanders with prescribed asymptotic cones. In Section 4 we introduce a natural partial
order on the space of asymptotically conical self-expanders and prove the existence and
uniqueness of the greatest and least elements. In Section 5 we investigate properties of the
MCF starting from an asymptotically conical hypersurface of low entropy that is expander
mean-convex, and show that such a hypersurface is a.c.-isotopic with fixed cone, via the
flow, to a stable self-expander. In Section 6 we use a perturbation by the first eigenfunction
of the stability operator for self-expanders together with results of the preceding section to
deform any low entropy asymptotically conical unstable self-expander, in the a.c.-isotopy
class and preserving the asymptotic cone, to a stable self-expander. In Section 7 we apply
the analysis carried out in our previous work [7] and results from Section 5 to show that
one may connect, via an a.c.-isotopy that does not move the asymptotic cones much along
the path, any weakly stable self-expander to a self-expander asymptotic to a cone which is
a generic perturbation of the asymptotic cone of the initial self-expander. In Section 8 we
complete the proof of Theorem 1.1 and Theorem 1.2.
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2. BACKGROUND AND NOTATION

For the reader’s convenience, we recall, in Sections 2.1-2.6, some of the notation and
background introduced in our previous work [7, 9]. In Section 2.7 we define an a.c.-isotopy
between two asymptotically conical hypersurfaces and discuss some basic properties of
a.c.-isotopies.

2.1. Basic notions. Denote a (open) ball in Rn of radius R and center x by BnR(x) and
the closed ball by B̄nR(x). We often omit the superscript, n, when its value is clear from
context. We also omit the center when it is the origin. Given a set K ⊆ Rn+1 the closure
of K is denoted by cl(K) and the r-tubular neighborhood of K is

Tr(K) =
⋃
p∈K

Br(p).

For an open subset U ⊆ Rn+1, a (smooth) hypersurface in U , Σ, is a properly embed-
ded, codimension-one smooth submanifold of U . We also consider hypersurfaces of lower
regularity and given an integer k ≥ 2 and α ∈ [0, 1) we define a Ck,α-hypersurface in U
to be a properly embedded, codimension-one Ck,α submanifold of U . When needed, we
distinguish between a point p ∈ Σ and its position vector x(p).

Consider the hypersurface Sn ⊂ Rn+1, the unit n-sphere in Rn+1. For n ≥ 2, a
(smooth) hypersurface in Sn, σ, is a closed, embedded, codimension-one smooth subman-
ifold of Sn and Ck,α-hypersurfaces in Sn are defined likewise. Observe that σ is a closed
codimension-two submanifold of Rn+1 and so we may associate to each point p ∈ σ its
position vector x(p). Clearly, |x(p)| = 1.

A cone is a set C ⊂ Rn+1 \ {0} that is dilation invariant around the origin. That is,
ρC = C for all ρ > 0. The link of the cone is the set L(C) = C ∩ Sn. The cone is regular if
its link is a smooth hypersurface in Sn and Ck,α-regular if its link is a Ck,α-hypersurface
in Sn. For any hypersurface σ ⊂ Sn the cone over σ, C[σ], is the cone defined by

C[σ] = {ρp : p ∈ σ, ρ > 0} ⊂ Rn+1 \ {0}.

Clearly, L(C[σ]) = σ.

2.2. Function spaces. Let Σ be a properly embedded, Ck,α submanifold of an open sub-
set U ⊆ Rn+1. There is a natural Riemannian metric, gΣ, on Σ of class Ck−1,α induced
from the Euclidean one. As we always take k ≥ 2, the Christoffel symbols of this met-
ric, in appropriate coordinates, are well-defined and of regularity Ck−2,α. Let ∇Σ be the
covariant derivative on Σ. Denote by dΣ the geodesic distance on Σ and by BΣ

ρ (p) the
(open) geodesic ball in Σ of radius ρ and center p ∈ Σ. For ρ small enough so that BΣ

ρ (p)

is strictly geodesically convex and q ∈ BΣ
ρ (p), denote by τΣ

p,q the parallel transport along
the unique minimizing geodesic in BΣ

ρ (p) from p to q.
Throughout the rest of this section, let Ω be a domain in Σ, and let l be an integer in

[0, k], γ ∈ (0, 1) and d ∈ R. Suppose l+ γ ≤ k+α. We first consider the following norm
for functions on Ω:

‖f‖l;Ω =

l∑
i=0

sup
Ω
|∇iΣf |.

We then let

Cl(Ω) =
{
f ∈ Clloc(Ω): ‖f‖l;Ω <∞

}
.
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We next define the Hölder semi-norms for functions f and tensor fields T on Ω:

[f ]γ;Ω = sup
p,q∈Ω

q∈BΣ
δ (p)\{p}

|f(p)− f(q)|
dΣ(p, q)γ

and [T ]γ;Ω = sup
p,q∈Ω

q∈BΣ
δ (p)\{p}

|T (p)− (τΣ
p,q)
∗T (q)|

dΣ(p, q)γ
,

where δ = δ(Σ,Ω) > 0 so that, for all p ∈ Ω, BΣ
δ (p) is strictly geodesically convex. We

further define the norm for functions on Ω:

‖f‖l,γ;Ω = ‖f‖l;Ω + [∇lΣf ]γ;Ω,

and let
Cl,γ(Ω) =

{
f ∈ Cl,γloc(Ω): ‖f‖l,γ;Ω <∞

}
.

We also define the following weighted norm for functions on Ω:

‖f‖(d)
l;Ω =

l∑
i=0

sup
p∈Ω

(|x(p)|+ 1)
−d+i |∇iΣf(p)|.

We then let
Cld(Ω) =

{
f ∈ Clloc(Ω): ‖f‖(d)

l;Ω <∞
}
.

We further define the following weighted Hölder semi-norms for functions f and tensor
fields T on Ω:

[f ]
(d)
γ;Ω = sup

p,q∈Ω

q∈BΣ
δp

(p)\{p}

(
(|x(p)|+ 1)−d+γ + (|x(q)|+ 1)−d+γ

) |f(p)− f(q)|
dΣ(p, q)γ

, and,

[T ]
(d)
γ;Ω = sup

p,q∈Ω

q∈BΣ
δp

(p)\{p}

(
(|x(p)|+ 1)−d+γ + (|x(q)|+ 1)−d+γ

) |T (p)− (τΣ
p,q)
∗T (q)|

dΣ(p, q)γ
,

where η = η(Ω,Σ) ∈
(
0, 1

4

)
so that for any p ∈ Σ, letting δp = η(|x(p)| + 1), BΣ

δp
(p) is

strictly geodesically convex. Next we define the norm for functions on Ω:

‖f‖(d)
l,γ;Ω = ‖f‖(d)

l;Ω + [∇lΣf ]
(d−l)
γ;Ω ,

and we let
Cl,γd (Ω) =

{
f ∈ Cl,γloc(Ω): ‖f‖(d)

l,γ;Ω <∞
}
.

We follow the convention that Cl,0loc = Clloc, C
l,0 = Cl and Cl,0d = Cld and that C0,γ

loc =

Cγloc, C
0,γ = Cγ andC0,γ

d = Cγd . The notation for the corresponding norms is abbreviated
in the same fashion.

In all above definitions of various norms, we often omit the domain Ω when it is clear
from context. These norms can be extended in a straightforward manner to vector-valued
functions and tensor fields. It is a standard exercise to verify that these spaces equipped
with the corresponding norms are Banach spaces.

2.3. Asymptotically conical hypersurfaces. For k, n ≥ 2 and α ∈ [0, 1), let C be a
Ck,α-regular cone in Rn+1. Let V : C → Rn+1 be a homogeneous transverse section on
C, that is a Ck,α vector field along C so that

• |V| = 1;
• V(p) does not lie in TpC;
• V(ρp) = V(p) for all ρ > 0 and p ∈ C.
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A Ck,α-hypersurface, Σ ⊂ Rn+1, is Ck,α∗ -asymptotically conical with asymptotic cone C
if there is a radius R > 1 and a function u ∈ Ck,α1 (C \ B̄R) with

lim
ρ→0+

ρu(ρ−1p) = 0 in Ckloc(C)

so that
Σ \ B̄2R ⊂

{
x(p) + u(p)V(p) : p ∈ C \ B̄R

}
⊂ Σ

When α = 0 this means that Σ is Ck-asymptotically conical as defined in Section 1. As
observed in [7], this definition is independent of the choice of V. Clearly, the asymptotic
cone, C, is uniquely determined by Σ and so we denote it by C(Σ) and its link by L(Σ).
Denote the space ofCk,α∗ -asymptotically conicalCk,α-hypersurfaces in Rn+1 byACHk,αn .
As before we denote ACHkn = ACHk,0n .

If Σ ∈ ACH2
n is a self-expander, then the interior estimates for MCF (see [20]) imply

that for all i ≥ 0

(2.1) sup
p∈Σ

(1 + |x(p)|)|∇iAΣ| <∞.

2.4. Traces at infinity. Fix an element Σ ∈ ACHk,αn and let V be a homogeneous trans-
verse section on the asymptotic cone C(Σ). If πV denotes the projection to C(Σ) along V,
then πV restricts to a Ck,α diffeomorphism of Σ′ = Σ \K for some compact set K onto
C(Σ) \ B̄R and denote its inverse by θV;Σ′ . Let l ≥ 0 be an integer and γ ∈ [0, 1) such
that l + γ ≤ k + α.

A map f ∈ Cl,γloc(Σ;RM ) is asymptotically homogeneous of degree d if

lim
ρ→0+

ρdf ◦ θV;Σ′(ρ
−1p) = g(p) in Cl,γloc(C(Σ);RM )

where g is homogeneous of degree d, i.e., ρdg(ρ−1p) = g(p) for all ρ > 0 and p ∈ C(Σ).
For such f we define the trace at infinity of f by

trd∞[f ] = g|L(Σ) ∈ Cl,γ(L(Σ);RM ).

Whether f is asymptotically homogeneous of degree d and the definition of trd∞ are inde-
pendent of the choice of V. Clearly, x|Σ is asymptotically homogeneous of degree one
and tr1

∞[x|Σ] = x|L(Σ).
We next define the space

Cl,γd,H(Σ;RM ) =
{
f ∈ Cl,γd (Σ;RM ) : f is asymptotically homogeneous of degree d

}
.

One can check that Cl,γd,H(Σ;RM ) is a closed subspace of Cl,γd (Σ;RM ) and the map

trd∞ : Cl,γd,H(Σ;RM )→ Cl,γ(L(Σ);RM )

is a bounded linear map. We further define the set Cl,γd,0(Σ;RM ) ⊂ Cl,γd,H(Σ;RM ) to be the
kernel of trd∞.

2.5. Asymptotically conical embeddings. Fix an element Σ ∈ ACHk,αn . Given a map
ϕ : L(Σ) → Rn+1, the homogeneous extension of degree one of ϕ is given by the map
E H

1 [ϕ] : C(Σ)→ Rn+1 defined by

E H
1 [ϕ](p) = |x(p)|ϕ(|x(p)|−1p).

We define the space of Ck,α∗ -asymptotically conical embeddings of Σ into Rn+1 to be

ACHk,αn (Σ) =
{
f ∈ Ck,α1 ∩ Ck1,H(Σ;Rn+1) : f and E H

1 [tr1
∞[f ]] are embeddings

}
.
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Clearly,ACHk,αn (Σ) is an open subset of the Banach spaceCk,α1 ∩Ck1,H(Σ;Rn+1) with the
Ck,α1 norm. For f ∈ ACHk,αn (Σ), as E H

1 [tr1
∞[f ]] is aCk,α embedding that is homogeneous

of degree one, it parameterizes the Ck,α-regular cone C(f(Σ)) – see [7, Proposition 3.3].

2.6. Morse index. We recall the notion of index and nullity for asymptotically conical
self-expanders and relate these integers to certain other spectral invariants. First observe
that the self-expander equation (1.1) is the Euler-Lagrangian equation for the formally
defined functional

E[Σ] =

∫
Σ

e
|x|2

4 dHn.

For a self-expander Σ, if {Φs(Σ)}|s|<ε is a compactly supported variation of Σ such that
dΦs
ds s=0

= unΣ, then, by a computation in [7, Section 4],

d2

ds2 s=0
E[Φs(Σ)] =

∫
Σ

(
|∇Σu|2 +

(
1

2
− |AΣ|2

)
u2

)
e
|x|2

4 dHn.

Denote byQΣ[u] the integral on the right side of the above equation. We define the (Morse)
index of a self-expander, Σ, to be

ind(Σ) = sup
{

dimV : V ⊂ C2
c (Σ) so that QΣ[u] < 0, ∀u ∈ V \ {0}

}
.

In [9] we introduced a weighted inner product for functions on Σ,

BΣ[u, v] =

∫
Σ

uve
|x|2

4 dHn.

