Empirical Software Engineering (2024) 29:87
https://doi.org/10.1007/510664-024-10454-8

®

Check for
updates

The untold impact of learning approaches on software
fault-proneness predictions: an analysis of temporal aspects

Mohammad Jamil Ahmad'@® . Katerina Goseva-Popstojanova’'® -

Robyn R. Lutz®

Accepted: 1 February 2024
@ The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

This paper aims to improve software fault-proneness prediction by investigating the unex-
plored effects on classification performance of the temporal decisions made by practitioners
and researchers regarding (i) the interval for which they will collect longitudinal features (soft-
ware metrics data), and (ii) the interval for which they will predict software bugs (the target
variable). We call these specifics of the data used for training and of the target variable being
predicted the learning approach, and explore the impact of the two most common learning
approaches on the performance of software fault-proneness prediction, both within a single
release of a software product and across releases. The paper presents empirical results from a
study based on data extracted from 64 releases of twelve open-source projects. Results show
that the learning approach has a substantial, and typically unacknowledged, impact on classi-
fication performance. Specifically, we show that one learning approach leads to significantly
better performance than the other, both within-release and across-releases. Furthermore, this
paper uncovers that, for within-release predictions, the difference in classification perfor-
mance is due to different levels of class imbalance in the two learning approaches. Our
findings show that improved specification of the learning approach is essential to under-
standing and explaining the performance of fault-proneness prediction models, as well as
to avoiding misleading comparisons among them. The paper concludes with some practical
recommendations and research directions based on our findings toward improved software
fault-proneness prediction.

Keywords Software fault-proneness prediction - Learning approach - Within-release
prediction - Across-release prediction - Machine learning - Design of experiments

Communicated by: Nachiappan Nagappan

This research was supported in part by NASA's Software Assurance Research Program (SARP) under a
grant funded in FY21 and by National Science Foundation grants 1513717, 1900716 and 2211589.

Extended author information available on the last page of the article

Published online: 08 June 2024 @ Springer

87 Page2of37 Empirical Software Engineering (2024) 29:87

1 Introduction

The prediction of fault-prone software units helps software developers prioritize their efforts,
reduces development costs, and leads to better quality software products (Nagappan et al.
2006, 2008). It is thus not surprising that the prediction of software fault-proneness is an
active research area in software engineering.

A software bug (i.e., fault) is an accidental condition which, if encountered, may cause
the software system or component to fail to perform as required (Hamill and Goseva-
Popstojanova 2009). Software bugs can lead to failures, some with serious consequences,
such as private information leakage, financial loss, or loss of human life. A software unit
(e.g., file, package, or component) is fault-prone if it has one or more software bugs. Note
that in addition to ‘fault-prone’, the terms ‘bug-prone’, ‘error-prone’, and ‘defective’ have
been used.

Over the years, researchers have built many software fault-proneness prediction models
(Arisholm et al. 2010; Catal 2011; Hall et al. 2012; Song et al. 2019; Hosseini et al. 2019).
(*Software fault-proneness prediction’ is a synonym for another widely used term ‘software
defect prediction’.) These models either classify software units as fault-prone and not fault-
prone (e.g., Koru and Liu, 2005; Nagappan et al., 2006; Menzies et al., 2007; Zimmermann
et al., 2007, Zimmermann et al., 2009; Krishnan et al., 2013; Alshehri et al., 2018; Gong
et al., 2021) or predict the number of faults (i.e., fault-count) in each software unit (e.g.,
Zimmermann et al., 2007; Ostrand et al., 2005; Devine et al., 2012; Devine et al., 2016). This
paper focuses on classification-based predictions both because there are significantly more
research works focused on classification-based prediction than on fault-count prediction, and
because many of these works utilized the same publicly available datasets.

Related works have explored various factors that affect the performance of classification-
based software fault-proneness prediction. These factors include the machine learning
algorithms used (i.e., learner) (Lessmann et al. 2008; Krishnan et al. 2013), the choice of
software metrics (i.e., features used for prediction) (Bluemke and Stepieri 2016; Wang et al.
2016; Alshehri et al. 2018; Gong et al. 2021) and the effect of data balancing techniques
(Khoshgoftaar et al. 2010; Wang and Yao 2013; Song et al. 2019; Goseva-Popstojanova et al.
2019). The features used by software fault-proneness prediction models typically include
static code metrics, such as lines of code, complexity, and coupling between methods (Men-
zies et al. 2007; Lessmann et al. 2008; Jureczko and Madeyski 2010; Amasaki 2020; Kabir
et al. 2021). These static code features are collected at a specific time, most often at the
release date. Features used for prediction of fault-prone software units (e.g., files, packages)
may also include longitudinal features that are collected over a period of time, such as change
metrics (Moser et al. 2008; Nagappan et al. 2010; Krishnan et al. 2013; Goseva-Popstojanova
et al. 2019) and socio-technical metrics (Bird et al. 2009).

Based on the Organization for Economic Co-operation and Development (OECD) frame-
work for classification of Al systems (OECD 2022), which is utilized by the NIST’s Al
risk management framework (NIST 2023), there are four key dimensions of an Al system:
‘Application Context’, ‘Data and Input’, ‘Al Model’, and ‘Task and Output’. These dimen-
sions build a conceptual view of a generic Al system shown in the bottom part of Fig. 1. Many
related works on software fault-proneness prediction utilize readily available datasets and
focus mainly on the ‘Al Model’ dimension (which consists of ‘Build and use model’ and “Ver-
ify and validate’ stages), without paying close attention on the ‘Data and Input’ dimension.
In this paper we explore another factor that is essential to understanding the classification
performance of the software fault-proneness predictions, but is often omitted or not explicitly

@ Springer

Empirical Software Engineering (2024) 29:87 Page3of37 87

/ Data and Input \
(Collect and process data)

: |
N |
| ILeFarmng approafh Prediction style |
| (i) Feature l‘:‘)(tl‘at_tlon Software units split into |

| (Feature learning) . .
_. h training & testing sets |
l (ii) Labeling |
e _4
\ ’rJ

/ Al System _-’ \
-

y—— P —————— 4

{ Dataland Input Y

| Perceiving) |

» Data input |

humans) |

Applicati L

pplication ~ e —— ~ Al Model

Context { Task|and Output \

) I

,l Acting Outcomes |,

'l i output |

Fig. 1 Conceptual view of an Al system (per OECD Al Principles OECD, 2022} with an insert in the upper
part detailing the factors explored in this paper

described in related works. We use the term learning approach to refer to this factor which
encompasses the temporal aspects of (i) the interval during which the longitudinal features
(such as for example change metrics) are collected and (ii) the interval for which the target
variable (i.e., software bugs) is labeled. As shown in the upper part of Fig. 1, the learning
approach belongs to the ‘Data and Input’ dimension of the OECD framework (OECD 2022).
(The ‘Data and Input’ dimension consists of the ‘Collect and process data’ stage.)

Specifically, in this paper we focus on the two most-common learning approaches, since
most software fault-proneness prediction papers use one of them. As shown in Fig. 2, both
learning approaches use static code metrics collected in a snapshot of time, typically at
the release date. However, the learning approaches (i) use different intervals for extracting
longitudinal features, such as change metrics and socio-technical metrics, and (ii) use different
target variables.

— In the first case, shown in Fig. 2(A), software fault-proneness prediction models are
trained using static code features collected in a snapshot of time (typically at the release

useAllPredictAll

release duration

static code metrics
snapshot

feature extraction|

interval .
metrics)

:’release date

longitudinal features (e.g., change

static code metrics
snapshot

change metrics, pre-

=—rpre-release duration—s——post-release duration—g

?release date

i

longitudinal features (e.g.,

release bugs
target variable b"'g'_f“e’
labeling interval i
(A) B)

Fig. 2 Temporal aspects of the feature extraction intervals and target variable labeling intervals for the two

learning approaches

@ Springer

87 Page4of37 Empirical Software Engineering (2024) 29:87

date) and longitudinal features (e.g., change metrics) collected throughout the duration of
the entire release to predict fault-prone software units within the same interval. (The target
variable ‘bug fixes’ does not distinguish between pre-release and post-release bugs.) We
use the shorthand label useAllPredictAll for this learning approach.

— In the second case, depicted in Fig. 2(B), while static code metrics are collected as in the
first case, the longitudinal features (including pre-release bugs) are collected during the
pre-release interval in order to predict fault-prone software units with post-release bugs.
We use the shorthand label usePrePredictPost for this second learning approach.

In general, an Al system can be based on expert input and/or on data, which can be
generated by humans or automated tools such as machine-learning algorithms (OECD 2022).
Note that the learning approach factor is generic and, as shown in Fig. 1, applicable both
when features are designed and extracted by humans (i.e., feature extraction in traditional
machine learning), and when deep learning is used to automatically learn features from
raw data (i.e., feature learning). Furthermore, the same machine learning algorithm can be
used for classification of software units into fault-prone and not fault prone (i.e., to build
the Al model) with either learning approach (useAllPredictAll or usePrePredictPost). These
classification algorithms range from traditional algorithms that have been used for decades
(e.g., logistic regression, decision trees, random forest) to deep neural networks (DNN).

We show in this paper that the learning approach has a large impact on classification
performance of the software fault-proneness prediction. Our investigation shows that
several widely used datasets for software fault-proneness prediction are based on different
learning approaches. Nevertheless, the impact of the learning approach is often not realized
or accounted for in the literature. Additionally, we show that while the same machine learning
algorithm (i.e., classification algorithm) can be used with either learning approach, it will
produce significantly different classification performance. Notably, prior works apart from
Krishnan et al. (2013), neither have discussed the distinctions between learning approaches
when building software fault-proneness prediction models nor have explored the untold
impact of the learning approach on the prediction performance.

In addition to investigating the learning approach, our analysis includes the prediction
style that captures how software units (e.g., files) are split into training and testing sets (i.e.,
what files are used for training and testing of the AI models). The prediction style factor
also belongs to the ‘Data and Input’ dimension of the OECD framework (OECD 2022), as
shown in the upper part of Fig. 1. Basically, depending on the specific learning approach
used, each software unit (i.e., file) is labeled as fault-prone or not fault-prone (either for the
entire release duration or post-release) and characterized with longitudinal features extracted
during a specific interval (either the whole release duration or pre-release duration). Software
fault-proneness prediction models that are trained and tested on data collected from the same
software project are known as within-project prediction models. If a software project has
multiple releases, the fault-proneness prediction can be done either within-release or across-
releases. Prediction within-release uses training and testing data from the same release, while
across-releases prediction uses training data from one or more releases and testing data from
a different release. Models that use training data from one project and testing data from
a separate project are known as across-projects prediction models. Some researchers also
use the term across-company prediction for cases where prediction models are trained on
data from a project developed by one company and tested on data collected from a project
developed by a different company.

The goal of this paper is to study the impact of the learning approach (i.e., the temporal
aspects of the extracted longitudinal features and the target variable) on the software fault-

@ Springer

Empirical Software Engineering (2024) 29:87 Page50f37 87

proneness prediction for within-project prediction styles (i.e., within-release and across-
releases). Thus, we address the following research questions:

RQ1: Does the learning approach affect the classification performance of the software
fault-proneness predictions?

RQ2: For a given learning approach, what is the difference in classification performance
between using within-release and across-releases prediction styles?

The empirical results presented in this paper are based on datasets we extracted from 64
releases of 12 Apache open-source projects.
The main contributions of this study are as follows:

— We categorize the related works on software fault-proneness prediction based on the
learning approach used in each work. To the best of our knowledge such categorization
has not been done previously. Our identification of the learning approach(es) used in each
paper enables a fuller understanding of the trends and results reported by many studies.

— We explore the effects of a hidden factor, learning approach, on the performance of
software fault-proneness prediction models. For that purpose, we: (1) build software fault-
proneness prediction models using the two learning approaches, useAllPredictAll and
usePrePredictPost; (2) predict fault-proneness both within-release and across-releases;
and (3) use a design of experiment (DoE) approach and statistical analysis to draw sound
conclusions.

— We present results showing that the learning approach significantly affects the classi-
fication performance. Specifically, using the useAllPredictAll learning approach led to
significantly higher Recall, Precision, F-Score, G-Score and similar 1 - False Positive
Rate (1 - FPR) compared to using the usePrePredictPost learning approach. These results
indicate that when comparing the performance of software fault-proneness predictions,
care should be taken to compare ‘apples-to-apples’. Otherwise, the performance compar-
isons are unfair. Furthermore, combining and reusing existing datasets that were created
using different learning approaches in a new study leads to flawed statistical analysis,
meta analysis, and/or machine learning experiments. Therefore, our results may call into
question conclusions advanced by some prior publications that failed to recognize the
use of different learning approaches and to consider their effect on the performance of
the fault-proneness prediction.

— In investigating why there is a difference in classification performance when using dif-
ferent learning approaches, we uncover that for within-release predictions the difference
is due to another hidden factor — the class imbalance. The treatment of imbalance using
SMOTE improves the within-release prediction performance for each learning approach
individually, as expected based on prior works. Extending the prior works, we apply
class imbalance treatment on both learning approaches and compare the correspond-
ing improvements. Furthermore, based on descriptive and inferential statistical results,
we find that the imbalance treatment using SMOTE eliminates the difference in pre-
diction performance between the learning approaches, for within-release prediction.
Note however that the two learning approaches predict different target variables, i.e.,
fault-proneness for the whole release duration versus fault-proneness for the post-release
duration.

— We discuss the implications of our findings and provide recommendations for designing,
reporting, and comparing software fault-proneness prediction studies, as well as identify
some open issues for future research in this area.

In brief, this paper provides evidence that the learning approach must be explicitly con-
sidered as an additional factor in the analysis of the software fault-proneness prediction

@ Springer

87 Page6of37 Empirical Software Engineering (2024) 29:87

performance. We show that this is due to the fact that the learning approach is intrinsic both
to the way datasets are created and to the way machine learning models are trained and tested.

