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ABSTRACT. We develop a min-max theory for asymptotically conical self-expanders of
mean curvature flow. In particular, we show that given two distinct strictly stable self-
expanders that are asymptotic to the same cone and bound a domain, there exists a new
asymptotically conical self-expander trapped between the two.

1. INTRODUCTION

1.1. Main results. A hypersurface, i.e., a properly embedded codimension-one submani-
fold, Σ ⊂ Rn+1, is a self-expander if

(1.1) HΣ =
x⊥

2
.

Here
HΣ = ∆Σx = −HΣnΣ = −divΣ(nΣ)nΣ

is the mean curvature vector, nΣ is the unit normal and x⊥ is the normal component of the
position vector. Self-expanders arise naturally in the study of mean curvature flow. Indeed,
Σ is a self-expander if and only if the family of homothetic hypersurfaces

{Σt}t>0 =
{√

tΣ
}
t>0

is a mean curvature flow (MCF), that is, a solution to the flow

(1.2)
(
∂x

∂t

)⊥
= HΣt .

Self-expanders model the behavior of a MCF as it emerges from a conical singularity
[2] and also model possible long time behavior of the flow [17]. Self-expanders arise
variationally as stationary points, with respect to compactly supported variations, of the
functional

E[Σ] =

∫
Σ

e
|x|2

4 dHn

whereHn is the n-dimensional Hausdorff measure.
There are no closed self-expanders, instead the natural class to consider are those that

are asymptotically conical. More precisely, given an integer l ≥ 2, a hypersurface Σ ⊂
Rn+1 is Cl-asymptotically conical if there is a Cl-regular cone C – i.e., a dilation invariant
Cl-hypersurface in Rn+1 \ {0} – so that limρ→0+ ρΣ = C in Clloc(Rn+1 \ {0}). When
this occurs write C(Σ) = C. Fix a choice of unit normal to C. For any C2-asymptotically
conical hypersurface Σ with C(Σ) = C, we fix a choice of unit normal to Σ that is compat-
ible with that of C. Using this normal, let Ω−(Σ) be the open set whose boundary is Σ and
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whose outward normal agrees with that of Σ. For C2-asymptotically conical hypersurfaces
Σ and Σ′ with C(Σ) = C(Σ′) = C, define Σ � Σ′ provided Ω−(Σ) ⊆ Ω−(Σ′).

The main result of this paper is the following:

Theorem 1.1. For n ≥ 2, let C be a C3-regular cone in Rn+1. Suppose Γ− and Γ+ (not
necessarily connected) are distinct strictly stableC2-asymptotically conical self-expanders
with C(Γ−) = C(Γ+) = C and Γ− � Γ+. Then there exists a C2-asymptotically conical
(possibly singular) self-expander Γ0 6= Γ± with C(Γ0) = C and Γ− � Γ0 � Γ+ and that
has codimension-7 singular set.

Repeatedly applying Theorem 1.1 we obtain some refined properties for Γ0 up to di-
mension six.

Corollary 1.2. For 2 ≤ n ≤ 6, let C and Γ± be given as in Theorem 1.1. Let Ω =

Ω−(Γ+) \ Ω−(Γ−) be the open region between Γ− and Γ+. Then there exists a smooth
self-expander Γ0 that is C2-asymptotic to C and so Γ− � Γ0 � Γ+ and Γ0 ∩ Ω 6= ∅.
Moreover, if C is also generic, that is, there is no self-expander C2-asymptotic to C with
nontrivial Jacobi fields that fix the infinity, then Γ0 may be taken to be an unstable self-
expander.

Remark 1.3. For n = 2 and rotationally symmetric self-expanders, Corollary 1.2 was
suggested in [2, Remark 6] without proofs.

In [4–6] we adapt ideas of White [46] and develop a degree-theoretic method to produce
asymptotically conical self-expanders of prescribed topological type. In particular, we
show that there is an open set of cones in R3 so that for each cone in the set there exist three
distinct self-expanders asymptotic to the cone, two of which are topological annuli and the
third is the union of two disks. Another application of Theorem 1.1 is a generalization of
this fact to higher dimensions.

Corollary 1.4. For 2 ≤ n ≤ 6, there exists an open set U of C3-regular cones so that
for every C ∈ U there exist at least two distinct connected smooth self-expanders C2-
asymptotic to C and at least one disconnected smooth self-expander C2-asymptotic to C.

1.2. Overview of the proof of Theorem 1.1. To prove Theorem 1.1, we establish a
mountain-pass theorem, i.e., Theorem 7.5, for asymptotically conical self-expanders. Min-
max theory for minimal hypersurfaces has seen a lot of recent development – see, e.g., [1],
[9], [10], [11], [13], [14], [15], [19], [22], [25], [26], [28], [29], [30], [31], [32], [35], [34],
[38], [43], [45], [49], [50] and references therein. We in particular note [27] wherein the
authors develop the min-max theory for self-shrinking solutions to mean curvature flow
in R3. Our approach is inspired by De Lellis-Tasnady’s [15] reformulation of work of
Almgren-Pitts [37] and Simon-Smith [41] – see also Colding-De Lellis [12]. One may
think of Theorem 7.5 as an analog, in the non-compact setting, of work of De Lellis-
Ramic [14] on min-max theory for compact minimal surfaces with fixed boundary (see
also [35] for an approach more closely using Almgren-Pitts’ work). However, we empha-
size two differences. The first is that in [14] the critical point produced by the min-max
procedure does not need to be trapped between the two strictly stable critical points. As this
kind of property plays a crucial role in our later application [7], we take care to establish
it. The second, and more essential, point of difference is that, as the expander functional
is infinite valued, we work directly with a certain relative functional (whose existence and
properties were established in [8]) to produce a critical point. While it may be possible to
produce a min-max critical point by taking a limit of compact critical points (as is com-
monly done to produce local minimizers [16]; see also [9] for a min-max construction of
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geodesic lines) it seems difficult to guarantee that will produce a geometrically distinct
asymptotically conical self-expander.

A key point of our arguments is an appropriate choice of function space Y on Grass-
mann n-plane bundles – See Section 4 for the precise definition. The space Y is motivated
by a notion of relative expander entropy Erel which is introduced in our earlier work [8]
(See also Section 2.3) and satisfies the following properties. First, to each hypersurface
Σ with finite relative expander entropy one can associate a unique element VΓ of the dual
space Y∗ – See Proposition 4.2. Second, the relative expander entropy is well defined on
the subspace Y∗C ⊆ Y∗ consisting of elements that are obtained by taking limits of se-
quences VΓi in the weak-* topology, and every element of Y∗C has a (weighted) varifolds
decomposition – See Lemma 4.3. Third, any element of Y∗C that are Erel-minimizing to
first order (which is defined in Section 6.2) has no concentration of relative expander en-
tropy at infinity – See Item (1) of Proposition 6.2 – this uses a non-compact vector field
in a similar manner as is done by Ketover-Zhou [27] to deal with the same issue in their
setting, though our analysis is very different from [27] due to the growing weight in the
expander functional. These properties ensure that a pull-tight procedure (cf. [12] and [14])
can be carried out for elements of Y∗C to produce a minimizing sequence so that any min-
max sequence converges to an element of Y∗C that is Erel-minimizing to first order – See
Proposition 7.7.

Another key point is that, to address the local regularity of the min-max limit, it is con-
venient to consider an open domain Ω′ slightly thicker than the closed set Ω̃ = Ω+(Γ−) ∩
Ω−(Γ+) so that Ω′∩Ω±(Γ±) is foliated in a certain manner by asymptotically conical hy-
persurfaces with expander mean curvature pointing towards Γ± – See Proposition 3.1. By
the strong maximum principle (see [42] and [48]), the varifold associated to the min-max
limit is supported in Ω̃ ⊂ Ω′. Thus, with slight modifications, the arguments of [14] (see
also [12] and [15]) for the regularity of min-max minimal surfaces can be adapted to show
the varifold is supported on some E-stationary hypersurface trapped between Γ− and Γ+

that has codimension-7 singular set – See Propositions 7.10 and 7.13.
Moreover, we prove the varifold associated to the min-max limit has multiplicity one.

This is a stronger statement than what is shown for more general min-max results. Indeed,
it is a simple consequence of the finiteness of relative expander entropy that the tangent
cone of the varifold at infinity is the multiplicity-one cone C – See Item (4) of Proposition
6.2. As there are no compact self-expanders, the constancy theorem immediately implies
that the varifold has multiplicity one.

Lastly, to ensure the min-max method produces a new self-expander, we show a uniform
lower bound on relative expander entropy max-value of any sweepout of Ω̃, i.e., a path of
hypersurfaces connecting Γ− and Γ+. Namely, the maximum of relative entropy of slices
in a sweepout is strictly larger than that of Γ− and Γ+ – See Proposition 8.1. This is analo-
gous to the result stated in [14, Lemma 11.1] for sweepouts of compact surfaces, however,
our approach is different from the one in [14] as we use calibration type arguments and
properties of E-minimizers.

1.3. Organization. In Section 2 we fix the notation for the remainder of the paper and
recall the main results from [8] that will be used in this paper. In Section 3 we construct
the open domain Ω′ that is slightly thicker than the closed set Ω̃ = Ω+(Γ−)∩Ω−(Γ+) and
satisfies good properties. In Section 4 we introduce the space Y(Ω′) of functions on the
Grassman n-plane bundle over Ω′. We generalize estimates in [8] to elements of Y(Ω′) and
show the relative expander entropy is well defined for elements of the subset Y∗C(Ω′; Λ) ⊂
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Y∗(Ω′) consisting of those that are obtained by taking limits of hypersurfaces with relative
expander entropy bounded by Λ. In Section 5 we study the action of flows generated by
a suitable class of vector fields on elements of Y∗(Ω′). In particular, we derive the first
variation formula and prove the continuous dependence of the flow action on vector fields.
In Section 6 we introduce the modified action of flows on elements of Y∗C(Ω

′; Λ) and
collect properties for elements of Y∗C(Ω′; Λ) that are Erel-minimizing to first order in Ω′.
In Section 7 we define parametrized families of asymptotically conical hypersurfaces in
Ω′, in particular, sweepouts of Ω̃, and the relative entropy min-max value for parametrized
families. We then establish a mountain-pass theorem for a certain homotopically closed
set of parametrized families. In Section 8 we use calibration type arguments to obtain a
uniform lower bound on relative entropy max-value of any sweepout of Ω̃. In Section 9 we
show the existence of at least one sweepout of Ω̃ and finish the proof of the results.
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DMS-1609340 and DMS-1904674 and the Institute for Advanced Study with funding pro-
vided by the Charles Simonyi Endowment. The second author was partially supported
by the NSF Grants DMS-2018221(formerly DMS-1811144) and DMS-2018220 (formerly
DMS-1834824), the funding from the Wisconsin Alumni Research Foundation and a Vi-
las Early Career Investigator Award by the University of Wisconsin-Madison, and a von
Neumann Fellowship by the Institute for Advanced Study with funding from the Zürich
Insurance Company and the NSF Grant DMS-1638352. The second author would like to
thank Brian White and Jonathan Zhu for helpful discussions.

2. PRELIMINARIES

We fix notation and certain conventions we will use throughout the remainder of the
paper. We also recall certain background and facts we will need from [8].

2.1. Basic notions. Here is the list of notations that we use throughout the paper:
BR(p) the open ball in Rn+1 centered at p with radius R;
B̄R(p) the closed ball in Rn+1 centered at p with radius R;
BXR (p) the open ball in the Banach space X centered at p with radius R;
B̄XR (p) the closed ball in the Banach space X centered at p with radius R;
Tδ(U) the δ-tubular (open) neighborhood of a set U ;
U the closure of a set U ;
∂U the topological boundary of a set U ;
∂∗U the reduced boundary of a Caccioppoli set U ;
∇Σ the gradient on a Riemannian manifold Σ;
divΣ the divergence on a Riemannian manifold Σ;
∆Σ the Laplacian on a Riemannian manifold Σ;
Γ−,Γ+ two asymptotically conical self-expanders with Γ+ lying “above” Γ−;
Ω the open region bounded by Γ− and Γ+;
Ω̃ the closed set given by Ω+(Γ−) ∩ Ω−(Γ+);
Ω′,Ω′′ certain open regions “thickening” Ω̃.

We omit the center of a ball when it is the origin. We also omit the subscript, Σ, in the
gradient, divergence and Laplacian when it is Euclidean space. See Section 2.5 for precise
definitions of Γ±, Ω, and Ω̃. See Proposition 3.1 for properties of Ω′ and Ω′′.
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2.2. Partial ordering of asymptotically conical hypersurfaces. Let C be a C2-regular
cone in Rn+1 so the link L(C) is an embedded codimension-one C2 submanifold of Sn.
Clearly, L(C) separates Sn and we fix a closed set ω ⊂ Sn so that ∂ω = L(C). Given a
Caccioppoli set U , the boundary Σ = ∂∗U is asymptotic to C if

lim
ρ→0+

Hnb(ρΣ) = HnbC.

When this happens set C(Σ) = C. For such Σ, let Ω−(Σ) be the subset of Rn+1 \Σ so that
∂Ω−(Σ) = Σ and

lim
ρ→0+

ρΩ−(Σ) ∩ Sn = ω as closed sets.

Let Ω+(Σ) = Rn+1 \ Ω−(Σ).
For boundaries Σ0 and Σ1 both asymptotic to C, write

Σ0 � Σ1 provided Ω−(Σ0) ⊆ Ω−(Σ1).

If Σ0 � Σ1, then define

C(Σ0,Σ1) = {U : U is a Caccioppoli set with Ω−(Σ0) ⊆ U ⊆ Ω−(Σ1)} .

2.3. Relative expander entropy. Let U,U ′ ∈ C(Σ0,Σ1) with Σ = ∂∗U and Σ′ = ∂∗U ′,
and let Z = Ω+(Σ0) ∩ Ω−(Σ1). Choose nΣ and nΣ′ to be the outward unit normals to U
and U ′, respectively. For a function ψ ∈ C0

c (Z × Sn), define

E[Σ,Σ′;ψ] =

∫
Σ

ψ(p,nΣ(p))e
|x(p)|2

4 dHn −
∫

Σ′
ψ(p,nΣ′(p))e

|x(p)|2
4 dHn.

We remark that E[Σ,Σ′;ψ] is linear in ψ and that, when ψ is even (see (2.2)), E[Σ,Σ′;ψ]
is independent of the choice of nΣ or nΣ′ .

For a function ψ ∈ C0
loc(Z × Sn), let

Erel[Σ,Σ
′;ψ; B̄R] =

∫
Σ∩B̄R

ψ(p,nΣ(p))e
|x|2

4 dHn −
∫

Σ′∩B̄R
ψ(p,nΣ′(p))e

|x|2
4 dHn

and
Erel[Σ,Σ

′;ψ] = lim
R→∞

Erel[Σ,Σ
′;ψ; B̄R]

when this limit exists. Observe that if ψ has compact support, then the limit is defined.

2.4. The space X. Let Y be a domain in Rn+1. For a function ψ ∈ Lip(Y × Sn) and any
p ∈ Y , define ψ̂p(v) = ψ(p,v) and

∇Snψ(p,v) = ∇Sn ψ̂p(v).

Consider the Banach space

X(Y ) = {ψ ∈ Lip(Y × Sn) : ‖ψ‖X <∞}

where

‖ψ‖X = ‖ψ‖Lip + ‖∇Snψ‖Lip + sup
(p,v)∈Y×Sn

(1 + |x(p)|)|∇Snψ(p,v)|.

Here, for a function or tensor field φ on Y × Sn ⊂ Rn+1 × Rn+1 = R2n+2,

‖φ‖Lip = sup
(p,v)∈Y×Sn

|φ(p,v)|+ sup
(p,v),(q,w)∈Y×Sn

(p,v) 6=(q,w)

|φ(p,v)− φ(q,w)|
|x(p,v)− x(q,w)|

.
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2.5. Conventions. We now set conventions we will use in the remainder of the paper. Fix
a C3-regular cone C in Rn+1 and pick a closed set ω ⊂ Sn so ∂ω = L(C). Using ω, if Γ
is a hypersurface that is C2-asymptotic to C, then we will always choose the unit normal
nΓ so it points into Ω+(Γ) and out of Ω−(Γ). Let Γ− and Γ+ be two distinct strictly
stable self-expanders that are both C2-asymptotic to C and Γ− � Γ+. Denote by Ω =

Ω+(Γ−)∩Ω−(Γ+) the open region between Γ− and Γ+ and by Ω̃ = Ω+(Γ−)∩Ω−(Γ+).
In general Ω may not equal Ω̃ as Γ− and Γ+ may have common components1. Let Γ′−
and Γ′+ be two hypersurfaces, not necessarily self-expanders, both C2-asymptotic to C
and assume Γ′− � Γ− � Γ+ � Γ′+. If Ω′ = Ω+(Γ′−) ∩ Ω−(Γ′+), then Ω ⊆ Ω′. We
further assume Ω′ is thin at infinity relative to Γ− in the sense that there are constants
C0 = C0(Ω′,Γ−) > 0 andR0 = R0(Ω′,Γ−) > 1 so that, for all R > R0,

Ω′\BR ⊂ T
C0R−n−1e−

R2
4

(Γ−).

We will fix a choice of such Ω′ in Section 3.
If Γ is a C2-asymptotically conical self-expander, then it follows from the interior esti-

mates for MCF (see, e.g., Theorem 3.4 and Remark 3.6 (ii) of [18]) that

(2.1) CΓ,l = sup
p∈Γ

(
(1 + |x(p)|)

l∑
i=1

|∇iΓnΓ(p)|

)
<∞.

We also introduce the following test functions. Let

φR,δ(p) =


1 if p ∈ BR
1− |x(p)|−R

δ if p ∈ B̄R+δ \BR
0 if p ∈ Rn+1 \ B̄R+δ

be a cutoff. Let

αR1,R2,δ(p) = φR2,δ(p)− φR1−δ,δ(p)

be the cutoff adapted to the closed annulus B̄R2 \BR1 .
Next, a set Y ⊆ Rn+1 is quasi-convex if there is a constant C > 0 so that any pair of

points p, q ∈ Y can be joined by a curve β in Y with

Length(β) ≤ C|x(p)− x(q)|.

We will always assume any set Y under consideration to be quasi-convex. By [23, Theorem
4.1], the space of Lipschitz functions on Y is the same as the W 1,∞ space and the norms
are equivalent.

Finally, a function ψ : Y × Sn → R is even if

(2.2) ψ(p,v) = ψ(p,−v) for all (p,v) ∈ Y × Sn.

Observe that an even function is naturally identified with a function on the Grassman n-
plane bundle of Y . We will always assume functions on Y × Sn to be even.

1The cone C may have multiple components and so may Γ±. As Γ− and Γ+ are distinct, that Γ− � Γ+

is equivalent to that Ω−(Γ−) is a proper subset of Ω−(Γ+). However, this does not rule out the possibility
that Γ− = ∂Ω−(Γ−) and Γ+ = ∂Ω−(Γ+) are not disjoint. As Γ− and Γ+ are self-expanders, the strong
maximum principle implies that either Γ− ∩ Γ+ = ∅ or Γ− ∩ Γ+ is the union of pairwise disjoint connected
self-expanders.
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2.6. Main results of [8]. Follow the conventions of Section 2.5. We will need several
results from [8] in the current paper. The first of theses is the existence of the relative ex-
pander entropy in the obstacle setting for domains that are thin at infinity – see Proposition
3.4 and Theorem 3.1 of [8]. Here we identify ψ ∈ Lip(Ω′) with ψ̃ ∈ Lip(Ω′× Sn) so that
ψ̃(p,v) = ψ(p).

Proposition 2.1. There are constants R̄0 = R̄0(Ω′,Γ−) > 1 and C̄0 = C̄0(Ω′,Γ−) > 0
so that if Γ = ∂∗U for some U ∈ C(Γ′−,Γ′+) and ψ ∈ Lip(Ω′) satisfies ψ ≥ 0, then, for
any R2 > R1 + δ > R1 > R̄0,

E[Γ,Γ−;φR2,δψ] ≥ E[Γ,Γ−;φR1,δψ]− C̄0R
−1
1 ‖ψ‖Lip.

As consequences, one has
(1) For any R2 > R1 > R̄0,

Erel[Γ,Γ−; B̄R2 ] ≥ Erel[Γ,Γ−; B̄R1 ]− C̄0R
−1
1 .

In particular, Erel[Γ,Γ−] = limR→∞Erel[Γ,Γ−; B̄R] exists (possibly positive
infinite) and, for any R > R̄0, satisfies the estimate

Erel[Γ,Γ−] ≥ Erel[Γ,Γ−; B̄R]− C̄0R
−1.