We further showed, in Section 4 of [9], that if Σ is an asymptotically conical self-expander,
then there is a self-adjoint (with respect to BΣ) operator

LΣ = ∆Σ +
1

2
x · ∇Σ + |AΣ|2 −

1

2

so that QΣ[u] = −BΣ[u, LΣu] for any functions u ∈ C2
c (Σ). The operator LΣ has a

discrete spectrum with a finite spectral bottom. Thus, ind(Σ) equals the number of negative
eigenvalues (counted with multiplicities) of −LΣ, and in particular, it is finite.

We also define the nullity of an asymptotically conical self-expander Σ, null(Σ) to be
the dimension of the kernel of LΣ,

KΣ =
{
κ ∈ C2

loc ∩ C0
1,0(Σ): LΣκ = 0

}
.

We call a self-expander stable if it has index 0, and unstable otherwise. Moreover, if a
stable self-expander has nullity 0, then we call the self-expander strictly stable; otherwise,
it is called weakly stable.

2.7. Isotopy. Two elements Σ1,Σ2 ∈ ACHk,αn are Ck,α a.c.-isotopic if there is a contin-
uous map

F : [0, 1]→ ACHk,αn (Σ1)

which satisfies F(0) = x|Σ1 and F(1) = f1 with f1(Σ1) = Σ2. We call F a Ck,α a.c.-
isotopy between Σ1 and Σ2.

An a.c.-isotopy F between Σ1 and Σ2, fixes the asymptotic cone if

tr1
∞[F(t)] = x|L(Σ1) for all t ∈ [0, 1].

If there is an isotopy fixing the asymptotic cone between Σ1 and Σ2, then we say Σ1 and
Σ2 are a.c.-isotopic with fixed cone.

We will use the following lemma repeatedly:
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Lemma 2.1. Let k, n ≥ 2 and α ∈ [0, 1). If Σ ∈ ACHk,αn , then there is an ε0 = ε0(Σ) so
that if f ∈ ACHk,αn (Σ) satisfies ‖f −x|Σ‖(1)

1 < ε0, then the map F : [0, 1]→ ACHk,αn (Σ)
defined by F(t) = (1− t)x|Σ + tf , provides a Ck,α a.c.-isotopy between Σ and f(Σ).

Proof. The result follows from the implicit function theorem. �

We will also need the following perturbation result which says that any a.c.-isotopy that
does not move the asymptotic cones “too much” along the path can be approximated by an
a.c.-isotopy with fixed asymptotic cone.

Lemma 2.2. For k, n ≥ 2 and α ∈ [0, 1), let Σ ∈ ACHk,αn and ϕ ∈ Ck,α(L(Σ);Rn+1)
so that E H

1 [ϕ] is an embedding. There is a δ0 = δ0(Σ, ϕ) > 0 and C0 = C0(Σ) > 0 so
that if F : [0, 1]→ ACHk,α(Σ) is continuous and, for all t ∈ [0, 1],

‖tr1
∞[F(t)]− ϕ‖k,α < δ0,

then there is a continuous map F̃ : [0, 1] → ACHk,αn (Σ) so that, for every t ∈ [0, 1], the
following holds:

(1) tr1
∞[F̃(t)] = ϕ;

(2) ‖F̃(t)− F(t)‖(1)
k,α ≤ C0‖tr1

∞[F(t)]− ϕ‖k,α.

Proof. Let V be a homogeneous transverse section on C(Σ) and let πV be the projection
of an open neighborhood, U , of C(Σ) along V. Define EV,Σ[ϕ] = E H

1 [ϕ] ◦ πV ◦ x|Σ.
There is an RΣ > 1 so Σ \ BRΣ

⊂ U and so EV,Σ is well-defined on Σ \ BRΣ
. As F is

continuous and [0, 1] is compact, there is an R > RΣ + 1 and C = C(Σ) > 0 so that, for
every t ∈ [0, 1],

(2.2) ‖F(t)− EV,Σ[ϕ]‖(1)
k,α;Σ\BR < Cδ0.

Let χ : Rn+1 → [0, 1] be a smooth cut-off function so that χ ≡ 1 outside B4R, χ ≡ 0 in
B2R and |Dχ| < 2R−1. Define

F̃(t) = F(t) + (χ ◦ x|Σ)EV,Σ[ϕ− tr1
∞[F(t)]].

It is straightforward to verify that F̃(t) ∈ Ck,α1 ∩ Ck1,H(Σ;Rn+1) and Items (1) and (2)
hold with an appropriate choice of C0. It remains only to show F̃(t) ∈ ACHk,αn (Σ). To
see this one observes that F̃(t) = F(t) on Σ ∩ B̄2R while, on Σ \B2R,

F̃(t) = EV,Σ[ϕ] + (F(t)− EV,Σ[ϕ]) + (F̃(t)− F(t)).

Hence, by choosing δ0 sufficiently small and invoking (2.2) and Item (2), it follows from
the implicit function theorem that F̃(t) ∈ ACHk,αn (Σ), finishing the proof. �

3. UNIVERSAL BARRIER

We prove the following existence of a universal barrier for self-expanders adapted to
any C2-regular cone. In what follows it is helpful to consider the map

ΨC : C × R→ Rn+1

associated to a C2-regular cone C that is given by

ΨC(p, t) = cos(t)x(p) + sin(t)|x(p)|nC(p)
where nC is a choice of unit normal on C. Observe |ΨC(p, t)| = |x(p)|. As L(C) is of class
C2 and compact, it follows that there is an ε = ε(C) > 0 so that if

Vε,R(C) =
{

(p, t) ∈ (C\B̄R)× R : |t| < ε
}
,
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then, for any R ≥ 0, ΨC |Vε,R(C) is a C1 diffeomorphism onto its image. When R = 0 we
simply write Vε(C).

Proposition 3.1. For n ≥ 2, let C ⊂ Rn+1 be a C2-regular cone. There exists an open
domain B(C) ⊂ Rn+1, constants N0 = N0(C) > 0 and R0 = R0(C) > 1 + N0, and a
continuous function ρC : (R0,∞)→ R+ with the following properties:

(1) C ∪B1 ⊂ Rn+1 \ B(C);
(2) For all R ≥ R0, Rn+1\

(
B(C) ∪ B̄R

)
⊂ TN0R−1(C);

(3) If V (C) =
{

(p, t) ∈ (C\B̄R0
)× R : |t| ≤ ρC(|x(p)|)

}
, then

ΨC(V (C)) = Rn+1\
(
B(C) ∪ B̄R0

)
and ΨC |V (C) is a C1 diffeomorphism onto its image;

(4) If V is an integral n-varifold in Rn+1 with compact support and V isE-stationary
in B(C), then spt(V ) ∩ B(C) = ∅;

(5) If Σ ⊂ Rn+1 is an asymptotically conical self-expander with asymptotic cone C,
then Σ ∩ B(C) = ∅.

In order to prove this we first introduce simple barriers modeled on one-sheeted hyper-
boloids – see [9] for a related construction or [17] where rotationally symmetric solutions
to (1.1) are used instead.

To that end, consider the following family of functions depending on parameters v ∈ Sn
and η > 0:

fv,η(x) = 2n+ |x|2 −
(
1 + η2

)
(x · v)2.

Associated to these functions are the following family of connected closed sets

Ev,η =
{
x ∈ Rn+1 : fv,η(x) ≤ 0 and x · v ≥ 0

}
and their interiors

E◦v,η = int(Ev,η) =
{
x ∈ Rn+1 : fv,η(x) < 0 and x · v > 0

}
.

Consider the connected rotationally symmetric cone

Cv,η =
{
x ∈ Rn+1 : |x|2 =

(
1 + η2

)
(x · v)2 and x · v > 0

}
that lies in the half-space {x · v ≥ 0} and has axis parallel to v and cone aperture 2 tan−1(η),
and observe that Ev,η has boundary asymptotic to Cv,η . Moreover, letting

Uv,η =
{
x ∈ Rn+1 : |x|2 <

(
1 + η2

)
(x · v)2 and x · v > 0

}
be the open cone that is the component of Rn+1\cl(Cv,η) that contains v, one has Ev,η ⊂
Uv,η . By construction, fv,η > 0 on

{
|x · v|2 < 2nη−2

}
and so

Ev,η ∩
{
x · v <

√
2nη−1

}
= ∅.

First we show the following asymptotic property for Ev,η:

Lemma 3.2. Given η > 0 there is a unique continuous function ρη : [
√

2nη−1,∞)→ R+

so that, for every v ∈ Sn,

Ev,η =
{

ΨCv,η (p, t) : p ∈ Cv,η \B√2nη−1 , t ∈ [ρη(|x(p)|), tan−1(η)]
}

where we choose nCv,η so to point into Uv,η . Moreover,

sin(ρη(r)) < 4nη−1r−2.
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Proof. Without loss of generality we assume v is the north pole of Sn. Denote spherical
coordinates on Rn+1 by the map Φ: [0,∞)× [0, π]× Sn−1 → Rn+1 given by

Φ(r, τ, ω) = (r sin(τ)ω, r cos(τ)).

Define
Ca = (0,∞)× (0, a)× Sn−1.

Let ε = tan−1(η). As Cv,η is rotationally symmetric, it is straightforward to verify that
Φ|Cε and ΨCv,η |Vε(Cv,η) are both C1 diffeomorphisms onto Uv,η \ ({0} × R). Moreover,

Ψ−1
Cv,η ◦ Φ|Cε(r, τ, ω) = (Φ(r, ε, ω), ε− τ).

We also observe that Ev,η ⊂ Rn+1 \B√2nη−1 and

Ev,η ∩ ({0} × R) = {0} × [
√

2nη−1,∞) = ΨCv,η

(
(Cv,η \B√2nη−1)× {ε}

)
.

Fix any r ≥
√

2nη−1 and ω ∈ Sn−1. One readily evaluates

f(τ) = fv,η(Φ(r, τ, ω)) = 2n+ r2 − (1 + η2)r2 cos2(τ)

= 2n− η2r2 + r2(1 + η2) sin2(τ).

One notices that f(τ) is strictly decreasing for τ ∈ [0, ε] and f(0) ≤ 0 while f(ε) > 0.
Thus, there is a unique function θη(r) ∈ [0, ε) so that if τ ∈ [0, θη(r)] then f(τ) ≤ 0 while
for τ ∈ (θη(r), ε] one has f(τ) > 0. In fact,

θη(r) = sin−1

(√
η2 − 2nr−2√

1 + η2

)
.

Hence,
Ev,η =

{
Φ(r, τ, ω) : r ≥

√
2nη−1, τ ∈ [0, θη(r)], ω ∈ Sn−1

}
.

Now define
ρη(r) = ε− θη(r).

As θη is continuous, so is ρη . Using the coordinates transformation formula between Φ
and ΨCv,η one obtains

Ev,η =
{

ΨCv,η (p, t) : p ∈ Cv,η \B√2nη−1 , t ∈ [ρ(|x(p)|), ε]
}
.

Finally, as ρη has an explicit formula, the claimed estimate can be checked directly. �

Next we show the following barrier property for Ev,η:

Lemma 3.3. Let V be an integral n-varifold in Rn+1. If V has compact support and is
E-stationary in E◦v,η , then spt(V ) ∩ E◦v,η = ∅.

Proof. Consider the C1 vector field, Z, defined by

Z(x) =

{
∇f3

v,η(x) if x ∈ Ev,η

0 otherwise .

As V has compact support and Z is supported in Ev,η , we may plug Z into the first varia-
tion formula for the functional E. The fact that V is E-stationary in E◦v,η implies that

0 =

∫ (
divSZ +

x

2
· Z
)
e
|x|2

4 dµV

=

∫
3fv,η

(
2|∇Sfv,η|2 + f2

v,η − 2fv,η(1 + η2)|∇S(v · x)|2
)
e
|x|2

4 d(µV bEv,η)
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where S is the µV -measurable function that maps x to the generic tangent (hyper)plane of
µV at x. By construction fv,η < 0 in E◦v,η , and so, in E◦v,η ,

3fv,η
(
2|∇Sfv,η|2 + f2

v,η − 2fv,η(1 + η2)|∇S(v · x)|2
)
≤ 3f3

v,η < 0

and so µV (E◦v,η) = 0. It follows that spt(V ) ∩ E◦v,η = ∅. �

As a consequence, we have the following

Lemma 3.4. Let Σ be a C2-asymptotically conical self-expander. If C(Σ) ∩ Uv,η = ∅,
then Σ ∩ E◦v,η = ∅.

