TOPOLOGICAL UNIQUENESS FOR SELF-EXPANDERS OF SMALL
ENTROPY

JACOB BERNSTEIN AND LU WANG

ABSTRACT. For a fixed regular cone in Euclidean space with small entropy we show that
all smooth self-expanding solutions of the mean curvature flow that are asymptotic to the
cone are in the same isotopy class.

1. INTRODUCTION

A hypersurface, i.e., a properly embedded codimension-one submanifold, ¥ ¢ R"*!,
is a self-expander if

(1.1) Hy = —.
Here
HE = AEX = —Hzl’lz = —diVZ(l’l2>nE

is the mean curvature vector, ny. is the unit normal, and x is the normal component of the
position vector. Self-expanders arise naturally in the study of mean curvature flow. Indeed,
Y is a self-expander if and only if the family of homothetic hypersurfaces

{Et}t>0 = {\/EE}

is a mean curvature flow (MCF), that is, a solution to the flow

ox\ "
(&) -m-

Self-expanders model the behavior of a MCF as it emerges from a conical singularity [1].
They also model possible long time behavior of the flow [19].
Given a hypersurface ¥ C R™"! the Gaussian surface area of ¥ is

t>0

x 2
F[S] = (47)"% / e~ dpn
b
where H" denotes the n-dimensional Hausdorff measure. In [16], Colding and Minicozzi
introduced a notion of entropy for hypersurfaces which is given by
M= sup  F[pX+y]
yER?H1 >0

Entropy is invariant under dilations and translations and is a natural measure of geometric
complexity; see [3], [4], [5], [6], [13], [15], [22], [27], [30], [37] and [42]. It follows from
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Huisken’s monotonicity formula [23] that entropy is non-increasing under the MCF. It is
easily checked that A[R"] = 1. Moreover, by computations of Stone [36],

2>)\[Sl]>g>)\[82]>-~->)\[S”]>>\[S"“}>~~—>\/§.

Given an integer k > 2, ¥ is a C*-asymptotically conical hypersurface in R"+1 with
asymptotic cone C = C(X) if lim, o+ p¥ = C in Cf_(R™*1 \ {0}), where C is a C*-
regular cone. Let £(X) = £(C) = C N'S™ be the link of the asymptotic cone, and observe
that £(X) is a C*-hypersurface in S”. If ¥ is a C2-asymptotically conical self-expander,
then it follows from Huisken’s monotonicity formula and the lower semi-continuity of
entropy that A\[X] = A[C(X)] - see, for instance, [8, Lemma 3.5].

Self-expanders in R? have been studied in work of Ecker-Huisken [19] and so we restrict
attention to n > 2. It can be readily shown, e.g., [19], that for a smooth graphical cone,
C, there is a unique self-expander asymptotic to C. In contrast, in [9, Section 8] (cf. [1]),
we showed that there is an open subset in the space of regular cones in R? so that for any
cone in the subset there are at least three distinct self-expanders asymptotic to the cone —
two that are topologically annuli and one that is a pair of disks. Our main result is that this
topological non-uniqueness cannot occur for self-expanders that are asymptotic to a low
entropy cone.

Theorem 1.1. For k > 2 and 2 < n < 6, let C be a C**'-regular cone in R"*! that
satisfies

AlC] < A[S™! x R].

If Ty, Ty are both C*+-asymptotically conical self-expanders with C(I';) = C(I's) = C,
thenT'y and Ty are C* a.c.-isotopic with fixed cone.

Here two asymptotically conical hypersurfaces are said to be a.c.-isotopic with fixed
cone if there is an isotopy that respects the asymptotically conical behavior and fixes the
asymptotic cone — see Section 2.7 for the precise definition. In particular, I'; and I's are
diffeomorphic.

The dimension restriction comes from our use of the regularity theory of stable minimal
hypersurfaces. In fact under, additional, possibly stronger assumptions on the entropy of
the asymptotic cone, one has the same result in dimension n > 7. In order to state this
extra assumption, first let RMC,, denote the space of regular minimal cones in R7+1 that
is C € RMC,, if and only if it is a proper subset of R™*! and C is a hypersurface in
R"*+1\ {0} that is invariant under dilation about 0 and with vanishing mean curvature. Let
RMC;, denote the set of non-flat elements of RMC,, —i.e., cones with non-zero curvature
somewhere. For any A > 0, let

RMC,(A) = {C € RMC,,: \[C] < A} and RMC}(A) = RMC N RMC,,(N).
Now fix a dimension n > 3 and a value A > 1. Consider the following hypothesis:
(*n,A) Forall 3 <1 <n, RMC;(A) = 0.

Observe that all regular minimal cones in R? consist of unions of rays and so RMC; =
(. Likewise, as great circles are the only closed geodesics in S?, RMC5 = 0. As a
consequence of Allard’s regularity theorem and a dimension reduction argument, there is
always some A > 1 so that (x, 4) holds. Let

A, =sup{A € (1,2): (%n,a) holds}
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and

A*

n =

A[S"~! x R] 2<n<6
min {Am)\[S"_l X R]} n>17

Observe that 2 = Ay > A} = A[S! x R] and that it follows from Marques-Neves’s [29,

Theorem B] proof of the Willmore conjecture that 2 > A3 > A[S? x R] and so it is possible

that A = A\[S"~! x R] for all n. However, this is still an open question when n > 4.
Using A, we are able to generalize Theorem 1.1 to all dimensions.

n’

Theorem 1.2. For any k,n > 2, let C C R"*! be a C¥*+1-regular cone that satisfies
AMC| < AL

If Ty, Ty are both C*+-asymptotically conical self-expanders with C(I';) = C(I's) = C,
then Ty and Ty are C* a.c.-isotopic with fixed cone.

Next we discuss applications of Theorem 1.2. First we observe that Theorem 1.2 implies
that low entropy cones with disconnected link can’t resolve into connected self-expanders.

Corollary 1.3. For k,n > 2, let C C R"*! be a C**+1-regular cone with \[C] < A%. If
L(C) has m connected components, then any asymptotically conical self-expander " with
C(T) = C has exactly m connected components.

Remark 1.4. Examples of Angenent-Ilmanen-Chopp [1] and Bernstein-Wang [9] show that
there are many cones C with disconnected link which flow into connected self-expanders.
Numerical computations also show that there are rotationally symmetric double cones in
R? that have entropy below A% = A[S! x R].

Proof of Corollary 1.3. Letoy, ..., o, be the connected components of £(C) and let C; =
C[o;] be the corresponding cones. Observe that A[C;] < A[C] < Af. By a minimization
procedure sketched by Ilmanen [25] (see Ding [17, Theorem 6.3] for full details), a dimen-
sion reduction argument [40, Theorem 4] and Allard’s regularity theorem [33, Theorem
24.4], there is a self-expander I"; asymptotic to C;. As each o; is connected and there are
no closed self-expanders, each I'; is connected. Set I = (J;”, I';. Notice that I is a
(possibly immersed) asymptotically conical self-expander that is asymptotic to C. How-
ever, A[I'] = A[C] < A% < 2 and so I" is an embedded hypersurface and, hence, has m
components. Hence, Theorem 1.2 implies T and I" have the same number of components,
proving the claim. (|

In order to state the second application, we introduce the following notation for the links
of C*-regular cones with entropy bounded by A,

S¥(A) = {o C S™: o is a C*-hypersurface with \[C[o]] < A} .

Here C[o] is the cone whose link is equal to o. For A > 1, let S¥(A) C S*(A) denote the
set of all such links that are isotopic (inside S*(A)) to the equatorial sphere in S™. We prove
existence and topological uniqueness results for asymptotically conical self-expanders with
asymptotic link in Sé““(A;;) for k,n > 2. When 3 < n < 6 this entails a new existence
result for topologically trivial self-expanders asymptotic to small entropy cones.

Corollary 1.5. For any k,n > 2, ifo € SgH(Aj;), then there is a C*-asymptotically
conical self-expander T with L(I') = o. Moreover, any such T' is C* a.c.-isotopic to

R™ x {0}.
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Proof. First of all, by the maximum principle, the only self-expanders that are asymptotic
to a given hyperplane is the hyperplane itself. When n = 2 or n > 7 the existence of at
least one self-expander of the desired topological type is then an immediate consequence
of [8, Theorems 1.1 and 1.2] and the existence of a Zy-degree [7, Corollary 1.3]. When
3 < n < 6 one uses Theorem 7.4 to see that there is always at least one C'*-asymptotically
conical stable self-expander I" with C(I") = C that is C* a.c.-isotopic to the hyperplane for
any C with £(C) € Sy (A}) — see Appendix A for details. The topological uniqueness
follows directly from Theorem 1.2. (]

A final application is to the topological properties of closed hypersurfaces of small en-
tropy. It is known by work of ourselves [3] and J. Zhu [42] that round spheres uniquely
minimize the entropy within the class of closed hypersurfaces in R™+!. In [4], we classify
all low entropy self-shrinkers in R? and, as a consequence, show that any closed surface
in R3 of sufficiently small entropy is isotopic, via a MCF, to the round sphere. This argu-
ment is specific to n = 2 as such a complete classification of self-shrinkers is not known
in higher dimensions. However, using a weak flow and a topological classification of low
entropy self-shrinkers in R*, we show, in [5], that any closed hypersurface in R* of suffi-
ciently small entropy is diffeomorphic to S. In [12], we combine Theorem 1.2 with the
weak flow of [5] to prove a stronger topological stability theorem. Namely, that any closed
hypersurface in R* with entropy less than or equal to that of the round cylinder is isotopic
to the standard S3. That is, the 4-dimensional smooth Schoenflies conjecture holds for
closed hypersurfaces in R* of low entropy.

The paper is organized as follows. In Section 2 we fix the notation for the remainder of
the paper and discuss background about the question under consideration. In Section 3 we
construct a universal barrier which is used in later sections to show the existence of self-
expanders with prescribed asymptotic cones. In Section 4 we introduce a natural partial
order on the space of asymptotically conical self-expanders and prove the existence and
uniqueness of the greatest and least elements. In Section 5 we investigate properties of the
MCF starting from an asymptotically conical hypersurface of low entropy that is expander
mean-convex, and show that such a hypersurface is a.c.-isotopic with fixed cone, via the
flow, to a stable self-expander. In Section 6 we use a perturbation by the first eigenfunction
of the stability operator for self-expanders together with results of the preceding section to
deform any low entropy asymptotically conical unstable self-expander, in the a.c.-isotopy
class and preserving the asymptotic cone, to a stable self-expander. In Section 7 we apply
the analysis carried out in our previous work [7] and results from Section 5 to show that
one may connect, via an a.c.-isotopy that does not move the asymptotic cones much along
the path, any weakly stable self-expander to a self-expander asymptotic to a cone which is
a generic perturbation of the asymptotic cone of the initial self-expander. In Section 8 we
complete the proof of Theorem 1.1 and Theorem 1.2.
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2. BACKGROUND AND NOTATION

For the reader’s convenience, we recall, in Sections 2.1-2.6, some of the notation and
background introduced in our previous work [7, 9]. In Section 2.7 we define an a.c.-isotopy
between two asymptotically conical hypersurfaces and discuss some basic properties of
a.c.-isotopies.

2.1. Basic notions. Denote a (open) ball in R™ of radius R and center 2 by B}%(x) and
the closed ball by B%(x). We often omit the superscript, n, when its value is clear from
context. We also omit the center when it is the origin. Given a set K C R the closure
of K is denoted by cl(K) and the r-tubular neighborhood of K is

() = | B.(y).

peK

For an open subset U C R™*+1, a (smooth) hypersurface in U, ¥, is a properly embed-
ded, codimension-one smooth submanifold of U. We also consider hypersurfaces of lower
regularity and given an integer k > 2 and o € [0, 1) we define a C**-hypersurface in U
to be a properly embedded, codimension-one C'**® submanifold of /. When needed, we
distinguish between a point p € ¥ and its position vector x(p).