(2) For any δ > 0, limR→∞E[Γ,Γ−;φR,δ] = Erel[Γ,Γ−].

We also need the following weighted estimate – see Propositions 4.6 and 4.8 as well as
Theorem 4.1 of [8].

Proposition 2.2. There are constants R̄1 = R̄1(Ω′,Γ−) > 1 and C̄1 = C̄1(Ω′,Γ−) > 0
so that if Γ = ∂∗U for some U ∈ C(Γ′−,Γ′+) and ψ ∈ X(Ω′), then the following is true:

(1) For any R2 > R1 > R1 − δ > 1
2R1 > R̄1,

|E[Γ,Γ−;αR1,R2,δψ]| ≤ C̄1

(
R−1

1 + |E[Γ,Γ−;αR1,R2,δ]|
)
‖ψ‖X;

(2) For any 0 < δ < 1 and R > R̄1,

|E[Γ,Γ−;φR,δψ]| ≤ C̄1 (1 + |E[Γ,Γ−;φR,δ]|) ‖ψ‖X;

(3) If, in addition, Erel[Γ,Γ−] <∞, then Erel[Γ,Γ−;ψ] exists and

|Erel[Γ,Γ−;ψ]| ≤ C̄1 (1 + |Erel[Γ,Γ−]|) ‖ψ‖X.
A key ingredient in the proofs of Propositions 2.1 and 2.2 is the existence of a “good”

vector field near infinity compatible with the self-expander Γ− – see [8, Proposition 3.3].

Lemma 2.3. There are constants R̄2 = R̄2(Ω′,Γ−) > 1 and C̄2 = C̄2(Ω′,Γ−) > 0 and
a smooth vector field N : Ω′\B̄R̄2

→ Rn+1 that satisfies:
(1) |N| = 1;
(2) N|Γ− = nΓ− ;
(3) |x ·N|+

∑3
i=1 |∇iN| ≤ C̄2(1 + |x|)−1.

Finally, we need the following result – see [8, Proposition 6.3] – which implies that for
(possibly singular) hypersurfaces that are “reasonable” near infinity the relative entropy is
finite.

Proposition 2.4. Fix K̄0 > 0 and R̄0 > 1. There is a radius R̄1 = R̄1(Ω′,Γ−, K̄0, R̄0) >
R̄0 and a constant K̄1 = K̄1(Ω′,Γ−, K̄0) > 0 so that if Γ is a hypersurface in Rn+1\B̄R̄0

trapped between Γ′− \ B̄R̄0
and Γ′+ \ B̄R̄0

that is asymptotic to C and satisfies

sup
p∈Γ

(1 + |x(p)|)|AΓ(p)| ≤ K̄0,
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then, for any R2 > R1 > R̄1 and 0 < δ < 1,

|E[Γ,Γ−;αR1,R2,δ]| ≤ K̄1R
−2
1 .

3. EXPANDER MEAN CONVEX FOLIATIONS AND A THICKENING OF Ω

Continue to use the conventions of Section 2.5. In Theorem 1.1 we are asked to find a
new self-expander lying in the closed set Ω̃ = Ω+(Γ−) ∩ Ω−(Γ+) where Γ+ and Γ− are
two strictly stable self-expanders. For technical reasons it is more convenient to work with
a slightly “thicker” region Ω′ that has good properties: Namely, it is thin at infinity relative
to Γ−, a certain modification of the radial vector field x points out of the region near
infinity, and Ω′ ∩ Ω−(Γ−) and Ω′ ∩ Ω+(Γ+) can be foliated in a certain way by expander
mean convex hypersurfaces. The purpose of this section is to establish the existence of
such a region Ω′.

We use the vector field N given by Lemma 2.3 to define the following modification of
the radial vector field near infinity of Γ−

(3.1) X0 = x− (x ·N)N.

Observe X0 is tangent to Γ−. The main result of this section is the following:

Proposition 3.1. There exist open subsets Ω′ and Ω′′ of Rn+1 so that Ω̃ ⊂ Ω′ and Ω′ ⊂ Ω′′

and with the following properties:
(1) Ω′′∩Ω±(Γ±) is foliated byC2-asymptotically conical hypersurfaces, {Γ±s }s∈[0,1]

with Γ±0 = Γ± and C(Γ±s ) = C(Γ±) = C and, for each s > 0, Γ±s has expander
mean curvature pointing toward Γ±;

(2) Ω′ is thin at infinity relative to Γ− so there are constants R0 > 1 and C0 > 0 so
that, for all R > R0, Ω′ \BR ⊂ T

C0R−n−1e−
R2
4

(Γ−);

(3) For each s ∈ (0, 1], there is a radiusR(s) > 0 so that Γ±s ∩ Ω′ ⊂ BR(s);
(4) There is a radiusR1 > 1 so that, outside of BR1

, X0 points out of Ω′.

We start with some basic estimates for the lowest eigenfunction of the stability operator
on a connected self-expander. For a self-expander Γ, let

LΓ = ∆Γ +
x

2
· ∇Γ + |AΓ|2 −

1

2
be the stability operator on Γ. For integer l ≥ 0, define the weighted Sobolev space on
Y ⊆ Γ by

W l(Y ) =
{
f ∈ H l

loc(Y ) : ‖f‖W l <∞
}

where

‖f‖W l =

∫
Y

∑
0≤i≤l

|∇iΓf |2e
|x|2

4 dHn
 1

2

.

Observe W l is the same as the Banach space W l
1
4

introduced in our earlier work [6].

Proposition 3.2. If Γ is a C2-asymptotically conical connected self-expander in Rn+1,
then there is a unique µ > −∞ and a unique function f > 0 on Γ so that

(LΓ + µ) f = 0 with ‖f‖W 0 = 1.

Moreover, there is a constant C ′0 = C ′0(Γ, µ) > 0 so that

(3.2)
1

C ′0

(
1 + r2

)− 1
2 (n+1−2µ)

e−
r2

4 ≤ f ≤ C ′0
(
1 + r2

)− 1
2 (n+1−2µ)

e−
r2

4
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and, for any δ > 0, there are constants C ′m = C ′m(Γ, µ, δ) > 0 for m ≥ 1 so that

(3.3) ‖e
r2

4+δ∇mΓ f‖C0 ≤ C ′m
where r(p) = |x(p)| for p ∈ Γ. We call µ and f the first eigenvalue and eigenfunction,
respectively, of LΓ.

Proof. As Γ is C2-asymptotically conical

(3.4) sup
p∈Γ

(1 + |x(p)|2)|AΓ(p)|2 <∞.

Thus, by standard spectral theory (e.g., [6, Lemma 4.1]), LΓ is formally self-adjoint in
W 0(Γ) and has a discrete spectrum with a finite lower bound. Hence, there is a unique
µ > −∞ and, as Γ is connected, a unique positive function f ∈W 1(Γ) so that

(LΓ + µ) f = 0 distributionally and ‖f‖W 0 = 1.

As Γ is a self-expander, it is smooth and properly embedded and so standard elliptic regu-
larity theory implies f ∈ C∞loc(Γ).

Let

g =
(
r−n−1+2µ + r−n−2+2µ

)
e−

r2

4 and g =
(
r−n−1+2µ − r−n−2+2µ

)
e−

r2

4 .

By the curvature decay (3.4), a simple computation in [8, Lemma A.1] and a slight mod-
ification of the proof of [6, Proposition A.1], there are constants R0 = R0(Γ, µ) > 1 and
C = C(Γ, f, µ) > 1 so that:

• In Γ \BR0 , − 1
2 + µ+ |AΓ|2 < µ;

• In Γ \BR0
,

1

2
(1 + r2)−

1
2 (n+1−2µ)e−

r2

4 ≤ g < g ≤ 2(1 + r2)−
1
2 (n+1−2µ)e−

r2

4 ;

• In Γ \BR0
, (LΓ + µ) g < 0 < (LΓ + µ) g;

• On Γ ∩ ∂BR0
, C−1g ≤ f ≤ Cg;

• If h ∈ C2(Γ \BR0
) ∩W 1(Γ \BR0

) satisfies h = 0 on Γ ∩ ∂BR0
, then∫

Γ\BR0

h2e
r2

4 dHn ≤ 1

|µ|+ 1

∫
Γ\BR0

|∇Γh|2e
r2

4 dHn.

Choose a sequence of numbers, Ri > R0, so that Ri →∞. As f ∈ C∞loc(Σ), the Dirichlet
problem  (LΓ + µ) gi = 0 in Γ ∩ (BRi \ B̄R0

)
gi = f on Γ ∩ ∂BR0

gi = Cg on Γ ∩ ∂BRi
has a unique smooth solution gi. To see this observe that if v satisfies

0 = L 0
Γ v + 2∇Γ log g · ∇Γv +

(LΓ + µ)g

g
v = L 0

Γ v + b · ∇Γv + cv,

where L 0
Γ = ∆Γ + x

2 ·∇Γ, then (LΓ +µ)(gv) = 0. As c = g−1(LΓ +µ)g < 0, it follows
from standard elliptic PDE theory that L 0

Γ vi + b · ∇Γvi + cvi = 0 in Γ ∩ (BRi \ B̄R0
)

vi = g−1f on Γ ∩ ∂BR0

vi = C on Γ ∩ ∂BRi
has a unique solution vi. Hence, gi = gvi are the claimed solutions. Moreover, by the
maximum principle, as c ≤ 0, 0 < vi ≤ C and so 0 < gi ≤ Cg.
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In a similar fashion, wi = g−1gi > 0 satisfies

0 = L 0
Γwi + 2∇Γ log g · ∇Γwi +

(LΓ + µ)g

g
wi.

As g−1((LΓ + µ)g) > 0, there are no interior minima for wi and so wi ≥ C−1. Hence,

C−1g ≤ gi ≤ Cg.
It follows from the Schauder estimates [20, Theorem 6.2] and the Arzelà-Ascoli theo-

rem that, up to passing to a subsequence, the gi converges in C∞loc(Γ) to a function g which
satisfies {

(LΓ + µ) g = 0 in Γ \ B̄R0

g = f on Γ ∩ ∂BR0

and C−1g ≤ g ≤ Cg in Γ \BR0
.

Next we show g = f in Γ \ B̄R0
, from which the C0 estimate of f follows easily.

Observe that, by the Schauder estimates, one has g ∈ W 1(Γ \ BR0
) ∩ C2(Γ \ BR0

). Set
h = g − f . Thus, h ∈W 1(Γ \BR0) ∩ C2(Γ \BR0) with h = 0 on Γ ∩ ∂BR0 , and

(LΓ + µ)h = e−
r2

4 divΓ

(
e
r2

4 ∇Γh
)

+

(
|AΓ|2 −

1

2
+ µ

)
h = 0.

Hence, multiplying the above equation by he
r2

4 and integrating by parts (which is justified
by our hypotheses on h) give∫

Γ\BR0

(
|∇Γh|2 +

(
1

2
− µ− |AΓ|2

)
h2

)
e
r2

4 dHn = 0.

The choice of R0 ensures 1
2 − µ− |AΓ|2 > −|µ| in Γ \BR0

and∫
Γ\BR0

h2e
r2

4 dHn ≤ 1

|µ|+ 1

∫
Γ\BR0

|∇Γh|2e
r2

4 dHn.

It follows that

0 ≥
∫

Γ\BR0

|∇Γh|2e
r2

4 dHn − |µ|
∫

Γ\BR0

h2e
r2

4 dHn ≥
∫

Γ\BR0

h2e
r2

4 dHn

and so h = 0. Hence, setting

C = sup
BR0
∩Γ

(
(1 + r2)

1
2 (n+1−2µ)e

r2

4 f
)

and C = inf
BR0
∩Γ

(
(1 + r2)

1
2 (n+1−2µ)e

r2

4 f
)
,

the first estimate holds with

C ′0 = max
{

2C,C,C−1
}
.

Finally, in view of (2.1), the claimed estimates on derivatives of f follow from the C0

estimate of f and the Schauder estimates. �

We then use the first eigenfunction of the stability operator and its estimates to produce
good foliations on either side of a strictly stable self-expander.

Lemma 3.3. Let Γ ⊂ Rn+1 be a strictly stable self-expander C2-asymptotic to C. There
are positive constants ε0 = ε0(Γ) and c0 = c0(Γ) and a family of hypersurfaces {Γs}s∈[−ε0,ε0]

so that:
(1) Γ0 = Γ;
(2) {Γs}s∈[−ε0,ε0] is a foliation;
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(3) Each Γs is C2-asymptotically conical with C(Γs) = C;
(4) For s 6= 0, Γs has expander mean curvature pointing toward Γ0, i.e., the expander

mean curvature of Γs points inward the domain bounded by Γs and Γ0;
(5) For p ∈ Γs,

dist(p,Γ) ≥ c0|s|(1 + |x(p)|2)−
1
2 (n+1)+2c0e−

|x(p)|2
4 .

Proof. Suppose Γ =
⋃

1≤j≤M Γj where the Γj are disjoint connected components of Γ.
Let µj and fj be the first eigenvalue and eigenfunction, respectively, of LΓj that are given
by Proposition 3.2. As Γ is strictly stable, so is each Γj and so µj > 0. Define positive
functions µ and f on Γ by, for p ∈ Γj , µ(p) = µj and f(p) = fj(p). There is an ε0 ∈ (0, 1)
so that, for all s ∈ [−ε0, ε0],

Γs = {fs(p) = x(p) + sf(p)nΓ(p) : p ∈ Γ}

is a hypersurface in Rn+1. As f > 0 one has a foliation {Γs}s∈[−ε0,ε0] and so Items (1)
and (2) hold. Using estimates of f one readily checks Item (3) holds. Moreover, choosing
c0 = min {1/C ′0, µ, 1}, one immediately has that Item (5) holds.

Finally, shrinking ε0, if needed, and appealing to [8, Lemma A.2], one has that the
expander mean curvature of Γs is given by, at p ∈ Γ,(

HΓs +
x

2
· nΓs

)
◦ fs = −sLΓf + s2Q(f,x · ∇Γf,∇Γf,∇2

Γf)

where, for some C = C(Γ) > 0,

|Q| ≤ C
(
|f |+ |x · ∇Γf |+ |∇Γf |+ |∇2

Γf |
)

(|f |+ |∇Γf |) .

By the properties of f , there is a constant C ′ = C ′(Γ, µ) > 0 so that

|Q| ≤ C ′e−
|x|2

3 and f ≥ 1

C ′
e−
|x|2

3 .

Thus, as µ > 0, if s ∈ (0, ε0], then(
HΓs +

x

2
· nΓs

)
◦ fs(p) ≥

sµ

C ′
e−
|x(p)|2

3 − s2C ′e−
|x(p)|2

3 ;

if s ∈ [−ε0, 0), then(
HΓs +

x

2
· nΓs

)
◦ fs(p) ≤

sµ

C ′
e−
|x(p)|2

3 + s2C ′e−
|x(p)|2

3 .

Hence, up to further shrinking ε0 so that µ
C′ ≥ 2ε0C

′, for all s ∈ (0, ε0],(
HΓs +

x

2
· nΓs

)
◦ fs(p) ≥

sµ

2C ′
e−
|x(p)|2

3 > 0

and, for all s ∈ [−ε0, 0),(
HΓs +

x

2
· nΓs

)
◦ fs(p) ≤

sµ

2C ′
e−
|x(p)|2

3 < 0.

That is, Item (4) holds. �

We next show we can perturb an asymptotically conical self-expander, Γ, on both sides
to produce a region enclosed by the two perturbations that is thin at infinity relative to
Γ and so the outward unit normal of the region points asymptotically more in the radial
direction.
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Lemma 3.4. Let Γ ⊂ Rn+1 be a C2-asymptotically conical self-expander. Given a con-
stant κ > 0, there is a radiusR2 = R2(Γ, κ) > 1 and a constant C1 = C1(Γ) > 0 so that
if

ϕ = κ|x|−n−1e−
|x|2

4 ,

then
Σ± =

{
x(q)± ϕ(q)nΓ(q) : q ∈ Γ\B̄R2

}
are hypersurfaces and, for p ∈ Σ±,∣∣∣∣nΣ±(p)− nΓ(ΠΓ(p))∓ x(p)

2
ϕ(p)

∣∣∣∣ ≤ C1|x(p)|−1ϕ(p)

where ΠΓ is the nearest point projection to Γ.

Proof. As Γ is C2-asymptotically conical, there is an ε = ε(Γ) ∈ (0, 1) so that Tε(Γ) is a
regular neighborhood of Γ. Pick anR2 = R2(Γ, κ) > 1 large enough so that

sup
Γ\B̄R2

(ϕ+ |∇Γϕ|) < ε.

It follows that
Σ± =

{
x(q)± ϕ(q)nΓ(q) : q ∈ Γ\B̄R2

}
are smooth hypersurfaces. There is a constant K0 = K0(Γ) so that if p ∈ Σ± and q =
ΠΓ(p), then

|nΣ±(p)− (nΓ(q)∓∇Γϕ(q))| = |nΣ±(p)− nΓ(q)±∇Γϕ(q)|
≤ K0

(
|ϕ(q)|2 + |∇Γϕ(q)|2

)
.

(3.5)

See [44, (2.27)-(2.28)] for a derivation of this estimate.
Up to increasingR2, one may ensure that, for p ∈ Σ±,

(3.6) |ΠΓ(p)− x(p)|+ |ϕ(ΠΓ(p))|+ |∇Γϕ(ΠΓ(p))| ≤ |x(p)|−3 < 1 <
1

2
|x(p)|.

It follows that there is a constant K1 = K1(n) > 0 so that for such p

(3.7) |ϕ(p)− ϕ(ΠΓ(p))| ≤ K1|x(p)|−2ϕ(p)

and thus

(3.8) |ϕ(ΠΓ(p))|2 ≤ |x(p)|−3
(
1 +K1|x(p)|−2

)
ϕ(p).

Moreover, as Γ is a C2-asymptotically conical self-expander, there is a constant K2 =
K2(Γ) so that, for all q ∈ Γ\B̄R2

,

|x(q) · nΓ(q)| = 2|HΓ(q)| ≤ K2|x(q)|−1.

Hence, as

∇Γϕ = −x>

2
ϕ− (n+ 1)x>|x|−2ϕ

it follows that there is a K3 = K3(Γ) so that, for q ∈ Γ\B̄R2
,∣∣∣∣∇Γϕ(q) +

x(q)

2
ϕ(q)

∣∣∣∣ ≤ K3|x(q)|−1ϕ(q).

This together with (3.6)-(3.7) implies that, for p ∈ Σ±,

(3.9)
∣∣∣∣∇Γϕ(ΠΓ(p)) +

x(p)

2
ϕ(p)

∣∣∣∣ ≤ K4|x(p)|−1ϕ(p)

for some K4 = K4(Γ).
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Therefore, combining (3.5)-(3.9) implies that there is a K5 = K5(Γ) so that if p ∈ Σ±,
then ∣∣∣∣nΣ±(p)− nΓ(ΠΓ(p))∓ x(p)

2
ϕ(p)

∣∣∣∣ ≤ K5|x(p)|−1ϕ(p).

The result follows by setting C1 = K5. �

Proof of Proposition 3.1. Let {Υ±s }s∈[−ε±0 ,ε
±
0 ] be the foliation given by Lemma 3.3 using

Γ = Γ± with the corresponding constants ε±0 and c±0 . Set ε0 = min
{
ε+0 , ε

−
0

}
and c0 =

min
{
c+0 , c

−
0

}
. Set

Γ±s = Υ±±ε0s.

Let

Ω′′ = Ω−(Γ+
1 ) ∩ Ω+(Γ−1 ),

and this region satisfies Item (1) by construction.
By [8, Proposition 2.1] there is a radius R0 = R0(Γ−,Γ+) > 1 and a constant K0 =

K0(Γ−,Γ+) > 0 and a function u : Γ−\B̄R0
→ R so that

Γ+ \ B̄2R0 ⊂
{
x(p) + u(p)nΓ−(p) : p ∈ Γ− \ B̄R0

}
⊂ Γ+

and u satisfies

|u| ≤ K0|x|−n−1e−
|x|2

4 .

With Γ = Γ− and κ = 2K0 apply Lemma 3.4 to produce a function ϕ, a radiusR2 > 1
and hypersurfaces Σ− and Σ+. Observe that outside B̄R with R = 2 max {R0,R2}, the
choice of ϕ ensures that Σ− is the graph of −ϕ over Γ− lying entirely inside Ω−(Γ−),
while Σ+ is the graph of ϕ over Γ− and Σ+ lies, by construction, entirely within Ω+(Γ+).
Observe that the growth rate of ϕ and Item (5) of Lemma 3.3 ensure that, up to increasing
R, one may take Σ± ⊂ Ω′′. For the same reason, Ω+(Γ+

s )∩Σ+ is contained in a compact
set for all s 6= 0 and the same is true of Ω−(Γ−s ) ∩ Σ−.

