A MOUNTAIN-PASS THEOREM FOR ASYMPTOTICALLY CONICAL
SELF-EXPANDERS

JACOB BERNSTEIN AND LU WANG

ABSTRACT. We develop a min-max theory for asymptotically conical self-expanders of
mean curvature flow. In particular, we show that given two distinct strictly stable self-
expanders that are asymptotic to the same cone and bound a domain, there exists a new
asymptotically conical self-expander trapped between the two.

1. INTRODUCTION

1.1. Main results. A hypersurface, i.e., a properly embedded codimension-one submani-
fold, ¥ C R™*1 is a self-expander if

(1.1) Hy = —.

Here

HZ = AEX = —HEIIZ = —dng(ng)ng
is the mean curvature vector, ny is the unit normal and x= is the normal component of the
position vector. Self-expanders arise naturally in the study of mean curvature flow. Indeed,
Y is a self-expander if and only if the family of homothetic hypersurfaces

{Et}t>o - {\/Zz}bo

is a mean curvature flow (MCF), that is, a solution to the flow

ox\ *
(1.2) (at) = Hy,.

Self-expanders model the behavior of a MCF as it emerges from a conical singularity
[2] and also model possible long time behavior of the flow [17]. Self-expanders arise
variationally as stationary points, with respect to compactly supported variations, of the
functional

B[] = / e dHm
>

where H" is the n-dimensional Hausdorff measure.

There are no closed self-expanders, instead the natural class to consider are those that
are asymptotically conical. More precisely, given an integer [ > 2, a hypersurface ¥ C
R+ is C'-asymptotically conical if there is a C'-regular cone C —i.e., a dilation invariant
C'-hypersurface in R"*1 \ {0} - so that lim, ,¢+ p¥ = C in C}  (R"™! \ {0}). When
this occurs write C(X) = C. Fix a choice of unit normal to C. For any C2-asymptotically
conical hypersurface ¥ with C(X) = C, we fix a choice of unit normal to 3 that is compat-
ible with that of C. Using this normal, let 2_ (X) be the open set whose boundary is ¥ and
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whose outward normal agrees with that of . For C2-asymptotically conical hypersurfaces
¥ and ¥’ with C(2) = C(¥') = C, define ¥ < 3 provided Q_(3) C Q_ ().
The main result of this paper is the following:

Theorem 1.1. Forn > 2, let C be a C3-regular cone in R"*. Suppose T _ and Ty (not
necessarily connected) are distinct strictly stable C?-asymptotically conical self-expanders
with C(T_) = C(Ty) = Cand T_ < T'y. Then there exists a C*-asymptotically conical
(possibly singular) self-expander I'g # T'x with C(T'g) = Cand ' < Ty < T'y and that
has codimension-7 singular set.

Repeatedly applying Theorem 1.1 we obtain some refined properties for I'g up to di-
mension six.

Corollary 1.2. For 2 < n < 6, let C and '+ be given as in Theorem 1.1. Let Q) =
Q_(T4)\ Q_(T'-) be the open region between I'_ and T . Then there exists a smooth
self-expander Ty that is C*-asymptotic to C and soT_ < Ty = Ty and Ty N Q # 0.
Moreover, if C is also generic, that is, there is no self-expander C*?-asymptotic to C with
nontrivial Jacobi fields that fix the infinity, then 'y may be taken to be an unstable self-

expander.

Remark 1.3. For n = 2 and rotationally symmetric self-expanders, Corollary 1.2 was
suggested in [2, Remark 6] without proofs.

In [4-6] we adapt ideas of White [46] and develop a degree-theoretic method to produce
asymptotically conical self-expanders of prescribed topological type. In particular, we
show that there is an open set of cones in R? so that for each cone in the set there exist three
distinct self-expanders asymptotic to the cone, two of which are topological annuli and the
third is the union of two disks. Another application of Theorem 1.1 is a generalization of
this fact to higher dimensions.

Corollary 1.4. For 2 < n < 6, there exists an open set U of C3-regular cones so that
for every C € U there exist at least two distinct connected smooth self-expanders C*-
asymptotic to C and at least one disconnected smooth self-expander C*-asymptotic to C.

1.2. Overview of the proof of Theorem 1.1. To prove Theorem 1.1, we establish a
mountain-pass theorem, i.e., Theorem 7.5, for asymptotically conical self-expanders. Min-
max theory for minimal hypersurfaces has seen a lot of recent development — see, e.g., [1],
(91, [10], [11], [13], [14], [15], [19], [22], [25], [26], [28], [29], [301, [31], [32], [35], [34],
[38], [43], [45], [49], [50] and references therein. We in particular note [27] wherein the
authors develop the min-max theory for self-shrinking solutions to mean curvature flow
in R3. Our approach is inspired by De Lellis-Tasnady’s [15] reformulation of work of
Almgren-Pitts [37] and Simon-Smith [41] — see also Colding-De Lellis [12]. One may
think of Theorem 7.5 as an analog, in the non-compact setting, of work of De Lellis-
Ramic [14] on min-max theory for compact minimal surfaces with fixed boundary (see
also [35] for an approach more closely using Almgren-Pitts’ work). However, we empha-
size two differences. The first is that in [14] the critical point produced by the min-max
procedure does not need to be trapped between the two strictly stable critical points. As this
kind of property plays a crucial role in our later application [7], we take care to establish
it. The second, and more essential, point of difference is that, as the expander functional
is infinite valued, we work directly with a certain relative functional (whose existence and
properties were established in [8]) to produce a critical point. While it may be possible to
produce a min-max critical point by taking a limit of compact critical points (as is com-
monly done to produce local minimizers [16]; see also [9] for a min-max construction of
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geodesic lines) it seems difficult to guarantee that will produce a geometrically distinct
asymptotically conical self-expander.

A key point of our arguments is an appropriate choice of function space ) on Grass-
mann n-plane bundles — See Section 4 for the precise definition. The space ) is motivated
by a notion of relative expander entropy F...; which is introduced in our earlier work [8]
(See also Section 2.3) and satisfies the following properties. First, to each hypersurface
> with finite relative expander entropy one can associate a unique element V1 of the dual
space )" — See Proposition 4.2. Second, the relative expander entropy is well defined on
the subspace 9 C ™ consisting of elements that are obtained by taking limits of se-
quences VT, in the weak-* topology, and every element of )/ has a (weighted) varifolds
decomposition — See Lemma 4.3. Third, any element of )} that are E,.;-minimizing to
first order (which is defined in Section 6.2) has no concentration of relative expander en-
tropy at infinity — See Item (1) of Proposition 6.2 — this uses a non-compact vector field
in a similar manner as is done by Ketover-Zhou [27] to deal with the same issue in their
setting, though our analysis is very different from [27] due to the growing weight in the
expander functional. These properties ensure that a pull-tight procedure (cf. [12] and [14])
can be carried out for elements of 2)72 to produce a minimizing sequence so that any min-
max sequence converges to an element of ) that is E,..;-minimizing to first order — See
Proposition 7.7.

Another key point is that, to address the local regularity of the min-max limit, it is con-
venient to consider an open domain €’ slightly thicker than the closed set Q = Q. (T_) N
Q_ (T ) so that '’ N Q4 (T'y) is foliated in a certain manner by asymptotically conical hy-
persurfaces with expander mean curvature pointing towards I' . — See Proposition 3.1. By
the strong maximum principle (see [42] and [48]), the varifold associated to the min-max
limit is supported in QcQ. Thus, with slight modifications, the arguments of [14] (see
also [12] and [15]) for the regularity of min-max minimal surfaces can be adapted to show
the varifold is supported on some E-stationary hypersurface trapped between I'_ and I"}
that has codimension-7 singular set — See Propositions 7.10 and 7.13.

Moreover, we prove the varifold associated to the min-max limit has multiplicity one.
This is a stronger statement than what is shown for more general min-max results. Indeed,
it is a simple consequence of the finiteness of relative expander entropy that the tangent
cone of the varifold at infinity is the multiplicity-one cone C — See Item (4) of Proposition
6.2. As there are no compact self-expanders, the constancy theorem immediately implies
that the varifold has multiplicity one.