Consider the hypersurface S C R"*!, the unit n-sphere in R"*!. Forn > 2, a
(smooth) hypersurface in S™, o, is a closed, embedded, codimension-one smooth subman-
ifold of S™ and C*“-hypersurfaces in S™ are defined likewise. Observe that ¢ is a closed
codimension-two submanifold of R"*! and so we may associate to each point p € o its
position vector x(p). Clearly, |x(p)| = 1.

A cone is a set C C R™"!\ {0} that is dilation invariant around the origin. That is,
pC = C for all p > 0. The link of the cone is the set £L(C) = C N S™. The cone is regular if
its link is a smooth hypersurface in S and C**-regular if its link is a C**-hypersurface
in S™. For any hypersurface o C S™ the cone over o, C[o], is the cone defined by

Clo]l={pp: p € 0,p >0} CR"'\ {0}.
Clearly, L(C[o]) = o.

2.2. Function spaces. Let ¥ be a properly embedded, C**® submanifold of an open sub-
set U C R™t!. There is a natural Riemannian metric, gs, on % of class C*—1e induced
from the Euclidean one. As we always take k& > 2, the Christoffel symbols of this met-
ric, in appropriate coordinates, are well-defined and of regularity C*~2%, Let Vy, be the
covariant derivative on ¥. Denote by dx the geodesic distance on ¥ and by BE (p) the
(open) geodesic ball in X of radius p and center p € X. For p small enough so that BpE (p)
is strictly geodesically convex and q € BpE (p), denote by qu the parallel transport along
the unique minimizing geodesic in BE (p) from p to q.

Throughout the rest of this section, let {2 be a domain in ¥, and let [ be an integer in
[0,k],v € (0,1) and d € R. Suppose [ + < k + a.. We first consider the following norm
for functions on 2

l
[flle = Zs‘ép Vs fl.
=0

We then let
CH(Q) = {f € Cloo(): | f]

10 < OO} .
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We next define the Holder semi-norms for functions f and tensor fields 7" on 2

- IT(p) — (1,74)*T(q)]
Vo= s, S e = s ST
pP,q ? pP,q ?
q€ B3 (p)\{p} q€B5 (n)\{r}

where § = §(3,Q) > 0 so that, for all p € Q, B¥(p) is strictly geodesically convex. We
further define the norm for functions on 2

£l = 11 fllse + V5 fya
and let
(@) = {f € CLI): Il < 0}

We also define the following weighted norm for functions on §2:

[Fil! Zsup x(p)] + 1)~ VL f(p)].

1=0 pe
We then let
Cl(S) = { £ € Cloo(@): I£1( < >0}

We further define the following weighted Holder semi-norms for functions f and tensor
fields 7" on 2

A= s (el + 1)+ (el 1)) LT, ang
a€B;, (0)\{p}
T(p) — (r2,)"T
M= s () 1)+ (el + 1) T e T

2 qeN dz(p, Q)’Y
qusp( p)\{r}

where n = 7(Q, %) € (0, 1) so that for any p € %, letting 8, = 7(|x(p)| + 1), B, (p) is
strictly geodesically convex. Next we define the norm for functions on :

£ o = I £l5 + V5",
and we let
Ci (@) = {f € CLUQ: 00 < oo} -

We follow the convention that C1,0 = €} , €' = C' and C}° = C!, and that C};7 =

loc loc
C’l'yoc, C%Y = 07 and C9" = (. The notation for the corresponding norms is abbreviated

in the same fashion.

In all above definitions of various norms, we often omit the domain 2 when it is clear
from context. These norms can be extended in a straightforward manner to vector-valued
functions and tensor fields. It is a standard exercise to verify that these spaces equipped
with the corresponding norms are Banach spaces.

2.3. Asymptotically conical hypersurfaces. For k,n > 2 and a € [0,1), let C be a
C*_regular cone in R"T!. Let V: C — R™*! be a homogeneous transverse section on
C, that is a C* vector field along C so that

° |V‘ =1;

e V(p) does not lie in T},C;

e V(pp) =V(p)forallp>0andp e C.
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A CF>_hypersurface, ¥ C R"*1, is cr "*_asymptotically conical with asymptotic cone C
if there is a radius R > 1 and a function u € C1**(C \ Bg) with

lim pu(p~'p) = 0in Cf,.(C)
p—0+

so that
S\ Bor € {x(p) +u(p)V(p): p €C\ Br} C B

When a = 0 this means that 3 is C'*-asymptotically conical as defined in Section 1. As
observed in [7], this definition is independent of the choice of V. Clearly, the asymptotic
cone, C, is uniquely determined by ¥ and so we denote it by C(X) and its link by £(X).
Denote the space of cr *“_asymptotically conical C*®-hypersurfaces in R"*+! by AC’HfL’a.
As before we denote ACH* = ACHC.

If¥ e .ACH?L is a self-expander, then the interior estimates for MCF (see [20]) imply
that forall > 0

2.1) sup(1 + |x(p)])| V' Az < oc.
peEX

2.4. Traces at infinity. Fix an element & € ACH"* and let V be a homogeneous trans-
verse section on the asymptotic cone C(X). If my denotes the projection to C(X) along V,
then 7y restricts to a C* diffeomorphism of ¥’ = ¥\ K for some compact set K onto
C(X) \ Bg and denote its inverse by fyv.s. Let [ > 0 be an integer and v € [0,1) such
thatl +v <k + o

Amapf e C’;&Z(E; RM) is asymptotically homogeneous of degree d if

lim p%f o Oy.x (p~'p) = g(p) in C;&Z(C(Z);RM)
p—0+
where g is homogeneous of degree d, i.e., p?g(p~'p) = g(p) forall p > 0 and p € C(%).
For such f we define the frace at infinity of f by
trl [f] = glem) € CY(L(E);RM).

Whether f is asymptotically homogeneous of degree d and the definition of tr%_ are inde-
pendent of the choice of V. Clearly, x|5 is asymptotically homogeneous of degree one
and tI‘})O [X|E] = X‘L(E)-

We next define the space

CZ’V}Y{(Z; RM) = {f € C’fi’”(Z; RM): f is asymptotically homogeneous of degree d} .
One can check that C’fi’}l(E; RM) is a closed subspace of C(3; RM) and the map
L ,
trd s CgL (55 RM) — €M (L(2); RM)

is a bounded linear map. We further define the set C’fi’g(E; RM) c C’é"{{ (3;RM) to be the
kernel of tr .

2.5. Asymptotically conical embeddings. Fix an element > € .AC’HZ’O‘. Given a map
©: L(X) — R"L, the homogeneous extension of degree one of o is given by the map
ERp]: C(X) — R defined by

E1el(p) = x(p)|e(Ix(p)|~"p)-
We define the space of cr "*_asymptotically conical embeddings of ¥ into R™*! to be

ACHE(3) = {f € CFo N CF (S R™): £ and &1 [t [F]] are embeddings} .
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Clearly, ACH***(%) is an open subset of the Banach space CF* ﬂOiH (2; R™1) with the

C¥* norm. For f € ACH"*(%), as &1 [tr!_[f]] is a C¥> embedding that is homogeneous
of degree one, it parameterizes the C**“-regular cone C(f(X)) — see [7, Proposition 3.3].

2.6. Morse index. We recall the notion of index and nullity for asymptotically conical
self-expanders and relate these integers to certain other spectral invariants. First observe
that the self-expander equation (1.1) is the Euler-Lagrangian equation for the formally
defined functional

B3] = / 5 .
>

For a self-expander %, if {®,(¥)} 5| <. is a compactly supported variation of ¥ such that

dj;s s—g = Unx, then, by a computation in [7, Section 4],
de E[®,(X)] = / |Vsul|® + 1_ |As|? ) u? e¥ dH"
d82 s=0 s o n ) 2 z .

Denote by Qx[u] the integral on the right side of the above equation. We define the (Morse)
index of a self-expander, X, to be

ind(¥) = sup {dimV: V C C2(%) so that Qs [u] < 0,Vu € V\ {0}}.

In [9] we introduced a weighted inner product for functions on X,

Ix|2

Bs:[u, v] =/uve T dH".
)

We further showed, in Section 4 of [9], that if X is an asymptotically conical self-expander,
then there is a self-adjoint (with respect to By) operator

1 1
L2=A2+§X~V2+‘Ag|2—§

so that Qx[u] = —Bsu, Lxu] for any functions u € C?(X). The operator Ly has a
discrete spectrum with a finite spectral bottom. Thus, ind(X) equals the number of negative
eigenvalues (counted with multiplicities) of — Ly, and in particular, it is finite.

We also define the nullity of an asymptotically conical self-expander ¥, null(X) to be
the dimension of the kernel of Ly,

Ks={reCp.NC(2): Lyk =0} .

We call a self-expander stable if it has index 0, and unstable otherwise. Moreover, if a
stable self-expander has nullity 0, then we call the self-expander strictly stable; otherwise,
it is called weakly stable.

2.7. Isotopy. Two elements X1, 3o € ACHfL’a are C* a.c.-isotopic if there is a contin-
uous map
F:[0,1] — ACHF> (%))
which satisfies F(0) = x|x, and F(1) = f; with f;(X;) = 5. We call F a C*“ q.c.-
isotopy between X1 and Xs.
An a.c.-isotopy F between X1 and X9, fixes the asymptotic cone if

trl [F(t)] = X|E(Zl) forallt € [0, 1].

o0
If there is an isotopy fixing the asymptotic cone between X1 and X5, then we say X1 and

Yy are a.c.-isotopic with fixed cone.
We will use the following lemma repeatedly:
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Lemma 2.1. Letk,n > 2and a € [0,1). If X € ACH®, then there is an ¢y = ¢o(X) so
that if £ € ACHE* () satisfies Hf—X\EH(ll) < €, then the map F: [0,1] — ACH"*(%)
defined by F(t) = (1 — t)x|s, + tf, provides a C** a.c.-isotopy between ¥ and £(¥).

Proof. The result follows from the implicit function theorem. (]

We will also need the following perturbation result which says that any a.c.-isotopy that
does not move the asymptotic cones “too much” along the path can be approximated by an
a.c.-isotopy with fixed asymptotic cone.