PickR′ ≥ R, so there is a function v+ : Γ+\B̄R′ → R so that

Σ+ \ B̄2R′ ⊂
{
x(p) + v+(p)nΓ+

(p) : p ∈ Γ+ \ B̄R′
}
.

Set v− = −ϕ so the graph of v− over Γ− is a subset of Σ−.
By using cutoffs appropriately, one may extend v± to functions v̂± : Γ± → R so that

v̂± = v± outside B̄2R′ , v̂+ > 0 > v̂− and

Γ′± =
{
x(p) + v̂±nΓ±(p) : p ∈ Γ±

}
are smooth hypersurfaces contained in Ω′′. In particular, up to increasing R′, one has
Γ′− \BR′ = Σ− \BR′ and Γ′+ \BR′ = Σ+ \BR′ . Clearly, Γ′± are asymptotically conical
with asymptotic cone C. Let

Ω′ = Ω+(Γ′−) ∩ Ω−(Γ′+).

By construction one has Ω̃ ⊂ Ω′ and Ω′ ⊂ Ω′′ and Ω′ is thin at infinity relative to Γ−.
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Finally, as X0 ·N = 0 and N|Γ− = nΓ− , outside of BR1
where R1 ≥ 2R′ > 2 one

has, by the construction of Σ±,∣∣∣∣X0 · nΣ± ∓
1

2
|x|2ϕ

∣∣∣∣ =

∣∣∣∣X0 · (nΣ± −N)∓ 1

2
|x|2ϕ

∣∣∣∣
=

∣∣∣∣X0 · (nΣ± −N)∓ 1

2

(
X0 · x + (x ·N)2

)
ϕ

∣∣∣∣
≤ |X0|

∣∣∣∣nΣ± −N∓ 1

2
xϕ

∣∣∣∣+
1

2
|X0||x ·N|2ϕ

≤ 2|x|
∣∣∣∣nΣ± −N∓ 1

2
xϕ

∣∣∣∣+ C̄2|x|−2ϕ

≤ 2|x|
∣∣∣∣nΣ± − nΓ− ◦ΠΓ− ∓

1

2
xϕ

∣∣∣∣+ 2|x||N ◦ΠΓ− −N|+ C̄2|x|−2ϕ

≤ (2C1 + C̄2)ϕ

where C̄2 is the constant given by Lemma 2.3. It follows that, up to increasingR1, one has

X0 · nΣ+ ≥ 1

4
|x|2ϕ > 0 while X0 · nΣ− ≤ −

1

4
|x|2ϕ < 0.

Hence, outside of BR1
, X0 points out of Ω′. �

4. FUNCTION SPACES

We introduce several function spaces that extend the space X. In the next sections we
will study deformation properties in these spaces. In what follows we use the conventions
of Section 2.5.

4.1. The space Y. First of all we introduce the following norm on C0(Y × Sn) where Y
is a quasi-convex unbounded domain in Rn+1. For ψ ∈ C0(Y × Sn) let

‖ψ‖W = sup
(p,v)∈Y×Sn

(|x(p)|+ 1)n+1e
|x(p)|2

4 |ψ(p,v)| .

Let
W(Y ) =

{
ψ ∈ C0(Y × Sn) : ‖ψ‖W <∞

}
be the space of rapidly decaying continuous functions. It is readily checked that W(Y ) is
a Banach space.

Notice that X(Y ) ∩W(Y ) is non-empty, and X(Y ) and W(Y ) are both continuously
embedded in C0(Y × Sn). We introduce the following natural norm on the vector space
Y′(Y ) = X(Y ) + W(Y ):

‖ψ‖Y = inf {‖ζ‖X + ‖ξ‖W : ψ = ζ + ξ} .
It follows from the interpolation theory, [3, Chapter 3, Theorem 1.3], that Y′(Y ) with
this norm is a Banach space. Although in general Y′(Y ) is not separable, we have the
following result:

Proposition 4.1. There is a closed subspace Y(Y ) ⊆ Y′(Y ) defined by

Y(Y ) = spanR {1} ⊕Y0(Y ) = {c1 + ψ : c ∈ R, ψ ∈ Y0(Y )}
where 1 is the constant function equal to 1 and Y0(Y ) is the closure of C0

c (Y × Sn) in
Y′(Y ). The space Y(Y ) satisfies

(1) C0
c (Y × Sn) ⊆ Y(Y );
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(2) 1 ∈ Y(Y ) and ‖1‖Y = 1;
(3) For ψ ∈ Y0(Y ), 1

3 (|c|+ ‖ψ‖Y) ≤ ‖c1 + ψ‖Y ≤ |c|+ ‖ψ‖Y;
(4) Y(Y ) is an algebra and ‖ψ1ψ2‖Y ≤ ‖ψ1‖Y‖ψ2‖Y;
(5) Y(Y ) is separable;
(6) C∞c (Y × Sn) is dense in Y0(Y ).

Proof. The first property is immediate from the definition. The second is a consequence of
the fact that ‖1‖X = 1, Y is an unbounded domain and elements of W decay rapidly. In
particular, if 1 = ξ+ ζ for ξ ∈W and ζ ∈ X, then limp→∞ ζ(p,v) = 1 and so ‖ζ‖X ≥ 1.
For the third item, observe that, by the triangle inequality and the second item,

‖c1 + ψ‖Y ≤ |c|+ ‖ψ‖Y.

This verifies the second inequality. As elements of Y0(Y ) must decay as one approaches
infinity, arguing as in the second item gives ‖c1 + ψ‖Y ≥ |c|. If ‖ψ‖Y ≤ 2|c|, then the
first inequality follows. Suppose ‖ψ‖Y > 2|c|. By the triangle inequality,

‖c1 + ψ‖Y + ‖ − c1‖Y ≥ ‖ψ‖Y ≥
1

3
(|c|+ ‖ψ‖Y) + |c|.

Hence, the first inequality follows from the second item and rearranging the above inequal-
ities. This proves the third item.

The fourth follows from the definition of the Y norm and Y(Y ) and the fact that both
W(Y ) and X(Y ) are algebras while 1 is the multiplicative identity. Indeed, one readily
checks that if ξ ∈ X(Y ) and ζ ∈ W(Y ), then ξζ ∈ W(Y ) and with estimate ‖ξζ‖W ≤
‖ξ‖X‖ζ‖W. By definition, for ψi ∈ Y(Y ) and ε > 0, there are ξi ∈ X(Y ) and ζi ∈W(Y )
so that ψi = ξi + ζi and ‖ξi‖X + ‖ζi‖W ≤ ‖ψi‖Y + ε, for i = 1, 2. Hence,

‖ψ1ψ2‖Y ≤ ‖ξ1ξ2‖Y + ‖ξ1ζ2‖Y + ‖ξ2ζ1‖Y + ‖ζ1ζ2‖Y
≤ ‖ξ1ξ2‖X + ‖ξ1ζ2‖W + ‖ξ2ζ1‖W + ‖ζ1ζ2‖W
≤ ‖ξ1‖X‖ξ2‖X + ‖ξ1‖X‖ζ2‖W + ‖ξ2‖X‖ζ1‖W + ‖ζ1‖W‖ζ2‖W
≤ (‖ψ1‖Y + ε)(‖ψ2‖Y + ε).

Sending ε to zero gives desired estimate. This immediately implies Y0(Y ) is an algebra.
Finally, if ψi = ci1 + ζi where ci ∈ R and ζi ∈ Y0(Y ), then ψ1ψ2 = c1c21 + c1ζ2 +
c2ζ1 + ζ1ζ2 ∈ Y(Y ) as claimed.

For the fifth and sixth items observe that

C0
c (Y × Sn) =

∞⋃
i=1

C0
c ((Bi ∩ Y )× Sn).

By the Stone-Weierstrass theorem, eachXi = C0
c ((Bi∩Y )×Sn) is separable with respect

to the uniform topology andX ′i = C∞c ((Bi∩Y )×Sn) is dense with respect to the uniform
topology. As the W norm is equivalent to the uniform norm on Xi, each Xi is separable
when equipped with the W norm and X ′i is dense in Xi with respect to this norm. As
‖φ‖Y ≤ ‖φ‖W for any φ ∈ Xi by the definition of the norms, one has immediately thatXi

with the Y norm is separable and X ′i is dense with respect to this norm. As C0
c (Y ×Sn) is

the union of countably many Xi, it follows that C0
c (Y ×Sn) with the Y norm is separable.

In a similar fashion as C∞c (Y × Sn) =
⋃∞
i=1X

′
i , this space is dense in C0

c (Y × Sn) with
the Y norm and hence also in Y0(Y ). As Y0(Y ) is the completion of a separable space it
is separable. The separability of Y(Y ) is immediate. �
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4.2. Weighted estimates for elements of Y. Given Y(Y ) as in Proposition 4.1, let Y∗(Y )
denote its continuous dual space which is defined as the space of all continuous linear
functionals V : Y(Y )→ R associating to each ψ ∈ Y(Y ) a real number V [ψ]. The space
Y∗(Y ) is equipped with the dual norm

‖V ‖Y∗ = sup {V [ψ] : ψ ∈ Y(Y ), ‖ψ‖Y ≤ 1} .
We extend Proposition 2.2 to elements of Y to obtain the following:

Proposition 4.2. There is a constant C2 = C2(Ω′,Γ−) > 0 so that if Γ = ∂∗U for some
U ∈ C(Γ′−,Γ′+), then, for any ψ ∈ Y(Ω′),

(1) For any R2 > R1 > R1 − δ > 1
2R1 > R̄1,

|E[Γ,Γ−;αR1,R2,δψ]| ≤ C2

(
R−1

1 + |E[Γ,Γ−;αR1,R2,δ]|
)
‖ψ‖Y;

(2) For any 0 < δ < 1 and R > R̄1,

|E[Γ,Γ−;φR,δψ]| ≤ C2 (1 + |E[Γ,Γ−;φR,δ]|) ‖ψ‖Y;

(3) If, in addition, Erel[Γ,Γ−] <∞, then Erel[Γ,Γ−;ψ] exists and

|Erel[Γ,Γ−;ψ]| ≤ C2 (1 + |Erel[Γ,Γ−]|) ‖ψ‖Y.

In particular, for such Γ there is a well defined element VΓ ∈ Y∗(Ω′) given by

VΓ[ψ] = Erel[Γ,Γ−;ψ]

that satisfies
‖VΓ‖Y∗ ≤ C2 (1 + |Erel[Γ,Γ−]|) .

Here R̄1 = R̄1(Ω′,Γ−) is the constant given by Proposition 2.2.

Proof. By linearity and Proposition 2.2, it suffices to show the claims for elements ξ ∈
W(Ω′) in the W norm. It is convenient to set

γ(p) = (1 + |x(p)|)−n−1e−
|x(p)|2

4 > 0.

Observe that
‖ξ‖W = ‖ξγ−1‖C0 .

We compute, for a continuous compactly supported function φ ≥ 0,

|E[Γ,Γ−;φξ]| =

∣∣∣∣∣
∫

Γ

φξe
|x|2

4 dHn −
∫

Γ−

φξe
|x|2

4 dHn
∣∣∣∣∣

≤ ‖ξ‖W
∫

Γ

φγe
|x|2

4 dHn + ‖ξ‖W
∫

Γ−

φγe
|x|2

4 dHn

= ‖ξ‖WE[Γ,Γ−;φγ] + 2‖ξ‖W
∫

Γ−

φγe
|x|2

4 dHn.

(4.1)

One readily checks that there is a constant K = K(Γ−) > 1 so that

‖γ‖X + sup
R>0

(1 +R)

∫
Γ−\BR

γe
|x|2

4 dHn ≤ K.

Plugging φ = αR1,R2,δ into (4.1), it follows from Item (1) of Proposition 2.2 that, for
any R2 > R1 > R1 − δ > 1

2R1 > R̄1,

(4.2) |E[Γ,Γ−;αR1,R2,δξ]| ≤ C2

(
R−1

1 + |E[Γ,Γ−;αR1,R2,δ]|
)
‖ξ‖W

where C2 = C̄1K + 4K. That is, the first item holds.
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Similarly, plugging φ = φR,δ into (4.1) and appealing to Item (2) of Proposition 2.2
give that, for any δ ∈ (0, 1) and R > R̄1,

(4.3) |E[Γ,Γ−;φR,δξ]| ≤ C2 (1 + |E[Γ,Γ−;φR,δ]|) ‖ξ‖W.
This proves the second item.

To see the last item, sending δ → 0 in (4.2), it follows from the dominated convergence
theorem that∣∣Erel[Γ,Γ−; ξ; B̄R2

\ B̄R1
]
∣∣ ≤ C2

(
R−1

1 +
∣∣Erel[Γ,Γ−; B̄R2

\ B̄R1
]
∣∣) ‖ξ‖W.

As Erel[Γ,Γ−] < ∞, this implies that Erel[Γ,Γ−; ξ] exists. Finally, sending δ → 0 and
R→∞ in (4.3) gives that

|Erel[Γ,Γ−; ξ]| ≤ C2 (1 + |Erel[Γ,Γ−]|) ‖ξ‖W.
This completes the proof. �

4.3. Relative expander entropy of elements of Y∗. We extend the notion of relative ex-
pander entropy to elements of Y∗(Ω′). Notice that C0

c ((BR ∩Ω′)×Sn) with the C0 norm
is continuously embedded in Y(Ω′). Thinking of continuous functions on the Grassman-
nian bundle of n-planesGn(BR) as even elements of C0

c ((BR∩Ω′)×Sn), it follows from
the Riesz representation theorem (see, e.g., [40, Chapter 1, Theorem 4.1]) that, for any
V ∈ Y∗(Ω′),

V [B̄R] = V [B̄R × Sn] = lim
δ→0

V [φR,δ].

Furthermore, one can define

Erel[V ] = lim sup
R→∞

V [B̄R]

and
Erel[V ] = lim inf

R→∞
V [B̄R].

If Erel[V ] = Erel[V ], then we set Erel[V ] = limR→∞ V [B̄R].
Using Proposition 4.2, one may define, for Λ ≥ 0,

Y∗C(Ω
′; Λ) =

{
VΓ : Γ = ∂∗U,U ∈ C(Γ′−,Γ′+), |Erel[Γ,Γ−]| ≤ Λ

}
⊆ Y∗(Ω′).

Let Y∗C(Ω′; Λ) be the closure of Y∗C(Ω′; Λ) in the weak-* topology of Y∗(Ω′). Observe
that if VΓi ∈ Y∗C(Ω

′; Λ) satisfy VΓi → V in the weak-* topology, then

lim
i→∞

Erel[VΓi ] = lim
i→∞

VΓi [1] = V [1].

However, for V ∈ Y∗C(Ω
′; Λ) one, in principle, may have

Erel[V ] < Ērel[V ] 6= V [1].

Let V EΓ− be a (weighted) varifold such that, for any ψ ∈ C0
c (Ω′ × Sn),

V EΓ− [ψ] =

∫
Γ−

ψ(p,nΓ−(p))e
|x|2

4 dHn.

In fact, one has that

Lemma 4.3. Given V ∈ Y∗C(Ω
′; Λ), the following holds:

(1) There is a (weighted) varifold V E+ so that, for any (even) ψ ∈ C0
c (Ω′ × Sn),

V [ψ] = V E+ [ψ]− V EΓ− [ψ] = V E+ [ψ]−
∫

Γ−

ψ(p,nΓ−(p))e
|x|2

4 dHn;
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(2) There is a constant E− = E−(Ω′,Γ−) ≤ 0 so that

−∞ < E− ≤ Erel[V ] = Erel[V ] ≤ V [1] ≤ Λ.

In particular, Erel[V ] exists and is finite. Moreover, for any R2 > R1 > R̄0,

V [B̄R2
] ≥ V [B̄R1

]− C̄0R
−1
1 ,

where R̄0 = R̄0(Ω′,Γ−) and C̄0 = C̄0(Ω′,Γ−) are the constants given by Propo-
sition 2.1.

Proof. Let VΓi ∈ Y∗C(Ω
′; Λ) satisfy VΓi → V in the weak-* topology of Y∗(Ω′). By

Proposition 2.1, for any R > R̄0,

Λ ≥ Erel[Γi,Γ−] ≥ Erel[Γi,Γ−; B̄R]− C̄0R
−1

and so

V EΓi [B̄R] =

∫
Γi∩B̄R

e
|x|2

4 dHn ≤ C

where C depends on Ω′,Γ−,Λ and R. Thus, up to passing to a subsequence, V EΓi → V E+
in the sense of varifolds so, for any (even) ψ ∈ C0

c (Ω′ × Sn) ⊆ Y(Ω′),

V [ψ] = lim
i→∞

VΓi [ψ] = lim
i→∞

V EΓi [ψ]− V EΓ− [ψ] = V E+ [ψ]− V EΓ− [ψ]

where the first equality uses the weak-* convergence VΓi → V in Y∗(Ω′). This proves the
first item.

To prove the inequalities in the second item, observe that the upper bound of V [1] is
immediate from the weak-* convergence. To see the lower bound, appealing to Proposition
2.1 gives that, for any R2 > R1 + δ > R1 > R̄0 and all i,

(4.4) VΓi [φR2,δ] ≥ VΓi [φR1,δ]− C̄0R
−1
1 .

Sending R2 →∞ and invoking Proposition 2.1, one sees

VΓi [1] ≥ VΓi [φR1,δ]− C̄0R
−1
1 .

It then follows from the weak-* convergence that

V [1] ≥ V [φR1,δ]− C̄0R
−1
1 .

As φR,δ ≤ φR,δ′ for δ′ < δ and limδ→0 φR,δ = 1B̄R , the dominated convergence theorem
combined with the previous inequality yields

V [1] ≥ V [B̄R1
]− C̄0R

−1
1 .

Hence, taking the limsup of both sides as R1 → ∞, gives V [1] ≥ Erel[V ] proving the
claimed lower bound.

To prove the middle equality, it follows from (4.4) and the weak-* convergence that

V [φR2,δ] ≥ V [φR1,δ]− C̄0R
−1
1 .

Thus, sending δ → 0, by the dominated convergence theorem,

(4.5) V [B̄R2
] ≥ V [B̄R1

]− C̄0R
−1
1 .

This implies that
lim inf
R→∞

V [B̄R] ≥ lim sup
R→∞

V [B̄R]

and so Erel[V ] = Erel[V ].
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It remains only to show the uniform lower bound for Erel[V ]. To achieve this, by the
existence of Erel[V ] and the first item, fixing R1 = 2R̄0 and sending R2 → ∞ in (4.5)
imply that

Erel[V ] ≥ V [B̄2R̄0
]− 1

2
C̄0R̄

−1
0 ≥ −V EΓ− [B̄2R̄0

]− 1

2
C̄0R̄

−1
0 .

This immediately gives the uniform lower bound. �

For convenience we will use the following notation: For Γ = ∂∗U whereU ∈ C(Γ′−,Γ′+),
we consider the pair (U, VΓ) ∈ C(Γ′−,Γ′+) × Y∗C(Ω

′; Λ). For a sequence (Ui, VΓi), we
say (Ui, VΓi) → (U∞, V∞) provided 1Ui → 1U∞ in the weak-* topology of BVloc and
VΓi → V∞ in the weak-* topology of Y∗(Ω′). By Lemma 4.3 and Proposition 4.2 together
with the Banach-Alaoglu theorem, we have

Corollary 4.4. If (Ui, VΓi) ∈ C(Γ′−,Γ′+)×Y∗C(Ω′; Λ), then up to passing to a subsequence
there is a (U∞, V∞) ∈ C(Γ′−,Γ′+) × Y∗C(Ω

′; Λ) so that (Ui, VΓi) → (U∞, V∞). For
Γ∞ = ∂∗U∞, VΓ∞ ≤ V∞ in the sense of measures.

5. ACTION OF FLOWS OF VECTOR FIELDS

In this section we study the action of flows of a suitable class of vector fields on ele-
ments of Y∗ and, in particular, prove the first variation formula. We continue to use the
conventions of Section 2.5.

If Φ: Ω′ → Ω′ is a local C1 diffeomorphism, then the Jacobian of Φ with respect to the

expander metric gEij = e
|x|2
2n δij is given by

JEΦ(p,v) = JΦ(p,v)e
1
4 (|Φ(p)|2−|x(p)|2)

where JΦ is the Jacobian of Φ with respect to the Euclidean metric. For a function ψ on
Ω′ × Sn, the pullback of ψ under Φ is given by

Φ#ψ(p,v) = ψ(Φ(p),∇vΦ(p)).