Lastly, to ensure the min-max method produces a new self-expander, we show a uniform
lower bound on relative expander entropy max-value of any sweepout of €, i.e., a path of
hypersurfaces connecting I' _ and I';.. Namely, the maximum of relative entropy of slices
in a sweepout is strictly larger than that of I'_ and I'; — See Proposition 8.1. This is analo-
gous to the result stated in [14, Lemma 11.1] for sweepouts of compact surfaces, however,
our approach is different from the one in [14] as we use calibration type arguments and
properties of F-minimizers.

1.3. Organization. In Section 2 we fix the notation for the remainder of the paper and
recall the main results from [8] that will be used in this paper. In Section 3 we construct
the open domain €' that is slightly thicker than the closed set Q@ = Q. (T_)NQ_(T) and
satisfies good properties. In Section 4 we introduce the space 2)(€') of functions on the
Grassman n-plane bundle over (2. We generalize estimates in [8] to elements of ) (£2’) and
show the relative expander entropy is well defined for elements of the subset fg(@, A) C
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2)*(€V') consisting of those that are obtained by taking limits of hypersurfaces with relative
expander entropy bounded by A. In Section 5 we study the action of flows generated by
a suitable class of vector fields on elements of 2)*(£)’). In particular, we derive the first
variation formula and prove the continuous dependence of the flow action on vector fields.
In Section 6 we introduce the modified action of flows on elements of 9% (€’; A) and
collect properties for elements of Q‘jiz(ﬁ, A) that are E,..;-minimizing to first order in €Y'
In Section 7 we define parametrized families of asymptotically conical hypersurfaces in
€, in particular, sweepouts of Q, and the relative entropy min-max value for parametrized
families. We then establish a mountain-pass theorem for a certain homotopically closed
set of parametrized families. In Section 8 we use calibration type arguments to obtain a
uniform lower bound on relative entropy max-value of any sweepout of Q. In Section 9 we
show the existence of at least one sweepout of Q) and finish the proof of the results.
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DMS-1609340 and DMS-1904674 and the Institute for Advanced Study with funding pro-
vided by the Charles Simonyi Endowment. The second author was partially supported
by the NSF Grants DMS-2018221(formerly DMS-1811144) and DMS-2018220 (formerly
DMS-1834824), the funding from the Wisconsin Alumni Research Foundation and a Vi-
las Early Career Investigator Award by the University of Wisconsin-Madison, and a von
Neumann Fellowship by the Institute for Advanced Study with funding from the Ziirich
Insurance Company and the NSF Grant DMS-1638352. The second author would like to
thank Brian White and Jonathan Zhu for helpful discussions.

2. PRELIMINARIES

We fix notation and certain conventions we will use throughout the remainder of the
paper. We also recall certain background and facts we will need from [8].

2.1. Basic notions. Here is the list of notations that we use throughout the paper:
Br(p)  the open ball in R™*" centered at p with radius R;

Bgr(p) the closed ball in R™*! centered at p with radius R;

B (p) the open ball in the Banach space X' centered at p with radius R;
BX(p) the closed ball in the Banach space X centered at p with radius R;
Ts(U)  the d-tubular (open) neighborhood of a set U;

U the closure of a set U;

ou the topological boundary of a set U;

o*U the reduced boundary of a Caccioppoli set U;

Vs the gradient on a Riemannian manifold ¥;

divs the divergence on a Riemannian manifold >:;

Asx the Laplacian on a Riemannian manifold X;

I'_, T, two asymptotically conical self-expanders with I' . lying “above” I'_;
Q the open region bounded by I'_ and ' ;

Q the closed set given by Q4 (T'_) N Q_(T'4);

Q. Q"  certain open regions “thickening” €2.
We omit the center of a ball when it is the origin. We also omit the subscript, %, in the
gradient, divergence and Laplacian when it is Euclidean space. See Section 2.5 for precise
definitions of 'y, €, and 2. See Proposition 3.1 for properties of £’ and €.
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2.2. Partial ordering of asymptotically conical hypersurfaces. Let C be a C%-regular
cone in R"*! so the link £(C) is an embedded codimension-one C? submanifold of S™.
Clearly, £(C) separates S” and we fix a closed set w C S™ so that Ow = L£(C). Given a
Caccioppoli set U, the boundary ¥ = 9*U is asymptotic to C if

lim H"[(pS) = H"|C.
p—0+

When this happens set C(X) = C. For such 3, let Q_ (X)) be the subset of R"*1\ ¥ so that
00N_(X) =X and

lim pQ_(X)NS™ = w as closed sets.
p—0+

Let Q. () =R\ Q_(%).
For boundaries . and 31 both asymptotic to C, write

Yo = X provided Q_(Xg) C Q_(24).
If X9 < X4, then define
C(X0,%1) = {U: U is a Caccioppoli set with 2_(Xo) CU C Q_(X1)}.

2.3. Relative expander entropy. Let U, U’ € C(Xp,X;) with ¥ = 9*U and &/ = 9*U’,
andlet Z = Q4 (3p) N 2_(X;). Choose ny and nyy to be the outward unit normals to U
and U’, respectively. For a function v € C2(Z x S™), define
l>x(p) |? " () |? "
BE. 2] = [ wlonsp)e™ a ~ [ vpns ()™ a
by Y
We remark that E[X, ¥'; 9] is linear in ) and that, when 1) is even (see (2.2)), E[X, ¥'; 9]
is independent of the choice Bf Ny Or Nyv.
For a function ¢ € CP _(Z x S™), let

loc
= =2 =2
Erel[272';¢;BR]=/ ~ Y(p,nxs(p)le + dH —/ ~ Y(p,nxg(p)e s+ dH
Y¥NBRr 3'NBRr
and

Erel[za Z/; w] = Rhm Erel [Ea EI; wa BR]
—00
when this limit exists. Observe that if ¢/ has compact support, then the limit is defined.

2.4. The space X. Let Y be a domain in R"*!. For a function ¢ € Lip(Y x S™) and any
p €Y, define ¢, (v) = ¢(p, v) and
Vs t(p, v) = Vanihp(v).
Consider the Banach space
X(Y) ={¢ € Lip(Y x§"): [[[|x < o0}
where

[¥llx = [[¥llLip + [VsrtbllLip +  sap (14 [x(p))|Vseo(p, v)I-
(p,v)EY xS»

Here, for a function or tensor field p on Y x S C R*+! x R*H! = R27+2
[l = swp  lopv)+  sup ARV ZdHaw)

(p,v)EY XS™ (p,v),(g,w)EY xS™ Ix(p,v) — x(¢q,w)|’
(p,v)#(q, W)
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2.5. Conventions. We now set conventions we will use in the remainder of the paper. Fix
a C3-regular cone C in R"*! and pick a closed set w C S" so dw = L(C). Using w, if T
is a hypersurface that is C?-asymptotic to C, then we will always choose the unit normal
nr so it points into 24 (I") and out of Q_(I"). Let I'_ and I'y be two distinct strictly
stable self-expanders that are both C2-asymptotic to C and I'_ < TI';. Denote by Q =
Q4 (I'-)NQ_(T'y) the open region between I'_ and I'y and by Q=0,(T_) ﬁ Q_(T'y).
In general ) may not equal Qas I'_ and ', may have common components'. Let I
and I”_ be two hypersurfaces, not necessarily self-expanders, both C?-asymptotic to C
and assume IV < T < Ty <TI7. IfQ = Q (I)NQ_(I",), then @ C Q. We
further assume €’ is thin at infinity relative to I'_ in the sense that there are constants
Co=Co(V,T_)>0and Ry = Ro(Q,T'_) > 1 so that, for all R > R,,

W\BrCT, . ()

We will fix a choice of such ' in Section 3.
If T is a C2-asymptotically conical self-expander, then it follows from the interior esti-
mates for MCF (see, e.g., Theorem 3.4 and Remark 3.6 (ii) of [18]) that

2.1) Cr, = sup< (1+ |x(p) Z |Vinr(p )

pel

We also introduce the following test functions. Let

1 if p e B
¢R,5(p) = 1-— 7‘)((1)();'7}{ lfp e BR+6 \ ?R
0 if p € R"1\ Bras

be a cutoff. Let
Ry, Ry,5(P) = ORy.6(P) — PR —5,6(P)

be the cutoff adapted to the closed annulus Bg, \ Bg, .
Next, a set Y C R™"! is quasi-convex if there is a constant C' > 0 so that any pair of
points p, g € Y can be joined by a curve 5 in Y with

Length(8) < Clx(p) — x(q)|-

We will always assume any set Y under consideration to be quasi-convex. By [23, Theorem
4.1], the space of Lipschitz functions on Y is the same as the 1> space and the norms
are equivalent.