The remainder of the paper is organized as follows. Section 2 describes the related works,
and Section 3 categorizes the related works based on the learning approach each used.
Section 4 describes the datasets, data extraction process, and feature vectors used in this
study. Section 5 details our machine learning approach and design of experiments approach.
Analysis of our results are provided in Section 6, with threats to validity presented in Section 7.
Section 8 discusses the implications of our findings and offers associated recommendations
toward improved fault-proneness prediction performance. Section 9 provides concluding
remarks.

2 Related Work

Software fault-proneness prediction is an active area of research, as evidenced by its system-
atic literature review papers (Arisholm et al. 2010; Catal 2011; Hall et al. 2012; Song et al.
2019; Hosseini et al. 2019) and the references therein. We here discuss the related studies
that are the most relevant to our work.

Many different machine learning algorithms have been used in building software fault-
proneness prediction models. These include J48 (Moser et al. 2008; Kamei et al. 2010;
Krishnan et al. 2013), Random Forest (RF) (Guo et al. 2004; Mahmood et al. 2018; Fiore
et al. 2021; Gong et al. 2021), and combinations of several machine learning algorithms,
e.g., OneR, J48, and Naive Bayes (NB) in Menzies et al. (2007), Random Forrest (RF), NB,
RPart, and SVM in Bowes et al. (2018), J48, RF, NB, Logistic Regression (LR), PART, and
G-Lasso in Goseva-Popstojanova et al. (2019), RF, LR, NB, HyperPipes, KNN, and J48 in
Falessi et al. (2020), and Decision Tree (DT), k-Nearest Neighbor (kNN), LR, NB, and RF in
Kabir et al. (2021). With recent advances in Deep Neural Networks (DNN), some software
fault-proneness prediction studies used deep learning (Wang et al. 2016; Li et al. 2017; Pang
et al. 2017; Zhou et al. 2019; Zhao et al. 2021).

Software fault-proneness prediction models utilize feature vectors consisting of software
metrics extracted from software source or binary code, its development history, and the
associated bug tracking systems. In general, the extracted software metrics can be static code
metrics, change metrics, or social metrics. Static code metrics are collected from the software
source code or binary code units (Koru and Liu 2005; Menzies et al. 2007; Lessmann et al.
2008; Menzies et al. 2010; He et al. 2013; Ghotra et al. 2015; Bowes et al. 2018; Kabir et al.
2021). Change metrics, sometimes called process metrics, are collected from the projects’
development history (i.e., commit logs) and bug tracking systems (Nagappan et al. 2010;
Giger et al. 2011; Krishnan et al. 2011, 2013; Goseva-Popstojanova et al. 2019). Social
metrics are extracted from the communications among developers and/or users of a software
project (Bird et al. 2009). Some studies used only static code metrics (Menzies et al. 2007,
Mende and Koschke 2009; Song et al. 2011; Xu et al. 2018, 2019; Amasaki 2020; Kabir
et al. 2021), only change metrics (Giger et al. 2011; Krishnan et al. 2011, 2013; Goseva-
Popstojanova et al. 2019), organizational metrics (Nagappan et al. 2008) or metrics derived
from the contribution networks (Pinzger et al. 2008). There are studies that used combinations
of different types of metrics (Nagappan et al. 2010; Arisholm et al. 2010; Giger et al. 2012;
Alshehri et al. 2018), including studies that combined metrics extracted from contribution

@ Springer

Empirical Software Engineering (2024) 29:87 Page70f37 87

networks, dependency networks, and/or socio-technical networks (Bird et al. 2009; Gong
et al. 2021).

Works that do prediction at the file level use features collected from units such as files
(Zimmermann et al. 2007; Moser et al. 2008; Kamei et al. 2010; Krishnan et al. 2013;
Goseva-Popstojanova et al. 2019), classes (Koru and Liu 2005; Malhotra and Raje 2015;
Song et al. 2019), or methods (Giger et al. 2012; Bowes et al. 2018), while prediction at the
component level is based on features aggregated at the package, module, or component level
from features extracted at file, class, or method level (Zimmermann et al. 2007).

Next, we summarize related works by the prediction style they used. Note that “prediction
style’ has elsewhere been referred to as ‘context’ (Gong et al. 2021). For within-project
predictions, some works were focused only on within-release prediction style (e.g., Nagappan
et al., 2008; Krishnan et al., 2011; Krishnan et al., 2013; Alshehri et al., 2018), while others
focused only on across-releases prediction (Xu etal. 2018, 2019; Fiore etal. 2021; Kabir et al.
2021). Terms used in the literature for ‘across-releases’ prediction include ‘cross-version’
(Xuetal. 2018, 2019; Fiore et al. 2021; Gong et al. 2021) and ‘inter-release’ prediction (Kabir
et al. 2021). Papers that included across-projects prediction models include (Nagappan et al.
2006; Zimmermann et al. 2009; He et al. 2013; Wang et al. 2016; Gong et al. 2021). Other
papers specifically explored the across-company prediction style (Turhan et al. 2009). In
this paper we focus on the two within-project predictions styles — within-release and across-
releases — and in Section 3 categorize related works by the learning approach and prediction
style used (see Table 1).

Many software fault-proneness prediction studies have derived conclusions solely from
analyzing the empirical results, without applying statistical tests (Bird et al. 2009; Giger et al.
2012; Alshehri et al. 2018; Zhou et al. 2019; Fiore et al. 2021). Other studies used statistical
inference to support their conclusions, typically studying one factor at a time (e.g., Mende
and Koschke, 2009; Turhan et al., 2009; Song et al., 2011; Krishnan et al., 2013; Okutan and
Yildiz, 2014; Bowes et al., 2018; Gong et al., 2021).

The design of experiment approach (DoE), which we use in our investigation here, allows
one or more input factors to be systematically explored with the goal of determining their
effect on the output (response) variable. DoE has been used to date only in several software
fault-proneness prediction studies (Khoshgoftaar and Seliya 2004; Lessmann et al. 2008;
Gao et al. 2011; Shepperd et al. 2014; Tantithamthavorn et al. 2016; Shepperd et al. 2018).

Khoshgoftaar and Seliya (2004) treated the machine learning algorithm as a factor and
the software release as a block. The results, based on four successive releases from a large
legacy telecommunication system, showed that the models’ predictive performances were
significantly different across the releases, implying that the predictions were influenced by the
characteristics of the data. Lessmann et al. (2008) explored the effect of the machine learning
algorithm on the software fault-proneness prediction performance using ten datasets from
the NASA Metrics Data Program (MDP) repository. The results showed that no statisti-
cally significant difference in performance existed among the top 17 (out of 22) machine
learning algorithms, i.e., the choice of machine learning algorithm appeared to be not as
important as was previously assumed. Gao et al. (2011) statistically examined the effect
of three factors (i.e., feature ranking method, feature subset selection method, and machine
learning algorithm) on the software fault-proneness prediction performance for a large legacy
telecommunication software. Shepperd et al. (2014) presented meta-analysis based on 42 pri-
mary software fault-proneness prediction studies. Note that substantial overlaps existed in
dataset usage among the primary studies, with the NASA datasets family dominating with

@ Springer

87 Page8of37 Empirical Software Engineering (2024) 29:87

59%, followed by the Eclipse family with 21%. This work used DoE consisting of four
factors: the machine learning algorithm, dataset used, input metrics (i.e., features), and the
particular researcher group (i.e., the authors). The results showed that the researcher group
contributed the most to the variance of the prediction performance, followed by the dataset,
and input metrics. The choice of the machine learning algorithm had the least impact on the
prediction performance. Two follow-up studies (Tantithamthavorn et al. 2016; Shepperd et al.
2018) repeated the meta-analysis using subsets of the primary studies used in Shepperd et al.
(2014). The work by Tantithamthavorn et al. (2016), which was based on the Eclipse datasets
family, found that the research group had smaller impact than the input metrics. When only
the NASA datasets family was used for re-analysis in Shepperd et al. (2018), the results were
more in line with the initial analysis based on all datasets families (Shepperd et al. 2014).

In summary, prior DoE studies had different goals than our study and looked at different
factors. None of these studies recognized the learning approach(es) used and some mixed
different learning approaches without explicit acknowledgement (Shepperd et al. 2014).

In this paper we will show how the choice of the learning approach significantly affects
the prediction performance and therefore must be explicitly specified and accounted for
in the analysis. Additionally, we will show how awareness of the learning approach factor
provides improved understanding of the prediction results. Thus, researchers and practitioners
alike must recognize that different datasets are not only extracted from artifacts of different
software systems, but also may be produced to fit different learning approaches. We believe
that considering the learning approach explicitly as a factor will help disentangle the effects
of the other factors, since the learning approach is intrinsic both to the datasets used and the
learning process conducted.

3 Categorizing Related Works by Learning Approach Used

To better understand how the selection of learning approach influences fault-proneness pre-
diction results, we need to first identify the learning approach that was used in existing studies.
However, when we set out to categorize the learning approach used in each of those studies,
we found that this was a difficult task. In fact, as we will see in this section, apart from
Krishnan et al. (2013), studies on software fault-proneness prediction have not explicitly
specified the learning approach nor described the impact of the learning approach used on
the prediction performance they reported. It appears that the characteristics of the dataset(s)
used for building the software fault-proneness prediction models typically predetermined
which learning approach was used. By carefully exploring the details of the datasets being
used, we were able to categorize the related works according to the learning approach.

The results of our effort are shown in Table 1, which groups the related studies by: the
dataset(s) used, the learning approach (i.e., useAllPredictAll or usePrePredictPost), and the
prediction style (i.e., within-release or across-releases). Those studies which used prediction
within-project with no releases (e.g., studies based on the NASA MDP datasets) are grouped
with the studies which used prediction within-release because they were designed similarly.
Studies which used multiple datasets attributed to one specific learning approach (e.g., Kim
et al., 2011; Bowes et al., 2018) or to multiple learning approaches (e.g., Nam et al., 2013;
Shepperd et al., 2014; Tantithamthavorn et al., 2017; Song et al., 2019; Zhou et al., 2019) are
shown in more than one cell.

Next, we discuss the related works that employed only useAllPredictAll learning approach
(Section 3.1), only usePrePredictPost learning approach (Section 3.2), as well as those related

@ Springer

87

Page 9 of 37

(2024) 29:87

Empirical Software Engineering

(9107) T8 12 WIoABWEBIPNUR],
{(#102) ‘1810 proddays (0107)
‘e je tawey H6007) ‘T8 1 prig
HL00T) T W UUBULIOWWITZ

(6102) 'Te 10 eaouelojsdog
-eadson (8107) ' 10 prad
-doyg H(8107) ‘T8 10 LYays[y
H(9107) Te 13 WOABHIUERN
-ue] (4107) e 12 proddeyg
HE102) T8 19 vRUYSLY (010T)
Te 19 wey (600T) 1B 9
pug {(8007) B 1 Iasop
L00T) T 1P UUBULIDWIWITZ

(1202) Tede
ngey “(0g0g) Plesewy (6102
‘107) [B12 nX H(L10T) [BI2
T '(S10T) T8 1@ 9H (S10T)
OqZ2aunf pue Emhﬂﬂmz

(L10T) e 0 uroa
-eqlureynuel, {(F10z) Te 19
praddays ‘(g107) e 10 wen
-qsy ((1707) TR e wiry

(Z10T ‘1107) T8 19 18510

(6102) T2 12 Suog 4(8107)
‘Terasamog (L 10T) e 10 woA
“eqpuEnuel, ($107) ZPIA
pue ueijQ (£107) [1 9H

(¢zoT)
[eAoD (6107) ‘[1@ noyz
{(8107) ‘Te10 praddays £(8107)
e1asamog (L 10T) T 10 woA
“equepnuEl, (S107) B 19
enoyn (prog) e @ piad
-dayg ‘(g107) ovx pue Suep\
H0102) '8 19 se1zusy *(6007)
afyosoy pue opudly (6007)
Te 19 ueging, ((8007) ysnd
pue ysng (2°'q'egp07) e 12
mﬂ.m__. AMOONu ‘T8 12 uuBLWISSaT]
{(8007) 'xpuon H(LOOT) B 10
SAZUIRN *(SOOT) DI pue nIoy

uriopeyd asdipg
smdnyd asdipog

(010 ‘sirauidg pue
o)zoaInf {0[07 ‘PisKapepy pue
oyzoamnp) spafoid Knsnpur
pue 2amos uado 190 ‘oyoedy

ddN VSVN

SASEI[AI-SSOIIE

120foad foseajar-urpim

SASEA[AI-SSOIOE

102l01d peseajar-unyiim

1s04101palgalgasn

[IV1aipald[lyasn

jaserR(

31418 uonarpaxd pue yoeordde Surures| ayy Aq pazuoSares sa1pmis oM pae[ey | 3|qeL

pringer

As

(2024) 29:87

Empirical Software Engineering

Page 10 of 37

87

(#107) "2 12 praddayg
(1102) " 19 oen HQ102)
e wpoysuy (#007)
edljog pue Ieeyo3ysoyy

(9007) 'Te 10 ueddeden

(1202)

($10T) T8 12 praddayg

(6102)
T8 12 noyz {(6107) ‘T8 12 Suog
HL107) T8 19 WOABYIWEYIN
-uel HE10Z7) TR 30 wEN

(+107) ‘T8 12 prad
-doyg (p10¢) Te 12 WioysLy
(L10T) 'Te 19 WOABIWR T UE],
{($102) T2 12 peddays (010T)
Te 10 ueddedeN (6007) T8 1@
paig (8007) ‘Te ¥ ueddeden

(1207) T8 12 3U0D (610T)
Te 19 eaouelosdog-easson

(s102)

ojzoamf pue pysKapepy

(+102) T8 10 prad
-dayg *(£00T) Te 12 wioysLy

(1207) 1219 21014

(F1027)
Te 1 preddeys (g107) oBx
pue Suem H(Z107) e 10 151D
((1102) Terewry ((0107) ‘Te32
Sazuay {{00T) e 12 ueyan]

(6102) 'Te 1@ NOYZ :(£107)
‘e 0 weN (110T) T8 1 npm

(8102)
‘10 samog ‘(107) e 19
praddayg (0 10z) Te 32 unsog,

(8007) 'Te 10 uewAe]

(S100) 12
enoyo $(s107) ofey pue enoy

1290

(1702 “Te 19 ng) YUY

(o102

“[19 solquy () WHAAY

2181J0S UOTJEOTUMUIUION[I],

sjonpord JosoIdTA

R 30D (9107 TeredueM ((pTo7) T 1 peddoys i(S107) ofed pue enoypIN TN ‘(p107) ‘Te 1 prddeys somos-uadg
SOSBI[AI-SSOIIR 1afoid jaseappr-urpim SOSEI[AI-SSOIOE 10alo1d faseajal-umpim
150411PaIJAIJsn IVIdIpaId[Iyasn 1aserRq

penunuod | ajqe]

pringer

As

Empirical Software Engineering (2024) 29:87 Page110f37 87

works that used datasets or results of studies that belong to both learning approaches (Sec-
tion 3.3).