Proof. The hypotheses ensure that, for all β ∈ (0, 1), cl(Uv,βη) ∩ C(Σ) = ∅. As Σ is
C2-asymptotic to C(Σ) this means there is an Rβ > 0 so that R > Rβ implies Σ ∩ ∂BR
is disjoint from cl(Uv,βη) and hence also from E◦v,βη . As Σ ∩ B̄R is compact and E-
stationary in Rn+1\ (Σ ∩ ∂BR), it follows from Lemma 3.3 that Σ ∩ BR is disjoint from
E◦v,βη . As R is arbitrary, this means E◦v,βη ∩ Σ = ∅. Hence, using

E◦v,η =
⋃

β∈(0,1)

E◦v,βη,

it follows that Σ ∩ E◦v,η = ∅. �

Proof of Proposition 3.1. Define

Cr =
⋃

p∈L(C)

Up,r

to be the open conical neighborhood of aperture 2 tan−1(r) about C, and let

Ccr = Rn+1\Cr.
We note that as L(C) is of class C2 and compact, there is an ε = ε(C) > 0 so that
ΨC |Vε(C) : Vε(C) → Ctan(ε) is a C1 diffeomorphism. Choose an r0 so that 0 < r0 <
min {tan(ε), 1}. It is straightforward to verify that

Cr0 = ΨC(Vtan−1(r0)(C)) =
⋃
p∈C

B r0√
1+r20

|x(p)|(p)

and, for each v ∈ Ccr0 ∩ Sn,
Uv,r0 ∩ C = ∅.

Now let
B(C) =

⋃
v∈Ccr0∩S

n

E◦v,r0 .

This is the union of open sets so is open. As Ev,r0 ⊂ Uv,r0 and Uv,r0 ∩C = ∅, B(C)∩C =
∅. Moreover, as r0 < 1, this construction ensures that

B√2n ∩ Ev,r0 = ∅
and so B√2n ∩ B(C) = ∅. As B1 ⊂ B√2n, it follows that Item (1) holds. Item (4) follows
directly from Lemma 3.3 and the definition of B(C). Indeed, if spt(V ) ∩ B(C) 6= ∅, then
spt(V ) ∩ E◦v,r0 6= ∅ for some v while V is E-stationary in E◦v,r0 ⊂ B(C). As spt(V ) is
compact this would contradict Lemma 3.3. Item (5) follows from Lemma 3.4 in the exact
same fashion.

We next verify that Item (2) holds. To see this first observe that if p ∈ Rn+1\(Cr0 ∪
B2nr−1

0
), then by construction p ∈ B(C). As such, if we setR0 = 2nr−1

0 , then forR ≥ R0,
if p ∈ Rn+1\(B(C)∪ B̄R), then p ∈ Cr0 . Let (q, t) ∈ Vtan−1(r0)(C) be the pre-image of p
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under ΨC . Without loss of generality assume the unit normal, nC(q), on C points towards
p and let

v =
ΨC(q, tan−1(r0))

|ΨC(q, tan−1(r0))|
∈ Sn.

Observe that Cr0 ∩ Sn is the tan−1(r0)-tubular open neighborhood of L(C) in Sn. Thus,
one has v ∈ ∂Cr0 and as such

p /∈ E◦v,r0 .
Using the fact nC(q) = nCv,r0 (q) and so ΨC(q, t) = ΨCv,r0(q, t), it follows from Lemma
3.2 that

0 ≤ sin(t) < 4nr−1
0 |x(p)|−2.

Hence, by elementary trigonometry, the distance from p to C is less thanN0|x(p)|−1 where
N0 = 4nr−1

0 . In particular, this shows Rn+1 \ (B(C) ∪ B̄R) ⊂ TN0R−1(C).
Finally, up to increasing R0 so that

N0 <
tan(ε)

2
√

1 + tan(ε)2
R2

0,

Item (2) ensures that Rn+1\(B(C) ∪ B̄R0
) ⊂ Ctan(ε). Hence, if

V ′(C) = (ΨC |Vε(C))
−1(Rn+1 \ (B(C) ∪ B̄R0)),

then ΨC |V ′(C) is a C1 diffeomorphism onto its image.
To conclude the proof we observe that, for p ∈ C \ B̄R0

, setting

v± =
ΨC(p,± tan−1(r0))

|ΨC(p,± tan−1(r0))|
∈ Sn

ensures that pt = ΨC(p, t) /∈ B(C) for |t| < tan−1(r0) if and only if pt /∈ E◦v+,r0∪E
◦
v−,r0 .

Indeed, if the latter holds, then Lemma 3.2 implies |t| ≤ ρr0(|x(p)|) and so the distance
from pt to C is at most sin(ρr0(|x(p)|))|x(p)|. This implies pt /∈ E◦v,r0 for all v ∈ Ccr0∩S

n

as otherwise, invoking Lemma 3.2 again, one sees the distance from pt to C is strictly larger
than sin(ρr0(|x(p)|))|x(p)| giving a contradiction. That is, pt /∈ B(C). The other direction
is obvious by the fact v± ∈ ∂Cr0 and the definition of B(C). Hence, setting ρC = ρr0 one
observes that V (C) = V ′(C) and the result is proved. �

4. PARTIAL ORDERING OF HYPERSURFACES ASYMPTOTIC TO A FIXED CONE

For n, k ≥ 2 and α ∈ (0, 1), fix a Ck,α-regular cone C ⊂ Rn+1 and let H(C) be
the set of all Ck,α∗ -asymptotically conical Ck,α-hypersurfaces with asymptotic cone C and
without any closed connected components. Let E(C) ⊂ H(C) be the subset consisting of
self-expanders and let ES(C) ⊆ E(C) denote the subset of stable self-expanders.

A pair (ω, σ) consisting of a closed subset ω ⊂ Sn and a smooth, possibly disconnected,
hypersurface σ ⊂ Sn is a boundary link if ∂ω = σ. Here neither ω nor σ are assumed to be
connected. If (ω, σ) is a boundary link, then so is (Sn\int(ω), σ). For any hypersurface,
σ ⊂ Sn, σ may be thought of as a closed (n−1)-chain with Z2 coefficients and so one has
an associated class [σ] ∈ Hn−1(Sn;Z2). As Hn−1(Sn;Z2) = {0}, σ is a boundary and so
there is an ω so (ω, σ) is a boundary link. If (ω′, σ) is also a boundary link, then both ω
and ω′ may be thought of as n-chains with Z2 coefficients and, as ∂(ω + ω′) = 2σ = 0,
ω + ω′ is a cycle. Hence, [ω + ω′] ∈ Hn(Sn;Z2) = Z2 is either 0 or [Sn]. That is, either
ω′ = ω or ω′ = Sn \ int(ω).
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Given a cone C pick ω so that (ω,L(C)) is a boundary link. This choice induces a
canonical unit normal onL(C) (and hence also on C) – i.e., by choosing the outward normal
to ω. For each Σ ∈ H(C), let Ω−(Σ) be the open subset of Rn+1 so that ∂Ω−(Σ) = Σ and

lim
ρ→0+

cl (ρΩ−(Σ)) ∩ Sn = ω as closed sets.

Such Ω−(Σ) is well-defined by the hypotheses on Σ and the discussions in the previous
paragraph. Denote by Ω+(Σ) = Rn+1 \ cl(Ω−(Σ)). We orient Σ so that its unit normal
points into Ω+(Σ) and out of Ω−(Σ).

We introduce a relation onH(C) as follows: If Σ1,Σ2 ∈ H(C), then

Σ1 � Σ2 provided Ω+(Σ2) ⊆ Ω+(Σ1).

Notice Σ � Σ for any Σ ∈ H(C). The construction ensures that if Σ1 � Σ2 and Σ2 � Σ3,
then Σ1 � Σ3. That is, (H(C),�) is a partially ordered set. Clearly, (E(C),�) and
(ES(C),�) are also partially ordered sets. Recall that an element x of a partially ordered
set (X,≤) is maximal if, for all y ∈ X , x ≤ y ⇒ x = y and is minimal if, for all y ∈ X ,
y ≤ x ⇒ x = y. The element x is the greatest element of (X,≤) if y ≤ x for all y ∈ X
and is the least element of (X,≤) if x ≤ y for all y ∈ X . Clearly, the greatest (least)
element is the unique maximal (minimal) element.

We use the universal barrier of Section 3 with a minimization procedure sketched by
Ilmanen [25] – see Ding [17, Theorem 6.3] for full details – to show that (E(C),�) admits
a greatest and least element.

Theorem 4.1. For k ≥ 2 and α ∈ (0, 1), let C be aCk,α-regular cone in Rn+1 and assume
either 2 ≤ n ≤ 6 or λ[C] < Λn. There are unique elements ΓG,ΓL ∈ ES(C) so that, for
all Γ ∈ E(C), ΓL � Γ � ΓG.

We will need several auxiliary results to prove this. First a standard regularity result:

Lemma 4.2. For k ≥ 2 and α ∈ (0, 1), let C be a Ck,α-regular cone in Rn+1 and assume
either 2 ≤ n ≤ 6 or λ[C] < Λn. If V is an E-stationary integral varifold with tangent
cone at infinity equal to C and the singular set, sing(V ), has Hausdorff dimension at most
n− 7, then V = VΣ for an element Σ ∈ E(C).

Proof. First observe that there is a self-expander Σ ⊂ Rn+1 so V = VΣ. When 2 ≤ n ≤ 6
this follows from our hypothesis on the singular set of V . When n ≥ 7, by Huisken’s
monotonicity formula λ[V ] ≤ λ[C] and the claim then follows from standard dimension
reduction arguments [40, Theorem 4], Allard’s regularity theorem [33, Theorem 24.2] and
the hypothesis that (?n,Λ) holds. Next, by [8, Proposition 3.3], Σ is Ck,α∗ -asymptotic to C.
That is, Σ ∈ E(C) completing the proof. �

A key property of the partial order is that there are always elements of ES(C) that lie
above and below any pair of elements of E(C).

Proposition 4.3. For k ≥ 2 and α ∈ (0, 1), let C be a Ck,α-regular cone in Rn+1 and
assume either 2 ≤ n ≤ 6 or λ[C] < Λn. For any two Γ1,Γ2 ∈ E(C) there are Γ± ∈ ES(C)
with Γ− � Γi � Γ+ for i = 1, 2. Moreover, one of the following three situations occurs:

(1) Γ− � Γ1 � Γ2 � Γ+.
(2) Γ− � Γ2 � Γ1 � Γ+.
(3) Γ± 6= Γ1 and Γ± 6= Γ2.

Proof. Let B(C) be the universal barrier given by Proposition 3.1 for the cone C. As Γ1

and Γ2 are asymptotic to C one has, by Item (5) of Proposition 3.1, that Γi ∩ B(C) = ∅ for
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i = 1, 2. Let Σ+ = ∂(Ω+(Γ1) ∩ Ω+(Γ2)) and let Σ− = ∂(Ω−(Γ1) ∩ Ω−(Γ2)). Notice
that Σ± are locally given as the graph of Lipschitz functions and are both hypersurfaces
away from Γ1 ∩ Γ2.

Let ΨC and ρC be given by Proposition 3.1. By Item (3) of Proposition 3.1 one has, for
R > 2R0 large, that there is a sufficiently small εR > 0 so that if

γR± = ΨC(RL(C),±(ρC(R)− εR)),

then γR± ∩ B(C) = ∅ and γR± ⊂ Ω±(Γ1) ∩ Ω±(Γ2). Moreover, each γR± is, by construc-
tion, homologous to RL(C) and hence is null-homologous in cl(Ω±(Γ1)) ∩ cl(Ω±(Γ2)).
As such, one can minimize the expander functional E in the closed set cl(Ω±(Γ1)) ∩
cl(Ω±(Γ2)) ∩ B̄2R to obtain an integral current ΓR± with ∂ΓR± = γR± . Moreover, by [39,
Proposition 6.1 and Theorem 6.2], the singular set of ΓR± has Hausdorff dimension less than
n − 2. It follows that the associated varifold of ΓR± is E-stationary. Hence, by Solomon-
White’s maximum principle [35], ΓR± is compactly supported in B̄2R∩Ω±(Γ1)∩Ω±(Γ2),
and so Item (4) of Proposition 3.1 implies spt(ΓR±) ∩ B(C) = ∅.

By Item (3) of Proposition 3.1, C\B2R0 is a deformation retract of Rn+1\(B(C)∪B2R0).
Thus, the construction of γR± ensures that [γR± ] = [RL(C)] 6= 0 in Hn−2(Rn+1 \ (B(C) ∪
B2R0

)). Hence, as γR± = ∂ΓR± ⊂ Rn+1\B(C), spt(ΓR±) ∩B2R0
6= ∅ must hold.