Finally, a function ¢/: Y x S™ — R is even if

(2.2) ¥(p,v) = Y(p, —v) forall (p,v) €Y x S™.

Observe that an even function is naturally identified with a function on the Grassman n-
plane bundle of Y. We will always assume functions on Y x S™ to be even.

IThe cone C may have multiple components and so may I't-. As I'_ and I' . are distinct, that ' < '}
is equivalent to that Q_ (I'_) is a proper subset of Q_ (I'}.). However, this does not rule out the possibility
that '~ = 9Q_(I'~) and T4 = 9Q_(T'y) are not disjoint. As I'_ and "} are self-expanders, the strong
maximum principle implies that either ' N T'; = @ or I'_ N 'y is the union of pairwise disjoint connected
self-expanders.
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2.6. Main results of [8]. Follow the conventions of Section 2.5. We will need several
results from [8] in the current paper. The first of theses is the existence of the relative ex-
pander entropy in the obstacle setting for domains that are thin at infinity — see Proposition
3.4 and Theorem 3.1 of [8]. Here we identify ¢» € Lip(€V) with ¢ € Lip(§¥ x S™) so that

b(p,v) = ¥(p).
Proposition 2.1. There are constants Ry = Ro(Y,T_) > 1 and Cy = Co(V,T_) >0
so that if I' = 0*U for some U € C(I'_,T".) and +) € Lip(§Y') satisfies 1» > O, then, for
any Ry > R1 + 9 > R > Ry,
E[D,T-; 6, 59] 2 BID.T-5 6, 508] — CoRy |-
As consequences, one has
(1) Forany Ry > R1 > Ry,
Erall,T—; B,] > E;all,T—; Br,] — CoR; "
In particular, E.q[T',T_] = limp00 Erel [0, T_; Bg] exists (possibly positive
infinite) and, for any R > Ry, satisfies the estimate
Era[l,T_] > E.q[T,T_; Bg] — CoR™.
(2) Forany§ > 0, limp_,oo E[I',T_; ¢rs] = Eve[l, T—].
We also need the following weighted estimate — see Propositions 4.6 and 4.8 as well as
Theorem 4.1 of [8].
Proposition 2.2. There are constants Ry = Ry (Y, T_) > 1and C; = C1(V,T_) >0
so that if ' = 0*U for some U € C(I"_,I") and 1) € X(SY'), then the following is true:
(1) Forany Ro > Ry > R1 — > %Rl > Ry,
|E[D,T—sapy mys¢]| < C1 (R + B0, T =5 agy ko sll) 19125
(2) Forany(0 < § < land R > R,
|E[0,T—;¢ps¢]] < C1 (L +|E[L, T ¢p6l) 19| x;
(3) If, in addition, E.o;[T',T_] < 0o, then E.o[I',T ;] exists and
a0, Ts ]| < C1 (14 [Era [0, T-]]) [[9] 2

A key ingredient in the proofs of Propositions 2.1 and 2.2 is the existence of a “good”
vector field near infinity compatible with the self-expander I'_ — see [8, Proposition 3.3].

Lemma 2.3. There are constants Ry = Ro(Y,T_) > 1land Cy = Co(Q',T_) > 0 and
a smooth vector field N: Q'\Bp, — R" L that satisfies:

(1) IN|=1;

(2) Nlr_ =nr_;

(3) |x N[+ 320, [VIN| < Co(1+ |x]) L

Finally, we need the following result — see [8, Proposition 6.3] — which implies that for

(possibly singular) hypersurfaces that are “reasonable” near infinity the relative entropy is
finite.
Proposition 2.4. Fix K, > 0and Ro > 1. There is a radius Ri =R (Y, T_, Ko, 7?0) >
Ro and a constant K1 = K1 (Y, T'_, Ko) > 0so that if I is a hypersurface in R" '\ By |
trapped between "\ Br and 1", \ By that is asymptotic to C and satisfies

Ztérr)(l + [x(p))|Ar(p)| < Ko,
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then, forany Ry > Ry > R and 0 < § < 1,
|E[D,T—;ar, ksl < KiR72

3. EXPANDER MEAN CONVEX FOLIATIONS AND A THICKENING OF {2

Continue to use the conventions of Section 2.5. In Theorem 1.1 we are asked to find a
new self-expander lying in the closed set Q@ = Q, (T_) N Q_(T;) where 'y and I'_ are
two strictly stable self-expanders. For technical reasons it is more convenient to work with
a slightly “thicker” region €2’ that has good properties: Namely, it is thin at infinity relative
to I'_, a certain modification of the radial vector field x points out of the region near
infinity, and Q' N Q_(T'_) and ' N Q4 (T';) can be foliated in a certain way by expander
mean convex hypersurfaces. The purpose of this section is to establish the existence of
such a region €)',

We use the vector field N given by Lemma 2.3 to define the following modification of
the radial vector field near infinity of I'_

3.1) Xo=x—(x-N)N.

Observe X is tangent to I'_. The main result of this section is the following:

Proposition 3.1. There exist open subsets Y and Q" of R so that @ € Q' and V c Q'
and with the following properties:

(1) Q"NQx(Ty) is foliated by C2-asymptotically conical hypersurfaces, {I'F }SE[O’”
withTE =Ty and C(T'F) = C(T'y) = C and, for each s > 0, T'F has expander
mean curvature pointing toward I' 1. ;

(2) € is thin at infinity relative to T'_ so there are constants Ry > 1 and Cy > 0 so
that, for all R > R, Q' \ Bg C TC g2 (T2);

(]R7"7167T
(3) Foreach s € (0,1], there is a radius R(s) > 0 so that TS N QY C Bgs);
(4) There is a radius Ry > 1 so that, outside of Br,, X points out of (V.

We start with some basic estimates for the lowest eigenfunction of the stability operator
on a connected self-expander. For a self-expander T, let

X 1
LF:AF+§'VF+|AF|2—§

be the stability operator on I'. For integer [ > 0, define the weighted Sobolev space on
Y CTI'by
WHY) = {f € Hoo(Y): || fllw1 < oo}

1

2

3 ﬁ n
1l = /Y S VifPe S an

0<i<l

where

Observe 1! is the same as the Banach space W' introduced in our earlier work [6].
4

Proposition 3.2. If T is a C?-asymptotically conical connected self-expander in R"+1,
then there is a unique |1 > —oo and a unique function f > 0 on " so that

(Lo + 1) £ = O with | fllwo = 1.
Moreover, there is a constant Cfy = C{(T', i) > 0 so that

(3.2) % (1+ rz)_%(nﬂ_g”) e <f<C(1+ rz)—%(n+1—2u) e
0
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and, for any 6 > 0, there are constants C|, = C! (T, u,0) > 0 for m > 1 so that

m
2
(3.3) leF Vi fllco < C,
where r(p) = |x(p)| for p € T. We call i1 and | the first eigenvalue and eigenfunction,
respectively, of Lr.
Proof. AsT is C?-asymptotically conical