3.1 Studies that Used useAllPredictAll Learning Approach

Software fault-proneness prediction models employing useAllPredictAll learning approach
are trained using longitudinal features collected from the entire duration of each release or
project with the goal of predicting fault-prone files for the entire duration of the same or
future release. These models do not distinguish between pre-release and post-release bugs.
That is, all bugs are grouped in the bug-fixes metric, and a file is labeled as fault-prone if it
had one or more bugs anytime during the specific release or project.

Based on our analysis of the related work, studies that used the NASA MDP datasets (e.g.,
those available on PROMISE (Sayyad and Menzies, 2005)) have followed the useAllPredic-
tAll learning approach. Note that NASA datasets have no releases; each dataset represents
an independent project for which static code metrics were extracted at a snapshot in time.
Examples of studies which used the NASA MDP datasets within-project include but are not
limited to (Koru and Liu, 2005; Menzies et al., 2007; Gondra, 2008; Lessmann et al., 2008;
Jiang et al., 2008a, b, c; Elish and Elish, 2008; Turhan et al., 2009; Mende and Koschke, 2009;
Menzies et al., 2010; Wang and Yao, 2013; Ghotra et al., 2015; Bowes et al., 2018; Zhou
et al., 2019; Goyal, 2022).

Other datasets that utilized the useAllPredictAll learning approach were created from
fifteen open-source projects (including twelve Apache projects) with a total of 48 releases
and six industrial projects with a total of 27 releases (Jureczko and Spinellis 2010; Jureczko
and Madeyski 2010) and were donated to PROMISE (Sayyad and Menzies 2005).

These datasets have a set of static code metrics as feature vectors and were used by multiple
studies for prediction both within-release (He et al. 2013; Okutan and Yildiz 2014; Bowes
et al. 2018; Song et al. 2019) and across-releases (Madeyski and Jureczko 2015; He et al.
2015; Liet al. 2017; Xu et al. 2018, 2019; Amasaki 2020; Kabir et al. 2021).

Different datasets obtained from Eclipse were extensively used for software fault-
proneness prediction. Datasets suitable for useAllPredictAll learning approach were
employed to predict software fault-proneness of Eclipse plugins (Giger et al. 2011, 2012),
as well as of Eclipse platform (Kim et al. 2011; Krishnan et al. 2013; Shepperd et al. 2014).
These works used change metrics as feature vectors.

Other open-source projects were used to extract datasets adequate for the useAllPredictAll
learning approach, including Android (Malhotra and Raje 2015). Some models were used for
only within-release predictions (Ghotra et al. 2015) or only across-releases prediction (Fiore
et al. 2021), while others were used for both within-release and across-releases predictions
(Malhotra and Raje 2015).

The useAllPredictAll learning approach was also used for software fault-proneness pre-
diction of commercial software, such as within-release predictions for Microsoft products
(Layman et al. 2008), and within-release (Tosun et al. 2010; Bowes et al. 2018) and across-
releases (Arisholm et al. 2007) for telecommunication software.

Many works used datasets from multiple sources. Examples include NASA MDP, open-
source, and telecommunication datasets (Bowes et al. 2018); Eclipse plugins with other
open-source projects (Giger et al. 2012); NASA MDP and SOFTLAB telecommunication
datasets (Turhan et al. 2009); NASA MDP and datasets from a Turkish manufacturer (Menzies
et al. 2010); and datasets obtained from Eclipse platform and other open-source programs
(Kim et al. 2011).

@ Springer

87 Page120of37 Empirical Software Engineering (2024) 29:87

3.2 Studies that Used usePrePredictPost Learning Approach

Software fault-proneness prediction models which use the usePrePredictPost learning
approach are trained using longitudinal features (including pre-release bugs) collected dur-
ing the pre-release duration to predict files that have post-release bugs in the same or future
release. Pre-release and post-release bugs are distinguished, and a file is labeled as fault-prone
if it had one or more post-release bugs. This learning approach was used in (Nagappan et al.
2006) for prediction of post-release failures of two large scale Microsoft operating systems.
Then, it was used for software fault-proneness prediction of three Eclipse platform releases,
within and across-releases, at both file and package level (Zimmermann et al. 2007). The
features consisted of static code metrics collected from each release. Since Eclipse releases
were twelve months apart, the pre-release bugs were collected six months before the release
date (i.e., during the development and testing phase), and the post-release bugs were collected
six months after the release date (i.e., after deploying the release to users).

Eclipse datasets created for the usePrePredictPost learning approach were used exten-
sively for within-release (Zimmermann et al. 2007; Moser et al. 2008; Bird et al. 2009;
Kamei et al. 2010; Krishnan et al. 2013; Tantithamthavorn et al. 2016; Alshehri et al. 2018;
Goseva-Popstojanova et al. 2019) and across-releases prediction (Zimmermann et al. 2007,
Bird et al. 2009; Kamei et al. 2010). Some of these studies used both static code metrics and
change metrics (Moser et al. 2008; Kamei et al. 2010; Alshehri et al. 2018), only static code
metrics (Zimmermann et al. 2007), or only change metrics (Krishnan et al. 2013; Goseva-
Popstojanova et al. 2019).

Datasets from other open-source projects were also used, sometimes in combination with
one or more other datasets (e.g., Eclipse platform, Microsoft products), for within-release pre-
dictions (Goseva-Popstojanova et al. 2019), across-releases predictions (Wang et al. 2016),
or both (Gong et al. 2021). The usePrePredictPost learning approach has also been used for
software fault-proneness prediction of commercial software, including Microsoft products
for within-release (Nagappan et al. 2008, 2010; Bird et al. 2009) and across-release predic-
tions (Nagappan et al. 2006), as well as for telecommunication software for across-releases
predictions (Khoshgoftaar and Seliya 2004; Gao et al. 2011) and for both within-release and
across-releases predictions (Arisholm et al. 2010).

3.3 Studies that Used Datasets from Both Learning Approaches

Some related works used datasets corresponding to different learning approaches for syn-
thesizing the findings across software fault-proneness prediction studies (Hall et al. 2012),
to conduct meta-analysis (Shepperd et al. 2014, 2018), or to build and compare prediction
models (Nam et al. 2013; Tantithamthavorn et al. 2017; Song et al. 2019; Zhou et al. 2019).
The systematic literature review on software fault-proneness prediction (Hall et al. 2012)
reported the synthesis of results from 19 classification-based studies, some of which used
useAllPredictAll while others used the usePrePredictPost learning approach. Datasets used
in these studies were analyzed in Hall et al. (2012) as a part of context factors and it was
concluded that it may be more difficult to build models for some systems than for others.
The meta-analysis presented in Shepperd et al. (2014) was based on quantitative results
extracted from 42 primary software fault-proneness prediction studies which used datasets
that belong to different learning approaches. Most prominently, 59% of the primary studies
used the NASA datasets and 21% used the Eclipse datasets, which belong to the useAllPre-

@ Springer

Empirical Software Engineering (2024) 29:87 Page130f37 87

dictAll and usePrePredictPost learning approaches, respectively. (For other datasets and the
corresponding learning approaches used by the primary studies included in Shepperd et al.
(2014) see Table 1.) The results based on using four-way ANOVA, attributed most of the
variance to the researcher group and the dataset factors (with 31.0% and 11.2%, respectively).
As discussed in Section 2, two follow-up studies (Tantithamthavorn et al. 2016; Shepperd
et al. 2018) repeated the meta-analysis using subsets of the primary studies used in Shepperd
et al. (2014). The findings presented in Tantithamthavorn et al. (2016) were based on using
only the Eclipse datasets family, while Shepperd et al. (2018) carried on separate analysis for
the Eclipse datasets family and NASA datasets family and compared the results with those
presented in Shepperd et al. (2014); Tantithamthavorn et al. (2016).

With a goal to explore transfer learning, prediction models were built in Nam et al. (2013)
using several datasets from ReLink (Wu et al. 2011) and AEEEM (D’ Ambros et al. 2010).
The prediction done using ReLink followed the useAllPredictAll learning approach, while
the AEEEM datasets were extracted following the usePrePredictPost learning approach.
Another work (Song et al. 2019) explored the role of imbalanced learning on software fault-
proneness prediction using the datasets created by Jureczko and Madeyski (2010); Jureczko
and Spinellis (2010) and available in PROMISE and the AEEEM datasets (D’ Ambros et al.
2010), which correspond to the useAllPredictAll and use PrePredictPost learning approaches,
respectively. Several model validation techniques were compared by Tantithamthavorn et al.
(2017) using the NASA MDP, Apache, Eclipse, and proprietary datasets that belong to the
useAllPredictAll learning approach, as well as datasets from Microsoft products that followed
the usePrePredictPost learning approach.

The work presented in Zhou et al. (2019) proposed a deep forest model and compared
its performance with RF, NB, LR, and SVM, using the NASA MDP, PROMISE, ReLink,
and AEEEM datasets. The first three datasets belong to useAllPredictAll learning approach,
while the forth dataset corresponds to usePrePredictPost learning approach.

To the best of our knowledge, none of the related works on software fault-proneness
prediction has addressed the effect of the learning approach on the prediction performance,
regardless of whether they used only one learning approach (see Sections 3.1 and 3.2) or both
learning approaches (i.e., works discussed in this subsection). An exception is the previous
work by Krishnan et al. (2013), which investigated whether the classification performance
improved as the Eclipse product line evolved through seven releases. In that work, change
metrics were used for within-release prediction only, and the software fault-proneness predic-
tion performance was compared using three different learning approaches useAllPredictAll,
useAllPredictPost, and usePrePredictPost.

One contribution of this paper is the categorization of related works by learning
approach used, shown in Table 1 and discussed in this section. Knowing the learning
approach used in each study often explains differences among their prediction perfor-
mances and enables better understanding of how fault-proneness prediction works.

Motivated by our categorization of the related works presented here and by the initial
results presented in Krishnan et al. (2013), in the rest of this paper we explore systematically
and rigorously the impact of the learning approach used on the performance of software
fault-proneness prediction. We focus our analysis on useAllPredictAll and usePrePredictPost
because almost all related works fit into one or the other learning approach, as shown in
Table 1. Specifically, employing both static code metrics and change metrics extracted from
64 releases of 12 open-source projects, we evaluate the performance of prediction models
both within-release and across-releases. To quantify and better understand the impact of the

@ Springer

87 Page140of37 Empirical Software Engineering (2024) 29:87

learning approach on fault-proneness prediction, we use a design of experiments approach and
inferential statistical analysis. We show in this paper that the effect of the learning approach
is an essential factor in understanding the prediction results. Toward better fault-proneness
prediction models, we aim to encourage awareness and attention to the impact of the learning
approaches going forward.

4 Data Collection and Building Feature Vectors

In this section, we first present the data extraction process used for the two learning
approaches, then describe the open source projects used to extract the datasets, followed
by a description of the feature vectors used for prediction.

4.1 Data Extraction

We use Fig. 3(A) and (B), which are detailed, annotated versions of the overview Fig. 2(A)
and (B), to illustrate the feature extraction for the useAllPredictAll and usePrePredictPost
learning approaches, respectively. As shown in these figures, the release duration of any
given release n is the period between the two dates d1 and d2, shown by the green and the
red lines, respectively. (Following the approach introduced by Zimmermann et al. (2007),
d1 is the middle date between the release dates of releases n — 1 and n, while d2 is the
middle date between the release dates of releases n and n + 1.) In Fig. 3(A) and (B), the
release date is annotated with the dashed line at n. It follows that the interval between d1
and n is pre-release, and the interval between n and 42 is post-release interval of release n.
Table 2 provides further details on the feature collection and target variable for each learning
approach.

4.1.1 Data Extraction for useAllPredictAll

As illustrated in Fig. 3(A), for each release we extracted the static code metrics from the latest
version of the binaries available on the release date. Following the method used in Krishnan
et al. (2013), for each release we extracted the change metrics from the entire duration of
that release (i.e., between the d1 and 42 dates).

usePrePredictPost
release duration s—pre-release duration—*—post-release duration—
d1 static code metrics n d2 dI static code metrics 1 d2
time N . . time 4 _
n-1 N b n+l n-1 ™~ n+1
source code binaries source ':,Dd‘f bil:la.riles | | | | | | | |

change metrics

pre-release bugs

bug-fixes

(A) (B)

|’ Release dalcl | T¥ Start and end dates of release n durationl
' | |
| Snapshot of static code metrics | Longitudinal features extraction interval | Target variable labeling interval

Fig.3 Metrics extraction process for the two learning approaches

@ Springer

Empirical Software Engineering

(2024) 29:87

Page150f37 87

Table 2 Details on features collection and target variable for each learning approach

useAllPredictAll usePrePredictPost

Features Static code metrics (snap- collected at a particular time collected at a particular time
shot) (typically at release date) (typically at release date)
Longitudinal metrics such collected for the entire collected for the pre-
as change metrics, socio- release duration release duration
technical metrics
Fault-proneness as a fea- none pre-release bugs
ture

Target variable Binary fault-proneness label = 1 if a file had label = 1 if a file had one
metric one or more bugs during or more post-release bugs;

for a software file

the entire release duration;

otherwise label = 0.

otherwise, label = 0. (No
distinction between pre-
release and post-release
bugs)

When using the useAllPredictAll learning approach, no distinction was made between
pre-release and post-release bugs; they both were grouped into one metric called bug-fix. In
other words, a software file had a bug-fix and consequently was labeled as fault-prone if: (i)
it was changed by at least one commit which was used to fix a bug, and (ii) that commit was
made during the duration of that release, i.e., the period between d1 and d2 in Fig. 3(A).