Lemma 2.2. For k,n > 2and o € [0,1), let & € ACH™ and ¢ € C**(L(Z);R"H1)
so that &[] is an embedding. There is a g = 50(%,¢) > 0 and Co = Cy(X) > 0 so
that if F: [0,1] — ACH"*(X) is continuous and, for all t € [0, 1],
[tr3 [F ()] = @llka < o,

then there is a continuous map F: [0,1] — ACH™* () so that, for every t € [0,1], the
following holds:

(1) tro [F()] =

= 1

(2) IF(t) = F(t)lco, < Collrle[F®)] = ¢lba-
Proof. Let 'V be a homogeneous transverse section on C(X) and let my be the projection
of an open neighborhood, U, of C(X) along V. Define &y x[¢] = &[p] o v o x|s.
There is an Ry, > 150 ¥\ Bg,, C U and so &y x is well-defined on ¥ \ Bg,,. As F is

continuous and [0, 1] is compact, there is an R > Ry, + 1 and C' = C(X) > 0 so that, for
every ¢ € [0,1],

22) IR (t) — & s [@ll§ L, < Co-

Let x: R™*! — [0,1] be a smooth cut-off function so that x = 1 outside Byr, x = 0 in
Bsg and |Dy| < 2R™!. Define

F(t) = F(t) + (x o x|s)év slp — trl [F(1)]].
It is straightforward to verify that F(t) € CF* n Cf (3;R™1) and Ttems (1) and (2)

hold with an appropriate choice of Cy. It remains only to show F(t) € ACH*(%). To
see this one observes that F(t) = F(¢) on X N Byg while, on ¥\ Bag,

F(t) = v sle] + (F(t) — &v s[e]) + (F(t) - F(1)).
Hence, by choosing dg sufficiently small and invoking (2.2) and Item (2), it follows from
the implicit function theorem that F(t) € ACH" (%), finishing the proof. O

3. UNIVERSAL BARRIER

We prove the following existence of a universal barrier for self-expanders adapted to
any C?-regular cone. In what follows it is helpful to consider the map

Ue: C xR — R
associated to a C2-regular cone C that is given by
Ve(p,t) = cos(t)x(p) + sin(t)[x(p)nc (p)

where n¢ is a choice of unit normal on C. Observe |U¢(p, t)| = |x(p)|. As L(C) is of class
C? and compact, it follows that there is an € = €(C) > 0 so that if

Vor(C) = {(p,t) € (C\Br) x R: [t| < ¢},
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then, for any R > 0, Wely, ,(c)isa C! diffeomorphism onto its image. When R = 0 we
simply write V,(C).
Proposition 3.1. Forn > 2, let C C R™*! be a C?-regular cone. There exists an open
domain B(C) C R™*L, constants Ny = No(C) > 0 and Ry = Ro(C) > 1+ Ny, and a
continuous function pc: (Rg,00) — R with the following properties:
(1) CU By C R™ 1\ B(C); .
(2) Forall R > Ry, R"™™\ (B(C) U Bg) C Tnyr-1(C);
(3) IfV(C) = {(p,t) € (C\Br,) x R: [t| < pc(|x(p)|) }. then
e (V(C)) =R\ (B(C) U Bg,)
and Vely ) is a C! diffeomorphism onto its image;
(4) IfV is an integral n-varifold in R™" 1 with compact support and V' is E-stationary
in B(C), then spt(V) N B(C) = 0;
(5) If © C R™* is an asymptotically conical self-expander with asymptotic cone C,
then ¥ N B(C) = 0.

In order to prove this we first introduce simple barriers modeled on one-sheeted hyper-
boloids — see [9] for a related construction or [17] where rotationally symmetric solutions
to (1.1) are used instead.

To that end, consider the following family of functions depending on parameters v € S™
and n > O:

Fom() = 204 [xP = (1+7?) (x-v)2.
Associated to these functions are the following family of connected closed sets
E,,= {x e R fon(x) <Oandx-v > O}
and their interiors
E;, =int(Ey,) = {xeR""": f,(x) <Oandx-v > 0}.
Consider the connected rotationally symmetric cone
Cop={xeR": x"=(1+7")(x-v)’andx-v >0}

that lies in the half-space {x - v > 0} and has axis parallel to v and cone aperture 2 tan~!(),
and observe that E ,, has boundary asymptotic to Cy ,,. Moreover, letting

U= {xeR": x? < (1+7*) (x-v)’andx-v > 0}

be the open cone that is the component of R"*1\cl(Cy, ,,) that contains v, one has Ey, ,, C
Uy,y. By construction, fy, > 0on {|x-v|? < 2nn~2} and so

Eyyn {x v < \/2m]_1} =0.
First we show the following asymptotic property for E ,:

Lemma 3.2. Givenn > 0 there is a unique continuous function p,: [v/2nn~!,00) — RT
so that, for every v € S",

By = { ey, (0.1): 0 € Cuy \ Bygmy 1,1 € [y ((x(p))), tan ()]}

where we choose nc, , so to point into Uy, ;. Moreover,
sin(p, (r)) < dnp~'r—2
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Proof. Without loss of generality we assume Vv is the north pole of S™. Denote spherical
coordinates on R"*1 by the map ®: [0, 00) x [0, 7] x S"~1 — R"*! given by
O(r,7,w) = (rsin(r)w, r cos(7)).
Define
Cy = (0,00) x (0,a) x S"7*.
Let € = tan™!(n). As Cy, is rotationally symmetric, it is straightforward to verify that
®|c, and Ve, |v, (.., are both C'" diffeomorphisms onto Uy \ ({0} x R). Moreover,

-1
o
\IJCV,U ¢

c.(r,myw) = (P(r,e,w), e — 7).

We also observe that Ey ,, C R" 1\ B /5,-1 and

Bu.y N ({0} x R) = {0} x [V2nn ", 00) = We,,,, ((Cum \ Bymy1) % {€})
Fix any r > v/2nn~! and w € S"~!. One readily evaluates
(1) = fun(®(r,7,w)) = 2n + 1% — (1 + n*)r? cos®(7)
=2n —n*r? + (1 +n?)sin®(7).
One notices that f(7) is strictly decreasing for 7 € [0, €] and f(0) < 0 while f(e) > 0.

Thus, there is a unique function 6,,(r) € [0, €) so thatif 7 € [0, 6,,(r)] then f(7) < 0 while
for 7 € (6,(r), €] one has f(7) > 0. In fact,

/m2 — nr—2
0,(r) =sin™* VIS )
V1492
Hence,
Ey, = {<I>(r, T,w): T > Vot T e [0,6,(r)],w e S"_l} .
Now define
pu(r) = € — 0, (r).

As 0, is continuous, so is p,. Using the coordinates transformation formula between ®
and W¢, = one obtains

By = {We,,(p,): P € Cu\ Buzyrst € [p(Ix(p)]), €]}
Finally, as p,, has an explicit formula, the claimed estimate can be checked directly. (]
Next we show the following barrier property for Ey ,:

Lemma 3.3. Let V be an integral n-varifold in R" . If V has compact support and is
E-stationary in EY, ,, then spt(V) N Eg = 0.

Proof. Consider the C'! vector field, Z, defined by

_ Vf‘?,’m(x) ifxe Ey,
Z(x) = { 0 otherwise

As V' has compact support and Z is supported in Fy ,, we may plug Z into the first varia-
tion formula for the functional E'. The fact that V' is E-stationary in £y , implies that

. X =1?
O=/(leSZ+§-Z)e 1 duy
||

= /3fV,n (2|v5fvm|2 + f\%,n - 2fvm(1 =+ 772)|VS(V : X)|2) e 1 d(py LEVJ))
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where S is the py -measurable function that maps x to the generic tangent (hyper)plane of
(v at x. By construction fy , < 0in Eg ,, and so, in

o v
3fvan @Vsfoul® + fon = 2fva(l+0)Vs(v-x)?) <37, <0
and so py (Eg ) = 0. It follows that spt(V) N ES , = 0. O

As a consequence, we have the following

Lemma 3.4. Let ¥ be a C?-asymptotically conical self-expander. If C(X) N Uy, = 0,
then SN ES , = 0.

Proof. The hypotheses ensure that, for all 3 € (0,1), cl(Uy g,) NC(X) = 0. As X is
C?-asymptotic to C(X) this means there is an Rz > 0 so that R > R implies ¥ N dBg
is disjoint from cl(Uy, g,) and hence also from EY 5 . As XN Bp, is compact and E-
stationary in R"*1\ (¥ N dBg), it follows from Lemma 3.3 that ¥ N By, is disjoint from
E° As R is arbitrary, this means E° 5, N3 = (). Hence, using

v,Bn* v,Bn
E\c;,n = U E\c;ﬁm
Be(0,1)
it follows that ¥ N EY , = 0. O
Proof of Proposition 3.1. Define
c.= U U
pEL(C)

to be the open conical neighborhood of aperture 2 tan=!(r) about C, and let
Ce =R"\C,.
We note that as £(C) is of class C? and compact, there is an € = €(C) > 0 so that

Yelv.cy: Ve(€C) = Ciane) is a C" diffeomorphism. Choose an ry so that 0 < 79 <
min {tan(e), 1}. It is straightforward to verify that

Cro = Ve (Vian-1(r)(€)) = | B_r0_x(p (P)

2
peC 1+

and, foreach v € C’ﬁo ns~,

Now let
Be)= |J E,.
veCsg nsm
This is the union of open sets so is open. As Ey, ,, C Uy ,, and Uy, ,, NC = 0, B(C)NC =
(). Moreover, as g < 1, this construction ensures that

BmmE‘,m:Q)

and so B 5. N B(C)=10.As B, C B /3, it follows that Item (1) holds. Item (4) follows
directly from Lemma 3.3 and the definition of B(C). Indeed, if spt(V) N B(C) # 0, then
spt(V) N Eg ., # 0 for some v while V is E-stationary in ES ,  C B(C). Asspt(V) is
compact this would contradict Lemma 3.3. Item (5) follows from Lemma 3.4 in the exact
same fashion.

We next verify that Item (2) holds. To see this first observe that if p € R"*1\(C,,, U

B2m0_1 ), then by construction p € B(C). As such, if we set Ry = 2nrg L then for R > Ry,
if p e R"\(B(C) U Bg), then p € Cy,. Let (q,t) € Vian-1(r,)(C) be the pre-image of p



TOPOLOGICAL UNIQUENESS FOR SELF-EXPANDERS OF SMALL ENTROPY 13

under We. Without loss of generality assume the unit normal, n¢(g), on C points towards
p and let

B Ue(q, tan~t(rg))

[ We(g, tan™" (r0))]
Observe that C,,, N'S™ is the tan™ (7 )-tubular open neighborhood of £(C) in S™. Thus,
one has v € 9C,,, and as such

es".

p ¢ E3,7'0'
Using the fact ne(q) = ne, , (¢) and so Ye(q,t) = We, r, (g, 1), it follows from Lemma
3.2 that

0 <sin(t) < 4nr61|X(P)|72~

Hence, by elementary trigonometry, the distance from p to C is less than No|x(p)| ~1 where
Ny = 4nry . In particular, this shows R"*1 \ (B(C) U Br) C Tw,r-1(C).
Finally, up to increasing R so that

tan(e) 9

24/1 + tan(e)? 0

Item (2) ensures that R" ™\ (B(C) U Bg,) C Cian(e). Hence, if
V'(C) = (Yelv, ) " R™ 1\ (B(C) U Br,)),

Ny <

then Wely/(cy is a C' diffeomorphism onto its image.
To conclude the proof we observe that, for p € C \ B R, SEtting
We(p, £ tan™!(rg))

A cS™
= [We(p, £ tan (o))

ensures that p; = We(p,t) ¢ B(C) for [t| < tan~!(rp) if and only if p; ¢ ES. VEY -
Indeed, if the latter holds, then Lemma 3.2 implies |t| < p,, (]x(p)|) and so the distance
from p; to C is at most sin(p,, (|x(p)|))[x(p)|. This implies p; ¢ Eg , forallv € Cy NS"
as otherwise, invoking Lemma 3.2 again, one sees the distance from p; to C is strictly larger
than sin(pr, (|x(p)|))|x(p)| giving a contradiction. That is, p; ¢ B(C). The other direction
is obvious by the fact v € JC,, and the definition of B(C). Hence, setting pc = p,, one

observes that V(C) = V’(C) and the result is proved. O

4. PARTIAL ORDERING OF HYPERSURFACES ASYMPTOTIC TO A FIXED CONE

For n,k > 2 and a € (0,1), fix a C**-regular cone C C R™*! and let H(C) be
the set of all C¥ *“_asymptotically conical C'*:*-hypersurfaces with asymptotic cone C and
without any closed connected components. Let £(C) C H/(C) be the subset consisting of
self-expanders and let £g(C) C £(C) denote the subset of stable self-expanders.