(3.4) sup(1 + |x(p)[*)|Ar (p)|* < oo.
pel

Thus, by standard spectral theory (e.g., [6, Lemma 4.1]), L is formally self-adjoint in
WO(T') and has a discrete spectrum with a finite lower bound. Hence, there is a unique
p > —oo and, as I is connected, a unique positive function f € W*(T) so that

(Lt + ) f = 0 distributionally and || f||yyo = 1.
As T is a self-expander, it is smooth and properly embedded and so standard elliptic regu-

larity theory implies f € C72.(T).
Let
2

o o _r2 _ B e _r2
g:(rn1+2u+,’,n2+2u)e 4andg:(,r,n1+2u_,r,n2+2u)e T

By the curvature decay (3.4), a simple computation in [8, Lemma A.1] and a slight mod-
ification of the proof of [6, Proposition A.1], there are constants Ry = Ro(T, ) > 1 and
C=C(, f,u) > 1 so that:
e InI"\ Bg,, —% +p+|Ar? < i
e InT \ BRO,
! <
2
e InT'\ Br,, (Lr +1)g <0< (Lr +p) gs
e OnI'NJBg,, C’flg < f<Cq
o If h € C*(T'\ Bg,) NW(T'\ Bg,) satisfies h = 0 on I' N 9 Bg,), then

r2 1 r2
/ heT dH" < / |Vrh|?e™ dH™.
I\Br, lul+1 Jr\Bg,

Choose a sequence of numbers, R; > Ry, so that R; — co. As f € C72 (%), the Dirichlet
problem

(1 + T2)7%(n+172u)67% <37

(LF +M)gi =0 inI'N (331 \BRO)

g =1Ff onI'NOBR,
g =Cg onFﬂéBRi
has a unique smooth solution g;. To see this observe that if v satisfies
(Lr + 1)

O:$€v+2vplog§~vpv+ U:,,S,”IQU—I—B-VFU—FEU,
where £ = Ap+% -V, then (Lp 4 p1)(gv) = 0. As¢ =g~ '(Lp + p)g < 0, it follows
from standard elliptic PDE theory that
$€U¢+B~VF’UZ'+E’U¢:0 inFﬁ(BRi\BRO)
v =g \f on'N0Bg,
v; =C onl'N (r“)BRI

has a unique solution v;. Hence, g; = gv; are the claimed solutions. Moreover, by the
maximum principle, as¢ < 0,0 < v; < C andso 0 < g; < C7.
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In a similar fashion, w; = g’l g; > 0 satisfies

Ly +
0= 2 w; +2Vr log g - Vrw; + (Fgu)gwi.

As g’l((LF + )g) > 0, there are no interior minima for w; and so w; > C~1. Hence,
C’flg <9 <Cg.

It follows from the Schauder estimates [20, Theorem 6.2] and the Arzela-Ascoli theo-
rem that, up to passing to a subsequence, the g; converges in C; (T") to a function g which

satisfies B
{ (Lr +p)g=0 inT\ Bg,
g=1f on'N0Bg,
and C~1g < g < CginT\ Bg,.
Next we show ¢ = f in I\ Bg,, from which the C° estimate of f follows easily.
Observe that, by the Schauder estimates, one has g € W1(I'\ Bg,) N C*("\ Bg,). Set
h=g— f.Thus, h € WY(T \ Bg,) N C*(T'\ Bg,) with h = 0 on ' N dBg,, and

’7‘2 T2 1
(Lr + p) h = e~ T divy (efvph> n (|Ap|2 —5+ ,L> h=0.

2
Hence, multiplying the above equation by he # and integrating by parts (which is justified
by our hypotheses on h) give

1 r
/ (lth2 + ( — = |A1“2> h2> T dH" = 0,
I\ Bg, 2

The choice of Ry ensures = — o — |Ar|? > —|u|in T\ Bg, and

r2 ]- r?
/ RPeT dH" < / |Vrh|2eT dH™.
I'\Bg, lul+1 Jo\Bg,

It follows that

7‘2 7‘2 7‘2
0> / |Vrh|?eT dH™ — |u) heT dH" > / heT dH™
'\ Bg,

I'\Bg, I'\Bg,
and so h = 0. Hence, setting
C = sup ((1 + Tg)%("ﬂﬂ“)eéf) and C = inf ((1 + 7"2)%(”+172“)e§f) ,
By NI’ By NI
the first estimate holds with
Cy =max {2C,C,C~'}.

Finally, in view of (2.1), the claimed estimates on derivatives of f follow from the C°
estimate of f and the Schauder estimates. O

We then use the first eigenfunction of the stability operator and its estimates to produce
good foliations on either side of a strictly stable self-expander.

Lemma 3.3. Let ' C R be a strictly stable self-expander C?-asymptotic to C. There
are positive constants € = €o(I') and co = co(I') and a family of hypersurfaces {I's} ¢
so that:

(1) To =17

(2) {Ls}se(—cy.e0) I8 afoliation;

—¢€0,¢€0]
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(3) Each T is C%-asymptotically conical with C(T') = C;

(4) For s # 0, I's has expander mean curvature pointing toward 'y, i.e., the expander
mean curvature of I points inward the domain bounded by T and T';

(5) Forp € T',

2
dist(p,T) > cols|(1 + x(p)|?) 30D 2e0e= =45
Proof. Suppose I' = |, « <M I'7 where the I'V are disjoint connected components of I'.
Let 115 and f; be the first eigenvalue and eigenfunction, respectively, of Lp; that are given
by Proposition 3.2. As I' is strictly stable, so is each I'V and so p; > 0. Define positive
functions p and f onI' by, forp € IV, u(p) = pj and f(p) = f;(p). Thereisaney € (0,1)
so that, for all s € [—eg, €],

Is = {fs(p) =x(p) + sf(p)nr(p): p€ L'}

is a hypersurface in R"*!. As f > 0 one has a foliation {Fs}se[—eg,eo] and so Items (1)
and (2) hold. Using estimates of f one readily checks Item (3) holds. Moreover, choosing
¢o = min {1/C{, p1, 1}, one immediately has that Item (5) holds.

Finally, shrinking €, if needed, and appealing to [8, Lemma A.2], one has that the
expander mean curvature of I'; is given by, at p € T,

(HFS + g 'nrs) ofy, = —sLof+s°Q(f,x - Vrf,Vrf,Vif)
where, for some C = C(T") > 0,
QI < C(If] + 1x- Ve f| + Ve fl+ [VEf]) (If] + [V fl) -

By the properties of f, there is a constant C' = C'(T", 1) > 0 so that

) =2 L2
Q| < C'e” 3 andfzae 3,

Thus, as i > 0, if s € (0, o], then

(Hl“S + 5 ~I1[‘S> ofs(p) > %e—% SQC/e_%;

if s € [—€0,0), then
H x 2 x 2
( P .nFS> ofu(p) < %e_% 4 20e

Hence, up to further shrinking g so that &; > 2¢,C’, for all s € (0, €o],

X Sp _ Ix(»?
(HFS+§'DFS)OfS(p)Z Qg/e 3 >0
and, for all s € [—¢g,0),
X Sp _ Ix(»?
(Hps+§~nps)0fs(p)§20,e #- <0
That is, Item (4) holds. ([l

We next show we can perturb an asymptotically conical self-expander, I', on both sides
to produce a region enclosed by the two perturbations that is thin at infinity relative to
I" and so the outward unit normal of the region points asymptotically more in the radial
direction.
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Lemma 3.4. Let ' C R*! be a C?-asymptotically conical self-expander. Given a con-
stant k > 0, there is a radius Ro = R2(T', k) > 1 and a constant Cy = C1(T") > 0 so that

if
then

are hypersurfaces and, for p € ¥,

'Y
ny:(p) — np(Ilp(p)) F —-
where Il is the nearest point projection to I.