Software fault-proneness prediction models using this learning approach were trained
using static code metrics extracted on the release date and change metrics extracted from the
entire release duration to predict the files that have bug-fixes during the entire duration of
that or future release.

4.1.2 Data Extraction for usePrePredictPost

Following the method illustrated in Fig. 3(B), previously used by Moser et al. (2008); Krish-
nan et al. (2013), for each release we extracted the change metrics from the pre-release
duration only, that is, for the period between d1 and »r in Fig. 3(B). The same static code
metrics as for the useAllPredictAll learning approach were used (i.e., static code metrics
extracted from the latest version of the binaries on the release date).

When using the usePrePredictPost learning approach we distinguished the bugs based
on when they were detected and fixed. Thus, a software file had a pre-release bug if: (i) it
was changed by at least one commit to fix a bug, and (ii) that commit was made during the
pre-release duration, i.e., the period between d1 and n in Fig. 3(B). A software file had a
post-release bug and consequently was labeled as fault-prone if: (i) it was changed by at least
one commit to fix a bug, and (ii) that commit was made after the release date, i.e., the period
between n and d2 in Fig. 3(B).

Software fault-proneness prediction models using the use PrePredictPost learning approach
were trained using the static code metrics extracted at the release date, the change metrics
extracted pre-release, and the pre-release bugs to predict the files that have post-release bugs
in that or future release.

@ Springer

87 Page160f37 Empirical Software Engineering (2024) 29:87

4.2 Open-source Projects Used to Extract Datasets

For this work we initially explored 23 projects from the Apache Software Foundation (2022a)
that satisfied the reporting criteria defined by Hall et al. (2012). Some projects, however, did
not have clear release dates or a central repository for the source code, or were missing other
artifacts. To be included in our study, a project had to satisfy the following six criteria: (i)
Availability of the source code or binary distribution, needed to extract code metrics. (ii)
Availability of the version control system, needed to generate the commit log file which is
used to extract the change metrics. (iii) Availability of the bug tracking system, needed to
identify the commits made to fix software bugs. (iv) At least two releases of the project, in
order to build predictors across-releases (i.e., training the model on one release to predict
fault-proneness for the subsequent release). (v) Release dates clearly specified, in order to be
able to extract change metrics for each release as described in Section 4.1. (vi) Release dates
within the commits log file dates, to ensure that all commits made within a given release are
considered.

Out of the 23 projects initially considered, eleven did not satisfy one or more of these
inclusion criteria and therefore were excluded from this study. The names of these eleven
projects and the specific inclusion criteria that were violated are provided in the supplemental
document online (Ahmad et al. 2022).

The datasets used in this study were extracted from the twelve open-source projects that
satisfied all inclusion criteria and are listed in Table 3. Following the reporting requirements
given in Hall et al. (2012), for each project, Table 3 provides the number of releases, size
in LOC, number of developers, maturity in years, and application domain/functionality. All
projects were written in Java.

Table3 List of projects used in this study and their details

Project #releases Size (LOC) #developers Maturity (years) Domain / functionality

Ant 7 376,250 47 + 10 Command-line tool for java
application building

Axis2 5 409,432 29 + 10 Web services creating and
usage

Derby 9 1,759,271 34 +9 Relational Database

Geronim 5 581,083 49 + 8 Libraries for
JavaEE/JakartaEE

Hadoop 6 1,500,351 72 +7 Distributed computing plat-
form

Hive 6 3,255,810 43 +7 Data warehousing

jEdit 4 346,197 40 + 15 Programmer text editor

MyFace 4 377,930 36 +9 Sub-projects for JavaServer
technology

Pivot 5 215,406 7 + 6 Platform for building install-
able Internet Applications

Synapse 3 376,250 23 + 10 Web Services

Wicket 6 398,043 21 +8 Web-apps developing envi-
ronment

Xalan 4 398,183 32 + 14 XSLT processor

All projects were implemented in Java

@ Springer

Empirical Software Engineering (2024) 29:87 Page170f37 87

The total number of files, and the percentages of fault-prone files, for all releases of all
twelve projects are provided in Ahmad et al. (2022). For brevity, here we present the box
plots of the percentages of fault-prone files: (1) for multiple releases of each of the twelve
projects in Fig. 4, and (2) for all releases of all projects cumulatively in Fig. 5. As shown
in these figures, the percentage of fault-prone files is significantly higher for the useAllPre-
dictAll learning approach compared to the usePrePredictPost learning approach, both for
the releases of each project individually (Fig. 4) and for all projects cumulatively (Fig. 5).
For example, for the least fault-prone project, MyFaces, the mean percentages of fault-prone
files across its four releases were 14.9% for useAllPredictAll and only 2.6% for usePrePre-
dictPost learning approach. Similarly, the most fault-prone project, jEdit, had 69.5% and
28.3% mean percentages of fault-prone files across its four releases for the useAllPredictAll
and usePrePredictPost learning approaches, respectively. These observations are explained
by the facts that useAllPredictAll learning approach accounts for fault-prone files during
the entire release duration, while the usePrePredictPost learning approach only considers
post-release fault-prone files.

4.3 Feature Vectors Used for Prediction

We extracted 20 static code metrics and 14 change metrics at the file level, which were then
combined in feature vectors and used in our models. Note that while static code metrics
represent a snapshot in time, change metrics capture the longitudinal changes made to each
file over the specified duration (see Section 4.1).

Static code metrics We extracted 20 widely used static code metrics at the file level
from the binary code of each release, on the release date from the Archive Server of the
Apache Software Foundation (2022a). The metrics were extracted using the Chidamber and
Kemerer Java Metrics (CKIM) tool (Jureczko and Spinellis 2011). They belong to six different
metric suites: C&K metrics, Henderson-Sellers, Martin, QMOOD, Tang, and McCabe. The
full descriptions of the static code metrics can be found in Jureczko and Madeyski (2010);
Ahmad et al. (2022).

Change metrics We extracted 14 change metrics at the file level following the process
described in Moser et al. (2008); Krishnan et al. (2013). Change metrics were extracted

100
L7} [Se—

&0
704

—
|

6l

504
40+
EIE S

Percentage of fault-prone files

204

@ Bl g = = & i

Ant Axis Derbey |Geronimo| Hadoop Hive jEdit | MyFaces | Pivot | Synapse | Wicket | Xalan

Projects
| [1 useAllPredictall [usePrePredictPost |

Fig.4 Box plots of the percentages of fault-prone files per project, each with multiple releases

@ Springer

87 Page180of37 Empirical Software Engineering (2024) 29:87

Fig.5 Box plots of the 100
percentages of fault-prone files 00 e e
for all releases of all projects

Percentage of fault-prone files

0 —1

useAllPredictAll usePrePredictPost
Learrning Approach

by integrating the information from the version control system (i.e., commit log) and the
bug tracking system of each project. All twelve projects included in our study used the
SVN version control system. Eleven of these projects used the JIRA bug tracking system
(Jira 2022), and one (i.e., Ant) used the Bugzilla bug tracking system (Apache Software
Foundation 2022b). Change metrics for each release were extracted from all commits made
between d1 and d?2 dates for the useAllPredictAll learning approach and between d1 and n
dates forthe usePrePredictPost learning approach, as shown in Fig. 3(A) and (B), respectively.
The list of change metrics along with their definitions and additional details about the change
metrics extraction process are provided in Ahmad (2021); Ahmad et al. (2022).

Feature vectors used for our machine learning experiments integrate the static code and
change metrics which were extracted separately. To combine these metrics for each file, in
each release and project, we created an algorithm, provided in Ahmad et al. (2022), that
matches the names of class files from the binary distribution with the names of Java files
from the commit logs. Note that the number of files in the static code metrics list was higher
than the number of files in the change metrics list because the binary distributions of each
release also had other files from external software libraries, which were excluded from the
analysis. For the files considered in this work, if the class name from the static code metrics
list matched the file name in the commits logs for that release, the changes were aggregated,
and the change metrics were created. Otherwise, it meant that the file did not change, and the
values of all its change metrics were set to 0 for that release. The full feature vector for each
file was created by concatenating the 20 static code and 14 change metrics. As described
in Section 4.1, a file was labeled as fault-prone if it had at least one bug-fix in the case of
the useAllPredictAll learning approach or at least one post-release bug in the case of the
usePrePredictPost learning approach.

5 Machine Learning and DoE Approaches

This section presents our machine learning approach, which utilizes the created feature
vectors for prediction of software fault-proneness, followed by the description of the DoE
approach we used to explore and quantify the effect of the learning approach on the prediction
performance.

@ Springer

Empirical Software Engineering (2024) 29:87 Page190f37 87

5.1 Machine Learning Approach

We evaluated models’ prediction performance using the feature vectors consisting of both the
static code metrics and change metrics (see Section 4.3). For classification, we used several
traditional machine learning algorithms widely used in software-fault proneness prediction:
Linear Discriminant Analysis (LDA), kNN, LR, NB, J48, and RF. The results showed that, for
almost all performance metrics, there were no statistically significant differences between J48,
LDA, and LR. RF performed slightly better, while KNN and NB performed worse than these
three learners. In addition to the above mentioned traditional classifiers, we experimented
with one deep learner for the classification task — a Feedforward Neural Network (FNN)
with an input layer, two hidden layers, and an output layer'. FNN led to somewhat better
classification performance than J48 and RF, but nevertheless the two learning approaches
had similar effect on its performance as in the cases of J48 and RF.

Since the effect of the machine learning algorithm used for classification on prediction
performance has been previously explored by many works, we do not treat it as a factor in
our experiments. We here only present the findings of using the J48 algorithm, which has
been widely used for software fault-proneness prediction (Khoshgoftaar and Seliya 2004;
Guo et al. 2004; Arisholm et al. 2007; Menzies et al. 2007; Moser et al. 2008; Arisholm et al.
2010; Krishnan et al. 2013; Alshehri et al. 2018; Goseva-Popstojanova et al. 2019) and has
been shown to be among the top performing algorithms (Lessmann et al. 2008; Krishnan
et al. 2013; Shepperd et al. 2014). Our findings when using other learning algorithms were
consistent with those presented here, including the results of using RF, which are provided
in the supplemental online document (Ahmad et al. 2022).

For each learning approach, we explored both within-release and across-releases predic-
tions. For within-release prediction, we used two data splitting techniques: 10-fold cross
validation and 50/50 split. In both cases, the models were trained and tested on data collected
from the same release. It is important to emphasize that, for each learning approach, the files
from that release (characterized by the corresponding feature vectors and target variables, as
described in Section 4) were split into a training set and testing set, which did not overlap
(i-e., the prediction models were evaluated on unseen data).

For 10-fold cross validation (which we label as M1) the data were divided into ten folds
using random stratified sampling; nine folds of the data were used for training and the
remaining fold was used for testing. This was repeated ten times, each time using a different
fold for testing. 10-fold cross validation is widely used in this field (Turhan et al. 2009; Giger
et al. 2012; Bowes et al. 2018).

For the second data splitting technique, referred to as 50/50 split (and labeled as M2),
stratified random sampling was used to split the data into two folds, with 50% of the data in
each. One fold was used to train the model and the other to test it. To avoid bias, following
(Kamei et al. 2010; Nam et al. 2013), the 50/50 split was repeated 100 times with different
random stratified samples, and the averages of the performance metrics are reported. We
chose this splitting technique as it is similar in design to the across-release prediction.

For the prediction across-releases (labeled as M3), the data from a given release n was
used for training, and the data from release n + 1 was used for testing (Arisholm et al. 2007,
Nam et al. 2013; Song et al. 2019). Note that, as described in Section 4.1, useAllPredictAll
and usePrePredictPost have different intervals during which the features were collected (i.e.,

! The input layer and hidden layers of the FNN were defined as ‘dense’ layers with 64 neurons and the ReLU
activation function. The final output layer consisted of a single neuron that produced the prediction output
using the sigmoid activation function. FNN was implemented using Keras, an open-source library that provides
Python interface for artificial neural networks.

@ Springer

87 Page200f37 Empirical Software Engineering (2024) 29:87

have different feature vectors) and different target variables (i.e., fault-prone files during
entire release duration vs. fault-prone files during the post-release interval).
For evaluating the models’ classification performance, we used the following metrics:

Recall (R) = TP/(TP + FN)

Precision (P) = TP/(TP + FP)

False Positive Rate (FPR) = FP/(FP + TN)

F-Score = 2 - Recall - Precision/(Recall + Precision)
G-Score = 2 - Recall - (1-FPR)/ [Recall + (1-FPR)]

where True Positive (TP) represents the number of files that were faulty, and were predicted
to be faulty; False Negative (FN) represents the number of files that were faulty, but were
predicted to be not faulty; False Positive (FP) represents the number of files that were not
faulty, but were predicted to be faulty; and True Negative (TIN) represents the number of files
that were not faulty and were predicted to be not faulty.

The values of all performance metrics are between 0 and 1. Good performance has higher
Recall and Precision, and lower FPR. F-Score and G-Score are harmonic means of two
metrics (i.e., Recall and Precision for F-Score and Recall and (1-FPR) for G-Score) and are
high only when both metrics are high. Note that instead of FPR we report (1-FPR), which
leads to higher values indicating better performance for all performance metrics.

5.2 Design of Experiments (DoE) Approach

In this study we used Design of Experiment (DoE) approach to draw statistically sound
findings related to the effect of factors (independent variables) on the response variables (i.e.,
performance metrics of the software fault-proneness prediction). Basically, we considered
two factors:
Factor A: the learning approach, with two levels:

— useAllPredictAll

— usePrePredictPost

Factor B: the prediction style, with three levels:
— within-release using 10-fold cross validation (M1)
— within-release using 50/50 split (M2)
— across-releases (M3).