Now pick a sequence Ri → ∞, up to passing to a subsequence, the ΓRi± converge, as
integral currents, to a Γ± supported in cl(Ω±(Γ1)) ∩ cl(Ω±(Γ2)). As spt(ΓRi± ) ∩B2R0

6=
∅ and the ΓRi± are E-minimizing in B̄2Ri ∩ cl(Ω±(Γ1)) ∩ cl(Ω±(Γ2)), it follows that
spt(Γ±)∩B2R0 6= ∅ and so the limit is non-trivial. Hence, arguing as in Ding [17, Theorem
6.3], the tangent cone of the associated varifold, VΓ± , of each Γ± at infinity is C. As Γ± is
locally E-minimizing, standard regularity theory for area minimizing hypersurfaces [33,
Theorem 37.7] gives the singular set of Γ± has Hausdorff dimension at most n−7. Hence,
by our hypotheses, it follows from Lemma 4.2 that Γ± ∈ ES(C).

If Γ1 � Γ2, then Σ+ = Γ2 and Σ− = Γ1 and the construction ensures Γ− � Γ1 �
Γ2 � Γ+ and Case (1) holds. Similarly, if Γ2 � Γ1, then the construction ensures Γ− �
Γ2 � Γ1 � Γ+ and Case (2) holds. If neither of these cases hold, then the construction
still ensures that Γ− � Γi � Γ+ for i = 1, 2, but one cannot have Γ1 = Γ± or Γ2 = Γ±;
i.e., Case (3) holds. �

We also need the following compactness result.

Proposition 4.4. For k ≥ 2 and α ∈ (0, 1), let C be a Ck,α-regular cone in Rn+1 and
assume either 2 ≤ n ≤ 6 or λ[C] < Λn. If Σi ∈ ES(Ci) and L(Σi) = L(Ci) → L(C) in
Ck,α(Sn), then there is a Σ ∈ ES(C) so that, up to passing to a subsequence, Σi → Σ in
C∞loc(Rn+1). In particular, the space ES(C) is (sequentially) compact in C∞loc(Rn+1).

Proof. If n ≥ 7, the hypothesis λ[C] < Λn ≤ 2 and [8, Theorem 1.1 (3)] imply that, up
to passing to a subsequence, the Σi converge in C∞loc(Rn+1) to an element Σ ∈ E(C). The
nature of the convergence ensures Σ ∈ ES(C).

When 2 ≤ n ≤ 6, observe that, by [8, Corollary 3.4], there is an R = R(C) > 0
so that, up to passing to a subsequence, the Σi\B̄R converge – with multiplicity one – in
C∞loc(Rn+1\B̄R) to a self-expander Σ′ in Rn+1\B̄R that is Ck,α∗ -asymptotic to C.

Furthermore, by [8, Lemma 3.6] and [8, Lemma 3.8] one has, for any R > 0 and i
sufficiently large,

Hn(Σi ∩BR) ≤Mλ[C]Rn
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where M depends only on the dimension. In particular, each Σi ∩ BR is stable and has
uniformly bounded volume and so, by standard compactness results for stable hypersur-
faces [32], as 2 ≤ n ≤ 6 one has uniform curvature estimates. Hence, up to passing to
a further subsequence, Σi ∩ B4R → Σ′′ in C∞loc(B4R) – here the convergence may, in
principle, be with multiplicity greater than one. However, Σ′ = Σ′′ in B3R\B̄2R and so
Σ = Σ′ ∪ Σ′′ ∈ E(C). By the construction and the fact that Σ has no closed components,
Σi → Σ in C∞loc(Rn+1) with multiplicity one. The nature of the convergence ensures
Σ ∈ ES(C). �

Proof of Theorem 4.1. It is clear that if ΓG and ΓL exist, then they are unique. Notice that
E(C) 6= ∅. Indeed, by a minimization procedure of Ilmanen [25] and Ding [17, Theorem
6.3] and standard regularity theory [33, Theorem 37.7], there is a locally E-minimizing
integral n-current, Γ′, with singular set of Hausdorff dimension at most n − 7 and with
tangent cone of the associated varifold of Γ′ at infinity equal to C. Thus, by our hypotheses,
it follows from Lemma 4.2 that Γ′ ∈ E(C), proving the claim.

Now let B(C) be the universal barrier associated to C given by Proposition 3.1. Pick
Γ ∈ E(C), let Ω+ = B(C) ∩ Ω+(Γ) and Ω− = B(C) ∩ Ω−(Γ). As Γ ∩ B(C) = ∅, by
Item (5) of Proposition 3.1, B(C) = Ω+ ∪Ω−. Clearly, this decomposition is independent
of the choice Γ ∈ E(C). In particular, for all Γ ∈ E(C), Ω+ ⊂ Ω+(Γ) ⊂ Rn+1\Ω− and
Ω− ⊂ Ω−(Γ) ⊂ Rn+1\Ω+.

Let U+ =
⋃

Γ∈E(C) Ω+(Γ) and U− =
⋃

Γ∈E(C) Ω−(Γ). These are both open subsets of
Rn+1. Clearly, Ω+ ⊂ U+ ⊂ Rn+1\Ω− and Ω− ⊂ U− ⊂ Rn+1\Ω+. In particular, ∂U+

and ∂U− are both nonempty. We claim that ∂U+ = ΓL and ∂U− = ΓG.
To that end, let M denote the number of components of L(C). As L(C) is compact this

is a finite positive integer. As Γ has no compact connected components, every element of
Γ ∈ E(C) has at most M components. Now fix a p1 ∈ ∂U+ and observe p1 6∈ Ω+(Σ) for
any Σ ∈ E(C). By definition, there are qi → p1 and Γi ∈ E(C) with qi ∈ Ω+(Γi). By
Proposition 4.3, there are Υi ∈ ES(C) with Υi � Γi and so qi ∈ Ω+(Υi). By Proposition
4.4, up to passing to a subsequence, we have Υi → Σ1 ∈ ES(C). As qi ∈ Ω+(Υi), while
p1 6∈ Ω+(Υi), one must have p1 ∈ Σ1. Let Σ0

1 be the component of Σ1 containing p1.
If ∂U+ = Σ1, then ∂U+ ∈ ES(C). If not, we may pick p2 ∈ ∂U+\Σ1. By definition,

there are q′i → p2 and Γ′i ∈ E(C) with q′i ∈ Ω+(Γ′i). Applying Proposition 4.3 to the
pairs (Σ1,Γ

′
i), one produces elements Υ′i ∈ ES(C) with Υ′i � Γ′i and Υ′i � Σ1. By

Proposition 4.4, up to passing to a subsequence, we have Υ′i → Σ2 ∈ ES(C). Observe
that, as above, one must have p2 ∈ Σ2. The fact that Υ′i � Σ1 implies that Σ2 � Σ1

and, hence, that p1 ∈ Σ2. It follows from the strong maximum principle that Σ0
1 ⊂ Σ2.

Hence, the component of Σ2 containing p1 is equal to Σ0
1 and so p1 and p2 are in different

components of Σ2.
If ∂U+ = Σ2, then ∂U+ ∈ ES(C). If not, we may pick p3 ∈ ∂U+\Σ2. Arguing as

above produces a Σ3 ∈ ES(C) with p1, p2 and p3 in different components of Σ3. As any
element of E(C) has at most M components this procedure must stop after m ≤ M steps.
That is, it produces an element Σm ∈ ES(C) with ∂U+ = Σm ∈ ES(C).

Hence, we have shown ∂U+ ∈ ES(C). By construction, ∂U+ � Γ for any Γ ∈ E(C).
That is, ΓL = ∂U+ ∈ ES(C) is indeed the least element. A similar argument shows that
∂U− ∈ ES(C) and satisfies Γ � ∂U− for all Γ ∈ E(C) and so ΓG = ∂U− is the greatest
element. �
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5. EXPANDER MEAN-CONVEX MEAN CURVATURE FLOW OF LOW ENTROPY

Let {Σt}t∈I be a mean curvature flow (MCF). Along the flow, we define the expander
mean curvature relative to the space-time point X0 = (x0, t0) to be

EX0

Σt
(p) = 2(t− t0)HΣt(p) + (x(p)− x0) · nΣt(p).

We remark that EX0

Σt
= −SX0

Σt
where SX0

Σt
was introduced in [4, Section 3] as the shrinker

mean curvature relative to X0. Observe that, due to the dependence on t, EX0

Σt
is defined

for the flow. For a time t ∈ R and a hypersurface Σ, the expander mean curvature of Σ
relative to the space-time point X0 and time t is defined to be

EX0,t
Σ (p) = 2(t− t0)HΣ(p) + (x(p)− x0) · nΣ(p).

Denote by O the space-time origin. For β > 0 we let

ψβ(s) = s−βe−βs for s > 0.

The main result of this section is the following:

Proposition 5.1. For n, k ≥ 2 and α ∈ (0, 1), let Σ ∈ ACHk,αn have no closed connected
components and let Ω be an open subset of Rn+1 so ∂Ω = Σ. Suppose the following holds:

(1) There is an N > 1 so that Σ \BNR ⊂ TR−1(C(Σ)) for all R > 1;
(2) There are constants c, β > 0 so that, by choosing the outward unit normal to Ω,

for p ∈ Σ

EO,1Σ (p) ≥ cψβ(1 + |x(p)|2) > 0;

(3) λ[Σ] < Λ∗n.
Then there is a unique MCF, {Σt}t≥1 with Σ1 = Σ and a family of open subsets of Rn+1,
{Ωt}t≥1 with Ω1 = Ω and ∂Ωt = t−

1
2 Σt so that:

(1) Each Σt ∈ ACHk,αn with C(Σt) = C(Σ);
(2) By choosing the outward unit normal to Ωt, for t ≥ 1 and p ∈ Σt,

EOΣt(p) ≥ cψβ(1 + |x(p)|2 + 2n(t− 1)) > 0;

(3) For any 1 ≤ t < t′, cl(Ωt′) ⊂ Ωt and so

lim
t→∞

cl(Ωt) = K as closed sets

where ∂K = Γ is a stable asymptotically conical self-expander with C(Γ) =
C(Σ). Moreover,

lim
t→∞

∂Ωt = Γ in C∞loc(Rn+1)

and, hence, Γ and Σ are Ck,α a.c.-isotopic with fixed cone.

Before the proof of Proposition 5.1 we will need several auxiliary lemmas. Fix a unit
vector e, a point x0 ∈ Rn+1 and r, h > 0. Let

Ce(x0, r, h) =
{
x ∈ Rn+1 : |(x− x0) · e| < h and |x− x0|2 < r2 + |(x− x0) · e|2

}
be the solid open cylinder with axis e centered at x0 and of radius r and height 2h. Recall
the following definition from [8, Section 3].

Definition 5.2. Let k ≥ 2 be an integer and α ∈ (0, 1). A hypersurface Σ ⊂ Rn+1 is a
Ck,α e-graph of size δ on scale r at x0 if there is a function f : Bnr ⊂ Pe → R with

k∑
j=0

r−1+j‖∇jf‖0 + r−1+k+α[∇kf ]α < δ,
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where Pe is the n-dimensional subspace of Rn+1 normal to e, so that

Σ ∩ Ce(x0, r, δr) = {x0 + x(x) + f(x)e : x ∈ Bnr } .

Lemma 5.3. For n, k ≥ 2 and α ∈ (0, 1), let {Σt}t∈[1,T ) be a MCF in Rn+1. Suppose

Σ1 ∈ ACHk,αn with the asymptotic cone C = C(Σ1) and that there is an N > 0 so
that Σ1 \ BNR ⊂ TR−1(C) for all R ≥ 1. Given γ ∈ (0, 1) there are constants Ñ =

Ñ(Σ1, γ) > 1 and η = η(Σ1, γ) > 0 so that

(1) For all R ≥ 1 and t ∈ [1, T ), Σt \BÑR√t ⊂ TR−1
√
t(C);

(2) For t ∈ [1, T ), Σt is a Ck,α nC(p)-graph of size γ on scale η|x(p)| at every
p ∈ C \BÑ√t. In particular,

sup
t∈[1,T )

sup
Σt\BÑ√t

|AΣt | <∞.

Proof. Fix any t ∈ [1, T ) and define Γs = t−
1
2 Σ1+t(s+1) for −1 ≤ s < t−1(T − 1) − 1.

Thus, {Γs} is a MCF and the hypothesis on Σ1 implies Γ−1 ∈ ACHk,αn and Γ−1 \BNR ⊂
TR−1(C) for all R ≥ 1. Thus, by [4, Lemma 4.3], there is an N ′ = N ′(C, N, n) > 1 so
that, for all R ≥ 1 and s ∈ [−1,−t−1], Γs \ BN ′R ⊂ TR−1(C). For s = −t−1, this gives
Σt \BN ′R√t ⊂ TR−1

√
t(C) for all R ≥ 1, proving Item (1).