Proof. As T is C?-asymptotically conical, there is an € = ¢(T") € (0, 1) so that 7.(T) is a
regular neighborhood of T'. Pick an Ry = Ro(T, k) > 1 large enough so that

sup (¢ + |Vry|) <e
I'\Br,

It follows that

=* = {x(¢) £ w(g)nr(q): ¢ € '\ Br, }
are smooth hypersurfaces. There is a constant Ky = Ko(I') so that if p € ¥ and ¢ =
IIr(p), then

Ins+ (p) — (nr(q) F Vre(g))| = ns=(p) — nr(g) £ Vre(g)]
< Ko (le(@))* + IVre(g)?) -

See [44, (2.27)-(2.28)] for a derivation of this estimate.
Up to increasing R, one may ensure that, for p € rE,

3.6)  |r(p) —x(p)| + l¢(IIr(p))| + [Vre(r(p)] < x(p)| 7> <1< %IX(p)I-

It follows that there is a constant K; = K;(n) > 0 so that for such p

(3.5)

3.7) lp(p) — ¢(Ir(p)| < Kilx(p)| ¢ (p)
and thus
(3.8) le(p(p)* < [x(p)| (1 4+ K1|x(p)| %) ©(p).

Moreover, as I" is a C’Q—asynlptotically conical self-expander, there is a constant Ky =
K5(T') so that, for all ¢ € T'\ Bg,,

x(q) - nr(q)| = 2|Hr(q)| < Ka|x(q)| ™"

Hence, as
T

X _
Vrp = Ty (n+1)x"[x| ¢
it follows that there is a K3 = K3(T') so that, for ¢ € I'\ Bg,,

Veola) + Dol < Kalx(a)| " ola).
This together with (3.6)-(3.7) implies that, for p € ©F,
69) Vot + 5P| < Kalxo)| ol

for some K, = K4(T).
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Therefore, combining (3.5)-(3.9) implies that there is a K5 = K5(T") so thatif p € >+,
then

x(p)

ny+(p) —nr(Ilr(p)) F ?w(p) < Ks|x(p)| " o(p).

The result follows by setting Cy = K. O
Proof of Proposition 3.1. Let {7 Foel—e

I' = I'y with the corresponding constants ¢; and ci. Set ¢g = min {eJ, ¢, } and co =
min {car, co_}. Set

E ok be the foliation given by Lemma 3.3 using

)

F:‘?t = Tiegs'
Let
Q' = Q_(IF) N QL (T7),

and this region satisfies Item (1) by construction.
By [8, Proposition 2.1] there is a radius Ry = Ro(I'_,T'y) > 1 and a constant Ky =
Ko(T'_,T4) > 0and a function u: I'_\Bg, — R so that

Iy \ Bar, C {x(p) +u(p)nr_(p): p€T_\ Br,} C Ty

and u satisfies

x2
lu| < Ko|x| ™" te 5.

WithT' =T'_ and k = 2K apply Lemma 3.4 to produce a function ¢, a radius Ro > 1
and hypersurfaces ¥~ and ¥*. Observe that outside Br with R = 2max { Ry, R}, the
choice of ¢ ensures that ¥~ is the graph of —p over I'_ lying entirely inside Q_(T'_),
while 27T is the graph of ¢ over I'_ and X7 lies, by construction, entirely within Q. (T').
Observe that the growth rate of ¢ and Item (5) of Lemma 3.3 ensure that, up to increasing
R, one may take ©* C Q”. For the same reason, Q (I'7) N X7 is contained in a compact
set for all s # 0 and the same is true of Q_(I';) N X~.

Pick R’ > R, so there is a function v, : I'; \ Bgr: — R so that

ST\ Boers C {x(p) + v (p)nr, (p): p € T4 \ Bri } .

Set v_ = — so the graph of v_ over I'_ is a subset of ¥~
By using cutoffs appropriately, one may extend v to functions 9 : 't — R so that
U4 = vy outside Bag/, 04 > 0 > 0_ and

' = {x(p) + dxnr. (p): p €T+ }
are smooth hypersurfaces contained in €”. In particular, up to increasing R’, one has
I \Br: = X7\ Brs andI", \ Bg: = £7 \ Bg/. Clearly, I"’, are asymptotically conical
with asymptotic cone C. Let

O =0, T )nQ_(T,).

By construction one has Q C €’ and € C Q" and €’ is thin at infinity relative to I'_.
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Finally, as X - N = 0 and N|r_ = nr_, outside of B, where R; > 2R’ > 2 one
has, by the construction of ¥,

1
Xy ng+ F §\x|2gp

1
= ‘XO ‘(ng+ —N) F 2|x2<p‘

=’XO'(HEi—N):F;(XO'X-F(X'N)Q)@‘

1 1
< |Xp| lng: —NF 2% + §|X0HX-N|2(,D
1 A | =2
<2|x| ng+ —NF 3% + Calx| e
1 S 1o —2
<2|x| ng+ —np_ollp_ F 2X + 2|x||N o IIp_ — N| 4 Co|x| ¢

< (2C) + Cy)p

where Cy is the constant given by Lemma 2.3. It follows that, up to increasing R 1, one has
1 1
Xo - ng+ > i|x|2ap > 0 while X - ny- < —E|X\2ap < 0.
Hence, outside of Br,, X, points out of €. [l

4. FUNCTION SPACES

We introduce several function spaces that extend the space X. In the next sections we
will study deformation properties in these spaces. In what follows we use the conventions
of Section 2.5.

4.1. The space ). First of all we introduce the following norm on C°(Y x S™) where Y
is a quasi-convex unbounded domain in R"**. For ¢ € C%(Y x S") let

2
Ilew = sup (Ix(@)] + 1" e F [(p,v)).
(p,v)€Y xS»
Let
WY) = {¢ € COY xS"): [|[¢]|aw < o0}
be the space of rapidly decaying continuous functions. It is readily checked that 23(Y) is
a Banach space.

Notice that X(Y) N 20(Y") is non-empty, and X(Y") and 20(Y") are both continuously
embedded in C°(Y x S™). We introduce the following natural norm on the vector space
D' (Y)=%2Y)+W(Y):

[¥lly = inf {[I¢llx + [[€]law: & = ¢+ &3

It follows from the interpolation theory, [3, Chapter 3, Theorem 1.3], that 9)'(Y) with
this norm is a Banach space. Although in general 9)'(Y") is not separable, we have the
following result:

Proposition 4.1. There is a closed subspace Y(Y) C Y'(Y) defined by

YY) = spang {1} @Yo (V) = {cl +¢: c € R, ¢ € Yo (V) }
where 1 is the constant function equal to 1 and 2)o(Y) is the closure of C2(Y x S™) in
D' (Y). The space Y(Y') satisfies
(1) COY x8") CYP(Y);
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(2) 1€ D) and |1y = 1;

(3) Foryp € Po(Y), 3 (lc| + [¢lly) < llcl +9lly < le[ + ¢y
(4) D(Y) is an algebra and |[{1¢2lly < [[¢1lly|[¢2lly;

(5) DY) is separable;

(6) C(Y x S™) is dense in Qo (Y).

Proof. The first property is immediate from the definition. The second is a consequence of
the fact that || 1]|x = 1, Y is an unbounded domain and elements of 20 decay rapidly. In
particular, if 1 = £+ ¢ for £ € 2 and ¢ € X, then lim,_,o, ((p,v) = 1 and so ||(]|x > 1.
For the third item, observe that, by the triangle inequality and the second item,

el +Plly < e + 19l

This verifies the second inequality. As elements of 2)(Y) must decay as one approaches
infinity, arguing as in the second item gives ||c1 + ¢|ly > |c|. If |||y < 2|c], then the
first inequality follows. Suppose |1y > 2|c|. By the triangle inequality,

1
el +dlly + 1 = ellly = [$lly = g (el + [¥lly) + el

Hence, the first inequality follows from the second item and rearranging the above inequal-
ities. This proves the third item.