A pair (w, o) consisting of a closed subset w C S™ and a smooth, possibly disconnected,
hypersurface o C S™ is a boundary link if 0w = o. Here neither w nor ¢ are assumed to be
connected. If (w, o) is a boundary link, then so is (S™\int(w), o). For any hypersurface,
o C S™, o may be thought of as a closed (n — 1)-chain with Z, coefficients and so one has
an associated class (o] € H,,_1(S™;Zs). As H,,_1(S"; Z3) = {0}, o is a boundary and so
there is an w so (w, o) is a boundary link. If (w’, o) is also a boundary link, then both w
and w’ may be thought of as n-chains with Z, coefficients and, as O(w + w’) = 20 = 0,
w + w' is a cycle. Hence, [w + w'] € H,(S™;Z2) = Zs is either 0 or [S™]. That is, either
w' =worw =8"\ int(w).
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Given a cone C pick w so that (w, £(C)) is a boundary link. This choice induces a
canonical unit normal on £(C) (and hence also on C) —i.e., by choosing the outward normal
tow. Foreach 2 € H(C), let Q_ (%) be the open subset of R"*1 so that 9 _(¥) = ¥ and

lim ¢l (pQ2_ (X)) NS™ = w as closed sets.
p—0t

Such Q_ (%) is well-defined by the hypotheses on ¥ and the discussions in the previous
paragraph. Denote by Q. () = R**1\ cl(Q_(X)). We orient ¥ so that its unit normal
points into 2 () and out of Q_(X).

We introduce a relation on H(C) as follows: If 31, X9 € H(C), then

21 = 22 provided Q+(Z2) - Q+<21)

Notice ¥ < ¥ for any ¥ € #H(C). The construction ensures that if 1 < 39 and ¥o < X5,
then 3y =< Xj. That is, (H(C), =) is a partially ordered set. Clearly, (£(C), <) and
(Es(C), =) are also partially ordered sets. Recall that an element z of a partially ordered
set (X, <) is maximal if, forall y € X, v < y = x = y and is minimal if, for all y € X,
y < x = x = y. The element x is the greatest element of (X, <) ify < x forally € X
and is the least element of (X, <) if x < y for all y € X. Clearly, the greatest (least)
element is the unique maximal (minimal) element.

We use the universal barrier of Section 3 with a minimization procedure sketched by
Ilmanen [25] — see Ding [17, Theorem 6.3] for full details — to show that (£(C), <) admits
a greatest and least element.

Theorem 4.1. Fork > 2and « € (0,1), letC bea C’“"X—regular cone in R™"*1 and assume
either 2 < n < 6 or \[C] < A,,. There are unique elements T';,T'1, € Es(C) so that, for
alT € &), T =T <XTg¢.

We will need several auxiliary results to prove this. First a standard regularity result:

Lemma 4.2. Fork > 2 and o € (0,1), letC be a Ck’a-regular cone in R and assume
either 2 < n < 6 or \[C] < A,. If V is an E-stationary integral varifold with tangent
cone at infinity equal to C and the singular set, sing(V'), has Hausdor{f dimension at most
n—7, then V.= V5 for an element & € £(C).

Proof. First observe that there is a self-expander ¥ C R lsoV =Vs. When2 <n <6
this follows from our hypothesis on the singular set of V. When n > 7, by Huisken’s
monotonicity formula A[V] < A[C] and the claim then follows from standard dimension
reduction arguments [40, Theorem 4], Allard’s regularity theorem [33, Theorem 24.2] and
the hypothesis that (%, ) holds. Next, by [8, Proposition 3.3], X is cr "*_asymptotic to C.
That is, ¥ € £(C) completing the proof. O

A key property of the partial order is that there are always elements of E5(C) that lie
above and below any pair of elements of £(C).

Proposition 4.3. For k > 2 and a € (0,1), let C be a C**-regular cone in R"*! and
assume either 2 < n < 6 or A[C] < A,,. Forany twoT'1,T'y € E(C) there are Ty € E5(C)
withlI'_ X TI'; XT'} fori = 1,2. Moreover, one of the following three situations occurs:

(1) I'_ =TIt 2 JTI',.

(2) T =TIy =2I't <TI',.

(3) Fi 75 Fl andFi # FQ.

Proof. Let B(C) be the universal barrier given by Proposition 3.1 for the cone C. As I'y
and T’y are asymptotic to C one has, by Item (5) of Proposition 3.1, that T'; N B(C) = 0 for
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i=12 LetXy = 0(4+(T1) N4 (T2)) and let X_ = 9(Q_(T'1) N Q_(T'3)). Notice
that X1 are locally given as the graph of Lipschitz functions and are both hypersurfaces
away from I'y N [s.

Let W¢ and p¢ be given by Proposition 3.1. By Item (3) of Proposition 3.1 one has, for
R > 2Ry large, that there is a sufficiently small ez > 0 so that if

71E = We(RL(C), £(pc(R) - er)),

then v N B(C) = 0 and vF C Q4 (1) N Q4 (T'2). Moreover, each v£ is, by construc-
tion, homologous to RL(C) and hence is null-homologous in cl(Q4 (T'1)) N cl(Q4(T)).
As such, one can minimize the expander functional E in the closed set cl(24.(T'1)) N
cl(Q4(T'2)) N Bag to obtain an integral current I'¥ with AT = ~£. Moreover, by [39,
Proposition 6.1 and Theorem 6.2], the singular set of '} has Hausdorff dimension less than
n — 2. Tt follows that the associated varifold of T'ff is E-stationary. Hence, by Solomon-
White’s maximum principle [35], ['¥ is compactly supported in Bog N Q4 (T'1) N Q4 (T2),
and so Item (4) of Proposition 3.1 implies spt(T'}) N B(C) = 0.

By Item (3) of Proposition 3.1, C\ Bag, is a deformation retract of R" 1\ (B(C)UBag,)-
Thus, the construction of v ensures that [y?] = [RL(C)] # 0in H,,_»(R"1\ (B(C) U
Bsr,)). Hence, as v£ = oTF c R**1\B(C), spt(I'¥) N Bag, # 0 must hold.

Now pick a sequence R; — oo, up to passing to a subsequence, the Fﬁi converge, as
integral currents, to a ' supported in cl(Q4 (1)) N cl(Q4(Ty)). As spt(T5) N Bag, #
§ and the T'X are F-minimizing in Baog, N cl(Q+(T1)) N cl(Q+(Ty)), it follows that
spt(I'y )NBag, # 0 and so the limit is non-trivial. Hence, arguing as in Ding [17, Theorem
6.3], the tangent cone of the associated varifold, Vr_ , of each I'y. at infinity is C. AsT'y is
locally E-minimizing, standard regularity theory for area minimizing hypersurfaces [33,
Theorem 37.7] gives the singular set of I'+ has Hausdorff dimension at most n — 7. Hence,
by our hypotheses, it follows from Lemma 4.2 that ' € Es(C).

IfI'y X T'g, then ¥, = T'9 and ¥_ = I'y and the construction ensures I'_ <X I'; <
I'y X Ty and Case (1) holds. Similarly, if I's < Iy, then the construction ensures I'_ =<
I'ys 2 T'y X Ty and Case (2) holds. If neither of these cases hold, then the construction
still ensures that I' . <X I'; X I'; for¢ = 1,2, but one cannot have I'y =I'y or 'y = T'y;
i.e., Case (3) holds. [l

We also need the following compactness result.

Proposition 4.4. For k > 2 and o € (0,1), let C be a CF_regular cone in R"*' and
assume either 2 < n < 6 or N\[C] < A,,. If E; € E5(C;) and L(Z;) = L(C;) — L(C) in
Ck-2(S™), then there is a &> € Es(C) so that, up to passing to a subsequence, ¥; — X in
Ce2 (R™Y). In particular, the space Es(C) is (sequentially) compact in C2° (R™ 1),

loc loc

Proof. If n > 7, the hypothesis A\[C] < A,, < 2 and [8, Theorem 1.1 (3)] imply that, up
to passing to a subsequence, the ; converge in C52,(R™*1) to an element & € £(C). The
nature of the convergence ensures X € Eg(C).

When 2 < n < 6, observe that, by [8, Corollary 3.4], there is an R = R(C) > 0
so that, up to passing to a subsequence, the 3;\ Br converge — with multiplicity one — in
C2 (R™1\ Br) to a self-expander ¥/ in R"+1\ By that is C¥**-asymptotic to C.

Furthermore, by [8, Lemma 3.6] and [8, Lemma 3.8] one has, for any R > 0 and ¢
sufficiently large,

(i N Br) < MA[C]R"
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where M depends only on the dimension. In particular, each ¥; N Bp is stable and has
uniformly bounded volume and so, by standard compactness results for stable hypersur-
faces [32], as 2 < n < 6 one has uniform curvature estimates. Hence, up to passing to
a further subsequence, ¥; N Byr — X in C7%.(Bar) — here the convergence may, in
principle, be with multiplicity greater than one. However, ¥’ = %" in B3z \Bax and so
Y =% UX" € &£(C). By the construction and the fact that X has no closed components,
¥, = ¥ in Cp2(R™M!) with multiplicity one. The nature of the convergence ensures

¥ e &s(0). (]

Proof of Theorem 4.1. 1t is clear that if ' and I', exist, then they are unique. Notice that
E(C) # . Indeed, by a minimization procedure of llmanen [25] and Ding [17, Theorem
6.3] and standard regularity theory [33, Theorem 37.7], there is a locally F-minimizing
integral n-current, I, with singular set of Hausdorff dimension at most n — 7 and with
tangent cone of the associated varifold of I at infinity equal to C. Thus, by our hypotheses,
it follows from Lemma 4.2 that I € £(C), proving the claim.

Now let B(C) be the universal barrier associated to C given by Proposition 3.1. Pick
Fe&lC),letQy =BC)NQ (M) and Q- = B(C)NQ_(T). AsT N B(C) =0, by
Item (5) of Proposition 3.1, B(C) = Q4 U Q_. Clearly, this decomposition is independent
of the choice I' € £(C). In particular, forall ' € £(C), Q4 C Q4 (') € R*™\Q_ and
Q- cQ_ () cR"™M\Q,.

Let Ut = Ureg(c) @+ (1) and U~ = Upeg(c) - (). These are both open subsets of
R+, Clearly, 2y C Uy C R™™IN\Q_and Q- Cc U_ c R**\Q,. In particular, U
and OU_ are both nonempty. We claim that 0U, = I'y, and OU_ = T'g.

To that end, let M denote the number of components of £(C). As £(C) is compact this
is a finite positive integer. As I' has no compact connected components, every element of
I’ € £(C) has at most M components. Now fix a p; € U, and observe p; & Q4 (%) for
any X € £(C). By definition, there are ¢; — p; and I'; € £(C) with ¢; € Q4 (T;). By
Proposition 4.3, there are T; € Eg(C) with T; < T'; and so ¢; € Q. (T;). By Proposition
4.4, up to passing to a subsequence, we have T; — X1 € Eg(C). As ¢; € Q4 (Y;), while
p1 € Q4 (Y;), one must have p; € ;. Let X{ be the component of ¥3; containing p;.

If OU, = X1, then OU; € Eg(C). If not, we may pick pa € 90U, \¥;. By definition,
there are ¢; — po and I'; € £(C) with ¢} € Q4 (I"}). Applying Proposition 4.3 to the
pairs (31,T7%), one produces elements Y, € Eg(C) with T} < T and T} < ¥;. By
Proposition 4.4, up to passing to a subsequence, we have Y, — Y5 € E5(C). Observe
that, as above, one must have po € Xy. The fact that Y, < ¥, implies that £5 < ¥
and, hence, that p; € ¥. It follows from the strong maximum principle that ¥ C Y.
Hence, the component of s containing p; is equal to E? and so p; and po are in different
components of Y.