Let δ ∈ (0, 1) be a number to be chosen. As Σ1 is Ck,α∗ -asymptotically conical, there
is an ε = ε(Σ1, δ) ∈ (0, 1) and Ñ = Ñ(Σ1, δ) > 4N ′ so that Σ1 is a Ck,α nC(p)-
graph of size δ on scale 8r at every p ∈ C \ BÑ , where r = r(p) = ε|x(p)|, and, by
scaling, so is Γ−1. Thus, by the pseudo-locality property for MCF [26, Theorem 1.5], one
may choose δ sufficiently small so that, for every p ∈ C(Σ1) \ BÑ and s ∈ [−1,−t−1],
Γs ∩ CnC(p)(p, 4r, 4r) is given by the graph of a function fp(s, x) over (some subset of)
TpC which satisfies

(4r)−1‖fp(s, ·)‖0;Bn4r
+ ‖∇fp(s, ·)‖0;Bn4r

≤ 1

where∇ is the gradient in spatial variable x. As {Γs} is a MCF, fp(s, x) satisfies

∂fp
∂s

=
√

1 + |∇fp|2 div

(
∇fp√

1 + |∇fp|2

)
.

It follows from the Hölder estimates for quasi-linear parabolic equations [28, Theorem 1.1
of Chapter 6] that given α′ ∈ (0, 1) there is a C = C(n, α′) so that

sup
s∈[−1,−t−1]

[∇fp(s, ·)]α′;Bn2r + sup
x∈Bn2r

[∇fp(·, x)]α′
2 ;[−1,−t−1] ≤ Cr

−α′ .

Hence, by the Schauder estimates (see, e.g., [28, Theorem 5.1 of Chapter 4]), one has that,
for every s ∈ [−1,−t−1],

(5.1)
k∑
j=0

rj−1‖∇jfp(s, ·)‖0;Bnr + rk+α−1[∇kfp(s, ·)]α;Bnr ≤ C
′

and that

sup
x∈Bnr

[∇fp(·, x)] 1
2 ;[−1,−t−1] ≤ C ′r−1

where C ′ = C ′(n, k, α) > 1.
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These estimates together with the equation of fp implies, for every s ∈ [−1,−t−1], that

|fp(s, x)− fp(−1, 0)| ≤ |fp(s, x)− fp(−1, x)|+ |fp(−1, x)− fp(−1, 0)|
≤ (s+ 1)‖∂sfp(·, x)‖0;[−1,−t−1] + |∇fp(−1, 0)||x|+ |x|2‖∇2fp(−1, ·)‖0;Bnr

≤ |∇fp(−1, 0)||x|+ C ′′r−1
(
|x|2 + (s+ 1)

)
and

|∇fp(s, x)−∇fp(−1, 0)| ≤ |∇fp(s, x)−∇fp(s, 0)|+ |∇fp(s, 0)−∇fp(−1, 0)|

≤ |x|‖∇2fp(s, ·)‖0;Bnr +
√
s+ 1 [∇fp(·, 0)] 1

2 ;[−1,−t−1]

≤ C ′′r−1
(
|x|+

√
s+ 1

)
where C ′′ = C ′′(n,C ′) > C ′. Observe that, by Item (1), |fp(−1, 0)| < N ′|x(p)|−1 and
|∇fp(−1, 0)| ≤ δ. Thus, for any ρ ∈ (0, 1),

(5.2) (ρr)−1‖fp(s, ·)‖0;Bnρr + ‖∇fp(s, ·)‖0;Bnρr ≤ 2C ′′(δ + ρ+N ′ε−2ρ−1Ñ−1).

Hence, combining (5.1) and (5.2) gives, for all s ∈ [−1,−t−1],
k∑
j=0

(ρr)j−1‖∇jfp(s, ·)‖0;Bnρr+(ρr)k+α−1[∇kfp(s, ·)]α;Bnρr ≤ 4C ′′(δ+ρ+N ′ε−2ρ−1Ñ−1).

Now choose δ = ρ = γ
16C′′ and enlarge Ñ to ensure that the right side of the above

estimate is less than γ. As Γs = t−
1
2 Σt when s = −t−1, Item (2) follows immediately

from this by setting η = ερ. �

Lemma 5.4. Let {Σt}t∈[1,T ) be a MCF in Rn+1 and assume Σ1 is a C2-hypersurface of
finite entropy. If the following holds:

(1) For some c, β > 0, by a suitable choice of the unit normal on Σ1, for p ∈ Σ1

EOΣ1
(p) ≥ cψβ(1 + |x(p)|2);

(2) For some Ñ > 0

sup
Σ1

|AΣ1
|+ sup

t∈[1,T )

sup
Σt\BÑ√t

|AΣt | <∞,

then, for t ∈ [1, T ) and p ∈ Σt,

EOΣt(p) ≥ cψβ(1 + |x(p)|2 + 2n(t− 1))

where the unit normal on Σt is chosen to be compatible with the one on Σ1.

Proof. First of all, by [34, Proposition 4](
d

dt
−∆Σt

)
EOΣt = |AΣt |2EOΣt .

Let
%(p, t) = 1 + |x(p)|2 + 2n(t− 1)

and observe that, by [19, Lemma 1.1],(
d

dt
−∆Σt

)
% = 0.

Thus, the chain rule gives(
d

dt
−∆Σt

)
ψβ(%) = −ψ′′β(%)|∇Σt%|2 ≤ 0
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where
ψ′′β(s) =

(
β(β + 1) + 2β2s+ β2s2

)
s−β−2e−βs > 0.

Hence, combining the equations for EOΣt and ψβ(%) gives(
d

dt
−∆Σt

)
(cψβ(%)− EOΣt) ≤ −|AΣt |2EOΣt ≤ |AΣt |2(cψβ(%)− EOΣt).

As the flow is regular1 on [1, T ), Hypothesis (2) implies that, for all T0 ∈ (1, T ), there
is a constant C = C(T0) so that for all t ∈ [0, T0]

sup
Σt

(
|AΣt |2(p) + |ψβ(%(p, t))|+ (1 + |x(p)|)−1|EOΣt(p)|

)
≤ C.

That is, cψβ(%)−EOΣt has at most linear growth on Σt for each t ∈ [1, T0] and the second
fundamental form is uniformly bounded by C. It follows from a non-compact maximum
principle (e.g., a simple modification of the proof of [19, Corollary 1.1]) and the fact that
on Σ1, cψβ(%)−EOΣ1

≤ 0, that cψβ(%)−EOΣt ≤ 0 for all t ∈ [1, T0]. As T0 was arbitrary
in (1, T ), the claim follows. �

Lemma 5.5. Let {Σt}t∈[1,T ) be a MCF in Rn+1 and assume Σ1 is a C2-hypersurface of
finite entropy. If the following holds:

(1) For some c, β > 0, by a suitable choice of the unit normal on Σt, for t ∈ [1, T )
and p ∈ Σt

EOΣt(p) ≥ cψβ(1 + |x(p)|2 + 2n(t− 1));

(2) For some Ñ > 0

M̃ = sup
Σ1

|AΣ1 |+ sup
t∈[1,T )

sup
Σt\BÑ√t

|AΣt | <∞,

then, for t ∈ [1, T ) and p ∈ Σt,

ψβ

(
1 + |x(p)|2 + 2n(t− 1) + Ñ2t

)
|AΣt |(p) ≤ M̃c−1EOΣt(p).

Proof. On Σt \BÑ√t, the desired estimate follows from our hypotheses. Next we define

u = |AΣt |2v2 = |AΣt |2|EOΣt |
−2.

By (B.9) in Appendix B of [18],(
d

dt
−∆Σt

)
|AΣt |2 ≤ −2|∇Σt |AΣt ||2 + 2|AΣt |4.

A direct computation (see, e.g., (3.22)-(3.24) of [4]) gives(
d

dt
−∆Σt

)
u ≤ −2∇Σt log v · ∇Σtu.

Thus, the maximum principle implies

sup
S∩(BÑ√t×[1,t])

u ≤ sup
S∩∂P (BÑ√t×[1,t])

u

where S =
⋃
τ∈[1,T ) Στ × {τ} is the space-time track of the flow and

∂P
(
BÑ
√
t × [1, t]

)
= ∂

(
BÑ
√
t × [1, t]

)
\
(
BÑ
√
t × {t}

)
.

1That is, the flow is smooth away from initial time and attains its initial data in the C2
loc(R

n+1) topology.
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Our hypotheses ensure that

sup
S∩∂P (BÑ√t×[1,t])

u ≤ M̃2

c2ψ2
β

(
1 + Ñ2t+ 2n(t− 1)

) .
Hence the desired estimate holds on Σt ∩BÑ√t as well. �

With a minor modification of the proof of [4, Proposition 4.5], we use Lemma 5.5 to
prove the long time existence of certain expander mean-convex MCFs of low entropy.

Proposition 5.6. For n ≥ 2, let Σ1 be a C2-hypersurface in Rn+1 and assume Σ1 has
no closed connected components and λ[Σ1] < λ[Sn−1 × R]. Suppose T ∈ (0,∞] is the
maximal existence time of the MCF {Σt}t∈[1,T ) starting from Σ1. If the following holds:

(1) For some c, β > 0, by a suitable choice of the unit normal on Σt, for t ∈ [1, T )
and p ∈ Σt

EOΣt(p) ≥ cψβ(1 + |x(p)|2 + 2n(t− 1));

(2) For some Ñ > 0

M̃ = sup
Σ1

|AΣ1
|+ sup

t∈[1,T )

sup
Σt\BÑ√t

|AΣt | <∞,

then T =∞.

Proof. We argue by contradiction. If T <∞, then Hypothesis (2) implies

lim
t→T

sup
Σt∩BÑ√T

|AΣt | =∞.

Thus, by Huisken’s monotonicity formula [23] and Brakke’s regularity theorem [14] (cf.
[41]), there is an x0 ∈ B̄Ñ√T so that the rescaled MCF about X0 = (x0, T ),

Γs = (T − t)− 1
2 (Σt − x0), s = − log(T − t),

satisfies that, for some sequence si → ∞, the Γsi converge, as integral varifolds, to a
multiplicity-one F -stationary varifold, Γ, with 1 < λ[Γ] < λ[Sn−1 × R].

By the hypotheses and Lemma 5.5, there is a constant C = C(n, c, β, Ñ , M̃ , T ) > 0 so
that, for any p ∈ Γsi ∩BRi where Ri = e

si
2 ,

|AΓsi
|(p) ≤ C

(
2(T − e−si)HΓsi

(p) + e−
si
2 (x0 + e−

si
2 x(p)) · nΓsi

(p)
)
.

Passing si →∞ and invoking Brakke’s regularity theorem again, one has

|AΓ| ≤ 2CTHΓ on the regular set Reg(Γ).

As λ[Sn−1 × R] < 2, it follows from standard dimension reduction arguments [40, Theo-
rem 4], regularity of rectifiable mod 2 flat chains [38] and Allard’s regularity theorem [33,
Theorem 24.4], that Γ is regular everywhere – cf. [15, Proposition 5.1].

Hence, HΓ does not change sign and, as 1 < λ[Γ] < λ[Sn−1 × R], it follows from [16,
Theorem 0.14] that Γ is the self-shrinking sphere. As each Γsi has no closed connected
components, neither does Γ. Thus, Γ cannot be a sphere, giving a contradiction. �

Proof of Proposition 5.1. Fix a transverse section v on Σ so that v ∈ Ck,α0 ∩Ck0,H(Σ; Sn).
For Σ ∈ ACHk,αn , there is an open neighborhood U of Σ and a Ck,α diffeomorphism
Φv : Σ× (−ε, ε)→ U given by

Φv(p, τ) = x(p) + τv(p).
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Using Φv, the MCF starting from Σ1 can be expressed as a quasi-linear parabolic equation
on Σ with initial data 0. Thus, by standard parabolic theory (e.g., [28] or [20]), there is a
unique MCF, {Σt}t∈[1,T ) with Σ1 = Σ and T the maximal existence time. As each Σt
is properly embedded in Rn+1, there is a one-parameter family of open subsets of Rn+1,
{Ωt}t∈[1,T ) so ∂Ωt = t−

1
2 Σt and so the outward unit normals nΣt to Ωt are continuous in

t. Hence, by the hypotheses on Σ, one appeals to Lemmas 5.3 and 5.4 and Proposition 5.6
to see the flows exists for all times, i.e., T =∞, and Items (1) and (2).

To analyze the asymptotic behaviors of the flow at t =∞, we define

Γs = t−
1
2 Σt and Ks = cl(Ωt) where s = log t.

Thus, {Γs}s≥0 satisfies the rescaled MCF equation(
∂x

∂s

)⊥
= HΓs −

x⊥

2
.

Observe, by Item (2), the expander mean curvature of Γs, HΓs − 1
2x
⊥, points into Ks.