The fourth follows from the definition of the ) norm and 2)(Y") and the fact that both
2(Y) and X(Y") are algebras while 1 is the multiplicative identity. Indeed, one readily
checks that if £ € X(Y) and ¢ € 20(Y), then £¢ € 20(Y) and with estimate ||£C]|ay <
[I€1l21I¢]lau- By definition, for ¢; € 2(Y') and € > 0, there are §; € X(Y') and ¢; € 20(Y)
so that ; = & + C; and [[&[1x + [Gilaw < |l + . for i — 1,2, Hence,

[12lly < 1&&lly + 161Gy + 1G]y + Gy
< &rellx + [1€aCallan + [[€2C ||y + [[¢1¢2l2u
< & llzllé2llz + €zl + €22 1€ llay + 1IC1 lla]lC2law
< (lnlly + ) (llv2lly +e).-

Sending € to zero gives desired estimate. This immediately implies 9)o(Y") is an algebra.
Finally, if ¢; = ¢;1 4+ ¢; where ¢; € R and ¢; € 9o(Y), then 192 = c1c01 + 1 +
caC1 + (¢ € Y(Y) as claimed.

For the fifth and sixth items observe that

CoUY xS") = [j Co(B;nNY) x S").

=1

By the Stone-Weierstrass theorem, each X; = C?((B;NY’) x S") is separable with respect
to the uniform topology and X = C°((B;NY’) x S™) is dense with respect to the uniform
topology. As the 20 norm is equivalent to the uniform norm on X;, each X; is separable
when equipped with the 20 norm and X/ is dense in X; with respect to this norm. As
|6l < ||¢llay for any ¢ € X; by the definition of the norms, one has immediately that X;
with the 9) norm is separable and X is dense with respect to this norm. As C2(Y x S™) is
the union of countably many X;, it follows that C? (Y x S™) with the ) norm is separable.
In a similar fashion as C° (Y x S™) = |J;=, X/, this space is dense in C2(Y x S™) with
the %) norm and hence also in 9)o(Y). As Yo (Y) is the completion of a separable space it
is separable. The separability of 2 (Y") is immediate. O



16 JACOB BERNSTEIN AND LU WANG

4.2. Weighted estimates for elements of 2). Given 2)(Y) as in Proposition 4.1, let9*(Y)
denote its continuous dual space which is defined as the space of all continuous linear
functionals V': 2(Y) — R associating to each ¢ € (V") a real number V'[¢]. The space
D*(Y) is equipped with the dual norm

[Vilp- =sup{V[¢]: ¥ € DY), [y < 1}.

We extend Proposition 2.2 to elements of ) to obtain the following:

Proposition 4.2. There is a constant Cy = Co(Y,T_) > 0 so that if T' = 9*U for some
U € C(I'"_,T".), then, for any 1) € 9 (),

(1) Forany Ro > Ry > R1 — > %Rl > Ry,
BT, T s apy,ry sl < C2 (BT + [E[D, T ap, ry 6l) ¢l

(2) Forany 0 < 6 < 1land R > Ry,

|E[D, T s 0psy]| < Co (1+ |E[L T ¢rs]l) [1¢]lp;
(3) If, in addition, E.o[T',T_] < 00, then E,o [T, T ;] exists and

|Erer[D, T 5] < Co (14 |Eper [T, ) [[¢]]-
In particular, for such T there is a well defined element Vi € 9*(Q) given by
Vr[Y] = Erall, T4

that satisfies
Velly- < Co (14 [Era [T, T-]]) .
Here Ry = Ry (Y, T_) is the constant given by Proposition 2.2.

Proof. By linearity and Proposition 2.2, it suffices to show the claims for elements { €
20(€Y') in the 20 norm. It is convenient to set

v(p) = 1+ |x(p)) " e

_Ix()?
4

Observe that
I€lln = [1EY oo
We compute, for a continuous compactly supported function ¢ > 0,

|E[D,T—; o¢]| =

/ ot dH" — / pce 5 anr
T I'_

Ix|2 7 x—|2 n
(@.1) < JI€ o / grye "t dH 4 ()€ o / e dn
N r_

=2
— el BT, T 6] + 2 [ e aer,
r_
One readily checks that there is a constant K = K (I'_) > 1 so that
E
v]lx + sup (1 + R)/ ye i dH" < K.
R>0 I \Bg

Plugging ¢ = ap, r,,s into (4.1), it follows from Item (1) of Proposition 2.2 that, for
anng >Ry >R —0> %Rl > Ry,
4.2) ‘E[Fv ]_—‘,; aRl,R2,5£]| < CQ (R;1 + |E[F7 ]-—‘7; aRth,isH) Hf”‘«m
where Cy = C1 K + 4K . That is, the first item holds.
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Similarly, plugging ¢ = ¢p,s into (4.1) and appealing to Item (2) of Proposition 2.2
give that, for any 6 € (0,1) and R > R;,

(4.3) |EIL,T—; ¢rs€]] < Co (14 [E[L,T—; dr 1) I€]lan-

This proves the second item.
To see the last item, sending 6 — 0 in (4.2), it follows from the dominated convergence
theorem that

|ET€Z[F7 F—?§7 BRz \ BR1H S 02 (Rl_l + |ET€Z[F7 F—; BR2 \ BRI] D ||§HQU
As E,.o[[',T'_] < o0, this implies that F,..;[[",T'_; £] exists. Finally, sending § — 0 and
R — o0 in (4.3) gives that
|Erel [F7 F,; £]| S 02 (1 + |ET€l [F7 F*H) ||£||m
This completes the proof. U

4.3. Relative expander entropy of elements of 2)*. We extend the notion of relative ex-
pander entropy to elements of 2)*(£'). Notice that CO((Bg N €Y’) x S™) with the C° norm
is continuously embedded in 9)(£Y’). Thinking of continuous functions on the Grassman-
nian bundle of n-planes G,,(Bg) as even elements of C°((BrN€Y’) x S"), it follows from
the Riesz representation theorem (see, e.g., [40, Chapter 1, Theorem 4.1]) that, for any
Ve (@),

V[BR] = V[BR X Sn] = (%LI% V[¢375].
Furthermore, one can define
E,a[V] = limsup V[Bg]

R— o0
and
E

rel

If Evi[V] = E,[V], then we set E,.;[V] = limpg_ V[Bg].
Using Proposition 4.2, one may define, for A > 0,

V(X A) = {Vi: T = 0°U,U € C(I"_,T",), | Era[T,T_]| < A} C ().
Let 9%(€'; A) be the closure of 2% (€'; A) in the weak-* topology of 9*(Q). Observe
that if Vi, € 95 (V; A) satisfy Vi, — V in the weak-* topology, then
lim EyalVi,] = lim Vi, [1] = V[1].
1—> 00 12— 00

[V] = lim inf V[Bg].

R—o0

However, for V € 9% (€'; A) one, in principle, may have
E, V] < EralV] # V(1.
Let V¥ be a (weighted) varifold such that, for any ¢ € CO(Q x S™),
IE g
V2 [l = | ¢(par_(p)e T dH"

I_

In fact, one has that

Lemma 4.3. Given V € 9%(V; A), the following holds:
(1) There is a (weighted) varifold Vf so that, for any (even) ¢ € C2(¥ x S™),

Vgl = VE] - Vi€ [y] = VE[y] - /F b(pnr_ (p)e S dH
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(2) Thereis a constant E_ = E_(Q',T'_) < 0 so that
—0 < E_<E,V]=Ea[V] <V[1] <A.

rel

In particular, E,.;[V] exists and is finite. Moreover, for any Ry > Ry > Ry,
V[BRz] > V[BRl] - CoRIl,

where Ry = Ro(SY,T_) and Cy = Co(SY,T'_) are the constants given by Propo-

sition 2.1.

Proof. Let Vr, € D&(Q; A) satisfy Vo, — V in the weak-* topology of 9*(€). By
Proposition 2.1, for any R > Ry,

A > BT, T_] > Epo[T,T_; Bg] — CoR™"
and so
ViE[Br) = / CHan <o
T;NBg
where C' depends on ', T'_, A and R. Thus, up to passing to a subsequence, Vf - VE
in the sense of varifolds so, for any (even) ¢ € CO(QY x S") C ('),

VIl = lim Vo, [y] = lim ViTy] = V¥ [g] = VE[] - Vi [v]

where the first equality uses the weak-* convergence Vr, — V in 2)*(€’). This proves the
first item.