If U, = X, then OU, € Eg(C). If not, we may pick p3 € U, \X,. Arguing as
above produces a Y3 € E5(C) with pq, p2 and ps in different components of ¥3. As any
element of £(C) has at most M components this procedure must stop after m < M steps.
That is, it produces an element %, € E5(C) with OUL = £,,, € E5(C).

Hence, we have shown OU, € £g(C). By construction, U < T forany I € £(C).
That is, I'y, = U4 € Eg(C) is indeed the least element. A similar argument shows that
OU_ € Eg(C) and satisfies I' < QU_ forall T € £(C) and so I'¢ = OU_ is the greatest
element. 0
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5. EXPANDER MEAN-CONVEX MEAN CURVATURE FLOW OF LOW ENTROPY

Let {¥;},.; be a mean curvature flow (MCF). Along the flow, we define the expander
mean curvature relative to the space-time point Xo = (xo, 1) to be

EX°(p) = 2(t — to)Hs, (p) + (x(p) — %o) - 0y, (p).
We remark that EXO = Sg 9 where Sgo was introduced in [4, Section 3] as the shrinker
mean curvature relatlve to Xy. Observe that, due to the dependence on ¢, EX0 is defined
for the flow. For a time ¢ € R and a hypersurface ¥, the expander mean curvature of ¥
relative to the space-time point X and time ¢ is defined to be
B! (p) = 2(t — to) Hx(p) + (x(p) — %0) - nx(p).
Denote by O the space-time origin. For § > 0 we let
Vp(s) = s Pe P for s > 0.

The main result of this section is the following:
Proposition 5.1. Forn,k > 2and a € (0,1), let > € ACH®® have no closed connected
components and let Q be an open subset of R" 1 s0 0Q = . Suppose the following holds:

(1) Thereisan N > 1so that X\ Byr C Tr—1(C(X)) forall R > 1;

(2) There are constants ¢, 3 > 0 so that, by choosing the outward unit normal to (),

forpe X
EZ'(p) > cpp(1+ [x(p)[*) > 0;

(3) A[Z] < AL
Then there is a unique MCF, {zt}tZI with ¥1 = ¥ and a family of open subsets of R"T1,
{Q} 5y with Q) = Q and 09, = t=2Y, so that:

(1) Each 3, € ACHE™ withC(3;) = C(X);

(2) By choosing the outward unit normal to Qy, fort > 1 and p € ¥y,

ES, (p) = cthp (1 + [x(p)]* + 2n(t — 1)) > 0;
(3) Forany1 <t <t cl(Qp) C Qy and so
lim cl(Q2;) = K as closed sets
t—o0
where 0K = T is a stable asymptotically conical self-expander with C(I") =

C(X). Moreover,
tlim oy =T in C2 (R
hde el

and, hence, T and ¥ are C*~ a.c.-isotopic with fixed cone.

Before the proof of Proposition 5.1 we will need several auxiliary lemmas. Fix a unit
vector e, a point xg € R**! and r, h > 0. Let

Ce(x0,m,h) = {x e R"": |(x —x0) - | < hand [x — xo|> < 7% +|(x — x0) - €|*}

be the solid open cylinder with axis e centered at x( and of radius r and height 2h. Recall
the following definition from [8, Section 3].

Definition 5.2. Let k¥ > 2 be an integer and o € (0,1). A hypersurface ¥ C R"*! is a
Ck-@ e-graph of size § on scale  at xq if there is a function f: B® C P, — R with

k
ST VI flg + r iR [VRf, < 6,

Jj=0
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where P, is the n-dimensional subspace of R”*1 normal to e, so that
YN Ce(x0,7,0r) = {x0 + x(2) + f(x)e: x € B]'}.

Lemma 5.3. For n,k > 2 and «a € (0,1), let {Zt}te[l,T) be a MCF in R, Suppose

Y1 € ACHE™ with the asymptotic cone C = C(X,) and that there is an N > 0 so
that X1\ Byr C Tg-1(C) for all R > 1. Given v € (0, 1) there are constants N =

N(Z1,7) > land n = n(X1,v) > 0 so that

(1) Forall R > 1andt € [1,T), ¥\ Bgp; C Tg-14(C);
(2) Fort € [1,T), ¥, is a C** n¢(p)-graph of size v on scale n|x(p)| at every
p € C\ By ;. In particular,

sup sup |As,| < oo.
t€[1,T) S\By 5

Proof. Fixany t € [1,T) and define 'y = t 735 (o 1) for =1 < s <t~ 1(T— 1) — 1.
Thus, {I'} is a MCF and the hypothesis on X; impliesI'_; € ACH]fL’a andT"_1\ Bygr C
Tr-1(C) for all R > 1. Thus, by [4, Lemma 4.3], there is an N’ = N'(C,N,n) > 1 so
that, forall R > 1and s € [-1,—t"!], Ty \ Bnvr C Tr-1(C). For s = —t~1, this gives
Y\ Byigyi € Tr-1,7(C) forall R > 1, proving Item (1).

Let § € (0,1) be a number to be chosen. As ¥ is cr "*-asymptotically conical, there
isan e = ¢(X1,6) € (0,1) and N = N(Zl,é) > 4N’ so that ¥y is a C** ne(p)-
graph of size § on scale 8 at every p € C \ By, where r = r(p) = €|x(p)|, and, by
scaling, so is I'_;. Thus, by the pseudo-locality property for MCF [26, Theorem 1.5], one
may choose 4 sufficiently small so that, for every p € C(X;) \ By and s € [—1,—t71],
['s N Cre(p)(p, 4r,4r) is given by the graph of a function f,(s, ) over (some subset of)
T,C which satisfies

)" (s, Mosmy, + IV f(s,)llospy, <1

where V is the gradient in spatial variable x. As {I's} is a MCF, f,(s, z) satisfies

o, . 2

It follows from the Holder estimates for quasi-linear parabolic equations [28, Theorem 1.1
of Chapter 6] that given o’ € (0, 1) there is a C' = C(n, a’) so that

sup [pr(s, ')]a’;BéLT, + sup [vfp(7x)]ai/ [—1,—t—1] < Cr™2.

s€[—1,—t—1] z€BY, 2

Hence, by the Schauder estimates (see, e.g., [28, Theorem 5.1 of Chapter 4]), one has that,
for every s € [—1,—t~1],

k
(5.1) S s Mg + N (5 Vo < C
j=0

and that

sup [V f (-, )] 1,1, 4-1) < C'r7
zeB!

where C' = C'(n, k,a) > 1.
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These estimates together with the equation of f,, implies, for every s € [—1, —¢t7!], that
[fo(s:2) = fp(=1,0)] < |fp(s,2) = fp (=L, )| + | fp(=1,2) — fp(=1,0)|
< (s + D0 fo (s @) los—1,—1-1) + [V fp (=1, 0) 2] + |22 V2 fp (=1, )llos
< |VEp(=1,0)[[x] + C"r " (|2f* + (s + 1))
and
IV Fp(5.2) = VIp(=1,0)] < [Vy(s,2) = Vy(,0)| + [V y(5,0) = Vfp(~1,0)]
< |V fo(s, Moy + V5T TV 0031 oy
<C"r(Jz| + Vs +1)

where C”" = C”(n,C") > C'. Observe that, by Item (1), | f,(—1,0)| < N’|x(p)|~* and
|V fp(—1,0)| < 4. Thus, for any p € (0,1),

520 () (s Mosy, + IV Fols, Moy, <2070+ p+ N'e2p N7,
Hence, combining (5.1) and (5.2) gives, for all s € [—1, —¢71],
k
(or)? MV fols, losn, +(or) O VP (s, )]aspn, < ACT (3+p+N'e 2p~ N1,
=0

J

Now choose 6 = p = 3557 and enlarge N to ensure that the right side of the above
estimate is less than v. As I'y = t*%Et when s = —t~1, Item (2) follows immediately
from this by setting n = ep. (]

Lemma 5.4. Let {Et}te[l,T) be a MCF in R"*! and assume %1 is a C*-hypersurface of
finite entropy. If the following holds:

(1) For some c,B > 0, by a suitable choice of the unit normal on ¥4, for p € ¥
E2,(p) = cp(1+ [x(p)]*);
(2) Forsome N > 0

sup|As,|+ sup sup |Ag,| < oo,
o t€[1,T) £ \Bg.z

then, fort € [1,T) and p € %,
EZ,(p) > cvop(1+ [x(p)]* + 2n(t — 1))
where the unit normal on Y, is chosen to be compatible with the one on X4.

Proof. First of all, by [34, Proposition 4]
d
<dt - AEt) EZO]f = |A2t‘2Egt'

Let
o(p,t) =1+ |x(p)* + 2n(t - 1)
and observe that, by [19, Lemma 1.1],

d
——A =0.
<dt E‘) ¢
Thus, the chain rule gives

d
<dt - AEt) ¥p(0) = —95(0)| Vs, 0* <0
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where
w’ﬁ'(s) = (ﬁ(ﬁ +1) +28%s + 6252) sP2e7Bs 5 0.
Hence, combining the equations for Egt and v3(p) gives

d
(dt - Azt> (cta(o) — BR,) < —|Az, PEE, < |Az, P(evs(e) - ES).

As the flow is regular! on [1,T'), Hypothesis (2) implies that, for all Ty € (1,T), there
is a constant C' = C'(T}) so that for all ¢ € [0, Tp]

Sup (145, *(0) + |5 e(p, 1) + (1 + x(p)) 71 EZ, (p)]) < C.

That is, cig(0) — ng has at most linear growth on ¥; for each ¢ € [1,7}] and the second
fundamental form is uniformly bounded by C. It follows from a non-compact maximum
principle (e.g., a simple modification of the proof of [19, Corollary 1.1]) and the fact that
on X1, cypg(0) — B, <0, that cpg(0) — EF, < 0forallt € [1,Ty]. As Ty was arbitrary
in (1,T), the claim follows. O

Lemma 5.5. Let {Et}te[l,T) be a MCF in R"*" and assume ¥ is a C%-hypersurface of
finite entropy. If the following holds:

(1) For some c,3 > 0, by a suitable choice of the unit normal on ¥y, fort € [1,T)
andp € ¥y
ES,(p) = ey (1 + [x(p)|* + 2n(t — 1));
(2) For some N >0
M =sup|As, |+ sup sup |Ag,| < oo,
2 t€[1,T) S\Bg .z

then, fort € [1,T) and p € %4,
b (14 %) + 20t = 1) + N2t) |45, | () < M B, ().
Proof. On ¥, \ By V7> the desired estimate follows from our hypotheses. Next we define
u=|As,[?0? = |As, P EZ, |72

By (B.9) in Appendix B of [18],

d
(dt - Azt) A5, 1? < =2|Vy, |As, |[* + 2|45, |*.

A direct computation (see, e.g., (3.22)-(3.24) of [4]) gives

(jt — Azt) u < —2Vy, logv - Vy,u.

Thus, the maximum principle implies

sup u < sup U
SN(Bgzx[1,4) 8ndp(Bg 7x[1,4])

where S =, ¢y ) X7 % {7} is the space-time track of the flow and
Op (Byyz < [1,1]) = 9 (Byye x L)\ (Byyz < {t})

IThat is, the flow is smooth away from initial time and attains its initial data in the szo . (R™*1) topology.
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Our hypotheses ensure that

M2
sup u < — .
snor(Byyexiid) Y (1 + N2+ 2n(t — 1))

Hence the desired estimate holds on ¥; N B Vi as well. U

With a minor modification of the proof of [4, Proposition 4.5], we use Lemma 5.5 to
prove the long time existence of certain expander mean-convex MCFs of low entropy.