Suppose Φ: Ω′ → Ω′ has the property that for all ψ ∈ Y(Ω′), Φ#ψJEΦ ∈ Y(Ω′). For
such Φ and any V ∈ Y∗(Ω′), we may define the pushforward of V under Φ as follows: for
all ψ ∈ Y(Ω′),

Φ#V [ψ] = V
[
Φ#ψJEΦ

]
.

One readily checks that if Φ isC1 and is fixed outside a compact set, i.e., equals the identity
outside a compact set, then Φ#V is well defined.

We now introduce the class of vector fields whose flow will not be fixed outside a
compact set and that give suitable pushforwards of elements of Y∗(Ω′). To that end let X0

be the vector field of (3.1) and R1 the radius given by Proposition 3.1. Let χ : Rn+1 →
[0, 1] be a smooth cut-off so that spt(χ) ⊂ Rn+1 \ B̄R1

and χ = 1 in Rn+1 \ B̄R1+1. We
then let

Y0 = χ|x|−2X0 = χ|x|−2 (x− (x ·N)N) .

Define
Yt(Ω′) =

{
Y ∈ C∞loc(Ω′;Rn+1) : ‖Y‖Yt

<∞
}

where

‖Y‖Yt
= ‖(1 + |x|)3Y‖C0 +

3∑
l=1

‖(1 + |x|)2∇lY‖C0 .
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Let

Y(Ω′) = spanR {Y0} ⊕ Yt(Ω′) =
{
Y = αY0 + Y1 : α ∈ R,Y1 ∈ Yt(Ω′)

}
with the norm

‖Y‖Y = |α|+ ‖Y1‖Yt
.

Consider the convex cone

Y−(Ω′) =
{
Y ∈ Y(Ω′) : Y · n∂Ω′ ≤ 0

}
⊆ Y(Ω′)

where n∂Ω′ points out of Ω′.
The main result of this section is the following:

Proposition 5.1. Suppose Y = αY0 + Y1 ∈ Y−(Ω′) for α ∈ R and Y1 ∈ Yt(Ω′) that
satisfies, for some constant M0 > 0,

‖Y‖Y = |α|+ ‖Y1‖Yt
≤M0.

Let {Φ(t)}t≥0 be the family of diffeomorphisms in Ω′ generated by Y. Then Φ(t)(Ω′) ⊆
Ω′ and, for any V ∈ Y∗(Ω′), the following is true:

(1) The map t 7→ Φ(t)#V is continuous in the weak-* topology of Y∗(Ω′). Moreover,
given T ≥ 0 there is a constant C3 = C3(Ω′,Γ−,M0, T ) > 0 so that, for all
0 ≤ t ≤ T ,

‖Φ(t)#V ‖Y∗ ≤ C3‖V ‖Y∗ .
(2) The function t 7→ Φ(t)#V [1] is differentiable with

δV [Y] =
d

dt t=0
Φ(t)#V [1] = V

[
divY −Q∇Y +

x

2
·Y
]

where Q∇Y(p,v) = ∇vY(p) · v.

To prove this proposition, we will need several auxiliary lemmas which are of a rather
technical nature and are included in Appendix A.

Proof of Proposition 5.1. By Lemma A.1 and Corollaries A.3 and A.4 with a = 0 and
0 ≤ t ≤ T , one has

JEΦ(t, p,v) = 1 + t

(
divY(p)−Q∇Y(p,v) +

1

2
x(p) ·Y(p)

)
+ t2Q(t, p,v)

is an element of Y(Ω′) and, for some constant C = C(Ω′,Γ−,M0, T ) > 0,

sup
0≤t≤T

(
‖JEΦ(t, ·, ·)‖Y + ‖Q(t, ·, ·)‖Y

)
≤ C.

Next, appealing to Lemmas A.2 and A.5 gives that, for any 0 ≤ t ≤ T , if ψ ∈ Y(Ω′), then
so is Φ(t)#ψ and

‖Φ(t)#ψ‖Y ≤ C̃4‖ψ‖Y
where C̃4 depends on Ω′,Γ−,M0 and T . Hence, combining these estimates and appealing
to Item (4) of Proposition 4.1, one has, for any 0 ≤ t ≤ T and ψ ∈ Y(Ω′),

‖Φ(t)#ψJEΦ(t)‖Y ≤ 16CC̃4‖ψ‖Y
and so

|Φ(t)#V [ψ]| ≤ ‖V ‖Y∗‖Φ(t)#ψJEΦ(t)‖Y ≤ 16CC̃4‖V ‖Y∗‖ψ‖Y.
That is,

(5.1) ‖Φ(t)#V ‖Y∗ ≤ 16CC̃4‖V ‖Y∗ ,
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proving the desired estimate with C3 = 16CC̃4. In particular, as T is arbitrary, Φ(t)#V ∈
Y(Ω′) for all t ≥ 0.

Next, it is a standard exercise that for any (even) ψ ∈ C∞c (Ω′ × Sn) the map t 7→
Φ(t)#V [ψ] is continuous. We further show the continuity can be extended to ψ ∈ Y0(Ω′).
To see this, by Item (6) of Proposition 4.1, there is a sequence ψj ∈ C∞c (Ω′ × Sn) so that
ψj → ψ in the Y norm. Fix any t0 ≥ 0. By (5.1), given ε > 0 there is a j0 so that, for any
t ≤ t0 + 1,

|Φ(t)#V [ψj0 − ψ]| < ε

2
.

By what we have shown, there is a δ > 0 so that if |t− t0| < δ, then

|Φ(t)#V [ψj0 ]− Φ(t0)#V [ψj0 ]| < ε

2
.

Thus, by the triangle inequality, for any |t− t0| < δ,

|Φ(t)#V [ψ]− Φ(t0)#V [ψ]| ≤ |Φ(t)#V [ψj0 − ψ]|+ |Φ(t)#V [ψj0 ]− Φ(t0)#V [ψj0 ]|
+ |Φ(t0)#V [ψj0 − ψ]|

<
ε

2
+
ε

2
= ε.

This shows the map t 7→ Φ(t)#V [ψ] is continuous at t0. As t0 is arbitrary, the claim
follows immediately. It remains only to prove the map t 7→ Φ(t)#V [1] is differentiable.
This readily follows from combining Corollaries A.3 and A.4 with a = 0, and the algebra
property of space Y(Ω′). In particular,

d

dt t=0
Φ(t)#V [1] = V

[
divY −Q∇Y +

x

2
·Y
]
.

This completes the proof. �

To conclude this section we record some properties about pushforwards of elements of
Y∗C(Ω

′; Λ) and continuous dependence of pushforwards on vector fields.

Lemma 5.2. Fix a Y ∈ Y−(Ω′) and let {Φ(t)}t≥0 be the family of diffeomorphisms in Ω′

generated by Y. If U ∈ C(Γ′−,Γ′+) and Γ = ∂∗U with Erel[Γ,Γ−] <∞, then

Φ(t)#VΓ = VΦ(t)(Γ) − VΦ(t)(Γ−).

Proof. By Lemma A.2 and Corollaries A.3 and A.4

‖Φ(t)#φR,δJ
EΦ(t)‖Y ≤ C

for some C independent of R, and Φ(t)#φR,δ → 1 pointwise as R→∞. Thus, appealing
to Proposition 4.2, the dominated convergence theorem and a change of variables, one
readily computes

Φ(t)#VΓ[1] = lim
R→∞

VΓ[Φ(t)#φR,δJ
EΦ(t)]

= lim
R→∞

(E[Φ(t)(Γ),Γ−;φR,δ]− E[Φ(t)(Γ−),Γ−;φR,δ]) .

By Proposition 2.1

lim
R→∞

E[Φ(t)(Γ),Γ−;φR,δ] = Erel[Φ(t)(Γ),Γ−]

and
lim
R→∞

E[Φ(t)(Γ−),Γ−;φR,δ] = Erel[Φ(t)(Γ−),Γ−].
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Moreover, by Lemma A.2 and Proposition 2.4 one has Erel[Φ(t)(Γ−),Γ−] <∞ and so is
Erel[Φ(t)(Γ),Γ−]. Hence, combining these equalities gives

Φ(t)#VΓ[1] = VΦ(t)(Γ)[1]− VΦ(t)(Γ−)[1].

If ψ ∈ C∞c (Ω′ × Sn), then the usual change of variable gives

Φ(t)#VΓ[ψ] = VΦ(t)(Γ)[ψ]− VΦ(t)(Γ−)[ψ].

As, by Item (6) of Proposition 4.1, C∞c (Ω′ × Sn) is dense in Y0(Ω′), one has the above
equality holds for all ψ ∈ Y0(Ω′). Hence, by the definition of Y(Ω′) and linearity, the
claim follows immediately. �

Lemma 5.3. Fix any radius R0 > 0. The map

Y−(Ω′)× [0,∞)× B̄Y∗

R0
3 (Y, t, V ) 7→ ΦY(t)#V ∈ Y∗(Ω′)

is continuous. Here {ΦY(t)} is the family of diffeomorphisms in Ω′ generated by Y, and
Y∗(Ω′) is endowed with the weak-* topology and B̄Y∗

R0
=
{
V ∈ Y∗(Ω′) : ‖V ‖Y∗ ≤ R0

}
is a subspace of Y∗(Ω′).

Proof. Fix Y ∈ Y−(Ω′), t ≥ 0 and V ∈ B̄Y∗

R0
. First, given ψ ∈ C∞c (Ω′× Sn), by Lemma

A.2, ΦY′(t
′)#ψ is supported in a fixed compact set as long as (Y′, t′) is sufficiently close

to (Y, t). Thus, it is a standard exercise to check that

lim
(Y′,t′,V ′)→(Y,t,V )

ΦY′(t
′)#V

′[ψ] = ΦY(t)#V [ψ].

Next we show that the above limit still holds true for functions in Y0(Ω′). Endow
Y−(Ω′) ⊂ Y(Ω′) with the subspace topology. It follows from Proposition 5.1 that, for any
Y′ ∈ BY

−

1 (Y), 0 ≤ t′ ≤ t+ 1 and V ′ ∈ B̄Y∗

R0
,

(5.2) ‖ΦY′(t
′)#V

′‖Y∗ ≤ C3R0.

Now take any ψ ∈ Y0(Ω′). By Item (6) of Proposition 4.1, there is a sequence ψj ∈
C∞c (Ω′ × Sn) so that ψj → ψ in the Y norm. Thus given ε > 0 there is a j0 ∈ N so that,
for any Y′ ∈ BY

−

1 (Y), 0 ≤ t′ ≤ t+ 1 and V ′ ∈ B̄Y∗

R0
,

|ΦY′(t
′)#V

′[ψj0 − ψ]| ≤ C3R0‖ψj0 − ψ‖Y <
ε

3
and, in particular, so

|ΦY(t)#V [ψj0 − ψ]| < ε

3
.

By general topology B̄Y∗

R0
with the weak-* topology is metrizable and denote byD a choice

of such metric. By the previous discussion, there is a ρ0 > 0 so that if

‖Y′ −Y‖Y + |t′ − t|+D(V ′, V ) < ρ0,

then
|ΦY′(t

′)#V
′[ψj0 ]− ΦY(t)#V [ψj0 ]| < ε

3
.

Thus, combining above estimates and applying the triangle inequality give that

|ΦY′(t
′)#V

′[ψ]− ΦY(t)#V [ψ]| ≤ |ΦY′(t
′)#V

′[ψj0 ]− ΦY(t)#V [ψj0 ]|
+ |ΦY′(t

′)#V
′[ψj0 − ψ]|+ |ΦY(t)#V [ψj0 − ψ]|

≤ ε

3
+
ε

3
+
ε

3
= ε.

Hence we have shown the claim.
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It remains only to prove that ΦY′(t
′)#V

′[1]→ ΦY(t)#V [1] as (Y′, t′, V ′)→ (Y, t, V ).
To see this, first appealing to Lemma A.1 and Corollaries A.3 and A.4, one gets that, for
any Y′ ∈ BY

−

1 (Y) and 0 ≤ t′ ≤ t+ 1,

JEΦY′(t
′, p,v) = c(αY′ , t

′) + PY′(t
′, p,v)

where

c(αY′ , t
′) = 1 +

1

2
t′αY′ +

1

4
(t′αY′)

2

∫ 1

0

e
1
2αY′ t

′ρ(1− ρ) dρ

and there is a constant C = C(Ω′,Γ−, t) > 0 so that, for any R > 0,

(5.3) sup
0≤t′≤t+1

‖PY′(t
′, ·, ·)‖Y(Ω′\B̄R) ≤

C

R+ 1
.

As αY′ continuously depends on Y′,

(5.4) lim
(Y′,t′,V ′)→(Y,t,V )

V ′[c(αY′ , t
′)1] = V [c(αY, t)1].

Next, invoking (5.3), given ε > 0 there is a radius Rε > 1 so that if Y′ ∈ BY
−

1 (Y), 0 ≤
t′ ≤ t+ 1 and V ′ ∈ B̄Y∗

R0
, then, for all R > Rε,

V ′[(1− φR,1)PY′(t
′, ·, ·)] < ε.

As one readily checks that

lim
(Y′,t′,V ′)→(Y,t,V )

V ′[φR,1PY′(t
′, ·, ·)] = V [φR,1PY(t, ·, ·)]

combining this with the previous estimate gives

lim
(Y′,t′,V ′)→(Y,t,V )

V ′[PY′(t
′, ·, ·)] = V [PY(t, ·, ·)].

Hence the claim follows by combining this and (5.4). �

6. STATIONARITY OF RELATIVE EXPANDER ENTROPY AND ITS PROPERTIES

In this section we introduce an appropriate notion of stationarity for the relative ex-
pander entropy. In particular, this notion admits some of the large scale deformations from
the previous section as valid variations and not just those that are fixed outside a compact
set. Continue to use the conventions of Sections 2.5 and 3.

6.1. Modified pushforwards. Let Φ be a C1 diffeomorphism of Ω′ that is fixed outside a
compact set. For V ∈ Y∗(Ω′) define a modified pushforward of V under Φ by

Φ+
#V = Φ#V + VΦ(Γ−) ∈ Y∗(Ω′).

As in the previous section we will extend this to an appropriate class of diffeomorphisms
that do not fix things outside a compact set.

If Y ∈ Y−(Ω′) and {Φ(t)}t≥0 is the family of diffeomorphisms in Ω′ generated by Y,
then Lemma A.2 and Proposition 2.4 imply Erel[Φ(t)(Γ−),Γ−] < ∞. Thus, by Proposi-
tions 4.2 and 5.1, Φ(t)+

#V is well defined. The advantage of this notion is that, by Lemma
5.2, if V ∈ Y∗C(Ω

′; Λ), then Φ(t)+
#V ∈ Y∗C(Ω

′; Λ′) for some Λ′ > 0. Here, as defined
in Section 4.3, the space Y∗C(Ω

′; Λ) is the closure of Y∗C(Ω′; Λ) in the weak-* topology
of Y∗(Ω′), where Y∗C(Ω

′; Λ) is the subspace of Y∗(Ω′) consisting of elements VΓ for Γ a
hypersurface trapped between Γ′− and Γ′+ with relative expander entropy bounded by Λ.

We record the following property about continuous dependence of modified pushfor-
wards on vector fields.
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Proposition 6.1. Fix any radius R0 > 0. We have
(1) The map

Y−(Ω′)× [0,∞)× B̄Y∗

R0
3 (Y, t, V ) 7→ ΦY(t)+

#V ∈ Y∗(Ω′)

is continuous;
(2) The map

Y−(Ω′)× Y−(Ω′)× [0,∞)× B̄Y∗

R0
3 (Z,Y, t, V ) 7→ δ(Φ+

Y(t)#V )[Z]

is continuous.
Here {ΦY(t)}t≥0 is the family of diffeomorphisms in Ω′ generated by Y, and Y∗(Ω′)

is endowed with the weak-* topology and B̄Y∗

R0
=
{
V ∈ Y∗(Ω′) : ‖V ‖Y∗ ≤ R0

}
is a

subspace of Y∗(Ω′).

Proof. To see the first item, by Lemma 5.3 it suffices to show the map

Y−(Ω′)× [0,∞) 3 (Y, t) 7→ VΓY
t
∈ Y∗(Ω′)

is continuous, where ΓY
t = ΦY(t)(Γ−). To see this, fix any Y ∈ Y−(Ω′) and t ≥ 0.

Appealing to Lemma A.2 and Proposition 2.4, one has that if Y′ ∈ BY
−

1 (Y) and 0 ≤ t′ ≤
t+ 1, then, for all R > R̄1,

(6.1)
∣∣∣Erel[ΓY′

t′ ,Γ−;Rn+1 \ B̄R]
∣∣∣ ≤ K̄1R

−2

where R̄1 and K̄1 both depend on Ω′,Γ−,Y and t. Thus, by Proposition 4.2, one sees that
if ψ ∈ Y(Ω′), then, for all R > max

{
2R̄1, R̄1

}
> 1,∣∣∣VΓY′

t′
[(1− φ2R,1)ψ]

∣∣∣ ≤ C2

(
R−1 +

∣∣∣Erel[ΓY′

t′ ,Γ−;Rn+1 \ B̄R]
∣∣∣) ‖(1− φ2R,1)ψ‖Y

≤ 2C2(1 + K̄1)R−1‖ψ‖Y.
Hence, as one readily checks

lim
(Y′,t′)→(Y,t)

VΓY′
t′

[φ2R,1ψ] = VΓY
t

[φ2R,1ψ],

combining these gives
lim

(Y′,t′)→(Y,t)
VΓY′

t′
[ψ] = VΓY

t
[ψ].

As ψ is arbitrary, the claim follows immediately.
To prove the second, write

δ(Φ+
Y′(t

′)#V
′)[Z′]− δ(Φ+

Y(t)#V )[Z] = δ(Φ+
Y′(t

′)#V
′)[Z′ − Z]

+ δ(Φ+
Y′(t

′)#V
′ − Φ+

Y(t)#V )[Z].

As Z′ → Z in the Y norm, it is readily checked that

div(Z′ − Z)−Q∇(Z′−Z) +
x

2
· (Z′ − Z)→ 0

in the Y norm. By (6.1) and Propositions 4.2 and 5.1 one has, for any Y′ ∈ BY
−

1 (Y), 0 ≤
t′ ≤ t+ 1 and V ′ ∈ B̄Y∗

R0
,

‖ΦY′(t)
+
#V
′‖Y∗ ≤ C

where C = C(Ω′,Γ−,Y, R0, t). Thus it follows that

lim
(Z′,Y′,t′,V ′)→(Z,Y,t,V )

δ(Φ+
Y′(t

′)#V
′)[Z′ − Z] = 0.
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Invoking the first item and Proposition 5.1 gives

lim
(Y′,t′,V ′)→(Y,t,V )

δ(Φ+
Y′(t

′)#V
′ − Φ+

Y(t)#V )[Z] = 0.

Hence, combining these limits gives

lim
(Z′,Y′,t′,V ′)→(Z,Y,t,V )

δ(Φ+
Y′(t

′)#V
′)[Z′] = δ(Φ+

Y(t)#V )[Z].

This completes the proof. �

6.2. Erel-minimizing to first order. Let Yc(Ω′) be the subset of elements of Yt(Ω′) with
compact support and let

Y−0 (Ω′) =
{
αY0 + Y1 ∈ Y−(Ω′) : Y1 ∈ Yc(Ω′)

}
⊂ Y−(Ω′).

If Y ∈ Y−0 (Ω′) and {Φ(t)}t≥0 is the family of diffeomorphisms in Ω′ generated by Y,
then, by the fact that Y0 is tangent to Γ−, one has Φ(t)(Γ−) and Γ− agreeing outside a
compact set and so VΦ(t)(Γ−) may be thought of as a measure with compact support. Thus,
by Proposition 5.1, given V ∈ Y∗(Ω′), Φ(t)+

#V is differentiable at t = 0 and so, as Γ− is
a self-expander, we can define

(6.2) δ+V [Y] =
d

dt t=0
Φ(t)+

#V [1] = δV [Y] = V
[
divY −Q∇Y +

x

2
·Y
]
.

An element V ∈ Y∗(Ω′) is Erel-minimizing to first order in Ω′ if δ+V [Y] ≥ 0 for all
Y ∈ Y−0 (Ω′).

Suppose V ∈ Y∗C(Ω
′; Λ) has decomposition

V = V E+ − V EΓ−

for a weighted varifold V E+ . Let V+ = e−
|x|2

4 V E+ be a varifold such that, for any ψ ∈
C0
c (Ω′ × Sn),

V+[ψ] =

∫
ψe−

|x|2
4 dV E+ .