Thus, Ks′ ⊂ int(Ks) for all s′ > s ≥ 0.
We consider the translation in time of {Γs}s≥0 by τ > 0,

{Γτs}s≥0 = {Γs+τ}s≥0 ,

which is also a rescaled MCF. As λ[Σ] < Λ∗n < 2, it follows from Huisken’s monotonicity
formula [23] and the scaling invariance of entropy that λ[Γτs ] < Λ∗n. Thus, by Brakke’s
compactness theorem [14] (see also [24, Section 7]), given a sequence τi → ∞ there is a
subsequence τij so that, for every s ≥ 0,

(5.3) lim
j→∞

HnbΓ
τij
s = µs

where {µs}s≥0 is a one-parameter family of multiplicity-one rectifiable Radon measures
satisfying the rescaled MCF equation in Brakke’s sense – see [40, Section 11] for the
precise definition. Moreover, by the monotonicity of Ks and the upper semi-continuity of
Gaussian density function, one has for all s ≥ 0

spt(µs) = ∂K where K =
⋂
s≥0Ks.

In particular, µs = Hnb∂K for all s ≥ 0, and {µs}s≥0 is a static solution of the rescaled
MCF. Consequently, the convergence (5.3) can be taken for all τ →∞.

Furthermore, by Huisken’s monotonicity formula [23], all tangent flows of {µs}s≥0

are multiplicity-one static minimal (hyper)cones in Rn+1. As λ[µs] < Λ∗n, it follows
from White’s stratification theorem [40, Theorem 4] that these minimal cones have at most
(n − 3)-dimensional spines and so the singular set of {µs}s≥0 has parabolic Hausdorff
dimension at most n − 1. As the flow is static, the varifold V∂K associated to ∂K is a
multiplicity-oneE-stationary varifold and the singular set of V∂K has Hausdorff dimension
at most n − 3. Moreover, by our previous discussion, {∂Ks}s≥0 form a foliation of a
neighborhood of ∂K in Rn+1 \ int(K) so that H∂Ks − 1

2x
⊥ points into Ks. Thus, it

follows from the maximum principle of Solomon-White [35] that V∂K is locally one-sided
E-minimizing (strictly speaking one should think of K as a set of locally finite perimeter
and this set is one-sided locally E-minimizing). As such, the regular part of V∂K is E-
stable and so it follows from Schoen-Simon’s regularity theorem [31] that the Hausdorff
dimension of the singular set of V∂K is at most n − 7. Moreover, it follows from Lemma
5.3 and the Arzelà-Ascoli theorem that the tangent cone of V∂K at infinity is equal to
C(Σ). Hence it follows from the entropy bound and Lemma 4.2 that ∂K ∈ ES(C(Σ)). Set
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Γ = ∂K. As Γ is smooth, Brakke’s regularity theorem [14] (see also [41]) implies that, as
s→∞, the Γs converge locally smoothly to Γ. That is,

lim
t→∞

t−
1
2 Σt = Γ in C∞loc(Rn+1).

Moreover, it follows from Lemma 5.3 and the locally smooth convergence that, for any
transverse section w on Γ with w ∈ Ck,α0 ∩ Ck0,H(Γ; Sn), there is a large s0 > 1 so that if
s > s0, then there is a function ws ∈ Ck,α1 ∩ C0

−1(Γ) so that if

fs(p) = x|Γ(p) + ws(p)w(p)

then fs ∈ ACHk,αn (Γ) is a parametrization of Γs and

lim
s→∞

‖fs − x|Γ‖(1)
1 = 0.

Finally, we show that Γ and Σ are Ck,α a.c.-isotopic with fixed cone. First of all, by
Lemma 2.1 and the above observation, there is a value s1 > s0 for which Γs1 is Ck,α a.c.-
isotopic with fixed cone to Γ and in fact Γs is a.c.-isotopic to Γ for all s > s1. It follows
from Lemma 5.3 and basic continuity properties of the MCF that for any s ∈ [1,∞) there
is an εs > 0 so, via the path given by Lemma 2.1, Γs′ is Ck,α a.c.-isotopic with fixed cone
to Γs for any s′ ∈ [1,∞) ∩ (s − εs, s + εs). As [1, s1] is compact, this implies that there
are a finite set of times 1 = s′0 < s′1 < . . . s′m = s1 so Γs′i and Γs′i+1

are Ck,α a.c.-isotopic
with fixed cone. Hence, composing these finitely many a.c.-isotopies one concludes that Γ
and Σ are Ck,α a.c.-isotopic with fixed cone, finishing the proof. �

6. DEFORMATION OF UNSTABLE SELF-EXPANDERS

The main result of this section is the following:

Theorem 6.1. For n, k ≥ 2 and α ∈ (0, 1), let Γ ∈ ACHk,αn be an unstable self-expander
and assume λ[Γ] < Λ∗n. There are stable self-expanders Γ− and Γ+ in ACHk,αn with
C(Γ−) = C(Γ+) = C(Γ) so that Γ− � Γ � Γ+ and both Γ− and Γ+ are Ck,α a.c.-
isotopic with fixed cone to Γ. Moreover, if Γ′ ∈ ACHk,αn is a stable self-expander with
C(Γ′) = C(Γ) and Γ′ � Γ (respectively, Γ � Γ′), then one may choose Γ− (respectively,
Γ+) to have the additional property that Γ′ � Γ− � Γ (respectively, Γ � Γ+ � Γ′).

To prove Theorem 6.1 we will need several auxiliary results. The first is the continuity
of entropy under small C2

1 perturbations.

Lemma 6.2. Given Γ ∈ ACH2
n and δ > 0, there exists a τ = τ(Γ, δ) > 0 so that if

‖f − x|Γ‖(1)
2 < τ , then |λ[f(Γ)]− λ[Γ]| < δ.

Proof. First, by the definition of entropy, there is a ρ0 > 0 and y0 ∈ Rn+1 so that

F [ρ0Γ + y0] > λ[Γ]− δ

2
.

Thus, for sufficiently small τ ,

F [ρ0f(Γ) + y0] > F [ρ0Γ + y0]− δ

2
.

Hence, combining these gives

λ[f(Γ)] ≥ F [ρ0f(Γ) + y0] > λ[Γ]− δ.
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Observe that there is a C > 0 so that, for sufficiently small τ ,

sup
y∈Rn+1,R>0

R−nHn(f(Γ) ∩BR(y)) < C.

Moreover, given γ, η > 0, there is an R = R(Γ, γ, η) > 0 so that if p ∈ ρf(Γ) and
ρ + |x(p)| > R, then ρf(Γ) is an nρf(Γ)(p)-graph of size γ on scale η at p. Thus, for a
suitable choice of γ and η depending on C and δ,

(6.1) sup
ρ+|y|>R

F [ρf(Γ) + y] < 1 + δ ≤ λ[Γ] + δ.

Next we observe that given R′ > ε′ > 0 there are constants C ′ = C ′(Γ,R′, ε′) and
ρ′ = ρ′(Γ,R′, ε′) > 0 so that, for ρ < ρ′,

‖ρf(ρ−1·)− ρx(ρ−1·)‖2;ρΓ∩(B2R′\Bε′ ) < C ′τ.

Now choose ε′ sufficiently small andR′ > R sufficiently large so

(4π)−
n
2 C

(
Ln (Bnε′) +

∫
Rn\BnR′

e−
|x|2

4 dLn
)
<
δ

4
,

where Ln is the Lebesgue measure on Rn. As limρ→0 ρΓ = C(Γ) in C2
loc(Rn+1 \ {0}), it

follows that for sufficiently small τ

(6.2) sup
0<ρ<ρ′,y∈BR′

F [ρf(Γ) + y] < λ[C(Γ)] + δ ≤ λ[Γ] + δ

where the second inequality is implied from the lower semi-continuity of entropy. Finally,
as the set

K ′ =
{

(ρ,y) : ρ′ ≤ ρ ≤ R,y ∈ B̄R′
}

is compact, by shrinking τ if needed, we get

(6.3) sup
(ρ,y)∈K′

F [ρf(Γ) + y] < sup
(ρ,y)∈K′

F [ρΓ + y] + δ ≤ λ[Γ] + δ.

Hence, combining (6.1)-(6.3) gives, for sufficiently small τ ,

λ[f(Γ)] < λ[Γ] + δ,

which completes the proof. �

The next is an asymptotic estimate of the distance between two disjoint self-expanders
that are asymptotic to the same cone.

Proposition 6.3. For n ≥ 2, let Γ and Σ be self-expanders in ACH2
n such that C(Γ) =

C(Σ) and Γ ∩ Σ = ∅. There is a radius R1 = R1(Γ,Σ) > 1 and a constant C1 =
C1(Γ,Σ) > 0 so that there is a smooth function u : Γ \ B̄R1 → Rn+1 that satisfies

Σ \ B̄2R1 ⊂
{
x(p) + u(p)nΓ(p) : p ∈ Γ \ B̄R1

}
⊂ Σ

and
C−1

1 r−n−1e−
r2

4 ≤ u ≤ C1r
−n−1e−

r2

4

where nΓ is chosen to point towards Σ and r(p) = |x(p)| for p ∈ Γ.

Proof. Appealing to [10, Proposition 2.1] one has all claims but the lower bound of u. To
see this lower bound, a standard computation (see, e.g., [10, Lemma A.2]) gives that, up to
increasing R1,

LΓu = ∆Γu+
1

2
x · ∇Γu+

(
|AΓ|2 −

1

2

)
u = a · ∇Γu+ bu
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where a and b satisfy

|a|+ |b| ≤ C
(
|u|+ |∇Γu|+ |∇2

Γu|+ |x · ∇Γu|
)
.

Invoking the gradient and Hessian estimate for u given by [10, Proposition 2.1], one has
|a|+ |b| decays with a rate at least e−

r2

8 . Thus, set v = (r−n−1 + r−n−2)e−
r2

4 and, up to
further increasing R1, one readily computes (see [10, Lemma A.1])

LΓv ≥ a · ∇Γv + bv on Γ \ B̄R1
.

As Γ ∩ Σ = ∅, there is a constant C1 > 0 so that

inf
Γ∩∂BR1

u ≥ C−1
1 (R−n−1

1 +R−n−2
1 )e−

R2
1

4 .

As Γ is C2-asymptotically conical, we can enlarge R1 so

sup
Γ\B̄R1

(
|AΓ|2 −

1

2
− b
)
< −1

4
.

Hence the maximum principle implies

u ≥ C−1
1 v > C−1

1 r−n−1e−
r2

4

proving the claim. �

Proof of Theorem 6.1. Partition Γ into its connected components Γ1, . . . ,ΓM . For Γ to be
unstable, at least one Γj must also be unstable. Invoking [11, Proposition 3.2], for each Γj

there is a number µj and a function fj > 0 on Γj so that

(LΓj + µj)fj = 0

and fj satisfies the pointwise estimates

1

C ′0
(1 + |x|2)−

1
2 (n+1−2µj)e−

|x|2
4 ≤ fj ≤ C ′0(1 + |x|2)−

1
2 (n+1−2µj)e−

|x|2
4

and, for every i ≥ 1,

‖e
|x|2

8 ∇iΓfj‖0 ≤ C ′i
where C ′0 = C ′0(Γj) > 0 and C ′i = C ′i(Γ

j). Moreover, if Γj is unstable, then µj < 0.
Define f : Γ→ R by

f(p) =

{
fj(p) if p ∈ Γj for some unstable Γj ;

0 otherwise.

Given a number ε, let

Γε = {f ε(p) = x(p) + εf(p)nΓ(p) : p ∈ Γ}
where nΓ is chosen to point out of Ω−(Γ). The estimates of fj ensure that there is a
sufficiently small ε̄ = ε̄(Γ) > 0 so that, for all |ε| < ε̄, Γε ∈ ACHk,αn with C(Γε) = C(Γ).

We wish to apply Proposition 5.1 to Γε,j = f ε(Γj) for those unstable Γj . Suppose
−ε̄ < ε < 0. By (2.1) and the flow equation, the distance between Γj and C(Γj) decays
linearly. This fact and the C0 estimate of fj ensure that Hypothesis (1) of Proposition 5.1
is satisfied. Next, choose the unit normal nΓε to point out of Ω−(Γε) and this induces the
choice of normal on each Γε,j . If Γj is unstable, then one appeals to the computations in
[10, Lemma A.2] and the estimates of fj to see that, for all ε < 0 sufficiently close to 0,

EO,1Γε,j ≥ 2(C ′0)−1εµjψβj (1 + |x|2)
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for βj = 1
2 (n + 1 − 2µj) > 0. That is, Hypothesis (2) of Proposition 5.1 is satisfied.