Proposition 5.6. For n > 2, let ¥y be a C*-hypersurface in R"*1 and assume %1 has
no closed connected components and \[$1] < A\[S"~! x R]. Suppose T € (0, 00] is the
maximal existence time of the MCF {Et}te[l,T) starting from 1. If the following holds:

(1) For some c,3 > 0, by a suitable choice of the unit normal on ¥4, fort € [1,T)
andp € Xy
EZ,(p) > ctp(1 + [x(p)[* + 2n(t — 1));
(2) For some N >0

M = sup|As,|+ sup sup |As,| < oo,
o te[1,T) S\Bg 5

then T = oo.

Proof. We argue by contradiction. If 7' < oo, then Hypothesis (2) implies

lim sup |Ayg,| = .

t—T EthN\/T
Thus, by Huisken’s monotonicity formula [23] and Brakke’s regularity theorem [14] (cf.
[41]), there is an X € B, /7 so that the rescaled MCF about X = (%0, T),

Ty = (T )3 (S, — xo), s = —log(T — t),
satisfies that, for some sequence s; — oo, the I';;, converge, as integral varifolds, to a
multiplicity-one F-stationary varifold, I', with 1 < A\[I'] < A[S"~! x R].
By the hypotheses and Lemma 5.5, there is a constant C' = C'(n, ¢, 8, N, M,T) > 0 so
that, for any p € 'y, N Bg, where R; = e,

(p) < C (AT = ) Hr,, () + ¢ (xo+ ¢~ Fx(p)) -nr,, (1))
Passing s; — oo and invoking Brakke’s regularity theorem again, one has
|Ar| < 2CT Hr on the regular set Reg(T").

As )\[an x R] < 2, it follows from standard dimension reduction arguments [40, Theo-
rem 4], regularity of rectifiable mod 2 flat chains [38] and Allard’s regularity theorem [33,
Theorem 24.4], that I" is regular everywhere — cf. [15, Proposition 5.1].

Hence, Hr does not change sign and, as 1 < A['] < A[S"~! x R], it follows from [16,
Theorem 0.14] that I' is the self-shrinking sphere. As each I'y, has no closed connected
components, neither does I". Thus, I" cannot be a sphere, giving a contradiction. (]

| Ar.,,

Proof of Proposition 5.1. Fix a transverse section v on X so that v € C(]f N C’&H(E; Sm).
For ¥ € ACHﬁ’a, there is an open neighborhood U of ¥ and a C** diffeomorphism
Dy : X x (—€,€) — U given by

Oy (p,7) =x(p) + V(D)
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Using ®,,, the MCEF starting from 33; can be expressed as a quasi-linear parabolic equation
on Y. with initial data 0. Thus, by standard parabolic theory (e.g., [28] or [20]), there is a
unique MCF, {Zt}te[l,T) with X1 = ¥ and T the maximal existence time. As each X;
is properly embedded in R 1!, there is a one-parameter family of open subsets of R"*1,
{Qt}te[LT) s0 0); = t‘%Et and so the outward unit normals ny,, to {; are continuous in
t. Hence, by the hypotheses on X, one appeals to Lemmas 5.3 and 5.4 and Proposition 5.6
to see the flows exists for all times, i.e., 7' = oo, and Items (1) and (2).
To analyze the asymptotic behaviors of the flow at ¢ = oo, we define

I, = t’%Et and K, = cl(€);) where s = log t.
Thus, {I's} -, satisfies the rescaled MCF equation

ox\ * xt
(a) =Hr, -5~
1

Observe, by Item (2), the expander mean curvature of I'y, Hp, — §XJ‘, points into K.
Thus, Ky C int(K) forall s > s > 0.
We consider the translation in time of {I's} -, by 7 > 0,

{F:}SZO = {FS+T}520 ’

which is also a rescaled MCF. As A[X] < A < 2, it follows from Huisken’s monotonicity
formula [23] and the scaling invariance of entropy that A[I'7] < AZ. Thus, by Brakke’s
compactness theorem [14] (see also [24, Section 7]), given a sequence 7; — oc there is a
subsequence Ti; SO that, for every s > 0,
(5.3) lim H"|[Ts7 = p,

Jj—o0
where {115}, is a one-parameter family of multiplicity-one rectifiable Radon measures
satisfying the rescaled MCF equation in Brakke’s sense — see [40, Section 11] for the
precise definition. Moreover, by the monotonicity of K and the upper semi-continuity of
Gaussian density function, one has for all s > 0

spt(us) = OK where K = [ 5 K.

In particular, s = H™|OK forall s > 0, and {15}~ is a static solution of the rescaled
MCF. Consequently, the convergence (5.3) can be taken for all 7 — oc.

Furthermore, by Huisken’s monotonicity formula [23], all tangent flows of {1} <,
are multiplicity-one static minimal (hyper)cones in R"*1. As A[us] < AZ, it follows
from White’s stratification theorem [40, Theorem 4] that these minimal cones have at most
(n — 3)-dimensional spines and so the singular set of {s},~, has parabolic Hausdorff
dimension at most n — 1. As the flow is static, the varifold Vyx associated to K is a
multiplicity-one F-stationary varifold and the singular set of Vi has Hausdorff dimension
at most n — 3. Moreover, by our previous discussion, {0K S}s>0 form a foliation of a
neighborhood of 9K in R"*1 \ int(K) so that Hyx, — 2x points into K. Thus, it
follows from the maximum principle of Solomon-White [35] that Vx is locally one-sided
E-minimizing (strictly speaking one should think of K as a set of locally finite perimeter
and this set is one-sided locally E-minimizing). As such, the regular part of Vg is E-
stable and so it follows from Schoen-Simon’s regularity theorem [31] that the Hausdorff
dimension of the singular set of Vy is at most n — 7. Moreover, it follows from Lemma
5.3 and the Arzela-Ascoli theorem that the tangent cone of Vjx at infinity is equal to
C(X). Hence it follows from the entropy bound and Lemma 4.2 that 0K € Eg(C(X)). Set
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I' = OK. As T is smooth, Brakke’s regularity theorem [14] (see also [41]) implies that, as
s — 00, the I'; converge locally smoothly to I'. That is,

lim 7%, = Tin Cfy, (R™1).
Moreover, it follows from Lemma 5.3 and the locally smooth convergence that, for any
transverse section w on ' with w € C5** N Cg(T';S™), there is a large so > 1 so that if
5 > s, then there is a function w, € Cf’a N CY%,(T) so that if

fs(p) = x[r(p) + ws(p)w(p)
then f, € ACH"(T') is a parametrization of I', and

. - (1) _
Tim [, — x| (" = 0.

Finally, we show that T and ¥ are C* a.c.-isotopic with fixed cone. First of all, by
Lemma 2.1 and the above observation, there is a value s; > s for which I'y, is Ckeac.-
isotopic with fixed cone to I and in fact I' is a.c.-isotopic to I" for all s > s;. It follows
from Lemma 5.3 and basic continuity properties of the MCF that for any s € [1, co) there
is an e, > 0 so, via the path given by Lemma 2.1, I'y/ is C* a.c.-isotopic with fixed cone
to I'y for any s’ € [1,00) N (s — €5, 5 + €5). As [1, s1] is compact, this implies that there
are a finite set of times 1 = s < 8] < ...s), = 5150 I’y and FS§+1 are C* a.c.-isotopic
with fixed cone. Hence, composing these finitely many a.c.-isotopies one concludes that I"
and ¥ are C* a.c.-isotopic with fixed cone, finishing the proof. (]

6. DEFORMATION OF UNSTABLE SELF-EXPANDERS

The main result of this section is the following:

Theorem 6.1. Forn,k > 2and o € (0,1), let T € ACHY* be an unstable self-expander
and assume \[I'| < A%. There are stable self-expanders T_ and Ty in ACH™ with
C(l'.) =C(Ty) =C(T) sothatT_ = T =< T and both T_ and Ty are C** a.c.-
isotopic with fixed cone to T. Moreover, if T € AC?—LZ"O‘ is a stable self-expander with
C(I") = C(T') and T’ <X T (respectively, I' < I"), then one may choose T _ (respectively,
Ty ) to have the additional property that T" < T'_ < T (respectively, T <T', <T").

To prove Theorem 6.1 we will need several auxiliary results. The first is the continuity
of entropy under small C? perturbations.

Lemma 6.2. Given I' € ACH2 and § > 0, there exists a 7 = 7(I',6) > 0 so that if
£ = x|0 ]IS < 7. then |A[£(T)] — A[T| < 6.

Proof. First, by the definition of entropy, there is a pg > 0 and yq € R"*! so that

F[pOF + y(]] > )\[F] — 5

Thus, for sufficiently small 7,

1)
Flpof (') +yo] > Flpol’ + yo] — 5

Hence, combining these gives

AE(D)] > Flpof(T) + yol > A[L] - 6.
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Observe that there is a C' > 0 so that, for sufficiently small 7,
sup  RT"H™(f(T)N Bgr(y)) < C.

yER? 1, R>0
Moreover, given y,n > 0, there is an R = R(I',~v,n) > 0 so that if p € pf(T") and
p+ |x(p)| > R, then pf(I") is an n,¢r)(p)-graph of size v on scale 7 at p. Thus, for a
suitable choice of « and 7 depending on C' and 6,
(6.1) sup Flpf(I')+y] <146 <AI]+06.

pFly[>R

Next we observe that given R’ > ¢’ > 0 there are constants C' = C'(I',R’,¢') and
p=p (TR €) > 0so that, for p < p/,

lof(p~") = px(p™ " )l2sorn(Bom\B.) < C'T

Now choose € sufficiently small and R’ > R sufficiently large so

(4m)~:C E”(BZ)+/ e drn <§,
R™\BY, 4

where £ is the Lebesgue measure on R™. As lim,_,o pI' = C(I") in C?,
follows that for sufficiently small 7
(6.2) sup Flpf(D)+y] < ACD)]+d < AT +46

0<p<p’,yEBRp/

(R™F1\ {0}), it

where the second inequality is implied from the lower semi-continuity of entropy. Finally,
as the set

K ={(p,y): f <p<R,y € Br'}
is compact, by shrinking 7 if needed, we get

(6.3) sup F[pf(T)+y]< sup F[pl' +y]+d < A[I]+ 0.
(py)EK' (py)EK’

Hence, combining (6.1)-(6.3) gives, for sufficiently small 7,
AE(D)] < A[T] + 6,
which completes the proof. (I

The next is an asymptotic estimate of the distance between two disjoint self-expanders
that are asymptotic to the same cone.