In selecting a DoE approach that supports our investigation, we chose nested design
because the prediction style (factor B) is nested within the learning approach (factor A).
Note that the widely used cross design requires each factor to be applied equivalently across
each level of the other factor, which does not apply to our study because the datasets for
prediction styles M1-M3 are different for different learning approaches. That is, feature
vectors have different values for change metrics and the target variables are different, as
described in Section 4.1.

Furthermore, our design is unbalanced because the number of observations (i.e., instances
of machine learning experiments) for different combinations of factors’ levels are different.
Specifically, for within-release prediction styles (M1 and M2), the performance metrics (i.e.,
instances) were computed using the datasets of each of the 64 releases. However, for predic-
tion across-releases (M3) the number of machine learning instances for each of the twelve

@ Springer

Empirical Software Engineering (2024) 29:87 Page210f37 87

Table4 The number of instances

Learning approach
for the nested DoE useAllPredictAll usePrePredictPost
Prediction style Prediction style
M1 M2 M3 M1 M2 M3
63 64 52 58 59 46

projects (listed in Table 3) equals the number of its releases minus one, since it takes two
releases to generate one prediction. In total, for the twelve projects considered in this paper,
there were 52 instances for the across-releases predictions. It should be noted that several
instances were excluded from the analysis because performance metrics could not be com-
puted due to division by 0. For example, when the model classified all cases as negative (i.e.,
all files as not faulty) TP 4+ FP = 0, which led to Recall = 0 and Precision that could not be
computed. The predictions when TP + FN = 0 led to Precision = 0 and Recall that could
not be computed. These instances, however, were rare. For example, for within-release with
10-fold cross validation (M1) prediction style, only one model was excluded for the useAll-
PredictAll learning approach (leading to 63 instances), while six models were excluded for
usePrePredictPost (resulting in 58 instances). The numbers of instances for all combinations
of the two learning approaches and three prediction styles are shown in Table 42.

Nested analysis of variance (ANOVA), also called a hierarchical ANOVA, is an extension
of ANOVA for experiments where each group is divided into two or more subgroups. It
tests if there is variation between groups, or within nested subgroups. Nested ANOVA (as
ANOVA in general) is a parametric method which assumes population normality and variance
homogeneity, and a balanced design is preferred. Since these assumptions do not hold in our
case, we used the non-parametric alternative proposed in Stavropoulos and Caroni (2008) and
used elsewhere (Zahalka et al. 2010). The Box-Adjusted Wald-type statistic neither assumes
normality nor homogeneity of the data. It is also robust to unbalanced design. We used it to
test the following null hypotheses, related to RQ1 and RQ2, respectively:

- Htf‘: There is no difference in the distributions of each performance metric (Recall,
Precision, 1-FPR, F-Score and G-Score) between the two learning approaches, and

'f 4. For a given learning approach, there is no difference in the distribution of each
performance metric among prediction styles M1, M2, and M3.

6 Results

In this section we report the results as they pertain to our research questions. Figure 6 shows
the box plots, and Fig. 7 depicts the means of all performance metrics for the two learning
approaches and three prediction styles. The basic statistics (i.e., mean, median, standard
deviation, and IQR) are provided in Ahmad et al. (2022).

2 Note that, following many related works (e.g., Malhotra and Raje, 2015; Bowes et al., 2018) that used the
open-source datasets created by Jureczko and Spinellis (2010); Jureczko and Madeyski (2010), we treated the
releases as independent instances for the statistical analysis.

@ Springer

87 Page 220of 37 Empirical Software Engineering (2024) 29:87

"o

=
a
1

=
=
|

Performance Metric
= =
= in
1 L

be
1

L L L

=
1
1

=
I

bl
=

M1 | M2 | M3 Ml M2 M3
useAllPredictAll usePrePredictPost

[Recall E2A Precision [l 1-FPR [T F-Score [l G-Score — Median Line @ Mean

Fig.6 Performance metrics for the two learning approaches and three prediction styles

6.1 RQ1: Does the Learning Approach Affect the Classification Performance of the
Software Fault-proneness Predictions?

As shown in Figs. 6 and 7, models based on useAllPredictAll had significantly higher Recall,
Precision, F-Score and G-Score than the same models based on usePrePredictPost. However,
1-FPR was slightly lower when using useAllPredictAll than in the case of usePrePredictPost.

Table 5 shows the analysis of variance results for the DoE described in Section 5.2. Since
p-values were less than the significance level 0.05 for Recall, Precision, F-Score and G-
Score, the null hypotheses HGA were rejected in favor of the alternative hypotheses Ha"" that
there is a difference in the performance metrics distributions for each of these performance
metrics. Furthermore, the learning approach factor contributed the most to the variance of
the prediction performance, i.e., 76.4%, 72.99%, 67.57%, and 58.31% for Recall, Precision,
F-Score, and G-Score, respectively. However, for the 1-FPR performance metric Hé"‘ cannot
be rejected, i.e., unlike the other performance metrics, 1-FPR was not affected by the learning
approach.

10 10 10 10 10
09 09 0.9 Ny 09 09
08 b = 08 0.8 08t 08
Fop Zo07f E 0.7 5 07t % DIE W
0.6 F So06F W =06 @06 2 oet m
o .. & S~ s B] .-
05 ~~a 0s - oo 0.5 05 ~a 0.5 -
04t Sag 04 . 0.4 04 S 04t
03 - 03 0.3 03 — 03
Ml M2 M3 Ml M2 M3 Ml M2 M3 Ml M2 M3 Ml M2 M3
o— useAllPredictAll & -~ usePrePredictPost
M1: within-release 10-folds cross validation M2: within-rel 50450 split M3: across-releases

Fig.7 Means of all performance metrics for the two learning approaches and three prediction styles

@ Springer

Empirical Software Engineering (2024) 29:87 Page230f37 87

Table5 Analysis of variance results for learning approach (A) and nested prediction style (B|A)

Performance Factor Wald-type p-value Hﬁ“ Cont to
Box-Adjusted Var %
Metric Rank Statistic HEW
Recall A 39.65865 3.02E-10 Rejected 76.40
BlA 7.86835 9.65E-02 Not Rejected 23.60
Precision A 32.51898 1.18E-08 Rejected 72.99
BlA 8.86537 6.46E-02 Not Rejected 27.01
1-FPR A 0.20742 6.49E-01 Not Rejected 597
BlA 3.35987 5.00E-01 Not Rejected 94.03
F-Score A 37.79243 7.87E-10 Rejected 67.57
BlA 12.64919 1.31E-02 Rejected 3243
G-Score A 2477202 6.45E-07 Rejected 58.31
BlA 15.80304 3.30E-03 Rejected 41.69

Specifically, in prediction within-release using 10-fold cross validation (M1), useAllPre-
dictAll compared to usePrePredictPost had 52.8% higher Recall, 38.8% higher Precision,
51.7% higher F-Score, and 22.4% higher G-Score. However, 1-FPR was 2.0% lower. In
prediction within-release using 50/50 split (M2) the same pattern was observed, but the differ-
ences in performance were much higher. In particular, the useAllPredictAll learning approach
had 77.6% higher Recall, 73.1% higher Precision, 79.5% higher F-Score, and 42.5% higher
G-Score than usePrePredictPost. As in the case of 10-fold cross validation, 1-FPR was 2.2%
lower. Similarly, in prediction across-release (M3), compared to usePrePredictPost learn-
ing approach, useAllPredictAll had a 111.1% higher Recall, 57.1% higher Precision, 97.3%
higher F-Score, and 26.1% higher G-Score. However, it had 9.6% lower 1-FPR.

Our findings thus provide a clearly affirmative answer to RQ1: the useAllPredic-
tAll learning approach leads to better fault-proneness prediction performance than
usePrePredictPost, both within-release and across-releases, for 4 of the 5 performance
metrics.

6.2 RQ2: For a Given Learning Approach, What is the Difference in Classification
Performance Between Using Within-release and Across-releases Prediction
Styles?

To answer this research question, we again refer to Figs. 6 and 7. When the useAllPredictAll
learning approach was used for within-release predictions, the models which used 10-fold
cross validation (M1) slightly outperformed the corresponding models which used 50/50
split (M2) in terms of the mean Recall, Precision, F-Score, and G-Score, and had the same
mean 1-FPR. Specifically, using 10-fold cross validation led to 2.1% higher Recall, 2.5%
higher Precision, 1.7% higher F-Score, and 1.5% higher G-Score compared to when 50/50
split was used. Both within-release prediction styles (M1 and M2) significantly outperformed
the across-releases prediction (M3) with respect to all performance metrics. Since the two
within-release styles had similar performance, we restrict the comparison to using the 50/50
split. When compared to prediction across-releases, the performance within-release using

@ Springer

87 Page240f37 Empirical Software Engineering (2024) 29:87

50/50 split had 23.9% higher Recall, 23.9% higher Precision, 15.3% higher 1-FPR, 33.8%
higher F-Score, and 30.5% higher G-Score.

When usePrePredictPost was used for within-release predictions, the models which used
10-fold cross validation (M1) outperformed the models which used 50/50 split (M2) for all
performance metrics. Specifically, using 10-fold cross validation within-release led to 18.7%
higher Recall, 27.9% higher Precision, 0.2% higher 1-FPR, 20.3% higher F-Score, and 18.2%
higher mean G-Score compared to the same models which used the 50/50 split. Consistent
with the findings for the useAllPredictAll learning approach, when usePrePredictPost was
used, both within-release prediction styles (M1 and M2) outperformed the across-releases
prediction (M3) with respect to all performance metrics. In particular, when using within-
release with 10-fold cross validation, compared to across-releases predictions the Recall,
Precision, 1-FPR, F-Score, and G-Score were 74.8%, 43.8%, 6.8%, 76.9%, and 36.5% higher,
respectively. Following the same pattern, using within-release with 50/50 split compared to
across-releases predictions resulted in 47.2% higher Recall, 12.4% higher Precision, 6.6%
higher 1-FPR, 47.0% higher mean F-Score, and 15.5% higher G-Score.

To further investigate the effect of the prediction style on the fault-proneness predictions
for a given learning approach, we refer to the rows relevant to the hypothesis Htf ' in Table 5.

It appears that HOBM cannot be rejected for Recall, Precision, and 1-FPR as the p-values were

greater than the significance level 0.05. On the other hand, HOBlA hypotheses were rejected
for F-Score and G-Score in favor of the alternative hypotheses that, for a given learning
approach, there is a difference in the performance due to prediction styles.

Our findings give an affirmative answer to RQ2: the classification performance is
significantly better when within-release prediction is used than when across-releases
prediction is used, for both learning approaches.

Our answer to RQ2 is consistent with prior works for each given learning approach.
However, our findings go a step further, showing that the contribution to the variance due to
prediction style is smaller than the contribution to the variance due to the learning approach,
as shown in Table 5. In other words, the learning approach matters more than the prediction

style.

6.3 On Reasons Behind Different Performance

Our results for RQ1 showed that the prediction models which used useAllPredictAll had
significantly better performance than the models which used usePrePredictPost in terms of
Recall, Precision, F-Score and G-Score, but had similar or slightly worse 1-FPR. To better
understand and explain the reasons behind the impact of the learning approach choice on
software fault-proneness prediction performance, we conducted further investigation. Specif-
ically, we took a closer look at the datasets created for each learning approach. We hypothesize
that the useAllPredictAll performed better than the usePrePredictPost learning approach
because its datasets were less imbalanced compared to the corresponding usePrePredictPost
datasets (see Figs. 4 and 5).

In order to investigate if the different levels of class imbalance intrinsically present in the
datasets used by different learning approaches cause the difference in performance, we ran
experiments using three different types of imbalance treatments: Synthetic Minority Over-
sampling Technique (SMOTE), Under-bagging, and Adaptive Boosting (i.e., AdaBoost).

@ Springer

Empirical Software Engineering (2024) 29:87 Page250f37 87

SMOTE (Chawla et al. 2002) has been widely used in prior studies as a treatment for
imbalance (e.g., Agrawal and Menzies, 2018; Goseva-Popstojanova et al., 2019). It works
by selecting random data points from the minority class (i.e., files with bug-fixes when
using useAllPredictAll and files with post-release bugs when using usePrePredictPost) and
mimicking similar data points to over-represent the minority class, with the goal of enhancing
the classification performance. When using SMOTE, we oversampled the minority class (i.e.,
fault-prone files) in the training set to match the number of instances of the majority class.
For example, when applying SMOTE for the useAllPredictAll learning approach with the
Ant 1.3 release, the minority class was oversampled to increase the percentage of bug-fixes in
the training sets from 44.7% to 50%. And when applying SMOTE for the usePrePredictPost
learning approach, using oversampling the percentage of post-release bugs was increased
from 6.5% to 50%. (In each case, the imbalance treatment was applied only to the training
set, and the testing set was not modified, that is, remained unbalanced as in each of the
original datasets. This eliminates over-fitting bias and yields more reliable results.)

Under-bagging technique combines undersampling with bagging, and belongs to a broader
family of ensemble learning methods (Galar et al. 2011). To use this technique, we created
balanced subsets (i.e., bags) of the training dataset using undersampling (i.e., random sub-
sampling with replacement) of the majority class and trained individual J48 models on 10
different, random subsets of the training dataset. The final classification outcome was aggre-
gated using majority voting.

AdaBoost (i.e., Adaptive Boosting) combines the concepts of adaptive learning with boost-
ing and also belongs to the family of ensemble learning methods. AdaBoost dynamically
adjusts the weights of training instances in subsequent iterations of training based on the
difficulty of correctly classifying the instances (i.e., increases the weights of misclassified
samples and decreases the weights of correctly classified samples). The classifier used in
each iteration was J48. The final prediction was determined using weighted majority vote
from all the decision trees (Galar et al. 2011; Schapire 2013).

Overall, for within-release predictions SMOTE did quite well compared to Under-bagging
and AdaBoost. For example, for within-release prediction with 10-fold cross validation,
SMOTE had the best performance in 41 datasets (out of 63) for use AllPredictAll and in 56
datasets (out of 58) for usePrePredictPost learning approach. Furthermore, the magnitudes
of improvement were significantly higher with SMOTE. The results were similar for within-
release with 50/50 split predictions. None of the data balancing techniques, however, led to
improvement of the across-releases prediction performance.