For notation purposes, we write V+ = e−
|x|2

4 V E+ and V E+ = e
|x|2

4 V+. Then, as Γ− is a
self-expander and so E-stationary, V being Erel-minimizing to first order in Ω′ means that
V+ is E-minimizing to first order in Ω′. That is, for Y ∈ Y−c (Ω′),

δEV+[Y] ≥ 0

where

δEV+[Y] =
d

dt t=0

∫
e
|x|2

4 dΦ(t)#V+ =

∫ (
divSY +

x

2
·Y
)
e
|x|2

4 dV+(x, S)

is the usual first variation formula for the E-functional.
Observe that if spt(Y) ⊂ Ω′, then both Y and −Y lie in Y−0 (Ω′). Hence, if V is

Erel-minimizing to first order in Ω′, then δ+V [Y] = 0. In particular, V+ is E-stationary
in Ω′.

We now summarize some properties of elements of Y∗C(Ω′; Λ) that areErel-minimizing
to first order in Ω′.

Proposition 6.2. Fix any positive number Λ and let V ∈ Y∗C(Ω
′; Λ) have decomposition

V = e
|x|2

4 V+ − V EΓ− for some varifold V+. If V is Erel-minimizing to first order in Ω′,
then

(1) V [1] = Erel[V ];
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(2) The support of V+ lies in the closed set Ω̃ = Ω+(Γ−) ∩ Ω−(Γ+);
(3) V+ is an E-stationary varifold in Ω′;
(4) If V+ is integer rectifiable, then there is an R > 0 so V+b(Rn+1\B̄R) = HnbΓ

where Γ is a self-expanding end that is C2-asymptotic to C(Γ−).

To prove the proposition, we will need the following lemma.

Lemma 6.3. Given ε > 0 and V ∈ Y∗C(Ω
′; Λ), there is a radius Rε = Rε(Ω

′,Γ−, V ) > 1

so that if ψ ∈ Y(Ω′), then, for all R2 > R1 ≥ Rε,∣∣∣V [1B̄R2
ψ]− V [1B̄R1

ψ]
∣∣∣ < ε‖ψ‖Y.

Here 1Y is the indicator function of a set Y .

Proof. Let VΓi ∈ Y∗C(Ω
′; Λ) satisfy VΓi → V in the weak-* topology. By Item (1) of

Proposition 4.2, if ψ ∈ Y(Ω′), then, for all 0 < δ < 1 and R2 > R1 + δ > R1 ≥ 2R̄1 and
for all i,

|VΓi [φR2,δψ]− VΓi [φR1,δψ]| ≤ C2

(
|VΓi [φR2,δ]− VΓi [φR1,δ]|+R−1

1

)
‖ψ‖Y

where R̄1 and C2 both depend on Ω′ and Γ−. Sending i → ∞, the weak-* convergence
gives

|V [φR2,δψ]− V [φR1,δψ]| ≤ C2

(
|V [φR2,δ]− V [φR1,δ]|+R−1

1

)
‖ψ‖Y.

Next, letting δ → 0, the dominated convergence theorem implies∣∣∣V [1B̄R2
ψ]− V [1B̄R1

ψ]
∣∣∣ ≤ C2

(∣∣V [B̄R2
]− V [B̄R1

]
∣∣+R−1

1

)
‖ψ‖Y.

By Lemma 4.3, there is a radius R′ε = R′ε(C2, V ) so that, for any R2 > R1 ≥ R′ε,

C2

∣∣V [B̄R2 ]− V [B̄R1 ]
∣∣+ C2R

−1
1 < ε.

Hence, combining these estimates yields, for any R2 > R1 ≥ max
{

2R̄1, R
′
ε

}
,∣∣∣V [1B̄R2

ψ]− V [1B̄R1
ψ]
∣∣∣ < ε‖ψ‖Y.

The claim follows with Rε = max
{

2R̄1, R
′
ε

}
which depends on Ω′,Γ− and V . �

We are now ready to prove Proposition 6.2.

Proof of Proposition 6.2. We first prove Item (1). Let Y0 be the vector field from Section
5. Consider the cutoff function

φR =
(
1−R−2|x|2

)4
+
∈ C3

c (Rn+1).

As V is Erel-minimizing to first order in Ω′ and −(1−φR)Y0 ∈ Y−0 (Ω′), it follows from
Proposition 5.1 that

V
[
div ((1− φR)Y0)−Q∇((1−φR)Y0) +

x

2
· ((1− φR)Y0)

]
≤ 0.

One appeals to Lemma A.1 to check that as R→∞

div ((1− φR)Y0)−Q∇((1−φR)Y0) +
x

2
· ((1− φR)Y0)− 1

2
(1− φR)→ 0

in the Y norm. Thus it follows that

(6.3) V [1] ≤ lim
R→∞

V [φR].
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As ‖φR‖Y ≤ 1 + 8R−1, it follows from Lemma 6.3 that given ε > 0 there is a radius
Rε so that, for any R′ > Rε,

(6.4)
∣∣∣V [φR]− V [1B̄R′φR]

∣∣∣ < ε(1 + 8R−1).

As |φR| ≤ 1 and φR → 1 pointwise asR→∞, it follows from the dominated convergence
theorem that

lim
R→∞

V [1B̄R′φR] = V [B̄R′ ].

Thus, taking the limit of both sides of (6.4) as R→∞, gives∣∣∣ lim
R→∞

V [φR]− V [B̄R′ ]
∣∣∣ ≤ ε.

Hence, letting R′ →∞ and appealing to Lemma 4.3, gives

lim
R→∞

V [φR] ≤ lim
R′→∞

V [B̄R′ ] + ε = Erel[V ] + ε.

Invoking (6.3) and Lemma 4.3 again, implies that

Erel[V ] ≤ V [1] ≤ Erel[V ] + ε.

As ε > 0 is arbitrary, we have V [1] = Erel[V ] proving the claim.
The second item follows from the strict maximum principle for stationary varifolds [42]

or [48]. Namely, as V is Erel-minimizing to first order in Ω′, one has that V+ is E-

minimizing to first order in Ω′. For each p ∈ Rn+1, the set
{
w ∈ Rn+1 : |w|e

|x(p)|2
4 ≤ 1

}
is equal to a closed ball in Rn+1 centered at the origin. Thus, the functional E is even
and elliptic. If spt(V+) \ Ω̃ is non-empty, then, by Item (3) of Proposition 3.1, there is
an s+ ∈ (0, 1] or an s− ∈ (0, 1] so that spt(V+) ∩ Γ±s± 6= ∅ but spt(V+) ∩ Γ±s = ∅
for s ∈ (s±, 1] – here Γ±s are the foliation of Ω′′ \ Ω′ given by Proposition 3.1. By the
strict maximum principle of Solomon-White [42] and the additional remarks (1)-(2) in
pages 960–961 therein (see also [48, Theorem 1]) and the fact that Γ±s± is strictly expander
mean convex, this is impossible. Hence, spt(V+) ⊆ Ω̃ and this completes the proof of the
second item. The third item is an immediate consequence fact that V+ is E-minimizing to
first order in Ω′, the fact that Ω̃ ⊂ Ω′ and Item (2).

Finally, to prove the fourth item, pick an (even) function ψ ∈ C2
c ((Rn+1\ {0}) × Sn).

Clearly, there is a constant C > 1 so that the support of ψ is contained in BC \ B̄C−1 . Let

ψρ(p,v) = ρne−
|x(p)|2

4 ψ(ρp,v).

One readily computes that, for ρ ∈ (0, 1),

‖ψρ‖X ≤ 10Cρn−1e
− 1

4C2ρ2 ‖ψ‖C2 .

As ψρ has compact support, one immediately has (up to restricting) that ψρ ∈ Y0(Ω′) and,
by definition,

‖ψρ‖Y ≤ ‖ψρ‖X ≤ 10Cρn−1e
− 1

4C2ρ2 ‖ψ‖C2 .

As Erel[V ] = V [1] <∞ by Item (1) and V ∈ Y∗C(Ω
′; Λ), we have, by Proposition 4.2,

(6.5) |V [ψρ]| ≤ 10CC2(1 + |V [1]|)ρn−1e
− 1

4C2ρ2 ‖ψ‖C2 .

For ρ > 0, let Dρ : Rn+1 × Sn → Rn+1 × Sn be the dilation map given by Dρ(p,v) =
(ρp,v), and let V− be the usual varifold associated to Γ−. It is straightforward to see that

V [ψρ] = ρnV+[ψ ◦Dρ]− ρnV−[ψ ◦Dρ] = (Dρ)#V+[ψ]− (Dρ)#V−[ψ]
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where (Dρ)#V± are the usual pushforwards of varifolds V±. Thus, by (6.5),

lim
ρ→0

((Dρ)#V+[ψ]− (Dρ)#V−[ψ]) = 0.

As limρ→0 ρΓ− = C(Γ−) = C in C2
loc(Rn+1\ {0}),

lim
ρ→0

(Dρ)#V−[ψ] =

∫
C
ψ(p,nC(p)) dHn.

As a consequence,

lim
ρ→0

(Dρ)#V+[ψ] =

∫
C
ψ(p,nC(p)) dHn.

As C2
c ((Rn+1\ {0}) × Sn) is dense in C0

c ((Rn+1\ {0}) × Sn), it follows that as ρ → 0
the (Dρ)#V+ converges to C in the sense of varifolds. Finally, as C is a C3-regular cone
and V+ is integral E-stationary varifold, one can appeal to [5, Proposition 3.3] to get the
C2 convergence. �

7. MIN-MAX THEORY FOR ASYMPTOTICALLY CONICAL SELF-EXPANDERS

In this section we adapt a notion of parametrized family of hypersurfaces in [14] (see
also [12] and [15]) to the setting we are considering. Following the strategy of Almgren-
Pitts [37] and Simon-Smith [41] for the min-max construction of compact minimal hy-
persurfaces – see also [12], [14] and [15] – we show that there is a min-max sequence
that converges to an element of Y∗C(Ω′; Λ) whose associated varifold is E-stationary, sup-
ported in Ω̃ and has codimension-7 singular set. We continue to follow the conventions of
Sections 2.5 and 3.

7.1. Parameterized families. Let Ik = [0, 1]k be the k-dimensional cube.

Definition 7.1. Fix k ≥ 1. A generalized smooth family of hypersurfaces in Ω′ param-
eterized by Ik is a family of pairs (Uτ ,Στ ), for τ ∈ Ik, where Uτ ∈ C(Γ′−,Γ′+) and
Στ = ∂∗Uτ and that satisfies

(1) Erel[Στ ,Γ−] <∞;
(2) For each τ ∈ Ik, there is a finite set Sτ ⊂ Ω′ so that Στ is a smooth hypersurface

in Ω′\Sτ ;
(3) The map τ 7→ VΣτ is continuous in the weak-* topology of Y∗(Ω′);
(4) As τ → τ0, Στ → Στ0 in C∞loc(Rn+1\Sτ0);
(5) The map τ 7→ 1Uτ is continuous in L1

loc(Rn+1).

The family {(Uτ ,Στ )}τ∈[0,1] is a sweepout of Ω̃ if (U0,Σ0) = (Ω−(Γ−),Γ−) and
(U1,Σ1) = (Ω−(Γ+),Γ+).

Remark 7.2. Notice that by Proposition 4.2, combined with the other requirements, Item
(3) of Definition 7.1 is equivalent to the condition that Erel[VΣτ ] is continuous in τ and
τ 7→ Στ is continuous in the locally Hausdorff sense; c.f. [14, Definition 1.2] and [15, Defi-
nition 0.2]. We also emphasize that we don’t demand the sweepout of Ω̃ lies entirely within
Ω̃ only that it remains in Ω′. This is, nevertheless, more restrictive than the analogous hy-
potheses of [14] and ensures the element produced by the min-max procedure lies in Ω′

and hence in Ω̃. The reason the region is thickened to Ω′ is that this gives more admissible
variations and so simplifies the regularity theory.

From now on we will refer to such objects in Definition 7.1 as families parameterized
by Ik, and we will omit the parameter space, Ik, when it is clear from context.
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Definition 7.3. Two families {(Uτ ,Στ )} and {(U ′τ ,Σ′τ )} parameterized by Ik are homo-
topic if there is a family

{
(W(τ,ρ),Ξ(τ,ρ))

}
parameterized by Ik+1 = Ik × [0, 1] so that

(1) (W(τ,0),Ξ(τ,0)) = (Uτ ,Στ ) for all τ ∈ Ik;
(2) (W(τ,1),Ξ(τ,1)) = (U ′τ ,Σ

′
τ ) for all τ ∈ Ik;

(3) (W(τ,ρ),Ξ(τ,ρ)) = (Uτ ,Στ ) for all τ ∈ ∂Ik and all ρ ∈ [0, 1].

A set X of families parameterized by Ik is homotopically closed if X contains the
homotopy class of each of its elements.

Definition 7.4. Let X be a homotopically closed set of families parameterized by Ik. The
relative expander entropy min-max value of X denoted by mrel(X) is the value

mrel(X) = inf

{
max
τ∈Ik

Erel[VΣτ ] : {(Uτ ,Στ )} ∈ X
}
.

The relative expander entropy boundary-max value of X is

bMrel(X) = max
{
Erel[VΣτ ] : {(Uτ ,Στ )} ∈ X, τ ∈ ∂Ik

}
.

A minimizing sequence is a sequence of elements
{{

(U `τ ,Σ
`
τ )
}
τ

}` ⊆ X such that

lim
`→∞

max
τ∈Ik

Erel[VΣ`τ
] = mrel(X).

A min-max sequence is obtained from a minimizing sequence by taking slices
{

(U `τ` ,Σ
`
τ`

)
}
`

for τ` ∈ Ik such that
Erel[VΣ`τ`

]→ mrel(X).

It is obvious that any subsequence of a min-max sequence is a min-max sequence.

7.2. Min-max construction forErel. We adapt the classical min-max theory for compact
minimal surfaces to Erel in our setting. The main result of this section is the following:

Theorem 7.5. Let X be a homotopically closed set of families in Ω′ parametrized by Ik

with mrel(X) > bMrel(X). There is a minimizing sequence
{{

(U `τ ,Σ
`
τ )
}
τ

}`
in X so

that there is a min-max sequence
{

(U `τ` ,Σ
`
τ`

)
}
`

and a pair (U0,Γ0) with U0 ∈ C(Γ−,Γ+)
and Γ0 = ∂∗U0 so that

(1) Γ0 is E-stationary, has codimension-7 singular set and Erel[Γ0,Γ−] = mrel(X);
(2) Σ`τ` converges in the sense of varifolds to Γ0 and 1U`τ`

converges in L1
loc to 1U0

.

Remark 7.6. This is stronger than what is achieved in the more general situation considered
in [15] as the geometry of the expander problem implies the limit is with multiplicity one.

We now prove Theorem 7.5 by following the strategy in [14] which, in turn, is modified
from [12] and [15]. The proof is divided into several parts.

7.2.1. Pull-tight procedure for Erel. Set

Λ0 = max {|E−|, 4|mrel(X)|}
where E− is the uniform lower bound for Erel given by Lemma 4.3. Let

V = Y∗C(Ω
′; Λ0)

and let
Vs =

{
V ∈ V : V is Erel-minimizing to first order in Ω′

}
.

By Proposition 4.2, V ⊆ B̄Y∗

R0
for R0 = C2(1 + Λ0). Endow V with the weak-* topology.

Thus, by the Banach-Alaoglu theorem, V is metrizable and compact. Let D be a choice of
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such metrics. As, by Proposition 5.1, for Y ∈ Y−0 (Ω′) the map assigning δ+V [Y] to each
V ∈ V is continuous, one has that Vs is a closed subset of V and so is compact.

Proposition 7.7. Let X be a homotopically closed set of families in Ω′ parameterized by
Ik with mrel(X) > bMrel(X). There is a minimizing sequence

{{
U `τ ,Σ

`
τ

}
τ

}`
in X so

that if
{

(U `τ` ,Σ
`
τ`

)
}
`

is a min-max sequence, then D(VΣ`τ`
,Vs)→ 0.

Proof. Let Is(Ω′) be the set of all isotopies of Ω′, i.e., smooth maps Φ: [0, 1]× Ω′ → Ω′

so that each Φ(t, ·) is a diffeomorphism of Ω′. If we denote by

bX =
{
VΣτ : {Στ} ∈ X, τ ∈ ∂Ik

}
.

then our hypothesis on X and Lemma 4.3 ensure that bX ⊆ V . We now adapt the main
steps of pull-tight arguments of De Lellis-Ramic [14], which are modified from Colding-
De Lellis [12], to our setting to construct a continuous map V → Is(Ω′) given by V 7→ ΦV
so that

(1) If V ∈ Vs ∪ bX , then ΦV is the identity map;
(2) If V 6∈ Vs ∪ bX , then (ΦV )+

#V [1] < V [1].

Step 1: A map from V to Y−0 (Ω′). For j ∈ Z, let

Vj =
{
V ∈ V : 2−j+1 ≥ D(V,Vs) ≥ 2−j−2

}
.

For each V ∈ Vj , as V is not Erel-minimizing to first order in Ω′, there is a vector field
ȲV = ᾱVY0 + Z̄V ∈ Y−0 (Ω′) where ᾱV ∈ R and Z̄V ∈ Yc(Ω′) so that δ+V [ȲV ] < 0.
Moreover, by linearity we may assume that, for j ≥ 1,

‖ȲV ‖Y + ‖Z̄V ‖Cj ≤
1

j
.

By (6.2), for such V there is an open ball BD2ρ(V ) ⊂ (V,D) so that, for any V ′ ∈ BD2ρ(V ),

δ+V ′[ȲV ] ≤ 1

2
δ+V [ȲV ] < 0.

As Vj is compact for the metric D, arguing as in [12, Proposition 4.1], one finds a
locally finite covering of V \ Vs by these balls so that any ball intersects at most three of
Vj . Let {ϕi} be a partition of unity subordinate to this cover. Thus, as Y−0 (Ω′) is a convex
cone, we can define the map

V \ Vs 3 V 7→ YV =
∑
i

ϕi(V )ȲVi ∈ Y−0 (Ω′) ∩ C∞(Ω′;TΩ′)

where Y−0 (Ω′) is endowed with the Y norm and C∞(Ω′;TΩ′) is with the usual Fréchet
topology. Our construction ensures that

(1) δ+V [YV ] < 0 for any V ∈ V \ Vs;
(2) V 7→ YV is continuous;
(3) ‖YV ‖Y + ‖YV ‖Cj−1 ≤ 1

j−1 if D(V,Vs) ≤ 2−j and j ≥ 2.

Extend the map V 7→ YV to V by setting it identically equal to 0 on Vs. By Item (3)
this extension is continuous in both Y and Ck norm. That is, the map V 7→ YV is indeed
continuous in the C∞ space with its usual Fréchet topology.

Step 2: A map from V to Is(Ω′). For each V ∈ V , denote by {ΦV (t)}t≥0 the family
of diffeomorphisms generated by YV . By Item (2) in Step 1 and Proposition 6.1, the map

[0,∞)× V 3 (t, V ) 7→ δ+(ΦV (t)+
#V )[YV ]
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is continuous. Thus, for each V ∈ V \ Vs, there is a positive time σV and a radius ρV so
that, for all t ∈ [0, σV ] and V ′ ∈ BD2ρV (V ),

δ+(ΦV ′(t)
+
#V
′)[YV ′ ] ≤

1

4
δ+V [YV ] < 0.

Arguing as in the first step we can construct a continuous function σ : V → [0,∞) so that
(a) σ = 0 on Vs;
(b) σ > 0 on V \ Vs;
(c) maxt∈[0,σ(V )] δ

+(ΦV (t)+
#V )[YV ] < 0 for every V ∈ V \ Vs.

Define b : V → [0, 1] by

b(V ) = min {D(V, bX), 1} .
Clearly, b is continuous. Now redefine a new YV by multiplying the old one by b(V )σ(V ).
This newly defined YV still continuously depends on V and vanishes identically on Vs,
however, property (c) becomes

(c’) maxt∈[0,1] δ
+(ΦV (t)+

#V )[YV ] < 0 for every V ∈ V \ (Vs ∪ bX).
As YV is tangent to Γ− outside a compact set and Γ− is a self-expander, it is not hard to
see that if V ∈ V \ (Vs ∪ bX) and 0 < t ≤ 1, then

ΦV (t)+
#V [1] = V [1] +

∫ t

0

δ+(ΦV (s)+
#V )[YV ] ds < V [1].

Step 3: Construction of the competitor and conclusion. It is convenient to identify
Γ with VΓ. Take a minimizing sequence

{{
(Z`τ ,Υ

`
τ )
}
τ

}` ⊆ X and consider families{
(W `

τ ,Ξ
`
τ )
}
τ

given by

W `
τ = ΦΥ`τ

(1, Z`τ ) and Ξ`τ = ΦΥ`τ
(1,Υ`

τ ).