Proposition 6.3. For n > 2, let T and ¥ be self-expanders in ACH? such that C(I")
C(¥) and T'NY = . There is a radius Ry = Ry(I',%) > 1 and a constant C; =
C1(T,X) > 0 so that there is a smooth function u: T \ Bg, — R"*! that satisfies

2\ Bar, C {x(p) +u(p)nr(p): p€ T\ Bg, } C ¥

and , ,
C’flr_"_le_rT <u<Cir " leT
where nr is chosen to point towards Y. and r(p) = |x(p)| for p € T.
Proof. Appealing to [10, Proposition 2.1] one has all claims but the lower bound of u. To

see this lower bound, a standard computation (see, e.g., [10, Lemma A.2]) gives that, up to
increasing R,

1 1
LpuApu+2x~Vpu+<|Ap|22)ua~Vpu+bu
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where a and b satisfy
la| + b < C (Jul + |Vrul + [Viu| + [x - Vrul) .
Invoking the gradient and Hessian estimate for w given by [10, Proposition 2.1], one has
|a| + |b| decays with a rate at least e~ . Thus, set v = (r—m=1t 4 r‘”_2)6_§ and, up to
further increasing R, one readily computes (see [10, Lemma A.1])
Lrv>a-Vrv+bvonl\ Bg,.
AsT'NY = 0, there is a constant C; > 0 so that

. 1/ p—n—1 N
inf u>Cy (R{"  +R{" “)e 7.
FﬂBBRl

As T is C%-asymptotically conical, we can enlarge R; so

1 1
sup (|AF|2 - —— b> < ——.
F\BRI 2 4
Hence the maximum principle implies

2
u>Crlo>Crtrm e T

proving the claim. (|

Proof of Theorem 6.1. Partition I into its connected components I'', ..., '™ For I to be
unstable, at least one I'/ must also be unstable. Invoking [11, Proposition 3.2], for each I'J
there is a number y; and a function f; > 0 on I'V so that

(Lri +p5)f; =0

and f; satisfies the pointwise estimates
1 x|? x|2
G (X)) <y < G0+ )R e
and, forevery ¢ > 1,
2

lle™=" Vi fillo <

where C}) = C{(I'V) > 0 and C = C/(I'7). Moreover, if I'/ is unstable, then z1; < 0.
Define f: I' — R by

f(p) = fi(p) if p € IV for some unstable I'/;
pr= 0 otherwise.

Given a number e, let

I = {f(p) = x(p) + ef(p)nr(p): p € '}

where nr is chosen to point out of 2_(I"). The estimates of f; ensure that there is a
sufficiently small € = &) > 0 so that, for all |¢| < & I'* € ACH® with C(T'¢) = C(I).

We wish to apply Proposition 5.1 to I'“J = f¢(I'/) for those unstable I'V. Suppose
—€ < € < 0. By (2.1) and the flow equation, the distance between I' and C(T'7) decays
linearly. This fact and the C° estimate of f; ensure that Hypothesis (1) of Proposition 5.1
is satisfied. Next, choose the unit normal nr- to point out of 2_(I'¢) and this induces the
choice of normal on each I'“. If I'/ is unstable, then one appeals to the computations in
[10, Lemma A.2] and the estimates of f; to see that, for all € < 0 sufficiently close to 0,

EOL > 2(Ch)  teupg, (1 + |x[?)
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for B; = 4(n + 1 — 2u;) > 0. That is, Hypothesis (2) of Proposition 5.1 is satisfied.
Finally, by Lemma 6.2 and shrinking € (if needed), one has A\[['*7] < A[[¢] < AZ. As
such, Hypothesis (3) of Proposition 5.1 is satisfied. Thus, if I is unstable, then one finds
an open set Q7 so that 9Q¢7/ = I'“J and nr.,; points out of ¢, and applies Proposition
5.1to (I'%7, Q7). If TV is stable, then I/ = I'V and evolves by mean curvature in the
self-expanding way. Hence, by our discussions and the maximum principle, there is a
unique MCF, {I§},, with I'{ = I'® so that each T'{ € ACH"* with C(T§) = C(T'), and
the family {t_l/ ¢ } ,~, evolves, in a strictly monotone manner, into €2 (I'°) so
lim ¢~ 2FE Y€ in Cp2 (R 1)
t—o00

where 3¢ € ACH"® is a stable self-expander with C(2¢) = C(T"). It follows that ¥¢ <
I'* < T and X is C*© a.c.-isotopic with fixed cone to I'. Similar arguments apply to the
case 0 < € < € and produce a ¢ with the same properties as above but I' < X3¢,

It remains only to prove the last claim (“Moreover, if...”). Without loss of generality,
it suffices to consider the case that I/ < T but IV # I'. Let ', = /tI' fort > 0.
We will show, by choosing € sufficiently small, which may depend on I" as well, that if
—€< e<0,then ', < T forall ¢ > 1. This would imply IV < X, provmg the claim.
LetD =I'NI"and T, = \f I for t > 0. By the strong maximum principle I is the union
of the common components of I and I"V. As I/ is stable so is I. Thus, by our construction,
f 6(f‘) = I" and so evolves by mean curvature in the self-expanding manner as well. Thus
it is enough to show that, for any € € (—€, 0) fixed, the set

S = {s > 1: cl(Q_(T) \ Ty € Q_(T) forall ¢t € [LS]}

is equal to [1, 00).

To see this, first observe that the C° estimate of f; and Proposition 6.3 ensure that, for
any € < 0 very close to 0, cl(Q_(I")) \I' ¢ Q_(I'*) and so S # (). Next, if s; € S and
s; — s, then Q_(T)) € Q_(I'¢) and cl(Q_(T})) \ Ty € Q_(T¢) forall t € [1,s). If
s ¢ S, then (T, \ T's) N (TS \ ') # 0 which violates the strong maximum principle. This
shows S is closed.

Finally, fix any s € S. As ' € AC?—[Z"X and the distance to its asymptotic cone decays
linearly, one uses Lemma 5.3 to find a radius R > 1 and a family of functions u(-,¢) on
'} \ Br — R with uniform C? bound and so that, for any ¢ € [1,s + 1],

IS\ Ban C {x(p) +up, )y (p): p € T} \ B} C T,
A straightforward, but tedious, computation gives that

du
E—Ap/u—a Vp/u—i-bu

where a’ and b’ are smooth bounded. As s € S,

inf_ u(p,s) > 0.
pel’\B2r

By the continuity of the flows and the definition of .S, there is a § > 0 so that
mf{u(p,t); pe (T)\Ty) NOBar,t € [s, s +5]} >0

Thus, by a non-compact form of the strong maximum principle, u(p,t) > 0 for p €
I\ (I'; U Bag) and ¢t € (s, s + 6]. This, together with the strong maximum principle on
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compact regions, implies that cl(Q_ (I'}))\ Ty ¢ Q_(I%) forall ¢ € [s, s+ 0]. Thatis, S is
open. Hence, as [1, c0) is connected, one has S = [1, 00). This completes the proof. [

7. PERTURBATION PROPERTIES OF WEAKLY STABLE SELF-EXPANDERS

We need several perturbation results for weakly stable self-expanders. Specifically, we
will need to show that it is possible to connect, via an a.c.-isotopy that does not move the
asymptotic cones much along the path, any weakly stable self-expander to a self-expander
whose asymptotic cone is a generic perturbation of the initial cone. These results rely on
the analysis carried out in [7].

We introduce the following notation: Let n, k > 2 and o € (0, 1). Given a C**“-regular
cone C C R™"*! and amap ¢ € C*(L(C); R" 1), let

Clel ={pp(p): p € L(C),p > 0}.

Clearly, C[¢] is a set-theoretic cone. As £(C) is compact, there is a neighborhood Vep, (C)
of x| ¢y in C**(L(C); R™ 1) so that, for any ¢ € Ve (C), C[y] is a C**- regular cone
and &1[p]: C — C[y] is an embedding.

The compactness of Eg(C) together with results of [7] gives the local finiteness for
diffeomorphism types. First we need the following elementary fact:

Lemma7.1. Forn,k > 2anda € (0,1), let ©; € ACH be self-expanders and suppose
3 = Xin C2 (R, Let o be a C**-hypersurface in S™ and let p; € C*(a; R™H1)
such that C[p;] = C(%;) and p; — x|, in CF(S™; R"*1). Then one has . € £(C[o])
and, for sufficiently large i, there are £; € ACHE*(X) with £;(X) = X; and tr! [f;] = ;.
Proof. First observe that as each X; satisfies (1.1), the nature of the convergence ensures
that 2 does as well. By our hypotheses on (;, one has £(3;) — ¢ in C*(S™) and so, by
[8, Corollary 3.4], ¥ € ACHE* with C(X) = C[o]. Thatis ¥ € £(Clo]).
Leth, € CF*n Cf 1 (3;R™1) be chosen to satisfy

1 1
Asxh; + 7% Vsh; — ihi = 0and trl_[h;] = ¢; — X|,.

By [7, Corollary 5.8], there is a unique such h; which satisfies the estimate

1
[l < Cligi = o llka

k,a —

where C' depends only on 3. We then let
gi = x|z +h;jand T; = g;(¥).

It is clear that, for sufficiently large i, g; € ACH® (%) and trl_[g;] = ;. Thus, by [7,
Proposition 3.3], T; € ACH* and C(T;) = C(%;).

Pick a transverse section v on 3 so that v € Cy* N CF 4 (5;S"). Letv; = vog; '
and let 7y, be the projection along v; onto Y;. By [8, Proposition 3.3], for sufficiently
large 7, 7y, |5, : £ — Y is an element of ACH"*(3;). Thus, there is a unique function
u; € CH* N Cf (%) so that ¥; can be parametrized by the map

£, = (mv|s;) togi =g tuv

which, by [7, Proposition 3.3], is an element of ACH"*(X) and trl [f;] = trl [gi] = ¢i.
This completes the proof.
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Proposition 7.2. For k > 2 and o € (0,1), let C be a C**-regular cone in R"*! and
assume either 2 < n < 6 or \[C] < A,,. There is an ¢ = ¢1(C) > 0 and a finite set
{T'1,...,Ts} C Es(C) so that the following is true: For any ¢ € C**(L(C); R™ 1) with
le = x|cc)llk,a < €1 and any T € Es(Clyp)), there is an integer i € [1, J] and an element
f € ACHM(T;) so that T = £(T;) and trl_[f] = ¢.

Proof. We first claim that there are I'y, ..., I'; € £5(C) so that for any I € Eg(C) there is
an integer i € [1,J] and an element fr € ACH*(T;) so that fr(T';) = T and tr’_[fr] =
X|z(0)-

To see this is true, consider the following equivalence relation on £5(C): two I', T €
£s(C) are equivalent, written I' ~ I”, provided there is an f € ACH" (") so that I =
£(T') and trl [f] = x| (c). It follows from [7, Proposition 3.3] that this is an equivalence
relation. Indeed, it is reflexive as x|r € ACH®*(T') so T' ~ T. It is symmetric as
f € ACHL(T) with f(T') = I and trl [f] = x|z(c), implies that f~1 € ACHI*(I")
and trl [f~!] = x|.(c). Finally, it is transitive as f € ACH* (") with £(I') = I and
trl [f] = x|z(c). and g € ACHE(T) with g(I") = T" and trl_[g] = x|z (c)» implies
that g o f € ACH®*(T) and trl [go f] = X|z(cy so T' ~ T, It readily follows from
Proposition 4.4 and Lemma 7.1 that there are finitely many equivalence classes in Eg(C).
Pick representatives I'1,...,I'; and observe that we have shown the proposition for any
e &s(C).

We now argue by contradiction. Suppose there is a sequence ¢; € C*(L(C); R"+1)
with [|o; — X|z)l|k,a — 0 and 5 € Es(C[p;]) so that the conclusion does not hold
for 3;. By Proposition 4.4, up to passing to a subsequence, there is a ¥ € Eg(C) so that
¥, = Xin Cp2 (R™*1). By Lemma 7.1, up to throwing out a finite number of terms, there
are g; € ACHF* () so that g;(X) = ¥; and trl [g;] = ¢;.

As ¥ € Eg(C), there is an integer i € [1,J] so I'; ~ X. That is, there is an h €
ACH™*(¥) with h(T';) = ¥ and trl_[h] = X|z(c)- Setting f; = g; o h, shows the result
holds for the X;, and this contradiction proves the claim. O

Given an element > € ACH"®, there is a natural equivalence relation on ACH* ().
Namely, two elements f,g € ACH* (%) are equivalent, written f ~ g, provided that
f(¥) = g(X) and trl_[f] = trl_ [g]. Denote by [f] the equivalence class of f. Let

Aceka (s = {[f]: f € ACH" () and £() satisfies (1.1)} .