Since SMOTE significantly outperformed the Under-bagging and AdaBoost, here we only
present the results of applying SMOTE as an imbalance treatment. Note, however, that in
this paper we use imbalance treatment to explore and (at least partially) explain why the
two learning approaches lead to different prediction performance. Data imbalance is one
of the most challenging problems in machine learning which, in addition to between-class
imbalance addressed here, may include issues related to the separability of classes and within-
class imbalance (He and Garcia 2009), all of which are even more challenging when combined
with the small sample sizes typical for software engineering. More through explorations of
different issues related to data imbalance are beyond the scope of this paper.

The box plots and means of all performance metrics when SMOTE was applied are shown
in Figs. 8 and 9, respectively. In Table 6 we report the differences in performance metrics
when SMOTE was applied compared to when SMOTE was not applied.

As canbe seen from Figs. 8 and 9, and Table 6, applying SMOTE with the useAllPredictAll
learning approach improved all performance metrics for within-release prediction styles (M1
and M2). Using SMOTE across-releases (M3) only slightly improved the Recall and 1-FPR,

@ Springer

87 Page 26 of 37

Empirical Software Engineering

(2024) 29:87

1.0

Performance Metric
-
N
L

= = =
— [t
i L 1

e
=

m i'

Mi

M2

M3

Mi

M2

%4\

useAllPredictAll

usePrePredictPost

|- Recall B2 Precision [J 1-FPR [F-Score [l G-Score — Median Line @ Mean|

Fig. 8 Performance metrics for the two learning approaches and three prediction styles when SMOTE was
applied

while it slightly decreased the Precision, F-Score and G-Score. Applying SMOTE with the
usePrePredictPost learning approach led to a significant increase of Recall, Precision, F-
Score, and G-Score in within-release prediction styles (M1 and M2), while the increase in
across-releases predictions (M3) was minor. In all cases, applying SMOTE resulted in slightly
lower 1-FPR.

In summary, using SMOTE for within-release predictions (M1 and M2) significantly
improved all performance metrics expect 1-FPR, for both learning approaches. The improve-
ment for usePrePredictPost was significantly higher than for useAllPredictAll. This is due
to the fact that the datasets used with the former were significantly more imbalanced than
the datasets used with the latter, leading to a much higher positive impact of the imbalance
treatment.

Table 7 shows the results of the analysis of variance for our nested design when SMOTE
was applied. The statistical results confirm the observations made based on the results shown
in Figs. 8 and 9 — for all performance metrics we cannot reject the null hypothesis Hé‘ that
there is no difference between the performance of the two learning approaches.

10 10 10
09| 09 09 .—N
AY

08 \ S OB 2 0.8 ™
— A}
Fo7t v 2ot % E 07 R\
Sost 3 206 . Tos ‘\.

05t X s % 05

04t 5\ 04 LJ 0.4

03 2 03 0.3

Ml M2 M3 ML M2 M3 Ml M2 M3 M3 Ml M2 M3
o— useAllPredictAll &=~- usePrePredictPost

M1: within-release 10-folds cross validation M2: within-release 50/50 split M3: across-releases

Fig.9 Means of performance metrics for the two learning approaches and three prediction styles when SMOTE

was applied

@ Springer

Empirical Software Engineering (2024) 29:87 Page270f37 87

Table 6 Differences in

performance metrics when useAllPredictAll usePrePredictPost
Metri Ml M2 M3 M1 M2 M3
SMOTE was applied compared to ene
when no imbalance treatment Recall 112% 126% 35% 69.1% 97.5% 1.7%
was not applied .
Precision 12.0% 139% -27% 57.5% 98.5% 5.3%
1-FPR 1.4% 1.2% 33% -1.3% -25% -0.7%

F-Score 126% 13.9% -15% 71.7% 103.5% 5.3%
G-Score 8.2% 9.1% -02% 33.0% 54.9% 5.8%

It should be noted that prior works have shown that treating the class imbalance improves
the software fault-proneness prediction performance. Some of these works used useAll-
PredictAll (Wang and Yao 2013; Malhotra and Jain 2020; Goyal 2022), while other used
usePrePredictPost learning approach (Goseva-Popstojanova et al. 2019). What is new here
is that we apply class imbalance treatment on both learning approaches and compare the
corresponding improvements. Furthermore, we use imbalance treatment with a different
goal than related works — to test our hypothesis that, for within-release predictions, the class
imbalance can be used to explain the difference in prediction performance of the two learning
approaches.

For within-release predictions, our findings show that the worse performance of
usePrePredictPost compared to the useAllPredictAll learning approach was due to
the more pronounced class imbalance of the former. When addressed, using the imbal-
ance treatment SMOTE, the performance difference between learning approaches was
eliminated.

(Note that the other two imbalance treatment we used, Under-bagging and AdaBoost, did
not eliminate the performance difference between the learning approaces.)

Contrary to within-release predictions, using SMOTE for across-releases prediction (M3)
had a minimal effect on prediction performance for both useAllPredictAll and usePrePredict-

Table7 Analysis of variance results for learning approach (A) and nested prediction style (B|A) when SMOTE
is applied

Performance Factor Wald-type p-value Hﬁ“ Cont to
Box-Adjusted Var %
Metric Rank Statistic HM
Recall A 2.86447 9.06E-02 Not Rejected 10.55
BlA 38.57545 8.52E-08 Rejected 89.45
Precision A 0.18635 6.66E-01 Not Rejected 0.76
BlA 42.73856 L.17E-08 Rejected 99.24
1-FPR A 0.72053 3.95E-01 Not Rejected 25.87
BlA 2.08995 7.19E-01 Not Rejected 74.13
F-Score A 0.79346 3.73E-01 Not Rejected 3.15
BlA 47.81298 1.03E-09 Rejected 96.85
G-Score A 0.51823 4.72E-01 Not Rejected 2.08
BlA 44.45300 5.17E-09 Rejected 97.92

@ Springer

87 Page280of37 Empirical Software Engineering (2024) 29:87

Post learning approaches (see Table 6). As can be seen in Table 7, the null hypotheses H'f 14
were rejected for all performance metrics except 1-FPR in favor of the alternative hypotheses

QBM that (for a given learning approach) there is a difference in the performance metrics
distributions due to the nested factor (i.e., prediction style). Moreover, when SMOTE was
applied, the prediction style factor contributed most of the variance, i.e., 89.45%, 99.24%,
74.13%, 96.85%, and 97.92% in the case of Recall, Precision, 1-FPR, F-Score, and G-Score,
respectively. (It should be noted that in case of across-releases prediction, Under-bagging
and AdaBoost, similarly to SMOTE, had little effect on the prediction performance.)

In general, prediction across-releases is more challenging than prediction within-release
because it is harder for machine learning algorithms to learn effectively when the sources of
training and testing data are different, which typically results in different distributions (Xu
etal. 2018, 2019). It is an open research question whether different approaches for improving
the performance of across-release predictions (Xu et al. 2018, 2019; Amasaki 2020; Kabir
et al. 2021) or transfer learning approaches (Ma et al. 2012; Nam et al. 2013, 2018) would
reduce the difference in performance when using different learning approaches.

7 Threats to Validity

We discuss the threats to validity grouped into four categories: construct, internal, conclusion,
and external validity.

Construct validity is concerned with whether we are measuring what we intend to mea-
sure. One threat to construct validity is related to the commits made to version control systems,
which were used to extract the change metrics. As expected, data were missing from some
commits. Commits with no revision numbers were given auto-generated unique ID numbers
and were included in the study. On the other hand, commits with no lines of code reported
as added or deleted were omitted from this study, which represented less than 3% of all
commits made to all projects combined. Unlike change metrics, static code metrics represent
a snapshot in time. For each release, the static code metrics were extracted from the latest
available binaries on the release date, and they were the same for both learning approaches.
The feature vectors used for the machine learning experiments in this paper integrate the
static code metrics and change metrics as described in Section 4.3. For the statistical tests,
following the common practice in this area, we treated the releases as independent instances.
As the well known ‘No Free Lunch Theorem’ implies, there is no single best machine
learning algorithm for all predictive modeling problems. Therefore, we experimented with
multiple classification algorithms (i.e., J48, REF, FNN) and imbalance treatment appraches
(i.e., SMOTE, Under-bagging, and AdaBoost). A brief summary of the results of machine
learning experiments are presented in the paper, accompanied by detailed results of using
J48 for classification and SMOTE for imbalance treatment. Note that further exploration of
the classifier and the imbalance treatment effect on the prediction performance is beyond the
scope of this paper, whose main goal is to explore the effect of the learning approach.

Internal validity is concerned with the effects of unknown impacts that might affect the
independent and dependent variables. To ensure data quality, which is one of the major threats
to internal validity, we extracted our own data from the online Apache repository. Note that
we used a consistent set of static code and change metrics for all the projects and releases
considered in this paper. Upon extracting the data, we implemented manual and automated
sanity checks to verify the quality of the extracted metrics. In addition, for randomly selected

@ Springer

Empirical Software Engineering (2024) 29:87 Page290f37 87

files from each project included in this study, we manually verified and validated the values
of the automatically extracted metrics.

Conclusion validity threats may impact the ability to draw correct and reliable conclu-
sions. Some threats to conclusion validity are related to the way descriptive statistics are
reported and statistical tests are being used. For descriptive statistics, we provided the box
plots of performance metrics in this paper and reported their means, medians, standard devia-
tions, and IQRs in the supplemental document online (Ahmad et al. 2022). For the inferential
statistics, we used design of experiments approach and non-parametric tests suitable for our
datasets. Another threat to conclusion validity is related to the data sample sizes. The work
presented in this paper is based on 64 releases of 12 different open-source projects, which is
comparable to or larger than the sample sizes used in related works in this area.

External validity is concerned with our ability to generalize our conclusions. The rela-
tively large number of releases and projects that we studied provides some generalizability.
However, this work was based only on open-source software written in Java and available on
the Apache Projects web server. Therefore, we cannot claim that the results would be valid for
software products implemented in other languages and/or from different application domains,
as well as for other classifiers and imbalance treatment approaches.

8 Recommendations and Research Directions

In this paper we seek to bring to the attention of the research and practitioners’ communities
the unreported effects of the learning approach on software fault-proneness predictions.
This paper presents evidence that current software fault-proneness prediction studies do not
adequately take into account the learning approach used. It also shows how the effect of
excluding this missing factor can inadvertently distort empirical observations.

Through empirical results and statistical tests presented in Section 6 of this paper, we show
that the learning approach significantly affects the performance of software fault-proneness
prediction. We also provide interpretation of our findings for research questions RQ1 and
RQ2, and uncover indications that the difference in performance between the two learning
approaches for within-release predictions is attributable to class imbalance. In this section,
we discuss the implications of our findings and provide recommendations for designing,
reporting, and comparing software fault-proneness prediction studies. We also suggest some
directions where further work is needed.

Toward significantly improving future fault-proneness prediction studies, our findings
lead us to make the following five recommendations. These recommendations all rely on
existing approaches and techniques, so can readily be put into action right away.

— Incorporate Data and Input Aspects into the Prediction Process. Many research works
on software fault-proneness prediction utilize readily available datasets and focus on the
Al model dimension (i.e., the steps of building and evaluating the classification models),
without thorough understanding of the data and input used by these models. However,
information about the interval for which longitudinal features (software metrics data)
are collected and the interval for which bugs are predicted (the target variable) needs to
be specified and considered, not swept under the carpet. Omission of this information
leads to overlooking the learning approach factor and not accounting for its effect on
the prediction performance. For sound research and practical application of software

@ Springer

87 Page300f37 Empirical Software Engineering (2024) 29:87

fault-proneness prediction, all dimensions and steps of the OECD framework (OECD
2022) or the phases of the alternative Cross Industry Standard Process for Data Mining
(CRISP-DM)? (Chapman et al., 2000; Wirth and Hipp, 2000) should be incorporated,
regardless of whether the datasets are extracted from the software artifacts or are readily
available.

— Use the Learning Approach Appropriate for the Goal and Available Data. Software
fault-proneness prediction models using the useAllPredictAll approach predict fault-
proneness for the entire period under consideration (e.g., release) and thus reflect mainly
the developers’ viewpoint. On the other hand, models using the usePrePredictPost learn-
ing approach predict software units (e.g., files) that are expected to be fault-prone after
the cut-off date for prediction (e.g., post-release). They thus better reflect the users’ view-
point regarding the software’s perceived reliability and may more readily prevent costly
consequences from post-release failures.

— Address Class Imbalance. Since datasets used for software fault-proneness prediction
are usually imbalanced, treatment of imbalance should be used. We have shown that
SMOTE significantly improves the classification performance of within-release predic-
tion style, for each learning approach. This confirms the results presented in several prior
works (Wang and Yao 2013; Agrawal and Menzies 2018; Goseva-Popstojanova et al.
2019; Malhotra and Jain 2020; Goyal 2022). Furthermore, we have shown that the class
imbalance contributes to the difference in the prediction performance of the two learning
approaches and that when treated with SMOTE results in similar prediction performance
for both learning approaches. It should be noted that more research focused on handling
data imbalance for software fault-proneness prediction is needed, because it is a complex
phenomenon that, in addition to the imbalanced class distributions, is affected by small
sample sizes (which are typical for software fault-proneness data), separability of the
classes, and the existence of within-class concepts (He and Garcia 2009).

— Always Specify the Learning Approach. Our results have demonstrated that informa-
tion regarding the learning approach is essential to understanding and explaining the
performance of software fault-proneness prediction. However, such information is often
missing or is merely implicit, in some cases requiring considerable effort to deduce.
Therefore, research studies focused on software fault-proneness prediction, in addition
to the existing reporting criteria (Hall et al. 2012), should explicitly specify the learning
approach.