To prove the inequalities in the second item, observe that the upper bound of V'[1] is
immediate from the weak-* convergence. To see the lower bound, appealing to Proposition
2.1 gives that, for any Ry > R; + 0 > Ry > R and all 4,

(4.4) Vi, [0r.5] = Vi dr, 6] — CoRy
Sending R — oo and invoking Proposition 2.1, one sees
Vr,[1] > Vi, [#r, 5] — CoRy .
It then follows from the weak-* convergence that
V(1] > Viér, 5] — CoRy .

As ¢rs < dpr,s for &’ < andlims_opres = 13,,, the dominated convergence theorem
combined with the previous inequality yields

V(1] > V[Bg,] — CoR; "

Hence, taking the limsup of both sides as Ry — oo, gives V[1] > E,[V] proving the
claimed lower bound.
To prove the middle equality, it follows from (4.4) and the weak-* convergence that

V[br,s) = VIdr, 5] — CoRy .
Thus, sending 6 — 0, by the dominated convergence theorem,
(4.5) V[Br,) 2 V[Br,] - CoRy".

This implies that
lim inf V[Bg] > limsup V [Bg]
R—o00 R—o0

and so E,;[V] = E,q[V].
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It remains only to show the uniform lower bound fog E.e[V]. To achieve this, by the
existence of F,..;[V] and the first item, fixing B; = 2R and sending R2 — oo in (4.5)
imply that

_ 1 - . 1. 5_
EralV] =2 V[Byg,] — §COR0 ' > =V [Byp,) - §COR0 g
This immediately gives the uniform lower bound. (|

For convenience we will use the following notation: ForI' = 0*U where U € C(I'"_,T", ),
we consider the pair (U, Vr) € C(I'"_,T",) x 95(V; A). For a sequence (U;, Vr, ), we
say (U;, Vr,) = (Uso, Voo) provided 1y, — 1y in the weak-* topology of BVj,. and
Vi, — Vi in the weak-* topology of 2)*(€2’). By Lemma 4.3 and Proposition 4.2 together
with the Banach-Alaoglu theorem, we have

Corollary 4.4. If (U;, Vr,) € C(I_, T') x5 (Y A), then up to passing to a subsequence
there is a (U, Vo) € C(I'_,T7) x DE(X;A) so that (U;, Vr,) = (Uss, Vo). For
I = 0"Uso, Vi, < Vi in the sense of measures.

5. ACTION OF FLOWS OF VECTOR FIELDS

In this section we study the action of flows of a suitable class of vector fields on ele-
ments of 2)* and, in particular, prove the first variation formula. We continue to use the
conventions of Section 2.5.

If ®: O — Qis alocal O diffeomorphism, then the Jacobian of ® with respect to the

. 1x|2 ..
expander metric gﬁ = e 2n §;; is given by

TED(p,v) = JB(p, v)et (2@ —x@))

where J® is the Jacobian of ® with respect to the Euclidean metric. For a function ¢ on
Q' x S", the pullback of 1) under ® is given by

(I)#w(pv V) = 7/’(‘1’(]9)» vv@(p))

Suppose ®: € — ) has the property that for all ¢ € ('), d#pJ¥® € Y(V'). For
such ® and any V' € 9*(€’), we may define the pushforward of V under ® as follows: for
all € (),

duV[Y] =V [@Fp P 0] .
One readily checks that if ® is C'! and is fixed outside a compact set, i.e., equals the identity
outside a compact set, then ® V" is well defined.

We now introduce the class of vector fields whose flow will not be fixed outside a
compact set and that give suitable pushforwards of elements of 2)*(2’). To that end let X,
be the vector field of (3.1) and R; the radius given by Proposition 3.1. Let y: R**! —
[0, 1] be a smooth cut-off so that spt(y) C R"*\ Br, and y = 1in R**!\ Br, ;. We
then let

Yo = x[x|7*Xo = x|x|* (x — (x- N)N).
Define
V() = {Y € O (V3 R"™): [[Y ||y, < oo}

where

3
1Y lly, = I+ x)*Ylleo + Y I(1+ x)* V'Y | co.
=1
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Let
V(@) =spang {Yo} @ V() ={Y =aYo+ Yi: a € R Y; € Y (V)}
with the norm
1Y ly = laf + [Y1]ly,-
Consider the convex cone
V() = {Y €EV(Y): Y -nyo < 0} C V()
where ngq points out of .

The main result of this section is the following:

Proposition 5.1. Suppose Y = aYo+Y: € Y () fora € Rand Y1 € V() that
satisfies, for some constant My > 0,

1Yy = laf + Y1y, < Mo.
Let {®(t)},~, be the family of diffeomorphisms in ' generated by Y. Then ®(t)(€Y') C
Y and, for c;ny V € D*(Y), the following is true:

(1) The map t — ®(t)4V is continuous in the weak-* topology of 9*(Q'). Moreover,
given T > 0 there is a constant C5 = C3(QY', T, My, T) > 0 so that, for all
0<t<T,

@)%V llp- < Cs[|Vly--

(2) The function t — ®(t) 4V [1] is differentiable with

d .

where Qvy (p,v) = VY (p) - v.

To prove this proposition, we will need several auxiliary lemmas which are of a rather
technical nature and are included in Appendix A.
Proof of Proposition 5.1. By Lemma A.1 and Corollaries A.3 and A.4 with a = 0 and
0 <t <T,onehas
. 1
JE(P(t’p7 V) =1+ (leY(p) - QVY(paV) + ix(p) : Y(p)) + tQQ(t7p7V)
is an element of () and, for some constant C = C(Q',T'_, My, T) > 0,

sup ([TF@(t, - )lo + Q- )ly) < C.
0<t<T

Next, appealing to Lemmas A.2 and A.5 gives that, forany 0 <t < T, if ¢ € Q) (W), then
so is ®(t)#1) and

[2(t)#lly < Calltllo
where Cy depends on ', T'_, M and T. Hence, combining these estimates and appealing
to Item (4) of Proposition 4.1, one has, forany 0 < ¢ < T and ¢ € 9(V'),

[@(t)#YJE®(t)|ly < 16CCy|Y]|y
and so
1) 4 VY] < V]| @) F 0T (t)[ly < 16CCL|V ||+ |1¥]ly-
That is,
(5.1) [@(t) 4V |l < 16CC||V |-,



A MOUNTAIN-PASS THEOREM FOR ASYMPTOTICALLY CONICAL SELF-EXPANDERS 21

proving the desired estimate with Cs = 16C'Cy. In particular, as T is arbitrary, O(t)4V €
2)(¢Y) for all t > 0.

Next, it is a standard exercise that for any (even) 1 € C°(Q x S") the map t —
®(t) 4V 1] is continuous. We further show the continuity can be extended to 1) € o ().
To see this, by Item (6) of Proposition 4.1, there is a sequence ¢; € C°(€2 x S™) so that
1; — 1 in the ) norm. Fix any tg > 0. By (5.1), given € > 0 there is a jp so that, for any
t<to+1,

€
20V, — 911 < 5
By what we have shown, there is a & > 0 so that if |t — ¢| < §, then

@)%V [1j0] — ®(to)# VY]] <
Thus, by the triangle inequality, for any |t — o] < 4,

@) 4 V] = (o) VY]l < [®(1) 4V [thjo — VIl + [2(E)4V[Ys,] — Pto) 4V [1hjo]|
+ [ (to)4 Vv, — ¢l
< g + % =e.

This shows the map ¢t — ®(t)xV[¢] is continuous at ty. As ¢ is arbitrary, the claim
follows immediately. It remains only to prove the map ¢ — ®(t)xV[1] is differentiable.
This readily follows from combining Corollaries A.3 and A.4 with a = 0, and the algebra
property of space 9)(2). In particular,
d
dth=o
This completes the proof. O

€
2.