Finally, by Lemma 6.2 and shrinking ε̄ (if needed), one has λ[Γε,j ] ≤ λ[Γε] < Λ∗n. As
such, Hypothesis (3) of Proposition 5.1 is satisfied. Thus, if Γj is unstable, then one finds
an open set Ωε,j so that ∂Ωε,j = Γε,j and nΓε,j points out of Ωε,j , and applies Proposition
5.1 to (Γε,j ,Ωε,j). If Γj is stable, then Γε,j = Γj and evolves by mean curvature in the
self-expanding way. Hence, by our discussions and the maximum principle, there is a
unique MCF, {Γεt}t≥1 with Γε1 = Γε so that each Γεt ∈ ACH

k,α
n with C(Γεt) = C(Γ), and

the family
{
t−1/2Γεt

}
t≥1

evolves, in a strictly monotone manner, into Ω−(Γε) so

lim
t→∞

t−
1
2 Γεt = Σε in C∞loc(Rn+1)

where Σε ∈ ACHk,αn is a stable self-expander with C(Σε) = C(Γ). It follows that Σε �
Γε � Γ and Σε is Ck,α a.c.-isotopic with fixed cone to Γ. Similar arguments apply to the
case 0 < ε < ε̄ and produce a Σε with the same properties as above but Γ � Σε.

It remains only to prove the last claim (“Moreover, if...”). Without loss of generality,
it suffices to consider the case that Γ′ � Γ but Γ′ 6= Γ. Let Γ′t =

√
tΓ′ for t > 0.

We will show, by choosing ε̄ sufficiently small, which may depend on Γ′ as well, that if
−ε̄ < ε < 0, then Γ′t � Γεt for all t ≥ 1. This would imply Γ′ � Σε, proving the claim.
Let Γ̂ = Γ∩ Γ′ and Γ̂t =

√
t Γ̂ for t > 0. By the strong maximum principle Γ̂ is the union

of the common components of Γ and Γ′. As Γ′ is stable so is Γ̂. Thus, by our construction,
f ε(Γ̂) = Γ̂ and so evolves by mean curvature in the self-expanding manner as well. Thus
it is enough to show that, for any ε ∈ (−ε̄, 0) fixed, the set

S =
{
s ≥ 1: cl(Ω−(Γ′t)) \ Γ̂t ⊂ Ω−(Γεt) for all t ∈ [1, s]

}
is equal to [1,∞).

To see this, first observe that the C0 estimate of fj and Proposition 6.3 ensure that, for
any ε < 0 very close to 0, cl(Ω−(Γ′)) \ Γ̂ ⊂ Ω−(Γε) and so S 6= ∅. Next, if si ∈ S and
si → s, then Ω−(Γ′s) ⊂ Ω−(Γεs) and cl(Ω−(Γ′t)) \ Γ̂t ⊂ Ω−(Γεt) for all t ∈ [1, s). If
s 6∈ S, then (Γ′s \ Γ̂s) ∩ (Γεs \ Γ̂s) 6= ∅ which violates the strong maximum principle. This
shows S is closed.

Finally, fix any s ∈ S. As Γε ∈ ACHk,αn and the distance to its asymptotic cone decays
linearly, one uses Lemma 5.3 to find a radius R > 1 and a family of functions u(·, t) on
Γ′t \ B̄R → R with uniform C2 bound and so that, for any t ∈ [1, s+ 1],

Γεt \ B̄2R ⊂
{
x(p) + u(p, t)nΓ′t

(p) : p ∈ Γ′t \ B̄R
}
⊂ Γεt.

A straightforward, but tedious, computation gives that

du

dt
−∆Γ′t

u = a′ · ∇Γ′t
u+ b′u

where a′ and b′ are smooth bounded. As s ∈ S,

inf
p∈Γ′s\B̄2R

u(p, s) ≥ 0.

By the continuity of the flows and the definition of S, there is a δ > 0 so that

inf
{
u(p, t) : p ∈ (Γ′t \ Γ̂t) ∩ ∂B2R, t ∈ [s, s+ δ]

}
> 0.

Thus, by a non-compact form of the strong maximum principle, u(p, t) > 0 for p ∈
Γ′t \ (Γ̂t ∪ B2R) and t ∈ (s, s + δ]. This, together with the strong maximum principle on
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compact regions, implies that cl(Ω−(Γ′t))\ Γ̂t ⊂ Ω−(Γεt) for all t ∈ [s, s+δ]. That is, S is
open. Hence, as [1,∞) is connected, one has S = [1,∞). This completes the proof. �

7. PERTURBATION PROPERTIES OF WEAKLY STABLE SELF-EXPANDERS

We need several perturbation results for weakly stable self-expanders. Specifically, we
will need to show that it is possible to connect, via an a.c.-isotopy that does not move the
asymptotic cones much along the path, any weakly stable self-expander to a self-expander
whose asymptotic cone is a generic perturbation of the initial cone. These results rely on
the analysis carried out in [7].

We introduce the following notation: Let n, k ≥ 2 and α ∈ (0, 1). Given aCk,α-regular
cone C ⊂ Rn+1 and a map ϕ ∈ Ck,α(L(C);Rn+1), let

C[ϕ] = {ρϕ(p) : p ∈ L(C), ρ > 0} .

Clearly, C[ϕ] is a set-theoretic cone. As L(C) is compact, there is a neighborhood Vemb(C)
of x|L(C) in Ck,α(L(C);Rn+1) so that, for any ϕ ∈ Vemb(C), C[ϕ] is a Ck,α- regular cone
and E H

1 [ϕ] : C → C[ϕ] is an embedding.
The compactness of ES(C) together with results of [7] gives the local finiteness for

diffeomorphism types. First we need the following elementary fact:

Lemma 7.1. For n, k ≥ 2 andα ∈ (0, 1), let Σi ∈ ACHk,αn be self-expanders and suppose
Σi → Σ in C∞loc(Rn+1). Let σ be a Ck,α-hypersurface in Sn and let ϕi ∈ Ck,α(σ;Rn+1)
such that C[ϕi] = C(Σi) and ϕi → x|σ in Ck,α(Sn;Rn+1). Then one has Σ ∈ E(C[σ])

and, for sufficiently large i, there are fi ∈ ACHk,αn (Σ) with fi(Σ) = Σi and tr1
∞[fi] = ϕi.

Proof. First observe that as each Σi satisfies (1.1), the nature of the convergence ensures
that Σ does as well. By our hypotheses on ϕi, one has L(Σi)→ σ in Ck,α(Sn) and so, by
[8, Corollary 3.4], Σ ∈ ACHk,αn with C(Σ) = C[σ]. That is Σ ∈ E(C[σ]).

Let hi ∈ Ck,α1 ∩ Ck1,H(Σ;Rn+1) be chosen to satisfy

∆Σhi +
1

2
x · ∇Σhi −

1

2
hi = 0 and tr1

∞[hi] = ϕi − x|σ.

By [7, Corollary 5.8], there is a unique such hi which satisfies the estimate

‖hi‖(1)
k,α ≤ C‖ϕi − x|σ‖k,α

where C depends only on Σ. We then let

gi = x|Σ + hi and Υi = gi(Σ).

It is clear that, for sufficiently large i, gi ∈ ACHk,αn (Σ) and tr1
∞[gi] = ϕi. Thus, by [7,

Proposition 3.3], Υi ∈ ACHk,αn and C(Υi) = C(Σi).
Pick a transverse section v on Σ so that v ∈ Ck,α0 ∩ Ck0,H(Σ; Sn). Let vi = v ◦ g−1

i

and let πvi be the projection along vi onto Υi. By [8, Proposition 3.3], for sufficiently
large i, πvi |Σi : Σi → Υi is an element of ACHk,αn (Σi). Thus, there is a unique function
ui ∈ Ck,α1 ∩ Ck1,0(Σ) so that Σi can be parametrized by the map

fi = (πvi |Σi)−1 ◦ gi = gi + uiv

which, by [7, Proposition 3.3], is an element of ACHk,αn (Σ) and tr1
∞[fi] = tr1

∞[gi] = ϕi.
This completes the proof. �
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Proposition 7.2. For k ≥ 2 and α ∈ (0, 1), let C be a Ck,α-regular cone in Rn+1 and
assume either 2 ≤ n ≤ 6 or λ[C] < Λn. There is an ε1 = ε1(C) > 0 and a finite set
{Γ1, . . . ,ΓJ} ⊆ ES(C) so that the following is true: For any ϕ ∈ Ck,α(L(C);Rn+1) with
‖ϕ− x|L(C)‖k,α < ε1 and any Γ ∈ ES(C[ϕ]), there is an integer i ∈ [1, J ] and an element
f ∈ ACHk,αn (Γi) so that Γ = f(Γi) and tr1

∞[f ] = ϕ.

Proof. We first claim that there are Γ1, . . . ,ΓJ ∈ ES(C) so that for any Γ ∈ ES(C) there is
an integer i ∈ [1, J ] and an element fΓ ∈ ACHk,αn (Γi) so that fΓ(Γi) = Γ and tr1

∞[fΓ] =
x|L(C).

To see this is true, consider the following equivalence relation on ES(C): two Γ,Γ′ ∈
ES(C) are equivalent, written Γ ∼ Γ′, provided there is an f ∈ ACHk,αn (Γ) so that Γ′ =
f(Γ) and tr1

∞[f ] = x|L(C). It follows from [7, Proposition 3.3] that this is an equivalence
relation. Indeed, it is reflexive as x|Γ ∈ ACHk,αn (Γ) so Γ ∼ Γ. It is symmetric as
f ∈ ACHk,αn (Γ) with f(Γ) = Γ′ and tr1

∞[f ] = x|L(C), implies that f−1 ∈ ACHk,αn (Γ′)

and tr1
∞[f−1] = x|L(C). Finally, it is transitive as f ∈ ACHk,αn (Γ) with f(Γ) = Γ′ and

tr1
∞[f ] = x|L(C), and g ∈ ACHk,αn (Γ′) with g(Γ′) = Γ′′ and tr1

∞[g] = x|L(C), implies
that g ◦ f ∈ ACHk,αn (Γ) and tr1

∞[g ◦ f ] = x|L(C) so Γ ∼ Γ′′. It readily follows from
Proposition 4.4 and Lemma 7.1 that there are finitely many equivalence classes in ES(C).
Pick representatives Γ1, . . . ,ΓJ and observe that we have shown the proposition for any
Γ ∈ ES(C).

We now argue by contradiction. Suppose there is a sequence ϕj ∈ Ck,α(L(C);Rn+1)
with ‖ϕj − x|L(C)‖k,α → 0 and Σj ∈ ES(C[ϕj ]) so that the conclusion does not hold
for Σj . By Proposition 4.4, up to passing to a subsequence, there is a Σ ∈ ES(C) so that
Σj → Σ in C∞loc(Rn+1). By Lemma 7.1, up to throwing out a finite number of terms, there
are gj ∈ ACHk,αn (Σ) so that gj(Σ) = Σj and tr1

∞[gj ] = ϕj .
As Σ ∈ ES(C), there is an integer i ∈ [1, J ] so Γi ∼ Σ. That is, there is an h ∈

ACHk,αn (Σ) with h(Γi) = Σ and tr1
∞[h] = x|L(C). Setting fj = gj ◦ h, shows the result

holds for the Σj , and this contradiction proves the claim. �

Given an element Σ ∈ ACHk,αn , there is a natural equivalence relation on ACHk,αn (Σ).
Namely, two elements f ,g ∈ ACHk,αn (Σ) are equivalent, written f ∼ g, provided that
f(Σ) = g(Σ) and tr1

∞[f ] = tr1
∞[g]. Denote by [f ] the equivalence class of f . Let

ACEk,αn (Σ) =
{

[f ] : f ∈ ACHk,αn (Σ) and f(Σ) satisfies (1.1)
}
.

The main result of [7] is that ACEk,αn (Σ) is a smooth Banach manifold and the projec-
tion map ΠΣ : ACEk,αn (Σ) → Ck,α(L(Σ);Rn+1) given by ΠΣ([f ]) = tr1

∞[f ] is smooth
Fredholm of index 0.

Corollary 7.3. For k ≥ 2 and α ∈ (0, 1), let C be a Ck,α-regular cone in Rn+1 and
assume either 2 ≤ n ≤ 6 or λ[C] < Λn. There is an open neighborhood V of x|L(C) in
Ck,α(L(C);Rn+1) so that, for a generic (in the sense of Baire category) element ϕ ∈ V ,
every element of ES(C[ϕ]) is strictly stable.