— Compare Apples-to-Apples. To avoid comparing ‘apples to oranges,’ care should be
taken when comparing the performance of software fault-proneness prediction mod-
els — when comparing to the related works’ results, when conducting meta-analysis,
and/or when reusing existing datasets that may have been created for different learning
approaches. Since useAllPredictAll and usePrePredictPost use different training sets and
have different target variables, such performance comparisons are unfair, and any sta-
tistical analysis and/or machine learning experiments are flawed. Therefore, our results
may call into question conclusions advanced by some prior publications that failed to
recognize the use of different learning approaches and to consider their effect on the
performance of the fault-proneness prediction.

3 CRISP-DM is a comprehensive process model for carrying out data mining efforts (Chapman et al. 2000).
Similarly as the OECD framework, it is independent of both the industry sector and the technology used,
and consists of the following phases: business understanding, data understanding, data preparation, modeling,
evaluation, and deployment.

@ Springer

Empirical Software Engineering (2024) 29:87 Page310f37 87

Additionally, we describe limitations of the current state-of-the-art and identify some
directions where future research is needed to further improve the software fault-
proneness prediction.

— Current software fault-proneness prediction models only consider spatial infor-
mation about software faults (i.e., their location) while disregarding their temporal
information (i.e., when each fault was detected). Even though software fault-proneness
prediction classifies software units (the “where”), the faults within fault-prone unit(s)
were detected at different times. In the case of within-release predictions, the complete
lack of temporal information when using the useAllPredictAll learning approach leads
(at least for some faults) to predicting the past from the future. This is not the case
with the usePrePredictPost learning approach because it distinguishes between faults
detected pre-release and post-release (i.e., it considers temporal information at a coarse-
grained level) and predicts post-release fault-prone units. In order to follow a realistic
usage scenario, it is important to ensure that training data temporally precede testing
data. However, the great majority of past studies evaluated the fault-proneness prediction
performance on temporally random data® rather than on future data (Falessi et al. 2020).
Note that the temporal order of the data is preserved for across-release predictions (i.e.,
when the model is trained on one release and tested on a future release of the same or
other software project) regardless of the learning approach used.

— An important future research direction is thus to take into account temporal
information. Incorporating temporal information about software faults into the fault-
proneness prediction will be essential to creating prediction models that are truer
representations of the fault detection process. Doing so would address the fundamen-
tal drawback of the useAllPredictAll approach when used for within-release predictions.
Our recommendation to take into account temporal information is backed by a recent
study (Falessi et al. 2020) that argued in favor of preserving the order of data when
validating the fault-proneness predictions. That study, however, was focused only on
across-releases predictions. In order to further advance software fault-proneness pre-
diction and increase its practical usefulness, we recommend incorporating finer-grained
temporal information, beyond the current distinction between pre-release and post-release
faults in the usePrePredictPost approach, and beyond preserving the temporal order at
the coarse level of whole releases (as it is done for accross-releases predictions). Initial
effort along these lines was presented in a recent study by Kabir et al. (2021) which
was focused on fault-proneness prediction for useAllPredictAll learning approach and
across-releases prediction style, and was conducted learning from data chunks that arrive
in temporal order. In future work we plan to investigate incorporating both spatial and
temporal information about software faults into software fault-proneness prediction.

Finally, our findings provide software developers with some new insights into
achieving accurate fault-proneness predictions. The results of this study improve the
understanding and interpretability of software fault-proneness prediction, especially with
regard to how the learning approach affects it. Better fault-proneness prediction provides
more accurate information to developers, helping them prioritize development and testing
tasks. Ultimately, improved prediction performance results in fewer bugs and better software
quality. Consistently with prior works, our results showed that imbalance treatment (here
using SMOTE) improved the Recall and Precision, resulting in higher F-Scores for both

4 The most used technique by far was k-fold cross validation, in 61% of the studies (Falessi et al. 2020).
10-fold cross validation, which was the most used type of k-fold cross validation and the most used technique
in general, was used in 51% of the studies.

@ Springer

87 Page320f37 Empirical Software Engineering (2024) 29:87

learning approaches when using the within-release prediction style. Further, we discovered
that addressing the imbalance by using SMOTE eliminated the inferior performance of the
usePrePredictPost approach, which traditionally has had lower Recall (e.g., Zimmermann
et al., 2007; Krishnan et al., 2013) than models built using the useAllPredictAll approach.
Reducing the number of post-release false negatives (due to higher Recall) is especially
important for safety-critical systems where post-release failures can have catastrophic con-
sequences. In addition, higher Precision leads to less wasted verification and validation efforts
on those software units that likely are not fault-prone.

While this paper focuses on classification-based prediction within-projects (i.e., within-
release and across-releases), we anticipate that the focus on the choice of the learning approach
might yield new insights when exploring across-projects classification-based prediction or
prediction of fault-counts in software units for different prediction styles.

9 Conclusion

This paper focuses on one previously unexplored factor of the software fault-proneness pre-
diction process — the learning approach. This captures the temporal aspects regarding (i) the
interval for which longitudinal features (software metrics data) are collected, and (ii) the
interval for which software bugs are predicted (i.e., the target variable). We first categorized
related works by the learning approach each used. This helped us clarify and explain the
varying performance in many of these software fault-proneness prediction studies. We then
systematically and rigorously explored the impact of the learning approach on the perfor-
mance of software fault-proneness prediction. Our study showed empirically that the choice
of learning approach significantly affects the performance of software fault-proneness pre-
diction models. Our study also produced new insights into how those effects occur. The
results presented here showed that the useAllPredictAll learning approach resulted in signif-
icantly better performance than the usePrePredictPost learning approach. Furthermore, we
uncovered that the class imbalance is the reason behind this finding for within-release predic-
tions. Addressing the imbalance by using SMOTE significantly enhanced the within-release
prediction performance for both learning approaches and eliminated the difference in their
performance. Finally, we described the implications of our findings; provided recommenda-
tions for designing, reporting, and comparing software fault-proneness prediction studies;
and suggested some directions where further work is needed.

Going forward, we encourage fault-proneness prediction studies to always state explicitly
which learning approach is being used. We also encourage increased awareness and further
study of the consequences of the learning approach choice in practice.

Acknowledgements The authors thank the reviewers and the handling editor for their constructive feedback
which helped us to improve the clarity and readability of the paper.

Data Availability Statement The datasets used in this paper, which were extracted from 64 releases of 12 open
source projects, can be requested at https://forms.gle/d7yoUbJx8KZu9A6k6.

References

Agrawal A, Menzies T (2018) Is “Better Data™ Better Than “Better Data Miners™? In: International conference
on software engineering, pp 1050-1061. https://doi.org/10.1145/3180155.3180197, 1705.03697

Ahmad MJ, Goseva-Popstojanova K, Lutz RR (2022) Online supplemental document for the untold impact of
learning approaches on software fault-proneness predictions. https://tinyurl.com/UntolImpact

@ Springer

Empirical Software Engineering (2024) 29:87 Page330of37 87

Ahmad MJ (2021) Analysis and classification of software fault-proneness and vulnerabilities. PhD thesis, West
Virginia University. https://researchrepository.wvu.edu/etd/8323

Alshehri YA, Goseva-Popstojanova K, Dzielski DG, Devine T (2018) Applying machine learning to predict
software fault proneness using change metrics, static code metrics, and a combination of them. In: IEEE
Southeastcon, pp 1-7. https://doi.org/10.1109/SECON.2018.8478911

Amasaki S (2020) Cross-version defect prediction: use historical data, cross-project data, or both? Empir Softw
Eng 25(2):1573-1595. https://doi.org/10.1007/s10664-019-09777-8

Apache Software Foundation (2022a) Apache Projects. http://www.apache.org/index.html/projects-list.
Accessed 16 June 2022

Apache Software Foundation (2022b) Apache Software Foundation (ASF) Bugzilla. https://bz.apache.org/
bugzilla/. Accessed 16 June 2022

Arisholm E, Briand LC, Johannessen EB (2010) A systematic and comprehensive investigation of methods to
build and evaluate fault prediction models. J Syst Softw 83(1):2-17. https://doi.org/10.1016/].jss.2009.
06.055

Arisholm E, Briand LC, Fuglerud M (2007) Data mining techniques for building fault-proneness models in
telecom Java software. In: ISSRE, pp 215-224. https://doi.org/10.1109/ISSRE.2007.16

Bird C, Nagappan N, Murphy B, Gall H, Devanbu P (2009) Putting it all together: using socio-technical
networks to predict failures. In: Proc ISSRE, pp 109-119. https://doi.org/10.1109/ISSRE.2009.17

Bluemke I, Stepiefi A (2016) Selection of metrics for the defect prediction. In: Advances in intelligent systems
and computing. Springer, Cham, vol 470, pp 39-50. https://doi.org/10.1007/978-3-319-39639-2-4

Bowes D, Hall T, Petri¢ J (2018) Software defect prediction: do different classifiers find the same defects?
Softw Qual J 26(2):525-552. https://doi.org/10.1007/s11219-016-9353-3

Catal C (2011) Software fault prediction: a literature review and current trends. Expert Syst Appl 38(4):4626—
4636. https://doi.org/10.1016/j.eswa.2010.10.024

Chapman P, Clinton J, Kerber R, Khabaza T, Reinartz TP, Shearer C, Wirth R (2000) CRISP-DM 1.0: step-
by-step data mining guide. Tech rep

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling tech-
nique. J Artif Intell Res 16:321-357. https://doi.org/10.1613/jair.953

D’Ambros M, Lanza M, Robbes R (2010) An extensive comparison of bug prediction approaches. In: Pro-
ceedings - international conference on software engineering, pp 31-41. https://doi.org/10.1109/MSR.
2010.5463279

Devine TR, Goseva-Popstajanova K, Krishnan S, Lutz RR, Li JJ (2012) An empirical study of pre-release
software faults in an industrial product line. ICST 2012, pp 181-190. https://doi.org/10.1109/ICST.2012.
98

Devine T, Goseva-Popstojanova K, Krishnan S, Lutz RR (2016) Assessment and cross-product prediction of
software product line quality: accounting for reuse across products, over multiple releases. Autom Softw
Eng 23(2):253-302. https://doi.org/10.1007/s10515-014-0160-4

Elish KO, Elish MO (2008) Predicting defect-prone software modules using support vector machines. J Syst
Softw 81(5):649-660. https://doi.org/10.1016/j.jss.2007.07.040

Falessi D, Huang J, Narayana L, Thai JF, Turhan B (2020) On the need of preserving order of data when
validating within-project defect classifiers. Empir Softw Eng 25:4805-4830. https://doi.org/10.1007/
510664-020-09868-x

Fiore A, Russo A, Gravino C, Risi M (2021) Combining CNN with DS3 for detecting bug-prone modules in
cross-version projects. In: Proceedings - 2021 47th euromicro conference SEAA 2021, pp 91-98. https://
doi.org/10.1109/SEAAS53835.2021.00021

Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F (2011) A review on ensembles for the class
imbalance problem: bagging-, boosting-, and hybrid-based approaches. [EEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 42(4):463-484

Gao K, Khoshgoftaar TM, Wang H, Seliya N (2011) Choosing software metrics for defect prediction: an
investigation on feature selection techniques. Softw - Pr Exp 41(5):579-606. https://doi.org/10.1002/
spe.1043

Ghotra B, McIntosh S, Hassan AE (2015) Revisiting the impact of classification techniques on the performance
of defect prediction models. In: Proceedings - international conference on software engineering, vol 1,
pp 789-800. https://doi.org/10.1109/ICSE.2015.91

Giger E, D’ Ambros M, Pinzger M, Gall HC (2012) Method-level bug prediction. In: International symposium
on empirical software engineering measurement, pp 171-180. https://doi.org/10.1145/2372251.2372285

Giger E, Pinzger M, Gall HC (2011) Comparing fine-grained source code changes and code churn for bug
prediction. In: Proceedings - international conference on software engineering, pp 83-92. https://doi.org/
10.1145/1985441.1985456

@ Springer

87 Page340f37 Empirical Software Engineering (2024) 29:87

Gondra I (2008) Applying machine learning to software fault-proneness prediction. J Syst Softw 81(2):186
195. hitps://doi.org/10.1016/j.js3.2007.05.035

Gong L, Rajbahadur GKK, Hassan AE, Jiang S (2021) Revisiting the impact of dependency network metrics
on software defect prediction. IEEE Trans Softw Eng. https://doi.org/10.1109/TSE.2021.3131950

Goseva-Popstojanova K, Ahmad MJ, Alshehri YA (2019) Software fault proneness prediction with Group
Lasso regression: on factors that affect classification performance. In: Proceedings - international com-
puter software and applications conference, vol 2, pp 336-343. https://doi.org/10.1109/COMPS AC.2019.
10229

Goyal S (2022) Handling class-imbalance with KNN (neighbourhood) under-sampling for software defect
prediction. Artif Intell Rev 55(3):2023-2064. https://doi.org/10.1007/510462-021-10044-w

Guo L, Ma Y, Cukic B, Singh H (2004) Robust prediction of fault-proneness by random forests. In: Proceedings
- ISSRE, pp 417-428. https://doi.org/10.1109/ISSRE.2004.35

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic literature review on fault prediction
performance in software engineering. IEEE Trans Softw Eng 38(6):1276—1304. https://doi.org/10.1109/
TSE.2011.103

Hamill M, Goseva-Popstojanova K (2009) Common trends in software fault and failure data. IEEE Trans
Softw Eng 35(4):484-496. https://doi.org/10.1109/TSE.2009.3

He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263-1284

He P, Li B, Liu X, Chen J, Ma Y (2015) An empirical study on software defect prediction with a simplified
metric set. Inf Softw Technol 59:170-190. https://doi.org/10.1016/j.infsof.2014.11.006

He Z, Peters F, Menzies T, Yang Y (2013) Learning from open-source projects: an empirical study on defect
prediction. In: International symposium on empirical software engineering measurements, pp 45-54.
https://doi.org/10.1109/ESEM.2013.20

Hosseini S, Turhan B, Gunarathna D (2019) A systematic literature review and meta-analysis on cross project
defect prediction. IEEE Trans Softw Eng 45(2):111-147. https://doi.org/10.1109/TSE.2017.2770124