Our construction ensures the map τ 7→ YΥ`τ
is continuous. Next we use standard mollifier

techniques to construct a smooth map τ 7→ XΥ`τ
∈ Y−(Ω′) with the estimate

max
τ∈Ik

‖YΥ`τ
−XΥ`τ

‖Y ≤ `−1.

Notice that, unlike YΥ`τ
, XΥ`τ

may not be in Y−0 (Ω′) but instead lies in the bigger space
Y−(Ω′). Let

{
ΨΥ`τ

(t)
}
t≥0

be the family of diffeomorphisms generated by XΥ`τ
. If

U `τ = ΨΥ`τ
(1, Z`τ ) and Σ`τ = ΨΥ`τ

(1,Υ`
τ ), then the smoothness of XΥ`τ

in τ ensures

that
{

(U `τ ,Σ
`
τ )
}
τ

is an element of X . We will show
{{

(U `τ ,Σ
`
τ )
}
τ

}`
is a minimizing

sequence in X with the desired property.
By construction and Proposition 6.1 one has

(7.1) lim
`→∞

max
τ∈Ik

D(Σ`τ ,Ξ
`
τ ) = 0.

Hence, Item (c’) in Step 2 and (7.1), imply there is a ε` ↘ 0 so

Erel[Σ
`
τ ]− ε` ≤ Erel[Ξ`τ ] ≤ Erel[Υ`

τ ].

Thus, as
{{

(Z`τ ,Υ
`
τ )
}
τ

}`
is a minimizing sequence, so is

{{
(U `τ ,Σ

`
τ )
}
τ

}`
. Moreover, if{

(U `τ` ,Σ
`
τ`

)
}
`

is a min-max sequence, then so is
{

(Z`τ` ,Υ
`
τ`

)
}
`
. We claim D(Σ`τ` ,Vs) →

0. Suppose not and there were a subsequence `i so that D(Σ`iτ`i
,Vs) > δ > 0. By

the compactness of V , up to passing to a further subsequence and relabelling, the Υ`i
τ`i

converges in the weak-* topology to some V0 ∈ V . It is enough to show that V0 ∈ Vs and
Σ`iτ`i

→ V0. This would give a contradiction.



32 JACOB BERNSTEIN AND LU WANG

By Lemma 5.2 and Proposition 6.1, Ξ`iτ`i
→ ΦV0

(1)+
#V0 in the weak-* topology. As

remarked before,
{

Υ`i
τ`i

}
is a min-max sequence while Erel[Ξ`iτ`i ]→ mrel(X). Thus,

ΦV0
(1)+

#V0[1] = V0[1] = mrel(X).

As mrel(X) > bMrel(X) one has V0 /∈ bX . If V0 /∈ Vs, then by Item (c’)

ΦV0
(1)+

#V0[1] = V0[1] +

∫ 1

0

δ+(ΦV0
(t)+

#V0)[YV0
] dt < V0[1].

This is a contradiction, so V0 ∈ Vs. By construction, YV0 = 0 and ΦV0(1)+
#V0 = V0.

Hence, Ξ`iτ`i
→ V0 and hence, by (7.1), so does Σ`iτ`i

. This completes the proof. �

7.2.2. Almost minimizing. We first observe that, with minor modifications, the proof from
Sections 4 and 5 of [14] (see also [12] and [15]) implies that there is a min-max sequence
produced by Proposition 7.7 that is almost-minimizing in appropriate annuli.

Let us first state what we mean by almost minimizing.

Definition 7.8. Fix ε > 0, W ⊆ Rn+1 an open subset – not necessarily bounded – and
k ∈ N. A boundary ∂∗U for some U ∈ C(Γ′−,Γ′+) is ε-almost minimizing in W if there is
no one-parameter family {∂∗Us}s∈[0,1] satisfying the following properties:

(1) All the properties of Definition 7.1 hold for {(Us, ∂∗Us)}s∈[0,1] ;

(2) U0 = U and there is a bounded open subset W ′ with W ′ ⊂ W so that Us\W ′ =
U\W ′ for all s ∈ [0, 1];

(3) Erel[∂∗Us,Γ−] ≤ Erel[∂∗U,Γ−] + ε
2k+2 for all s ∈ [0, 1];

(4) Erel[∂∗U1,Γ−] ≤ Erel[∂∗U,Γ−]− ε.
A sequence

{
∂∗U i

}
of hypersurfaces is called almost minimizing (or a.m.) in W if each

∂∗U i is εi-almost minimizing for some εi → 0.

Remark 7.9. We emphasize the that the only difference with the definition in [14] is the
introduction of the fixed domain W ′ that is pre-compact in W . This is needed as we are
dealing with a non-compact domain, but does not affect any of the arguments.

Let
AN ρ(p) =

{
An(p, r1, r2) = Br2(p) \ B̄r1(p) : 0 < r1 < r2 < ρ

}
be the set of all (open) annuli centered at p with outer radius less than ρ. We will show the
following:

Proposition 7.10. There is a function % : Ω′ → (0,∞), an element V0 ∈ Y∗C(Ω
′; Λ0) that

is Erel-minimizing to first order in Ω′, and a min-max sequence
{

(U `τ` ,Σ
`
τ`

)
}
`

so that

(1)
{

(U `τ` ,Σ
`
τ`

)
}
`

is a.m. in every An ∈ AN %(p)(p) for all p ∈ Ω′;
(2) VΣ`τ`

converges in the metric D to V0 as `→∞.

We observe that De Lellis-Ramic’s version Almgren-Pitts combinatorial Lemma can be
adapted to our setting. As remarked before, it is convenient to allow unbounded sets. This
has almost no effect on the proof.

Definition 7.11. Let d ∈ N and W 1, . . . ,W d be open sets in Rn+1. A boundary ∂∗U for
some U ∈ C(Γ′−,Γ′+) is said to be ε-almost minimizing in (W 1, . . . ,W d) if it is ε-a.m. in
at least one of the open sets W 1, . . . ,W d.
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Denote by COd the set of d-tuples (W 1, . . . ,W d) where W 1, . . . ,W d are open subsets
of Rn+1 with the property that, for all i, j ∈ {1, . . . , d} and i 6= j,

dist(W i,W j) ≥ 4 min
{

diam(W i), diam(W j)
}
.

Here
dist(W i,W j) = inf

p∈W i,q∈W j
|x(p)− x(q)|.

Observe that we do not require that the open sets W 1, . . . ,W d are bounded, however,
for a tuple (W 1, . . . ,W d) to lie in COd all but one must be bounded.

We now state the Almgren-Pitts combinatorial lemma. The proof is identical to that
in [14, Proposition 5.8].

Proposition 7.12. Let X be a homotopically closed set of families in Ω′ parametrized by
Ik with mrel(X) > bMrel(X). There is a d ∈ N, an element V0 ∈ Y∗C(Ω

′; Λ0) that is
Erel-minimizing to first order in Ω′, and a min-max sequence

{
(U `τ` ,Σ

`
τ`

)
}
`

such that
(1) VΣ`τ`

converges in the metric D to V0 as `→∞;

(2) For any (W 1, . . . ,W d) ∈ COd, Σ`τ` is 1
` -a.m. in (W 1, . . . ,W d) for ` large

enough.

We can now modify the arguments in [14, Proposition 5.3] to prove Proposition 7.10.

Proof of Proposition 7.10. Let d ∈ N and
{

Σ`τ`
}
`

be the number and min-max sequence
given by Proposition 7.12. Write Σ` = Σ`τ` . We will show that a subsequence of

{
Σ`
}

satisfies the desired properties. For any r1 > 0 and r2, . . . , rd with 0 < ri <
1
9ri−1, set

r′i = 1
9ri−1 and consider the tuple (W 1

r1(p), . . . ,W d
rd

(p)) given by

W 1
r1(p) = Rn+1 \ B̄r1(p);

W i
ri(p) = Br′i(p) \ B̄ri(p) for 2 ≤ i ≤ d− 1;

W d
rd

(p) = Brd(p).

By definition (W 1
r1(p), . . . ,W d

rd
(p)) ∈ COd and so Σ` is 1

` -a.m. in at least one W i
ri(p).

For any r1 > 0 fixed, one of the two situations occurs:
(1) Σ` is 1

` -a.m. in (W 2
r2(q), . . . ,W d

rd
(q)) for every q ∈ Ω′ and every choice of

r2, . . . , rd and for ` large;
(2) For each K ∈ N, there is an `K ≥ K and a point p`Kr1 ∈ Ω′ so that Σ`K is 1

`K
-a.m.

in Rn+1 \ B̄r1(p`Kr1 ).
First assume there is no r1 > 0 so that Case (1) holds. Thus, by choosing Case (2) with

r1 = 1/j and K = j for every j ∈ N, we obtain a subsequence
{

Σ`j
}
j

and a sequence of

points
{
p
`j
j

}
j

in Ω′ so that Σ`j is 1
`j

-a.m. in Rn+1\B̄ 1
j
(p
`j
j ). If p`jj is unbounded, then Σ`j

is 1
`j

-a.m. in any bounded open subset of Rn+1 once j is large. In particular, this shows

the claim with % ≡ 1. Otherwise, up to passing to a subsequence, p`jj converges to a point
p0 ∈ Ω′. It then follows that, for every N ∈ N, Σ`j is 1

`j
-a.m. in Rn+1 \ B̄ 1

N
for j large.

Thus, if q ∈ Ω′ \ {p0}, then we can choose %(q) so that B̄%(q)(q) ⊂ Rn+1 \ {p0} whereas
%(p0) can be chosen arbitrarily. Hence,

{
Σ`j
}
j

is a.m. in any annulus of AN %(q)(q) for

any q ∈ Ω′.
Now assume there is some r1 > 0 so that Case (1) holds. Fix anyR > 1 and, as Ω′∩B̄R

is compact, we can divide Ω′ ∩ B̄R into finitely many closed subsets Ω1, . . . ,ΩM so that
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diam(Ωi) < r′2 for all i. Similar to the reasoning above, for each Ωi, starting with Ω1,
consider the two mutually exclusive cases:

(a) There is some fixed r2,i > 0 so that
{

Σ`
}

must be 1
` -a.m. in (W 3

r3(q), . . . ,W d
rd

(q))

for every q ∈ Ωi and every r3, . . . , rd with r3 <
1
9r2,i and rj < 1

9rj−1 and for `
large;

(b) There is a subsequence
{

Σ`
}

(not relabeled) and a sequence of points {pi,`} in Ωi
so that Σ` is 1

` -a.m. in Br′2(pi,`) \ B̄ 1
`
(pi,`).

If Case (b) holds, then pi,` → pi ∈ Ωi and we can choose %(pi) ∈ (diam(Ωi), r
′
2). For any

other q ∈ Ωi, we can choose %(q) so that B̄%(q)(q) ⊂ B%(pi)(pi) \ {pi}. We then proceed
onto Ωi+1, where either Case (a) is chosen, or a further subsequence is extracted and
define further values of the function %. For the subsets Ωi1 , . . . ,Ωil where Case (a) holds,
we define r2 = min {r2,i1 , . . . , r2,il} and then continue iteratively by first subdividing the
sets and consider the relevant cases. Note that if in the last instance of the iteration Case
(a) holds, it follows that Σ` is 1

` -a.m. in Brd(q) for some rd > 0 and all q, hence we can
choose %(q) = rd. Finally, the result follows from a standard diagonal argument. �

By Lemma 4.3 and Proposition 6.2, V0 has a decomposition V0 = e
|x|2

4 V+−V EΓ− where
V+ is a varifold supported in Ω̃ ⊂ Ω′. And V+ is E-stationary, that is, for any compactly
supported vector field Y on Rn+1,

δEV+[Y] =

∫ (
divSY +

x

2
·Y
)
e
|x|2

4 dV+(x, S) = 0.

Let gEij = e
|x|2
2n δij be a metric on Rn+1 conformal to the Euclidean metric. A standard

computation verifies that V+ is stationary in (Ω′, gEij). Observe that in any bounded open
set our definition of an a.m. sequence (see Definition 7.8) is the same as in [15] – a similar
notion was introduced earlier in the work of Pitts [37]. As the proof is local, one may
argue as in [15] (cf. [37]) and use the Schoen-Simon regularity estimates [39] to obtain the
following interior regularity for the limit of an a.m. sequence.

Proposition 7.13. Let V0 be given by Proposition 7.10. Then V0 = e
|x|2

4 V+ − V EΓ− where
V+ is an integer multiplicity E-stationary varifold with codimension-7 singular set.

7.2.3. Proof of Proposition 7.5. Appealing to Propositions 7.7, 7.10 and 7.13 one ob-
tains a min-max sequence

{
(U `,Σ`)

}
=
{

(U `τ` ,Σ
`
τ`

)
}

and a pair (U0, V0) for (U0, V0) ∈
C(Γ−,Γ+)×Y∗C(Ω

′; Λ0) so that

• V0 = e
|x|2

4 V+ − V EΓ− for some integer multiplicity E-stationary varifold V+ with
codimension-7 singular set;
• (U `, VΣ`) converges in the sense of Corollary 4.4 to (U0, V0).

Let Γ0 be the regular part of (the support of) V+. By the last item of Proposition 6.2, Γ0 is
C2-asymptotic to C(Γ−) and V+ = HnbΓ0 in Rn+1 \ B̄R for some R > 0. As the support
of V+ has no compact components, the constancy theorem implies that V+ has multiplicity
one and so, by the first item of Proposition 6.2,

Erel[Γ0,Γ−] = V0[1] = lim
`→∞

VΣ`τ`
[1] = lim

`→∞
Erel[VΣ`τ`

] = mrel(X).

It remains only to show ∂∗U0 = Γ0. By the nature of convergence, ∂∗U0 ⊆ Γ0 and 1U0

is constant on each component of Rn+1 \ Γ0. As Σ` = ∂∗U ` converges as varifolds with
multiplicity one to Γ0 the claim follows immediately.
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8. LOWER BOUND ON THE RELATIVE EXPANDER ENTROPY OF SWEEPOUTS

Continue to use the conventions of Sections 2.5 and 3. Using a calibration argument
together with a certain observation about E-minimizers we show that any sweepout of
Ω̃ must pass through a hypersurface of uniformly larger relative entropy. We refer the
interested reader to [14, Section 11] and [36] for alternative approaches that are built on
work of White [47].

This section is devoted to proving the following:

Proposition 8.1. There is a constant δ0 = δ0(Γ−,Γ+) > 0 so that if {(Uτ ,Στ )}τ∈[0,1] is

a sweepout of Ω̃, then

max
τ∈[0,1]

Erel[Στ ,Γ−] ≥ max {Erel[Γ−,Γ−], Erel[Γ+,Γ−]}+ δ0 ≥ δ0.

To prove Proposition 8.1 we will need several auxiliary lemmas. The first is an obser-
vation that the truncation to Ω̃ decreases the relative expander entropy.

Lemma 8.2. For U ∈ C(Γ′−,Γ′+), let

R[U ] = (U ∩ Ω−(Γ+)) ∪ Ω−(Γ−) ∈ C(Γ−,Γ+).

Then we have
(1) The map 1U 7→ 1R[U ] is continuous in L1

loc;
(2) Erel[∂∗U,Γ−] ≥ Erel[∂∗R[U ],Γ−].

Proof. As
1R[U ] = 1U1Ω−(Γ+) + 1Ω−(Γ−) − 1U1Ω−(Γ+)1Ω−(Γ−)

the first claim follows from this.
To prove the second, we may assume Erel[∂∗U,Γ−] < +∞ as otherwise the inequality

holds trivially. By Proposition 3.1 one can define V : Ω′′ ∩ Ω+(Γ+)→ Rn+1 by

V(p) = nΓ+
s

(p) if p ∈ Γ+
s

and so

(8.1) divV +
x

2
·V ≥ 0.

As U∆R[U ] ⊆ Ω′ ⊆ Ω′′, setting VR = φR,1V and using the divergence theorem, one
readily computes∫

∂∗U∩Ω+(Γ+)

φR,1e
|x|2

4 dHn −
∫
∂∗R[U ]∩Ω+(Γ+)

φR,1e
|x|2

4 dHn

≥
∫
∂∗U∩Ω+(Γ+)

VR · n∂∗Ue
|x|2

4 dHn −
∫
∂∗R[U ]∩Ω+(Γ+)

VR · n∂∗R[U ]e
|x|2

4 dHn

=

∫
(U∆R[U ])∩Ω+(Γ+)

(
divVR +

x

2
·VR

)
e
|x|2

4 dLn+1

≥
∫

(U∆R[U ])∩Ω+(Γ+)

φR,1

(
divV +

x

2
·V
)
e
|x|2

4 dLn+1 − 2

∫
Ω′∩(B̄R+1\BR)

e
|x|2

4 dLn+1.

Thus, appealing to (8.1) and [8, Lemma 2.2], one sees

E[∂∗U,Γ−;φR,1; Ω+(Γ+)]− E[∂∗R[U ],Γ−;φR,1; Ω+(Γ+)] ≥ −CR−2

for some C = C(Ω′). Likewise,

E[∂∗U,Γ−;φR,1; Ω−(Γ−)]− E[∂∗R[U ],Γ−;φR,1; Ω−(Γ−)] ≥ −CR−2.
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As ∂∗U ∩ Ω = ∂∗R[U ] ∩ Ω, combining these estimates gives

E[∂∗U,Γ−;φR,1]− E[∂∗R[U ],Γ−;φR,1] ≥ −2CR−2.

Hence, sending R→∞, it follows from Proposition 2.1 that

Erel[∂
∗U,Γ−]− Erel[∂∗R[U ],Γ−] ≥ 0.

The result follows from rearranging this inequality. �

For each U ∈ C(Γ−,Γ+), let ΩU be the open region between ∂∗U and Γ−, and let

M[U ] =

∫
ΩU

e
|x|2

4 dLn+1

be the weighted volume of ΩU . We have, for U ∈ C(Γ−,Γ+),

0 ≤M[U ] ≤M0 = M[Ω−(Γ+)] <∞

where the finiteness of M[Ω−(Γ+)] follows from [8, Lemma 2.2]. Givenm ∈ [0,M0], we
then let

C(Γ−,Γ+;m) = {U ∈ C(Γ−,Γ+) : M[U ] = m} .
Notice that, for U ∈ C(Γ−,Γ+), if M[U ] = 0, then, up to a measure-zero set, U =
Ω−(Γ−), and if M[U ] = M0, then U = Ω−(Γ+). Observe that it is possible to perturb
the distance to Ω−(Γ−) to a uniformly bounded Morse function f on Ω which coincides
with the distance function near Γ−. Thus the function a 7→M[{f < a}] is continuous and
so, for any 0 ≤ m ≤M0, C(Γ−,Γ+;m) is nonempty and we can define a number

Em = inf {Erel[∂∗U,Γ−] : U ∈ C(Γ−,Γ+;m)} .

Lemma 8.3. For each m ∈ [0,M0], there is an element U ′m ∈ C(Γ−,Γ+;m) so that
Erel[∂

∗U ′m,Γ−] = Em.

Proof. By Lemma 4.3 there is a constant E− = E−(Γ−,Γ+) ≤ 0 so that, for any U ∈
C(Γ−,Γ+),

Erel[∂
∗U,Γ−] ≥ E−.

In particular, one has
Em ≥ E− > −∞.

We may assume Em < ∞ as otherwise Erel[∂∗U,Γ−] = ∞ for all such U and so
the claim holds trivially. Then pick a minimizing sequence Ui ∈ C(Γ−,Γ+;m) so that
Erel[∂

∗Ui,Γ−] → Em. By Proposition 2.1, up to passing to a subsequence, 1Ui → 1U∞
in the weak-* topology of BVloc for some U∞ ∈ C(Γ−,Γ+). Appealing to [8, Lemma
2.2] one has, for any R > 1, ∫

ΩUi\B̄R
e
|x|2

4 dLn+1 ≤ CR−1

where C = C(Γ−,Γ+). Thus it follows that M[U∞] = m and so U∞ ∈ C(Γ−,Γ+;m).
By the nature of convergence and Proposition 2.1

Erel[∂
∗U∞,Γ−] ≤ lim

i→∞
Erel[∂

∗Ui,Γ−] = Em.

Hence Erel[∂∗U∞,Γ−] = Em and so the claim follows with U ′m = U∞. �

Given R > 0 and ε > 0, let

WR,ε = (BR ∩ Ω) \Tε(Γ−).
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Lemma 8.4. There are positive constantsR′0 = R′0(Γ−,Γ+) and ε′0 = ε′0(Γ−,Γ+) so that
if U ∈ C(Γ−,Γ+) satisfies WR′0,ε′0 ∩U = ∅, then Erel[∂∗U,Γ−] ≥ 0 and the inequality is
strict when ∂∗U 6= Γ−.