Proof. Pick ε1 = ε1(C) > 0 as in Proposition 7.2. When n ≥ 7, as λ[C] < Λn, [8,
Lemma 3.8] ensures that, up to shrinking ε1, if ‖ϕ − x|L(C)‖k,α < ε1, then C[ϕ] satisfies
λ[C[ϕ]] < Λn. Let V0 be the open ball in Ck,α(L(C);Rn+1) centered at x|L(C) of radius
ε1. Pick Γ1, . . . ,ΓJ as in Proposition 7.2. By [7, Corollary 1.2], there are open dense sets
V1, . . . ,VJ ⊂ Ck,α(L(C);Rn+1) so that each ΠΓi has no critical values in Vi. That is, if
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Γ = f(Γi) and tr1
∞[f ] ∈ Vi, then Γ has no non-trivial Jacobi fields that fix the infinity. In

particular, if ϕ ∈ V =
⋂J
i=0 Vi, then every element of ES(C[ϕ]) is strictly stable. �

Theorem 7.4. For n, k ≥ 2 and α ∈ (0, 1), let C be a Ck,α-regular cone in Rn+1

and assume λ[C] < Λ∗n. For each Γ ∈ ES(C) there exists an open neighborhood VΓ ⊂
Ck,α(L(Γ);Rn+1) of x|L(Γ) so that for any ϕ ∈ VΓ there is an element Γϕ ∈ ES(C[ϕ])

and a Ck,α a.c.-isotopy Fϕ between Γ and Γϕ so that, for all t ∈ [0, 1],

(7.1) ‖tr1
∞[Fϕ(t)]− x|L(Γ)‖k,α ≤ ‖ϕ− x|L(Γ)‖k,α.

Proof. Let v be a transverse section on Γ as given in [7, Section 7] and let

Kv =
{
κ ∈ C2

loc ∩ C0
1,0(Γ) : LΓ(κv · nΓ) = 0

}
where LΓ is the self-joint operator given in Section 2.6. By [7, Theorem 7.1], there are two
open neighborhoods U1 ⊂ Ck,α(L(Γ);Rn+1) of x|L(Γ) and U2 ⊂ Kv of 0 together with a
smooth map Fv : U1 × U2 → ACHk,αn (Γ) so that:

• Fv[x|L(Γ), 0] = x|Γ;
• tr1

∞[Fv[ϕ, κ]] = ϕ;
• Gv[ϕ, κ] = v ·

(
H− 1

2x
⊥) [Fv[ϕ, κ]] ∈ Kv.

Thus, by shrinking U1 if needed, it follows from Lemma 2.1 that, for every ϕ ∈ U1, the
path t 7→ F′ϕ(t) given by

F′ϕ(t) = (1− t)x|Γ + tFv[ϕ, 0] for t ∈ [0, 1]

is a Ck,α a.c.-isotopy between Γ and Fv[ϕ, 0](Γ). It is clear from the construction that

‖tr1
∞[F′ϕ(t)]− x|L(Γ)‖k,α ≤ ‖ϕ− x|L(Γ)‖k,α.

To conclude the proof we show that for every ϕ ∈ U1 there is a Ck,α a.c.-isotopy
with fixed cone between Σϕ = Fv[ϕ, 0](Γ) and some element of ES(C[ϕ]). Composing
this with F′ϕ gives an a.c.-isotopy with the desired properties. In view of Theorem 6.1, it
suffices to show the claim with E(C[ϕ]) replacing ES(C[ϕ]). If Kv = {0}, then Σϕ is a
Ck,α∗ -asymptotically conical self-expander with C(Σϕ) = C[ϕ] and the claim is proved.
Otherwise, partition Γ into its connected components Γ1, . . . ,ΓM , so all Γj are stable with
at least one weakly stable. For each j ∈ {1, . . . ,M}, let Σjϕ = Fv[ϕ, 0](Γj) and

Kjv =
{
κ ∈ C2

loc ∩ C0
1,0(Γj) : LΓj (κv · nΓj ) = 0

}
.

Observe that if κ ∈ Kv, then κ|Γj ∈ Kjv. If Γj is strictly stable, then Kjv = {0} and Σjϕ
is a self-expander. If Γj is weakly stable, then it follows from the standard spectral theory
that dimKjv = 1. In this case we may choose κj ∈ Kjv to span Kjv. Let gjv : U1 → R
so that Gv[ϕ, 0]|Γj = gjv[ϕ]κj . If gjv[ϕ] = 0, then Σjϕ is a self-expander. Otherwise, it
follows from [7, Lemma 6.1] and [10, Proposition 3.2] that, by a suitable choice of unit
normal on Σjϕ,

EO,1
Σjϕ
≥ cψβ

(
1 + |x|2

)
for some c, β > 0. Thus, Hypothesis (2) of Proposition 5.1 holds for Σjϕ. Next observe
that by the construction of Fv – see pages 33-34 of [7] for details – Hypothesis (1) of
Proposition 5.1 holds for Σjϕ. Finally, by Lemma 6.2 and shrinking U1 if needed, we may
assume λ[Σjϕ] ≤ λ[Σϕ] < Λ∗n, that is Hypothesis (3) of Proposition 5.1. Hence, one
can apply Proposition 5.1 to Σjϕ and obtains a Ck,α∗ -asymptotically conical stable self-
expander Γjϕ that is Ck,α a.c.-isotopic with fixed cone to Σjϕ. Therefore, by the maximum



30 JACOB BERNSTEIN AND LU WANG

principle for the MCF, combining all these cases gives an element Γϕ ∈ ES(C[ϕ]) that is
Ck,α a.c.-isotopic with fixed cone to Σϕ. �

8. PROOF OF MAIN THEOREMS

In this section we prove Theorem 1.1 and Theorem 1.2. We first prove the result for
cones C with the extra property that every element of ES(C) is strictly stable and then use
the perturbation results of Section 7 to conclude the general case.

Before beginning the proof we need a finiteness result for ES(C).

Lemma 8.1. For k ≥ 2 and α ∈ (0, 1), let C be a Ck,α-regular cone in Rn+1 and assume
either 2 ≤ n ≤ 6 or λ[C] < Λn. If every element of ES(C) is strictly stable, then ES(C) is
a finite set.

Proof. By Proposition 7.2 there are Γ1, . . . ,ΓJ ∈ ES(C) so that for each Γ ∈ ES(C) there
is an integer i ∈ [1, J ] and an element fΓ ∈ ACEk,αn (Γi) so that tr1

∞[fΓ] = x|L(C) and
fΓ(Γi) = Γ. As Γ is strictly stable, [fΓ] is a regular point of ΠΓ – See Section 7 – and
so there is an open neighborhood UΓ ⊂ ACE2,α

n (Γi) of [fΓ] on which ΠΓ restricts to a
diffeomorphism. Clearly, {UΓ}Γ∈ES(C) is an open cover of {[fΓ]}Γ∈ES(C). Moreover,

{[fΓ]}Γ∈ES(C) ∩ UΓ′ = {[fΓ′ ]} .

By Proposition 4.4, ES(C) is (sequentially) compact in C∞loc(Rn+1). Hence, by [8,
Proposition 4.1], {[fΓ]}Γ∈ES(C) is (sequentially) compact in

⋃M
i=1ACE

k,α
n (Γi). It follows

(see [8, Lemma A.1]) that {UΓ}Γ∈ES(C) has a finite subcover of {[fΓ]}Γ∈ES(C) and hence
the latter set is finite. That is, ES(C) is finite. �

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2. As C is a Ck+1-regular cone, it is obvious that C is Ck,α-
regular for every α ∈ (0, 1). Observe that, by Theorem 6.1, every Γ ∈ E(C) is Ck a.c.-
isotopic with fixed cone to some element Γ′ ∈ ES(C). Hence, it suffices to show that any
two elements Γ1,Γ2 ∈ ES(C) are Ck a.c-isotopic with fixed cone.

We now assume that C has the property that ES(C) consists only of strictly stable ele-
ments. For any Γ ∈ ES(C), let

P(Γ) =
{

Γ̃ ∈ ES(C) : Γ � Γ̃ � ΓG

}
where ΓG is the greatest element given by Theorem 4.1. By Lemma 8.1, P(Γ) is a finite
set. We will show, by induction on the number of elements, M , of P(Γ), that Γ is Ck

a.c.-isotopic with fixed cone to ΓG. The theorem clearly follows from this.
To that end, first observe that as ΓG ∈ P(Γ) there is nothing to prove when M = 1.

For general M ≥ 2, let Γ′ be a minimal element of P(Γ) \ {Γ}. Thus, P(Γ′) has at most
M − 1 elements. By the induction hypotheses, Γ′ is Ck a.c.-isotopic with fixed cone to
ΓG. Apply Theorem B.1 to Γ and Γ′. This produces a self-expander Σ so that Γ � Σ � Γ′

but Σ 6= Γ and Σ 6= Γ′. As Γ′ is a minimal element of P(Γ)\ {Γ} we must have Σ 6∈ P(Γ)
and so Σ 6∈ ES(C). In particular, Theorem 6.1 implies Σ is Ck a.c.-isotopic with fixed cone
to both Γ and Γ′, and hence they are both Ck a.c.-isotopic with fixed cone to one another
and hence also to ΓG. This completes the proof in this case.

To prove the result for general C first pick V as in Corollary 7.3. For any two elements
Γ1,Γ2 ∈ ES(C), let VΓ1

and VΓ2
be given by Theorem 7.4. As V ∩ VΓ1

∩ VΓ2
is an

open neighborhood of x|L(C), it follows from Corollary 7.3 that there is an element ϕ ∈
V ∩ VΓ1

∩ VΓ2
so that every element of ES(C[ϕ]) is strictly stable. By Theorem 7.4, for
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i ∈ {1, 2} there is an element Γ′i ∈ ES(C[ϕ]) and a Ck a.c.-isotopy Fi between Γi and Γ′i
so that (7.1) holds. By what we have already shown, Γ′1 is Ck a.c.-isotopic with fixed cone
to Γ′2. Thus, by shrinking VΓ1

,VΓ2
if needed, we are able to use Lemma 2.2 to conclude

that Γ1 is Ck a.c.-isotopic with fixed cone to Γ2 which completes the proof. �

APPENDIX A. EXISTENCE OF ISOTOPICALLY TRIVIAL SELF-EXPANDERS OF SMALL
ENTROPY

In this section we use Theorem 7.4 to prove the following existence result which was
used in the proof of Corollary 1.5.

Proposition A.1. For 3 ≤ n ≤ 6 and k ≥ 2, if C is a Ck+1-regular cone in Rn+1

with L(C) ∈ Sk+1
0 (Λ∗n), then there exists a self-expander Γ asymptotic to C that is Ck

a.c.-isotopic to Rn × {0}.

Proof. Let Γ0 = Rn × {0} and set C0 = C(Γ0) = Γ0. Fix any α ∈ (0, 1). Let

V =
{
ϕ ∈ Ck,α(L(C0);Rn+1) : E H

1 [ϕ] is an embedding and λ[C[ϕ]] < Λ∗n
}

and let V0 be the connected component of V that contains x|L(C0). As L(C) ∈ Sk+1
0 (Λ∗n)

it follows that x|L(C) ∈ V0.
Hence, there is a continuous path φ : [0, 1]→ V0 connecting x|L(C0) to x|L(C). Let

t0 = sup
{
t ∈ [0, 1] : there exists Γt ∈ ES(C[φ(t)]) that is Ck,α a.c.-isotopic to Γ0

}
.

As Γ0 is strictly stable, the projection ΠΓ0
: ACEk,αn (Γ0) → V0 which maps [f ] to tr1

∞[f ]
is a local diffeomorphism around x|Γ0 and so t0 > 0.

Suppose ti ∈ [0, t0) are such that ti → t0 and that for each i there exists Γti ∈
ES(C[φ(ti)]) that isCk,α a.c.-isotopic to Γ0. As C[φ(ti)]→ C[φ(t0)] inCk,αloc (Rn+1\{0}),
Proposition 4.4, implies that, up to passing to a subsequence, Γti → Γt0 in C∞loc(Rn+1)
for an element Γt0 ∈ ES(C[φ(t0)]). Moreover, by [8, Proposition 3.3] and Lemma 2.1, Γt0
is Ck,α a.c.-isotopic to Γti and, thus, to Γ0. In particular, it is enough to show t0 = 1.

If t0 < 1, then x|Γt0 cannot be a regular value of ΠΓ0
. That is, Γt0 is weakly stable.

However, by Theorem 7.4, there is a sufficiently small ε > 0 so that for every t with
|t − t0| < ε there is an element in ES(C[φ(t)]) that is Ck,α a.c.-isotopic to Γt0 . This
contradicts the definition of t0 and so implies t0 = 1 proving the proposition. �

APPENDIX B. A MOUNTAIN PASS THEOREM FOR SELF-EXPANDERS

In the proof of Theorems 1.1 and 1.2, we used the following result which follows by
combining [11, Theorem 1.1], [8, Proposition 3.3] and Lemma 4.2.

Theorem B.1. Fix an integer k ≥ 2 and α ∈ (0, 1). Let C be a Ck+1-regular cone in
Rn+1 and assume either 2 ≤ n ≤ 6 or λ[C] < Λn. Suppose Σ− and Σ+ are distinct
strictly stable Ck,α∗ -asymptotically conical self-expanders with C(Σ−) = C(Σ+) = C and
Σ− � Σ+. Then there exists a Ck,α∗ -asymptotically conical self-expander Σ0 6= Σ± with
C(Σ0) = C and Σ− � Σ0 � Σ+.
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