Jiang Y, Cukic B, Ma Y (2008a) Techniques for evaluating fault prediction models. Empir Softw Eng 13(5):561
595. https://doi.org/10.1007/s10664-008-9079-3

Jiang Y, Cukic B, Menzies T (2008b) Can data transformation help in the detection of fault-prone modules?
In: Defects, pp 16-20. https://doi.org/10.1145/1390817.1390822

Jiang Y, Cukic B, Menzies T, Bartlow N (2008c) Comparing design and code metrics for software quality
prediction. In: Proceedings of the international conference on software engineering. ACM, pp 11-18.
https://doi.org/10.1145/1370788.1370793

Jira (2022) Issue Project Tracking Software — Atlassian. https://www.atlassian.com/software/jira/features/
bug-tracking. Accessed 16 June 2022

Jureczko M, Madeyski L (2010) Towards identifying software project clusters with regard to defect prediction.
In: Proceedings of the 6th international conference on predictive models in software engineering, pp 1-10.
https://doi.org/10.1145/1868328.1868342

Jureczko M, Spinellis D (2010) Using object-oriented design metrics to predict software defects. Model
Methods Syst Dependability Oficyna Wydawnicza Politech Wroctawskiej, pp 69-81

Jureczko M, Spinellis D (2011) CKIM extended - An extended version of Tool for Calculating Chidamber
and Kemerer Java Metrics (and many other metrics). http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/

Kabir MA, Keung J, Turhan B, Bennin KE (2021) Inter-release defect prediction with feature selection using
temporal chunk-based learning: an empirical study. Appl Soft Comput 113:107870. https://doi.org/10.
1016/j.as0c.2021.107870

Kamei Y, Matsumoto S, Monden A, Matsumoto KI, Adams B, Hassan AE (2010} Revisiting common bug pre-
diction findings using effort-aware models. In: IEEE international conference on software maintenance,
pp 1-10. https://doi.org/10.1109/ICSM.2010.5609530

Khoshgoftaar TM, Gao K, Seliya N (2010) Attribute selection and imbalanced data: problems in software
defect prediction. In: Proc ICTAL vol 1, pp 137-144. https://doi.org/10.1109/ICTAL2010.27

Khoshgoftaar TM, Seliya N (2004) Comparative assessment of software quality classification techniques:
an empirical case study. Empir Softw Eng 9(3):229-257. https://doi.org/10.1023/B:EMSE.0000027781.
18360.9b

Kim S, Zhang H, Wu R, Gong L (2011) Dealing with noise in defect prediction. In: Proceedings - international
conference on software engineering, pp 481-490. https://doi.org/10.1145/1985793.1985859

Koru AG, Liu H (2005) Building effective defect-prediction models in practice. IEEE Softw 22(6):23-29.
https://doi.org/10.1109/MS.2005.149

Krishnan 8, Strasburg C, Lutz RR, Goseva-Popstojanova K, Dorman KS (2013) Predicting failure-proneness in
an evolving software product line. Inf Softw Technol 55(8):1479-1495. https://doi.org/10.1016/j.infsof.
2012.11.008

@ Springer

Empirical Software Engineering (2024) 29:87 Page350f37 87

Krishnan S, Strasburg C, Lutz RR, Goseva-Popstojanova K (2011) Are change metrics good predictors for an
evolving software product line? In: Proceedings of the 7th international conference on predictive models
in software engineering, pp 1-10. https://doi.org/10.1145/2020390.2020397

Layman L, Kudrjavets G, Nagappan N (2008) Iterative identification of fault-prone binaries using inprocess
metrics. In: Proceedings of the empirical software engineering and measurement, pp 206-212. https://
doi.org/10.1145/1414004.1414038

Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking classification models for software defect
prediction: a proposed framework and novel findings. IEEE Trans Softw Eng 34(4):485-496. https://doi.
org/10.1109/TSE.2008.35

LiJ,He P,ZhuJ, Lyu MR (2017) Software defect prediction via convolutional neural network. In: Proceedings -
2017 IEEE international conference on software quality, reliability and security QRS, pp 318-328. https://
dot.org/10.1109/QRS.2017.42

Ma Y, Luo G, Zeng X, Chen A (2012) Transfer learning for cross-company software defect prediction. Inf
Softw Technol 54(3):248-256. https://doi.org/10.1016/j.infs0f.2011.09.007

Madeyski L, Jureczko M (2015) Which process metrics can significantly improve defect prediction models?
an empirical study. Softw Qual J 23(3):393-422. https://doi.org/10.1007/s11219-014-9241-7

Mahmood Z, Bowes D, Hall T, Lane PCR, Petri¢ J (2018) Reproducibility and replicability of software defect
prediction studies. Inf Softw Technol 99:148-163. https://doi.org/10.1016/j.infs0f.2018.02.003

Malhotra R, Jain J (2020) Handling imbalanced data using ensemble learning in software defect prediction.
In: Proc Conflu 2020 - 10th international conference on cloud computing, data science and engineering,
pp 300-304. https://doi.org/10.1109/Confluence47617.2020.9058124

Malhotra R, Raje R (2015) An empirical comparison of machine learning techniques for software defect pre-
diction. In: Proceedings of the international conference on bioinspired information and communications
technologies., pp 320-327. https://doi.org/10.4108/icst.bict.2014.257871

Mende T, Koschke R (2009) Revisiting the evaluation of defect prediction models. In: Proceedings of the 5th
international conference on predictor models in software engineering, pp 1-10. https://doi.org/10.1145/
1540438.1540448

Menzies T, Greenwald J, Frank A (2007) Data mining static code attributes to learn defect predictors. [EEE
Trans Softw Eng 33(1):2-13. https://doi.org/10.1109/TSE.2007.256941

Menzies T, Milton Z, Turhan B, Cukic B, Jiang Y, Bener A (2010) Defect prediction from static code features:
current results, limitations, new approaches. Autom Softw Eng 17(4):375-407. https://doi.org/10.1007/
510515-010-0069-5

Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the efficiency of change metrics and static
code attributes for defect prediction. In: Proceedings - international conference on software engineering,
pp 181-190. https://doi.org/10.1145/1368088.1368114

Nagappan N, Ball T, Murphy B (2006) Using historical in-process and product metrics for early estimation of
software failures. In: Proceedings - international symposium on software reliability engineering ISSRE,
pp 62-71. https://doi.org/10.1109/ISSRE.2006.50

Nagappan N, Murphy B, Basili VR (2008) The influence of organizational structure on software quality: an
empirical case study. In: Proceedings - international conference on software engineering, pp 521-530.
https://doi.org/10.1145/1368088.1368160

Nagappan N, Zeller A, Zimmermann T, Herzig K, Murphy B (2010) Change bursts as defect predictors. In:
Proceedings ISSRE, pp 309-318. https://doi.org/10.1109/ISSRE.2010.25

Nam J, Fu W, Kim S, Menzies T, Tan L (2018) Heterogeneous defect prediction. IEEE Trans Softw Eng
44(9):874-896. https://doi.org/10.1109/TSE.2017.2720603

Nam J, Pan 8], Kim S (2013) Transfer defect learning. In: Proceedings - international conference on Software
engineering, IEEE Press, pp 382-391. https://doi.org/10.1109/ICSE.2013.6606584

NIST (2023) Artificial Intelligence Risk Management Framework (Al RMF 1.0). Tech rep. https://doi.org/10.
6028/NIST.AL100-1. Accessed 10 July 2023

OECD (2022) OECD Framework for the Classification of Al systems. Tech rep, OECD Digital Economy
Papers, No. 323, OECD Publishing, Paris. https://doi.org/10.1787/cb6d9eca-en. Accessed 10 July 2023

Okutan A, Yildiz OT (2014) Software defect prediction using Bayesian networks. Empir Softw Eng 19(1):154
181. https://doi.org/10.1007/510664-012-9218-8

Ostrand TJ, Weyuker EJ, Bell RM (2005) Predicting the location and number of faults in large software
systems. IEEE Trans Softw Eng 31(4):340-355. https://doi.org/10.1109/TSE.2005.49

Pang Y, Xue X, Wang H (2017) Predicting vulnerable software components through deep neural network. In:
Proceedings - international conference on software quality, reliability and security, pp 6-10. https://doi.
org/10.1145/3094243.3094245

Pinzger M, Nagappan N, Murphy B (2008) Can developer-module networks predict failures? In: Proc 16th
ACM SIGSOFT international symposium on foundations of software engineering. ACM, pp 2-12

@ Springer

87 Page360f37 Empirical Software Engineering (2024) 29:87

Sayyad S, Menzies T (2005) The PROMISE repository of software engineering databases. School of Infor-
mation Technology and Engineering, University of Ottawa, Canada. http://promise.site.uottawa.ca/
SERepository

Schapire RE (2013) Explaining AdaBoost. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 37-52

Shepperd M, Bowes D, Hall T (2014) Researcher bias: the use of machine learning in software defect prediction.
1EEE Trans Softw Eng 40(6):603-616. https://doi.org/10.1109/TSE.2014.2322358

Shepperd M, Hall T, Bowes D (2018) Authors’ reply to 'Comments on 'Researcher bias: the use of machine
learning in software defect prediction”. IEEE Trans Softw Eng 44(11):1129-1131. https://doi.org/10.
1109/TSE.2017.2731308

Song Q, Jia Z, Shepperd M, Ying S, Liu J (2011) A general software defect-proneness prediction framework.
1EEE Trans Softw Eng 37(3):356-370. https://doi.org/10.1109/TSE.2010.90

Song Q, Guo Y, Shepperd M (2019) A comprehensive investigation of the role of imbalanced learning for
software defect prediction. IEEE Trans Softw Eng 45(12):1253-1269. https://doi.org/10.1109/TSE.2018.
2836442

Stavropoulos A, Caroni C (2008) Rank test statistics for unbalanced nested designs. Stat Methodol 5(2):93-105.
https://doi.org/10.1016/j.stamet.2007.06.001

Tantithamthavorn C, Mclntosh S, Hassan AE, Matsumoto K (2017) An empirical comparison of model val-
idation techniques for defect prediction models. IEEE Trans Softw Eng 43(1):1-18. https://doi.org/10.
1109/TSE.2016.2584050

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016) Comments on “Researcher bias: the use
of machine learning in software defect prediction™. IEEE Trans Softw Eng 42(11):1092-1094. https://
doi.org/10.1109/TSE.2016.2553030

Tosun A, Bener A, Turhan B, Menzies T (2010) Practical considerations in deploying statistical methods
for defect prediction: a case study within the Turkish telecommunications industry. In: Information and
software technology, vol 52, pp 1242-1257. https://doi.org/10.1016/j.infsof.2010.06.006

Turhan B, Menzies T, Bener AB, Di Stefano J (2009) On the relative value of cross-company and within-
company data for defect prediction. Empir Softw Eng 14(5):540-578. https://doi.org/10.1007/510664-
008-9103-7

Wang S, Yao X (2013) Using class imbalance learning for software defect prediction. IEEE Trans Reliab
62(2):434-443. https://doi.org/10.1109/TR.2013.2259203

Wang S, Liu T, Tan L (2016) Automatically learning semantic features for defect prediction. In: Proceed-
ings - international conference on software engineering, pp 297-308. https://doi.org/10.1145/2884781.
2884804

Wirth R, Hipp J (2000) CRISP-DM: towards a standard process model for data mining. In: Proceedings of
the 4th international conference on the practical applications of knowledge discovery and data mining,
Manchester, vol 1, pp 29-39

Wu R, Zhang H, Kim S, Cheung SC (2011) ReLink: recovering links between bugs and changes. In: SIG-
SOFT/FSE, pp 15-25. https://doi.org/10.1145/2025113.2025120

XuZ,LiS§, Luo X, Liu J, Zhang T, Tang Y, Xu J, Yuan P, Keung J (2019) TSTSS: a two-stage training subset
selection framework for cross version defect prediction. J Syst Softw 154:59-78. https://doi.org/10.1016/
§.i85.2019.03.027

XuZ, LiS, Tang Y, Luo X, Zhang T, Liu J, Xu J (2018) Cross version defect prediction with representative
data via sparse subset selection. In: Proceedings - international conference on software engineering, pp
132-143. https://doi.org/10.1145/3196321.3196331

Zahalka A, Goseva-Popstojanova K, Zemerick J (2010) Empirical evaluation of factors affecting distinction
between failing and passing executions. In: ISSRE, pp 259-268. https://doi.org/10.1109/ISSRE.2010.44

Zhao K, Xu Z, Yan M, Tang Y, Fan M, Catolino G (2021) Just-in-time defect prediction for Android apps via
imbalanced deep learning model. In: Proceedings of the ACM symposium on applied computing, vol 1,
pp 1447-1454. https://doi.org/10.1145/3412841.3442019

Zhou T, Sun X, Xia X, Li B, Chen X (2019) Improving defect prediction with deep forest. Inf Softw Technol
114:204-216. https://doi.org/10.1016/j.infsof.2019.07.003

Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process. In: ESEC-FSE’09, pp 91-100. https://doi.org/10.1145/
1595696.1595713

Zimmermann T, Premraj R, Zeller A (2007) Predicting defects for eclipse. In: PROMISE’07, pp 9-9. https://
doi.org/10.1109/PROMISE.2007.10

@ Springer

Empirical Software Engineering (2024) 29:87 Page370f37 87

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Authors and Affiliations

Mohammad Jamil Ahmad'2@® . Katerina Goseva-Popstojanova'® -

Robyn R. Lutz3

B Katerina Goseva-Popstojanova
katerina.goseva@ mail. wvu.edu

Mohammad Jamil Ahmad
mohammad.ahmad @mail. wvu.edu

Robyn R. Lutz

rlutz@iastate.edu

Lane Department of Computer Science and Electrical Engineering, West Virginia University,
Morgantown, WV 26505, USA

Present Address: Department of Management Information Systems, John Chambers College of
Business and Economics, West Virginia University, Morgantown, WV 26505, USA

3 Department of Computer Science, Iowa State University, Ames, [A 50011, USA

@ Springer