Proof. We may assume Erel[∂∗U,Γ−] < ∞ as otherwise the claim holds trivially. Using
Lemma 3.3 with Γ = Γ−, one obtains a foliation {Γs}s∈[0,ε0] and a number c0 > 0 so that

(1) Γ0 = Γ− and Γs � Γs′ if s ≤ s′;
(2) For s > 0, the expander mean curvature of Γs points towards Γ−;

(3) For p ∈ Γε0 , dist(p,Γ−) ≥ c0ε0(1 + |x(p)|2)−
1
2 (n+1)+c0e−

|x(p)|2
4 .

Let
Ω0 =

⋃
s∈[0,ε0]

Γs

and define the vector field V : Ω0 → Rn+1 by

V(p) = nΓs(p) if p ∈ Γs.

By Items (1) and (2)

(8.2) divV(p) +
x(p)

2
·V(p) ≥ 0

and the inequality is strict when p ∈ Γs for some s > 0.
Appealing to [8, Proposition 2.1] gives that

Γ+\B2R ⊆
{
x(p) + u(p)nΓ−(p) : p ∈ Γ−\B̄R

}
⊆ Γ+

whereR = R(Γ−,Γ+) > 1 and u satisfies

0 ≤ u ≤ C(1 + |x|2)−
1
2 (n+1)e−

|x|2
4

for some C = C(Γ−,Γ+). Thus, by Item (3), there is a radiusR′0 = R′0(Γ−,Γ+) > R so
that Ω \BR′0 ⊆ Ω0. Hence there is a constant ε′0 = ε′0(Γ−,Γ+) > 0 so that

Ω \WR′0,ε′0 = (Ω \BR′0) ∪ (Ω ∩ Tε′0(Γ0)) ⊆ Ω0

and so V is well defined on Ω \WR′0,ε′0 .
As U ∈ C(Γ−,Γ+) satisfies U ∩WR′0,ε′0 = ∅, one has

ΩU ⊆ Ω \WR′0,ε′ .
Applying the divergence theorem to VR = φR,1V gives∫

∂∗U

φR,1e
|x|2

4 dHn −
∫

Γ−

φR,1e
|x|2

4 dHn

≥
∫
∂∗U

VR · n∂∗Ue
|x|2

4 dHn −
∫

Γ−

VR · nΓ−e
|x|2

4 dHn

=

∫
ΩU

(
divVR +

x

2
·VR

)
e
|x|2

4 dLn+1

≥
∫

ΩU

φR,1

(
divV +

x

2
·V
)
e
|x|2

4 dLn+1 − 2

∫
Ω∩(B̄R+1\BR)

e
|x|2

4 dLn+1.

Thus, by [8, Lemma 2.2],

E[∂∗U,Γ−;φR,1] ≥
∫

ΩU

φR,1

(
divV +

x

2
·V
)
e
|x|2

4 dLn+1 − C ′R−2
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for some C ′ = C ′(Ω). Hence, sending R → ∞ and invoking (8.2), it follows from the
monotone convergence theorem and Proposition 2.1 that

(8.3) Erel[∂
∗U,Γ−] ≥

∫
ΩU

(
divV +

x

2
·V
)
e
|x|2

4 dLn+1 ≥ 0.

Finally, if ∂∗U 6= Γ−, then ΩU \ Γ− has positive measure and

divV +
x

2
·V > 0 on ΩU \ Γ−.

Thus, the second inequality in (8.3) is strict. That is, Erel[∂∗U,Γ−] > 0. This completes
the proof. �

Lemma 8.5. There is a δ1 = δ1(R′0, ε′0) > 1 so that given U ∈ C(Γ−,Γ+) there are
constantsR′1 = R′1(U) ∈ (2R′0, 4R′0) and ε′1 = ε′1(U) ∈

(
1
4ε
′
0,

1
2ε
′
0

)
so that

E[U ∩ ∂WR′1,ε′1 ] =

∫
U∩∂WR′1,ε′1

e
|x|2

4 dHn < δ1M[U ].

Proof. First, the coarea formula yields∫ 4R′0

2R′0

∫
∂Bρ∩ΩU

e
|x|2

4 dHndρ =

∫
(
B̄4R′0

\B2R′0

)
∩ΩU

e
|x|2

4 dLn+1 ≤M[U ].

Hence,

2R′0 inf
2R′0<ρ<4R′0

∫
∂Bρ∩ΩU

e
|x|2

4 dHn ≤M[U ]

and so there is a radiusR′1 ∈ (2R′0, 4R′0) so that

(8.4)
∫
∂BR′1

∩ΩU

e
|x|2

4 dHn ≤ 1

R′0
M[U ].

Next, let f : Tε′0(Γ−)\Ω−(Γ−)→ [0, ε′0) be the function given by f(p) = dist(p,Γ−).
The choice of ε′0 ensures this function is Lipschitz and |∇f | = 1. Thus, invoking the
coarea formula again,∫ ε′0

2

ε′0
4

∫
{f=ρ}∩ΩU∩B̄R′1

e
|x|2

4 dHndρ =

∫{
ε′0
4 ≤f≤

ε′0
2

}
∩ΩU∩B̄R′1

|∇f |e
|x|2

4 dLn+1 ≤M[U ].

Hence,
ε′0
4

inf
ε′0
4 <ρ<

ε′0
2

∫
{f=ρ}∩ΩU∩B̄R′1

e
|x|2

4 dHn ≤M[U ].

As such there is an ε′1 ∈ ( 1
4ε
′
0,

1
2ε
′
0) so that

(8.5)
∫
{f=ε′1}∩ΩU∩B̄R′1

e
|x|2

4 dHn ≤ 8

ε′0
M[U ].

As

E[U ∩ ∂WR′1,ε′1 ] ≤
∫
∂BR′1

∩ΩU

e
|x|2

4 dHn +

∫
{f=ε′1}∩ΩU∩B̄R′1

e
|x|2

4 dHn

the claim follows by combining (8.4)-(8.5) and choosing δ1 = 1
R′0

+ 8
ε′0

. �
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Lemma 8.6. There is a constant γ0 = γ0(R′0, ε′0) > 0 so that if U ∈ C(Γ−,Γ+) is such
that ∂∗U is E-stationary in B2R′0\T 1

2 ε
′
0
(Γ−) and U ∩WR′0,ε′0 6= ∅, then

E[W2R′0,
1
2 ε
′
0
∩ ∂∗U ] =

∫
W

2R′0,
1
2
ε′0
∩∂∗U

e
|x|2

4 dHn > γ0.

Proof. If U ∩ WR′0,ε′0 6= ∅, then there is a point p ∈ WR0,ε′0
∩ ∂∗U . Clearly, if r0 =

min
{
R′0, 1

2ε
′
0

}
> 0, then ∂∗U is E-stationary in Br0(p). As Br0(p) ⊂ B2R′0 , one has

that |H∂∗U | ≤ R′0. By the monotonicity formula [40, Section 17], there is a constant
γ0 = γ0(R′0, r0) > 0, which in turn depends onR′0 and ε′0, so that

E[W2R′0,
1
2 ε
′
0
∩ ∂∗U ] ≥ E[Br0(p) ∩ ∂∗U ] ≥ Hn(Br0(p) ∩ ∂∗U) > γ0

proving the claim. �

Proposition 8.7. There is an m0 = m0(δ1, γ0) > 0 so that if U ∈ C(Γ−,Γ+) is such that
0 <M[U ] < m0, then Erel[∂∗U,Γ−] > 0.

Proof. Given such U andR′0 and ε′0 from Lemma 8.4, chooseR′1 and ε′1 as in Lemma 8.5
and let

C(Γ−,Γ+;U,WR′1,ε′1) =
{
W ∈ C(Γ−,Γ+) : W∆U ⊆WR′1,ε′1

}
.

By standard compactness results for sets of finite perimeter, there is an element U ′ ∈
C(Γ−,Γ+;U,WR′1,ε′1) so that, for all W ∈ C(Γ−,Γ+;U,WR′1,ε′1),

E[∂∗U ′ ∩WR′1,ε′1 ] ≤ E[∂∗W ∩WR′1,ε′1 ].

Clearly, one has
Erel[∂

∗U,Γ−] ≥ Erel[∂∗U ′,Γ−].

We now treat two situations. If U ′ ∩WR′0,ε′0 = ∅, then Lemma 8.4 implies that

Erel[∂
∗U,Γ−] ≥ Erel[∂∗U ′,Γ−] ≥ 0

and the inequality is strict as otherwise, up to zero-measure sets, U = U ′ = Ω−(Γ−)
which contradicts M[U ] > 0.

The other situation is U ′ ∩ WR′0,ε′0 6= ∅. In this case, we first observe that ∂∗U ′ is
E-stationary in B2R′0\T 1

2 ε
′
0
(Γ−). Indeed, this is true by construction in W2R′0,

1
2 ε
′
0
. The

only other points of ∂∗U ′ in B2R′0\T 1
2 ε
′
0
(Γ−) are those that lie in Γ+ ∩B2R′0 . However, if

this occurs, then the maximum principle (see Solomon-White [42]) implies that

∂∗U ′ ∩ (B2R′0\W2R′0,
1
2 ε
′
0
) ⊆ Γ+ ∩B2R′0

and so ∂∗U ′ is automatically E-stationary at any such point. Next, by Lemma 8.6,

E[∂∗U ′ ∩WR′1,ε′1 ] ≥ E[∂∗U ′ ∩W2R′0,
1
2 ε
′
0
] > γ0 > 0.

Now let U ′′ = U\WR′1,ε′1 . Clearly, U ′′ ∈ C(Γ−,Γ+) satisfies U ′′ ∩WR′0,ε′0 = ∅ and so,
by Lemma 8.4,

Erel[∂
∗U ′′,Γ−] ≥ 0.

Finally, as
∂∗U ′′ ⊆ (∂∗U ′\WR′1,ε′1) ∪ (U ∩ ∂WR′1,ε′1)

one has

Erel[∂
∗U ′′,Γ−] ≤ Erel[∂∗U ′,Γ−]− E[∂∗U ′ ∩WR′1,ε′1 ] + E[U ∩ ∂WR′1,ε′1 ].
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Hence, by Lemmas 8.5 and 8.6,

Erel[∂
∗U ′′,Γ−] ≤ Erel[∂∗U ′,Γ−] + δ1M[U ]− γ0.

Picking m0 < δ−1
1 γ0 gives

0 ≤ Erel[∂∗U ′′,Γ−] < Erel[∂
∗U ′,Γ−] ≤ Erel[∂∗U,Γ−].

This proves the claim. �

Corollary 8.8. If 0 < m < m0, then Em > 0.

Proof. For m ∈ (0,m0), let U ′m ∈ C(Γ−,Γ+;m) be the element given by Lemma 8.3.
Thus, by Proposition 8.7, one has Em = Erel[∂

∗U ′m,Γ−] > 0 proving the claim. �

We can now complete the proof of the main result of this section.

Proof of Proposition 8.1. We treat two cases. The first is Erel[Γ+,Γ−] ≤ 0. As such, we
are trying to show

max
τ∈[0,1]

Erel[Στ ,Γ−] ≥ δ0 > 0

for some δ0 = δ0(Γ−,Γ+). By definition of sweepouts and Lemma 8.2, the map τ 7→
M[R[Uτ ]] is a continuous map from [0, 1] to [0,M0] and the value at τ = 0 is 0 while the
value at τ = 1 is M0. Moreover, for all τ ∈ [0, 1],

Erel[∂
∗R[Uτ ],Γ−] ≤ Erel[Στ ,Γ−].

As such, there is a τ∗ ∈ (0, 1) with M[R[Uτ∗ ]] = m0

2 = m∗ where m0 is given by
Proposition 8.7. It then follows from Corollary 8.8 that

max
τ∈[0,1]

Erel[Στ ,Γ−] ≥ Erel[Στ∗ ,Γ−] ≥ Erel[∂∗R[Uτ∗ ],Γ−] ≥ Em∗ > 0.

As Em∗ depends only on Γ− and Γ+, we prove the claim by setting δ0 = Em∗ .
The second is Erel[Γ+,Γ−] ≥ 0. As such, we need to show

max
τ∈[0,1]

Erel[Στ ,Γ−] ≥ Erel[Γ+,Γ−] + δ0 ≥ δ0.

Reversing orientation (which swaps Γ− with Γ+), by what we have shown

max
τ∈[0,1]

Erel[Στ ,Γ+] ≥ δ0.

Thus, as
max
τ∈[0,1]

Erel[Στ ,Γ−] = Erel[Γ+,Γ−] + max
τ∈[0,1]

Erel[Στ ,Γ+]

the claim follows immediately. �

9. EXISTENCE OF SWEEPOUTS AND PROOF OF THE RESULTS

In this section we complete the proof of Theorem 1.1 and Corollaries 1.2 and 1.4. This
will mostly require us to show the existence of at least one sweepout of Ω̃. In order to do
this, we adapt arguments of [14, Lemma 12.1] and [33] to prove the existence of sweepouts.

Proposition 9.1. There exists a sweepout of Ω̃.

Proof. We will construct a suitable Morse function on Ω, the closure of the open region
between Γ− and Γ+, and use it to obtain the desired sweepout. First, by our hypotheses on
Γ− and Γ+, there is a radius R = R(Γ−,Γ+) > 1 and a foliation {Ξs}s∈[0,1] of Ω \ B̄R
so that

(1) Ξ0 = (Γ− ∩ Ω) \ B̄R and Ξ1 = (Γ+ ∩ Ω) \ B̄R;
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(2) Each Ξs is given by a smooth graph over Γ− outside a compact set;
(3) For every s, supp∈Ξs |x(p)||AΞs(p)| ≤ K for some K = K(Γ−,Γ+).

Using this foliation one can define f0 : Ω \ B̄R → [0, 1] by

f0(p) = s if p ∈ Ξs.

Clearly, f−1
0 (0) = (Γ−∩Ω)\ B̄R, f−1

0 (1) = (Γ+∩Ω)\ B̄R and f0 has no critical points.
Next let ε = ε(Γ−,Γ+) > 0 be sufficiently small so that the distance to Γ±, dist(·,Γ±)

on T2ε(Γ±) are smooth functions without critical points. Shrinking ε if needed, we may
assume T2ε(Γ−) and T2ε(Γ+) are disjoint in Ω∩B2R. Set W1 = T2ε(Γ−)∩Ω∩B2R and
define f1 : W1 → R by

f1(p) = dist(p,Γ−).

Likewise, set W2 = T2ε(Γ+) ∩ Ω ∩B2R and define f2 : W2 → R by

f2(p) = 1− dist(p,Γ+).

Thus, 0 ≤ f1 < 1 with f−1
1 (0) = Γ− ∩ Ω ∩ B2R, and 0 < f2 ≤ 1 with f−1

2 (1) =

Γ+ ∩ Ω ∩ B2R. Let W3 = (Ω ∩ B2R) \ (Tε(Γ−) ∪ Tε(Γ+)) and f3 : W3 → R be the
constant- 1

2 function.
Set W0 = Rn+1 \ B̄R and the family {Wi}0≤i≤3 forms an open cover of Ω. Let

{ϕi}0≤i≤3 be a partition of unity subordinate to this cover. Now define f : Ω→ R by

f(p) =
∑

0≤i≤3

ϕi(p)fi(p).

By definition f−1(0) = Γ−∩Ω, f−1(1) = Γ+∩Ω and f has no critical points in Ω\B2R
or W1 ∪W2. Indeed, only ϕ0 6= 0 in Ω \ B2R and so f = f0, as remarked before, has no
critical points. One readily computes, at p ∈ Γ− ∩ Ω ∩B2R,

∇nΓ−
f(p) =

∑
0≤i≤3

∇nΓ−
ϕi(p)fi(p) +

∑
0≤i≤3

ϕi(p)∇nΓ−
fi(p).

First observe that the first sum vanishes. By construction ϕ2(p) = ϕ3(p) = 0 and
∇nΓ−

fi(p) > 0 for i ∈ {0, 1}. Thus the second sum is positive and so ∇nΓ−
f(p) > 0.

Hence, by further shrinking ε if necessary, it follows that f has no critical points in W1.
Similar arguments show the same for f in W2. This proves the claim.

To make f Morse, we need to modify f in W3. As the set of Morse functions is an open
dense subset of C2 functions, for sufficiently small δ > 0 (which will be chosen later)
there is a Morse function g on W = (Ω ∩B4R) \ (T 1

2 ε
(Γ−) ∪ T 1

2 ε
(Γ+)) with

‖g − f‖C2 < δ.

Let φ : Ω→ [0, 1] be a cutoff function so that φ = 1 in W3 and φ = 0 outside B4R and in
ε
2 -tubular neighborhood of Γ±. Define h : Ω→ R by

h(p) = φ(p)g(p) + (1− φ(p)) f(p).

Clearly, h−1(0) = Γ− ∩ Ω and h−1(1) = Γ+ ∩ Ω. By what we have shown, h has no
degenerate critical points in the region where φ = 0 or φ = 1. In the intermediate region,
i.e., 0 < φ < 1, applying the chain rule gives

Dh = Df +Dφ(g − f) + φD(g − f).
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As f has no critical points outside B2R or in ε-tubular neighborhood of Γ±, one has
|Df | > η > 0 in the region where 0 < φ < 1. Thus, by the triangle inequality,

|Dh| ≥ |Df | − |Dφ||g − f | − |D(g − f)| ≥ η − C‖g − f‖C2 ≥ η − Cδ
where C > 0 depends only on φ (which in turn depends only on ε). Hence, choosing
δ < η/C, it follows that |Dh| > 0 in the region where 0 < φ < 1. Therefore we have
shown h is a Morse function.

Finally, for τ ∈ [0, 1], let Uτ = {h < τ} ∪ Ω−(Γ−) and Στ = ∂∗Uτ . We show that
{(Uτ ,Στ )}τ∈[0,1] is a sweepout of Ω. By construction, except for the first and third all
other properties in Definition 7.1 are satisfied. To show the rest, as Στ \B4R = Ξτ \B4R,
invoking Items (2) and (3), it follows from Proposition 2.4 that, for all R > R̄1 > 4R,

Erel[Στ ,Γ−;Rn+1 \BR] < K̄1R
−2

where K̄1 and R̄1 depend on Γ−,Γ+,R and K. Thus it follows that the map τ 7→ Στ is
continuous in the weak-* topology of Y∗(Ω′) and Erel[Στ ,Γ−] <∞ for every τ ∈ [0, 1].
This proves the claim and completes the proof. �

We now prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 9.1, there is a sweepout of Ω̃. Let X be the homo-
topically closed set of families in Ω′ generated by this sweepout. As any element of X is a
sweepout of Ω̃, invoking Proposition 8.1 gives

bMrel(X) = max {Erel[Γ+,Γ−], 0} < mrel(X).

Hence, appealing to Theorem 7.5, one obtains a C2-asymptotically conical (possibly sin-
gular) self-expander Γ0 with C(Γ0) = C and Γ− � Γ0 � Γ+ and that has codimension-7
singular set and Erel[Γ0,Γ−] = mrel(X), in particular, Γ0 6= Γ±. �

We now use Theorem 1.1 to prove Corollaries 1.2 and 1.4.

Proof of Corollary 1.2. Let Γ1
0 be the self-expander produced by applying Theorem 1.1 to

Γ±. If Γ1
0 ∩ Ω 6= ∅, then we are done with Γ0 = Γ1

0. Otherwise, Γ1
0 is the union of some

components of Γ− and Γ+. Thus, Γ1
0 is a strictly stable C2-asymptotically conical self-

expander with C(Γ1
0) = C and Γ− � Γ1

0 � Γ+. As common components of Γ− and Γ+ are
also components of Γ1

0 and Γ1
0 6= Γ±, Γ− shares strictly more common components with

Γ1
0 than Γ+. Apply Theorem 1.1 to Γ− and Γ1

0 and iterate the previous arguments. After
iterating l times, we end up with two situations. The first situation is that Γl0∩Ω 6= ∅. Thus
we stop and set Γ0 = Γl0. The second is that except one component of Γ− all others are also
components of Γl0. Again, applying Theorem 1.1 to Γ− and Γl0 gives a C2-asymptotically
conical self-expander Γ0 with C(Γ0) = C and so Γ− � Γ0 � Γl0 � Γ+ and

Γ0 ∩ Ω ⊇ Γ0 ∩
(

Ω−(Γl0) \ Ω−(Γ−)
)
6= ∅.