The main result of [7] is that ACE®* (%) is a smooth Banach manifold and the projec-
tion map Iy, : ACEF (X)) — CF(L(X); R™H1) given by s ([f]) = tr’ [f] is smooth
Fredholm of index 0.

Corollary 7.3. For k > 2 and o € (0,1), let C be a C**-regular cone in R"*! and
assume either 2 < n < 6 or \[C] < A,. There is an open neighborhood V of x|y in
Ck(L(C);R™1) so that, for a generic (in the sense of Baire category) element p € V),
every element of Es(C|p]) is strictly stable.

Proof. Pick e = €(C) > 0 as in Proposition 7.2. When n > 7, as A[C] < A,, [8,
Lemma 3.8] ensures that, up to shrinking €y, if || — x|z (¢)llx,o < €1, then C[y] satisfies
AC[¢]] < An. Let Vg be the open ball in C**(L(C); R™ ™) centered at x|z (c) of radius
€1. PickI'y, ..., Iy as in Proposition 7.2. By [7, Corollary 1.2], there are open dense sets
Vi,...,Vy C CH*(L(C); R™*1) so that each I, has no critical values in V;. That is, if
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I = f(T;) and trl_[f] € V;, then T has no non-trivial Jacobi fields that fix the infinity. In
particular, if p € V = ﬂjzo V;, then every element of Es(C[y]) is strictly stable. O

Theorem 7.4. For n,k > 2 and o € (0,1), let C be a C*_regular cone in R™+1
and assume A[C] < A%. For each T' € Eg(C) there exists an open neighborhood Vr C
CP(L(T); R™ 1) of x|z 1y so that for any ¢ € Vr there is an element T, € E5(Clg)])
and a C* a.c.-isotopy F, between T and T, so that, forall t € [0,1],

(7.1) [tr3 [Fe (O] = x| 2y .0 < Nl = X2

Proof. Let v be a transverse section on I as given in [7, Section 7] and let
Ky = {H € C’foc N C’f70(F): Lr(kv -nr) = O}
where Lr is the self-joint operator given in Section 2.6. By [7, Theorem 7.1], there are two
open neighborhoods Uy C C*(L(T); R™ ™) of x|z () and Uy C Ky of 0 together with a
smooth map F\, : Uy x Uy — ACHF*(T) so that:
o Fy[x|zm),0] = x|r;

o tri[Felp, k]l =
o Gylp, Kl =v- (H=3xb) [F[p, k] € K.

Thus, by shrinking U if needed, it follows from Lemma 2.1 that, for every ¢ € U, the
path ¢ — F{,(t) given by

F,(t) = (1 = t)x|r + tFy[p,0] for t € [0,1]

is a C* a.c.-isotopy between I" and F [, 0](T'). It is clear from the construction that

[l [FL (0] — X[ 20y llka < 1 = X[ 2@yllka

To conclude the proof we show that for every ¢ € U there is a C* a.c.-isotopy
with fixed cone between X, = F\[p,0](I") and some element of E5(C[y]). Composing
this with F:O gives an a.c.-isotopy with the desired properties. In view of Theorem 6.1, it
suffices to show the claim with £(C[]) replacing E5(Cly]). If Ky = {0}, then £, is a
CF*_asymptotically conical self-expander with C (X4) = Cly] and the claim is proved.
Otherwise, partition I into its connected components 'L, ..., '™ so all '/ are stable with
at least one weakly stable. For each j € {1,..., M}, let X/, = Fy[p,0](I/) and

Kl ={ke c?.n C’ﬂO(Fj): Lri(kv-nr;) =0} .

Observe that if k € Ky, then x[p; € K. If T is strictly stable, then X, = {0} and X7,
is a self-expander. If 'V is weakly stable, then it follows from the standard spectral theory
that dim K7, = 1. In this case we may choose x; € KJ, to span KJ. Let gJ: Uy — R
so that Gy [, 0]rs = g4 [@]k;. If gl [e] = 0, then 7 is a self-expander. Otherwise, it
follows from [7, Lemma 6.1] and [10, Proposition 3.2] that, by a suitable choice of unit
normal on Eé,

By > g (1+ [x?)

for some ¢, 8 > 0. Thus, Hypothesis (2) of Proposition 5.1 holds for EZ;,. Next observe
that by the construction of F, — see pages 33-34 of [7] for details — Hypothesis (1) of
Proposition 5.1 holds for >7,. Finally, by Lemma 6.2 and shrinking ¢/, if needed, we may
assume /\[Ei] < A[X,] < Aj, that is Hypothesis (3) of Proposition 5.1. Hence, one
can apply Proposition 5.1 to EZ;, and obtains a CF "*_asymptotically conical stable self-
expander F{a that is C*® a.c.-isotopic with fixed cone to E&. Therefore, by the maximum
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principle for the MCF, combining all these cases gives an element I',, € E5(C[¢]) that is
C*+2 a.c.-isotopic with fixed cone to Yo (I

8. PROOF OF MAIN THEOREMS

In this section we prove Theorem 1.1 and Theorem 1.2. We first prove the result for
cones C with the extra property that every element of £5(C) is strictly stable and then use
the perturbation results of Section 7 to conclude the general case.

Before beginning the proof we need a finiteness result for £g(C).

Lemma 8.1. Fork > 2 and o € (0,1), let C be a C*“-regular cone in R"*! and assume
either 2 < n < 6 or A[C] < Ay, If every element of Es(C) is strictly stable, then Es(C) is
a finite set.

Proof. By Proposition 7.2 there are I'y, ..., I'; € E5(C) so that for each " € Eg(C) there
is an integer 7 € [1,.J] and an element fr € ACEX(T;) so that tr!_[fr] = x|z (c) and
fr(T;) = T'. As T is strictly stable, [fr] is a regular point of IIr — See Section 7 — and
so there is an open neighborhood Ur C ACE**(T;) of [fr] on which Il restricts to a
diffeomorphism. Clearly, {Ur }r.c¢ ) is an open cover of {[fr]}rc¢ (c)- Moreover,

{lfrl}regs(ey VU = {[fr]} .

By Proposition 4.4, £5(C) is (sequentially) compact in C;,(R™™1). Hence, by [8,
Proposition 4.11, {[fr]}rce, () 18 (sequentially) compact in Uf\il ACER(Ty). 1t follows
(see [8, Lemma A.1]) that {Ur }rce, () has a finite subcover of {[fr]}rc¢, ) and hence
the latter set is finite. That is, £g(C) is finite. O

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2. As C is a C**'-regular cone, it is obvious that C is C'*:-
regular for every a € (0,1). Observe that, by Theorem 6.1, every I' € £(C) is C* a.c.-
isotopic with fixed cone to some element IV € £5(C). Hence, it suffices to show that any
two elements I';, T'y € E5(C) are C* a.c-isotopic with fixed cone.

We now assume that C has the property that Es(C) consists only of strictly stable ele-
ments. For any I" € £¢(C), let

P(D) = {f €&s(C): T <T < FG}

where T is the greatest element given by Theorem 4.1. By Lemma 8.1, P(T') is a finite
set. We will show, by induction on the number of elements, M, of P(I"), that T is Cck
a.c.-isotopic with fixed cone to I'. The theorem clearly follows from this.

To that end, first observe that as I'¢ € P(T") there is nothing to prove when M = 1.
For general M > 2, let I be a minimal element of P(T") \ {T'}. Thus, P(I'"’) has at most
M — 1 elements. By the induction hypotheses, I'" is C* a.c.-isotopic with fixed cone to
L. Apply Theorem B.1 to I' and V. This produces a self-expander ¥ so that ' < 3 < TV
but¥ # I"and ¥ # I. AsI” is a minimal element of P(I")\ {I'} we must have ¥ ¢ P(I")
andso ¥ & E5(C). In particular, Theorem 6.1 implies 3. is C* a.c.-isotopic with fixed cone
to both I' and I, and hence they are both C* a.c.-isotopic with fixed cone to one another
and hence also to I';. This completes the proof in this case.

To prove the result for general C first pick V as in Corollary 7.3. For any two elements
I',Ts € E5(C), let Vp, and Vr, be given by Theorem 7.4. As V N Vr, N Vr, is an
open neighborhood of x| c), it follows from Corollary 7.3 that there is an element ¢ €
Y N Vr, NV, so that every element of E5(Cy]) is strictly stable. By Theorem 7.4, for
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i € {1,2} there is an element I'; € £5(C[p]) and a C* a.c.-isotopy F; between I'; and I
so that (7.1) holds. By what we have already shown, '} is C* a.c.-isotopic with fixed cone
to I',. Thus, by shrinking Vr,, Vr, if needed, we are able to use Lemma 2.2 to conclude
that T'; is C* a.c.-isotopic with fixed cone to I'y which completes the proof. O

APPENDIX A. EXISTENCE OF ISOTOPICALLY TRIVIAL SELF-EXPANDERS OF SMALL
ENTROPY

In this section we use Theorem 7.4 to prove the following existence result which was
used in the proof of Corollary 1.5.

Proposition A.1. For 3 < n < 6 and k > 2, if C is a C**'-regular cone in R"*1
with L(C) € SETY(AY), then there exists a self-expander T asymptotic to C that is C*
a.c.-isotopic to R™ x {0}.

Proof. LetTy = R™ x {0} and set Cy = C(T'y) =T'y. Fix any « € (0, 1). Let
V={pe C*(L(Co); R™1): &[¢] is an embedding and A[C[y]] < Ar}

and let Vy be the connected component of V that contains x| (c,).- As £(C) € S§T(A})
it follows that XlL(C) €.
Hence, there is a continuous path ¢: [0, 1] — Vj connecting x|, (c,) to X|(c). Let

to = sup {t € [0,1]: there exists ', € E5(C[¢(t)]) that is C* a.c.-isotopic to I'g } .

As T is strictly stable, the projection ITr, : ACE®*(Ty) — Vo which maps [f] to tr’_[f]
is a local diffeomorphism around x|r, and so tg > 0.

Suppose t; € [0,to) are such that ¢; — t¢o and that for each i there exists I';, €
Es(C[p(t;)]) that is C* a.c.-isotopic to Tg. As C[¢(t;)] — Clé(to)] in C2* (R™ 1\ {0}),
Proposition 4.4, implies that, up to passing to a subsequence, I'y, — Ty, in C52 (R™T1)
for an element I'y, € E5(C[p(0)]). Moreover, by [8, Proposition 3.3] and Lemma 2.1, T';,
is Ok a.c.-isotopic to I'y, and, thus, to I'g. In particular, it is enough to show ¢y = 1.

If tg < 1, then x\pto cannot be a regular value of IIr,. That is, I'y, is weakly stable.
However, by Theorem 7.4, there is a sufficiently small ¢ > 0 so that for every ¢ with
|t — to| < e there is an element in Eg(C[¢(t)]) that is C*< a.c.-isotopic to T'y,. This
contradicts the definition of ¢y and so implies ¢ty = 1 proving the proposition. (]

APPENDIX B. A MOUNTAIN PASS THEOREM FOR SELF-EXPANDERS

In the proof of Theorems 1.1 and 1.2, we used the following result which follows by
combining [11, Theorem 1.1], [8, Proposition 3.3] and Lemma 4.2.

Theorem B.1. Fix an integer k > 2 and o € (0,1). Let C be a C**'-regular cone in
R™! and assume either 2 < n < 6 or MC] < A,. Suppose ¥_ and X, are distinct
strictly stable C™*-asymptotically conical self-expanders with C(X_)=C(24)=Cand

Y._ X X.. Then there exists a cF "*_asymptotically conical self-expander Yo # Y4 with
C(Eo) =Cand X _ = ZO = Z+.
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