This proves the first claim.
To see the second claim, we now assume C is generic. Take any sequence of stable self-

expanders, Σi, that are C2-asymptotic to C. By [5, Proposition 3.3] and the Azelà-Ascoli
theorem and standard elliptic regularity [20, Theorems 6.17 and 8.24], there is an R =
R(C) > 1 so that, up to passing to a subsequence, Σi \ B̄R converges – with multiplicity
one – inC∞loc(Rn+1\B̄R) to a smooth self-expander Σ′ in Rn+1\B̄R that isC2-asymptotic
to C. By [5, Lemma 3.6], the areas of the Σi ∩ B4R are uniformly bounded by a constant
depending only on C. As the Σi ∩ B4R are stable, the Schoen-Simon compactness [39]
implies that, up to passing to a further subsequence, the Σi ∩ B4R converge in C∞loc(B4R)



A MOUNTAIN-PASS THEOREM FOR ASYMPTOTICALLY CONICAL SELF-EXPANDERS 43

to a smooth self-expander Σ′′ in B4R – here the convergence may, in principle, be with
multiplicity greater than one. However, Σ′ = Σ′′ in B3R \ B̄2R and so Σ = Σ′ ∪ Σ′′

is a smooth self-expander asymptotic to C. By the construction, the fact that Σ has no
closed components and the constancy theorem, Σi → Σ in C∞loc(Rn+1) with multiplicity
one. This implies that the set of stable self-expandersC2-asymptotic to C has finitely many
diffeomorphism types and, by [4, Theorem 1.1] and the fact that C is generic, it is indeed a
finite set consisting of strictly stable elements. Hence one can apply Theorem 1.1 with the
first claim finitely many times and obtain an unstable self-expander trapped between Γ−
and Γ+. �

Proof of Corollary 1.4. Let C0 be a genericC3-regular cone that is very close to a rotation-
ally symmetric double cone with sufficiently large apertures. If C is a cone C3-close to C0,
then the results of [4] ensure that C is generic as well. And the link of C has exactly two con-
nected components L1 and L2 so that, for each i ∈ {1, 2}, the cone Ci over Li is an entire
uniformly Lipschitz graph over some hyperplane in Rn+1. Thus, by the dilation invariance
of cones and the work of Ecker-Huisken [17] on the existence and uniqueness of mean cur-
vature flow of entire graphs, for each i ∈ {1, 2} there is a unique smooth self-expander Σi0
that is an entire graph asymptotic to Ci. Thus, Σ0 = Σ1

0 ∪ Σ2
0 is the unique disconnected

smooth self-expander asymptotic to C. In particular, Σ0 is strictly stable. Using an ap-
propriate rotationally symmetric self-expander as a barrier and a minimizing argument for
the expander functional (which is sketched by Ilmanen [24] and carried out by Ding [16]),
one obtains a connected strictly stable self-expander Σ1 asymptotic to C – See [6, Lemma
8.2] for details. By the strong maximum principle we may assume Σ0 � Σ1. Hence, by
the uniqueness of disconnected self-expanders asymptotic to C, Theorem 1.1 implies that
there is a third connected smooth self-expander Σ asymptotic to C and Σ0 � Σ � Σ1. This
completes the proof. �

APPENDIX A. ESTIMATES ON THE FLOW OF VECTOR FIELDS

We collect here various estimates and properties of the vector fields and associated flows
used in Section 5. Throughout this appendix, let Y = αY0+Y1 ∈ Y−(Ω′) and {Φ(t)}t≥0

be the vector field and the family of diffeomorphisms in Ω′, respectively. As in Proposition
5.1, assume

‖Y‖Y = |α|+ ‖Y1‖Yt
≤M0.

For convenience, we define the following Banach space

C0
d(Y ) =

{
f ∈ C0

loc(Y ) : ‖f‖C0
d
<∞

}
with the weighted norm

‖f‖C0
d

= sup
p∈Y

(1 + |x(p)|)−d|f(p)|.

First is an estimate on the asymptotic properties of the vector field Y.

Lemma A.1. There is a constant C̃0 = C̃0(Ω′,Γ−,M0) > 0 so that

‖Y − αχ|x|−2x‖C0
−3

+
3∑
l=1

‖∇lY‖C0
−2
≤ C̃0.

Proof. Write
Y − αχ|x|−2x = Y1 − αχ|x|−2(x ·N)N.
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The hypotheses on Y1 and Lemma 2.3 ensure that there is a constant C̃ ′0 = C̃ ′0(Ω′,Γ−,M0) >
1 so that

‖Y − αχ|x|−2x‖C0
−3
≤ C̃ ′0.

Next, we compute, on Ω′ \ B̄R1+1,

∇iY0 = |x|−2 (ei − 2xiY0) + |x|−2Pi,

∇j∇iY0 = |x|2∇iY0∇j |x|−2 + |x|−2∇j (ei − 2xiY0) + |x|−2∇jPi
= −2|x|−2 (δijY0 + xj∇iY0 + xi∇jY0) + |x|−2∇jPi,

and

∇k∇j∇iY0 = −2|x|−2 (xk∇j∇iY0 + xi∇j∇kY0 + xj∇k∇iY0)

− 2|x|−2 (δij∇kY0 + δjk∇iY0 + δki∇jY0) + |x|−2∇k∇jPi
where ei is the i-th coordinate vector, xi = x · ei, and

Pi = −(ei ·N)N− (x · ∇iN)N− (x ·N)∇iN.

It is readily checked that there is a constant C = C(Ω′,Γ−) > 0 so that, for all i,
2∑
l=0

‖∇lPi‖C0 ≤ C.

Thus, inductively, it follows that there is a constant C ′ = C ′(Ω′,Γ−) > 0 so that
3∑
l=1

‖∇lY0‖C0
−2
≤ C ′,

and this together with the hypotheses on Y1 implies the desired estimates on ∇lY for
1 ≤ l ≤ 3. �

Lemma A.2. There is a constant C̃1 = C̃1(Ω′,Γ−,M0, T ) > 0 so that, for all 0 ≤ t ≤ T ,

‖|Φ(t)|2 − |x|2 − 2αt‖C0
−2

+ ‖∇Φ(t)− In+1‖C0
−2

+
∑
l=2,3

‖∇lΦ(t)‖C0
−2
≤ C̃1

where In+1 is the (n+ 1)× (n+ 1) identity matrix.

Proof. As ∂
∂tΦ(t, p) = Y(Φ(t, p)) and Φ(0, p) = p, it follows that

(A.1)
∂

∂t
|Φ(t, p)|2 = 2Φ(t, p) ·Y(Φ(t, p)) and |Φ(0, p)|2 = |x(p)|2.

By the triangle inequality and Lemma A.1,

|x ·Y − α| ≤ |x · (Y − αχ|x|−2x)|+ |α(1− χ)|

≤
(
C̃0 +M0(2 +R1)2

)
(1 + |x|)−2.

Thus, integrating (A.1) gives that, for all (t, p) ∈ [0, T ]× Ω′,

|Φ(t, p)|2 ≥ |x(p)|2 − 2
(
C̃0 +M0

(
1 + (2 +R1)2

))
T

and so there is a constant C = C(Ω′,Γ−,M0, T ) > 1 so that

(A.2) C(1 + |Φ(t, p)|) ≥ (1 + |x(p)|).
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Thus one readily computes, for (t, p) ∈ [0, T ]× Ω′,∣∣|Φ(t, p)|2 − |x(p)|2 − 2αt
∣∣ ≤ ∫ t

0

∣∣∣∣ ∂∂τ |Φ(τ, p)|2 − 2α

∣∣∣∣ dτ
= 2

∫ t

0

|x ·Y − α|(Φ(τ, p)) dτ

≤ 2
(
C̃0 +M0(2 +R1)2

)∫ t

0

(1 + |Φ(τ, p)|)−2 dτ

≤ 2
(
C̃0 +M0(2 +R1)2

)
TC2(1 + |x(p)|)−2.

Hence, as long as C̃1 ≥ 2(C̃0 +M0(2 +R1)2)TC2,

‖|Φ(t)|2 − |x|2 − 2αt‖C0
−2
≤ C̃1.

Similarly, differentiating the equation for Φ up to three times gives that
∂

∂t
∇iΦ = (∇Y ◦ Φ) · ∇iΦ,

∂

∂t
∇j∇iΦ(t, p) = (∇Y ◦ Φ) · ∇j∇iΦ + (∇2Y ◦ Φ)(∇iΦ,∇jΦ),

and
∂

∂t
∇k∇j∇iΦ =(∇Y ◦ Φ) · ∇k∇j∇iΦ + (∇2Y ◦ Φ)(∇kΦ,∇j∇iΦ)

+ (∇2Y ◦ Φ)(∇iΦ,∇k∇jΦ) + (∇2Y ◦ Φ)(∇jΦ,∇k∇iΦ)

+ (∇3Y ◦ Φ)(∇iΦ,∇jΦ,∇kΦ).

Observe that by our hypotheses on Y and the standard ODE theory

sup
0≤t≤T

‖Φ(t)‖C3 ≤ C ′

where C ′ = C ′(Ω′,Γ−, T ) > 0. Hence, as ∇Φ(0, p) = In+1 and ∇lΦ(0, p) = 0 for
l = 2, 3, integrating the above equations and appealing to Lemma A.1 and (A.2), gives the
desired estimates for the covariant derivatives of Φ(t). �

Corollary A.3. There is a constant C̃2 = C̃2(Ω′,Γ−,M0, T ) > 0 so that, for any 0 ≤
a, t ≤ T ,

e
1
4 (|Φ(t,p)|2−|x(p)|2) = e

1
4 (|Φ(a,p)|2−|x(p)|2)

(
1 +

1

2
(t− a)(x ·Y) ◦ Φ(a, p)

)
+ (t− a)2Q0(a, t, p) ∈ Y(Ω′)

where Q0(a, t) = Q0(a, t, ·) satisfies∥∥∥∥Q0(a, t)− 1

4
α2

∫ 1

0

e
1
2α(a+(t−a)ρ)(1− ρ) dρ

∥∥∥∥
C0
−2

+ ‖∇Q0(a, t)‖C0
−1
≤ C̃2.

Proof. It is convenient to set

f(t, p) = e
1
4 (|Φ(t,p)|2−|x(p)|2).

By the Taylor expansion and the chain rule,

f(t, p) = f(a, p)

(
1 +

1

2
(t− a)(x ·Y) ◦ Φ(a, p)

)
+ (t− a)2Q0(a, t, p)
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where

Q0(a, t, p) =
1

4

∫ 1

0

h(a+ (t− a)ρ, p)f(a+ (t− a)ρ, p)(1− ρ) dρ

and
h(t, p) =

(
(x ·Y)2 + 2|Y|2 + 2x · ∇YY

)
◦ Φ(t, p).

By Lemma A.1 there is a constant K = K(Ω′,Γ−,M0) > 0 so that

‖(x ·Y)2 − α2‖C0
−2

+ ‖∇(x ·Y)2‖C0
−1

+ ‖|Y|2‖C0
−2

+ ‖∇|Y|2‖C0
−3

+ ‖x · ∇YY‖C0
−2

+ ‖∇(x · ∇YY)‖C0
−2
≤ K.

Together with estimates on Φ(t, p), Lemma A.2, and the chain rule, it follows that

sup
0≤t≤T

(
‖h(t, ·)− α2‖C0

−2
+ ‖∇h(t, ·)‖C0

−1

)
≤ C

where C = C(Ω′,Γ−,M0, T ) > 0. Likewise, one uses Lemmas A.1 and A.2 to obtain the
estimates for f :

sup
0≤t≤T

(
‖f(t, ·)− e 1

2αt‖C0
−2

+ ‖∇f(t, ·)‖C0
−1

)
≤ C ′

where C ′ = C ′(Ω′,Γ−,M0, T ) > 0. Hence, the desired estimate for Q0 follows from
combining these estimates. In particular, for all 0 ≤ a, t ≤ T , Q0(a, t) ∈ Y(Ω′). Again,
appealing to Lemma A.1 gives x ·Y ∈ Y(Ω′). Thus, fixing a = 0, it follows that f(t, ·) ∈
Y(Ω′) for all 0 ≤ t ≤ T , completing the proof. �

Corollary A.4. There is a constant C̃3 = C̃3(Ω′,Γ−,M0, T ) > 0 so that, for any 0 ≤
a, t ≤ T ,

JΦ(t, p,v) = JΦ(a, p,v) + (t− a)
∂

∂t
JΦ(a, p,v) + (t− a)2Q1(a, t, p,v)

where JΦ(t, ·, ·), ∂∂tJΦ(t, ·, ·) ∈ Y(Ω′) satisfy JΦ(0, p,v) = 1 and

∂

∂t
JΦ(0, p,v) = divY(p)−Q∇Y(p,v) = divY(p)−∇vY(p) · v,

and Q1(a, t) = Q1(a, t, ·, ·) satisfies, for any R ≥ 0,

‖Q1(a, t)‖X(Ω′\BR) ≤ C̃3(R+ 1)−2,

so Q1(a, t) ∈ Y(Ω′).

Proof. By the Taylor expansion,

(A.3) JΦ(t, p,v) = JΦ(a, p,v) + (t− a)
∂

∂t
JΦ(a, p,v) + (t− a)2Q1(a, t, p,v)

where

Q1(a, t, p,v) =

∫ 1

0

∂2

∂t2
JΦ(a+ (t− a)ρ, p,v)(1− ρ) dρ.

For v ∈ Sn, choose an orthonormal basis Tv = {τl : 1 ≤ l ≤ n} for TvSn. Notice that,
for any v0 ∈ Sn fixed, one may choose Tv so it smoothly depends on v in a neighborhood
of v0. Define b(t, p,Tv) = (bij) to be a matrix-valued function given by

bij = ∇τiΦ · ∇τjΦ.
Then

JΦ(t, p,v) =
√

det(b(t, p,Tv))
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of which the right side is independent of the choice of orthonormal basis for TvSn. By
Jacobi’s formula

(A.4)
∂

∂t
JΦ =

1

2
(JΦ)−1tr

(
adj(b)

∂b

∂t

)
.

Appealing to the equation for Φ gives

(A.5)
∂

∂t
bij = ((∇Y ◦ Φ) · ∇τiΦ) · ∇τjΦ + ((∇Y ◦ Φ) · ∇τjΦ) · ∇τiΦ.

As Φ(0, p) = p and∇Φ(0, p) = In+1, one has

JΦ(0, p,v) = 1 and
∂

∂t
Φ(0, p,v) = divY(p)−Q∇Y(p,v).

Moreover, by Lemmas A.1 and A.2, there is a constant C = C(Ω′,Γ−,M0, T ) > 0 so that

‖(JΦ)−1(t, ·, ·)‖C2 + ‖adj(b(t, ·, ·))‖C2 ≤ C

and, for all R ≥ 0, ∥∥∥∥ ∂∂tb(t, ·, ·)
∥∥∥∥
X(Ω′\BR)

≤ C

R+ 1
.

This together with the algebra property of X implies ∂
∂tJΦ(t, ·, ·) ∈ Y(Ω′).

Next we estimate Q1. Differentiating (A.4) gives

∂2

∂t2
JΦ =

1

2
(JΦ)−1tr

(
∂

∂t
adj(b)

∂b

∂t
+ adj(b)

∂2b

∂t2

)
− 1

4
(JΦ)−3

(
tr

(
adj(b)

∂b

∂t

))2

.

Differentiating (A.5) and appealing to the equation of Φ give

∂2

∂t2
bij = (∇2Y ◦ Φ)(Y ◦ Φ,∇τiΦ) · ∇τjΦ + (∇2Y ◦ Φ)(Y ◦ Φ,∇τjΦ) · ∇τiΦ

+ ((∇Y ◦ Φ) · ((∇Y ◦ Φ) · ∇τjΦ)) · ∇τiΦ + ((∇Y ◦ Φ) · ((∇Y ◦ Φ) · ∇τiΦ)) · ∇τjΦ
+ 2((∇Y ◦ Φ) · ∇τiΦ) · ((∇Y ◦ Φ) · ∇τjΦ).

Invoking Lemmas A.1 and A.2 again, there is a constant C ′ = C ′(Ω′,Γ−,M0, T ) > C so
that, for any R ≥ 0,∥∥∥∥ ∂∂tadj(b(t, ·, ·))

∥∥∥∥
X(Ω′\BR)

+ (R+ 1)

∥∥∥∥ ∂2

∂t2
b(t, ·, ·)

∥∥∥∥
X(Ω′\BR)

≤ C ′

R+ 1
.

Combining this with the previous estimates on (JΦ)−1, adj(b) and ∂b
∂t , it follows from

the algebra property of X that∥∥∥∥ ∂2

∂t2
JΦ

∥∥∥∥
X(Ω′\BR)

≤ c(n)(C ′ + 1)7(R+ 1)−2.

Hence, the claimed estimate forQ1 follows by choosing C̃3 ≥ c(n)(C ′+1)7. In particular,
Q1(a, t) ∈ Y(Ω′).

Finally, by Lemma A.1 one has divY −Q∇Y ∈ Y(Ω′). As, fixing a = 0, (A.3) gives

JΦ(t, p,v) = 1 + t (divY(p)−Q∇Y(p,v)) + t2Q1(0, t, p,v),

by what we have shown JΦ(t, ·, ·) is an element of Y(Ω′). This completes the proof. �
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Lemma A.5. Let Φ: Ω′ → Ω′ be a local diffeomorphism which satisfies, for some constant
M̃0 > 0,

‖Φ‖C2 + ‖|Φ|2 − |x|2‖C0 ≤ M̃0 <∞.
There is a constant C̃4 = C̃4(n, M̃0) > 0 so that if ψ is an element of Y(Ω′), then so is
Φ#ψ and, moreover,

‖Φ#ψ‖Y ≤ C̃4‖ψ‖Y.

Proof. By definition ψ = c1 + ψ0 where c ∈ R and ψ0 ∈ Y0(Ω′). Fix any ε > 0 and
there is a pair (ξ, ζ) ∈W(Ω′)× X(Ω′) so that ψ0 = ξ + ζ and

‖ξ‖W + ‖ζ‖X ≤ ‖ψ0‖Y + ε.

By our hypotheses, |x(p)| ≤ M̃1/2
0 + |Φ(p)| and so

sup
p∈Ω′

1 + |x(p)|
1 + |Φ(p)|

≤ 4
(

1 + M̃
1/2
0

)
.

One readily checks that

(1 + |x(p)|)n+1e
|x(p)|2

4 |Φ#ξ(p,v)| ≤
(

1 + |x(p)|
1 + |Φ(p)|

)n+1

e
1
4 (|x(p)|2−|Φ(p)|2)‖ξ‖W

≤ 4n+1
(

1 + M̃
1/2
0

)n+1

e
M̃0
4 ‖ξ‖W.

Thus, choosing K0 = 4n+1(1 + M̃
1/2
0 )n+1eM̃0/4, one has

‖Φ#ξ‖W ≤ K0‖ξ‖W.

Next, by the chain rule and the fact that Ω′ is quasi-convex,

‖Φ#ζ‖Lip + ‖∇Sn(Φ#ζ)‖Lip ≤ c(n)(1 + M̃0)2‖ζ‖Y.
Furthermore, one evaluates that

(1 + |x(p)|)|∇Sn(Φ#ζ)|(p,v) ≤ (1 + |x(p)|)|∇Snζ|(Φ(p),∇vΦ(p))|∇Φ|(p)

≤ 1 + |x(p)|
1 + |Φ(p)|

‖ζ‖XM̃0 ≤ 4
(

1 + M̃
1/2
0

)
M̃0‖ζ‖X.

Thus, by choosing K1 = c(n)(1 + M̃0)2 + 4(1 + M̃
1/2
0 )M̃0 + 1 ≥ 1, one has

‖Φ#ζ‖X ≤ K1‖ζ‖X.

Hence, combining these estimates gives that, for C̃ ′4 = max {K0,K1},

‖Φ#ψ0‖Y ≤ ‖Φ#ξ‖W + ‖Φ#ζ‖X ≤ C̃ ′4(‖ξ‖W + ‖ζ‖X) ≤ C̃ ′4(‖ψ0‖Y + ε)

Sending ε→ 0, it follows that

‖Φ#ψ0‖Y ≤ C̃ ′4‖ψ0‖Y.

As ψ0 ∈ Y0(Ω′), Item (6) of Proposition 4.1 ensures there is a sequence ψi ∈ C∞c (Ω′×
Sn) that converges in the Y norm to ψ0, the hypotheses on Φ ensure that each Φ#ψi has
compact support, and by what we have shown these elements converge in the Y norm to
Φ#ψ0. As such, Φ#ψ0 ∈ Y0(Ω′). Clearly, Φ#1 = 1 and so Φ#ψ = c1 + Φ#ψ0 ∈
Y(Ω′). Finally, appealing to Item (4) of Proposition 4.1 gives

‖Φ#ψ‖Y = ‖c1 + Φ#ψ0‖Y ≤ |c|+ C̃ ′4‖ψ0‖Y ≤ 4C̃ ′4‖ψ‖Y.

This completes the proof with C̃4 = 4C̃ ′4. �
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