(1) V(1] =V |divY — Qvy + % .Y

To conclude this section we record some properties about pushforwards of elements of
D (€Y; A) and continuous dependence of pushforwards on vector fields.

Lemma5.2. FixaY € Y~ () and let {@(t)}> be the family of diffeomorphisms in (9%
generated by Y. If U € C(I'_,T",) and T = 0*U with E,[I',T_] < oo, then
e() Ve = Vo) — Vo)
Proof. By Lemma A.2 and Corollaries A.3 and A.4
|2(t)* s T5D(1)|y < C

for some C' independent of R, and ®(t)# ¢ s — 1 pointwise as R — oco. Thus, appealing
to Proposition 4.2, the dominated convergence theorem and a change of variables, one
readily computes

O(t)yVr[1] = lim Ve[®() 7 o5 0(1)]
= lim (E[@()(I),T-; ¢rs] = B[2()(T-), '~ dry]) -
By Proposition 2.1
lim E[®(t)(1),I'—;drs| = Era[®(t)(T), -]

R—o0
and
lim E[®()(T),T 5 dps] = Bra[@(H)(T_),T_]

R—o0
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Moreover, by Lemma A.2 and Proposition 2.4 one has E,;[®(¢)(I'~),I'_] < co and so is
E,:[®(t)(T),I'_]. Hence, combining these equalities gives

(1) Vr(l] = Vauym (1] = Veu e H[1]-
If ¢ € C2°(§Y x S™), then the usual change of variable gives
()£ Vr[¥] = Vaouym)[¥] — Vou e[

As, by Item (6) of Proposition 4.1, C2° (¥ x S") is dense in @dﬁl one has the above
equality holds for all ¢ € 2,(£’). Hence, by the definition of (') and linearity, the
claim follows immediately. U

Lemma 5.3. Fix any radius Ry > 0. The map

Y7 (@) x[0,00) x B 3 (Y.1,V) = @y (1) 4V € 9*()
is continuous. Here {®v (t)} is the family of diffeomorphisms in Q' generated by Y, and
2*(Q') is endowed with the weak-* topology and Bl%i]u ={V e (@): [|[V|]y- < Ro}
is a subspace of 9* (V).
Proof. FixY € Y~ ('),t > 0and V € Bg;. First, given ¢ € C° (€Y x S™), by Lemma

A.2, &y (t')#4) is supported in a fixed compact set as long as (Y’, ') is sufficiently close
to (Y, t). Thus, it is a standard exercise to check that

li By (1)1 V' [Y)] = By ()2 V],
(Y’,t',V/l)IE(Y,t,V) v ()4 V' [¥] v () VY]

Next we show that the above limit still holds true for functions in 20(Y). Endow
Y~ () € Y(£) with the subspace topology. It follows from Proposition 5.1 that, for any

Y eBY (Y),0<t <t+landV'e BY,
(5.2) |y (') £V - < CsRo.

Now take any ¢ € 20(Q). By Item (6) of Proposition 4.1, there is a sequence 1); €
C(SY x S™) so that 1; — ) in the ) norm. Thus given € > 0 there is a jo € N so that,

forany Y’ € BY (Y),0< ¢ <t+land V' € BY,

[Py (¢)4 V' [0 — Y]l < CsRolltbj, — Ylly <

and, in particular, so

€
3

@y (04 V s, — 0]l < 5.

By general topology Bg; with the weak-* topology is metrizable and denote by D a choice
of such metric. By the previous discussion, there is a pp > 0 so that if

1Y =Yy + [t' = t[+D(V', V) < po,
then .
[y () 4V [¥o] = Dy ()4 V V5]l < 3-
Thus, combining above estimates and applying the triangle inequality give that
[y ()4 V' [Y] — Py () VY]] < [Py )4V [¥050] — Py (8)# VY5, ]]
+ [y ()4 V' [¥5, — Y| + [2v (1) £V [vj, — ]l
cELfL .
-3 3 3
Hence we have shown the claim.
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It remains only to prove that & (¢') £ V'[1] — @y (¢)xV[1]as (Y, ¢/, V') — (Y,t, V).
To see this, first appealing to Lemma A.1 and Corollaries A.3 and A.4, one gets that, for
any Y' € BY (Y)and0 <t/ <t+1,

JE®y (t',p,v) = c(ay:,t') + Py (t', p,v)
where
’ 1, L, 2 ! Loyt
c(ay,,t)zl—i—itozy/—i—z(tayf) ez P(1 — p)dp
0
and there is a constant C = C(Q','_, t) > 0 so that, for any R > 0,

C
>3 su Py t/7'7' O\ B < .
o 0§t'§€+1 1Py ( )H@(Q \Br) = R 41

As ay+ continuously depends on Y,

5.4 li Vv’ L1 =V ,1)1].

64 o Vel 1] = Vieay, 1

Next, invoking (5.3), given ¢ > 0 there is a radius R, > 1 so thatif Y/ € BY (Y),0 <
t'<t4+landV'e ngo , then, for all R > R,

V,Kl — QZSR,I)PY’ (t/, ) )} < €.
As one readily checks that
li v’ Py:(t',-,)] = Vior1Pxy(t,-,-
1 PR [pr,1 Py (ts )] (PR Py (t,,")]
combining this with the previous estimate gives
li V'[Py:(t',,")] = V[Py(t,-")]
e v [Py (-, )] = V[Py(t,- )]

Hence the claim follows by combining this and (5.4). (I

6. STATIONARITY OF RELATIVE EXPANDER ENTROPY AND ITS PROPERTIES

In this section we introduce an appropriate notion of stationarity for the relative ex-
pander entropy. In particular, this notion admits some of the large scale deformations from
the previous section as valid variations and not just those that are fixed outside a compact
set. Continue to use the conventions of Sections 2.5 and 3.

6.1. Modified pushforwards. Let ® be a C ! diffeomorphism of €’ that is fixed outside a
compact set. For V' € 9*(Q') define a modified pushforward of V under ® by

@;V =04V + Vo ) €D (D).
As in the previous section we will extend this to an appropriate class of diffeomorphisms
that do not fix things outside a compact set.

IfY € Y~ () and {®(t)},> is the family of diffeomorphisms in {’ generated by Y,
then Lemma A.2 and Proposition 2.4 imply FE,;[®(¢)(T_),T_] < occ. Thus, by Proposi-
tions 4.2 and 5.1, @(t);V is well defined. The advantage of this notion is that, by Lemma
52,if V € PiE(V; A), then @(t);V € YP;(; A) for some A’ > 0. Here, as defined
in Section 4.3, the space 97 (; A) is the closure of 95 (€'; A) in the weak-* topology
of 9*(Q), where 95 (€'; A) is the subspace of 2)*(Q’) consisting of elements Vi~ for " a
hypersurface trapped between I'"_ and I"/, with relative expander entropy bounded by A.

We record the following property about continuous dependence of modified pushfor-
wards on vector fields.
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Proposition 6.1. Fix any radius Ry > 0. We have
(1) The map
Y7 (@) x [0,00) x B, 3 (Y,t,V) = oy ()LV € ()

is continuous;
(2) The map

V() x Y7(V) x [0,00) x B, 3 (Z,Y,t,V) = 6(23(t) £ V)[Z]

is continuous.
Here {@v (1)}, is the family of diffeomorphisms in Q' generated by Y, and *(Q')
is endowed with the weak-* topology and Bg; ={Ved Q) |Vl]y- <Ro} isa
subspace of P* (V).
Proof. To see the first item, by Lemma 5.3 it suffices to show the map

V(@) % [0,00) 3 (Y1) = Viy € 9* ()

is continuous, where 'Y = &y (¢)(I'_). To see this, fix any Y € Y~ () and t > 0.

Appealing to Lemma A.2 and Proposition 2.4, one has thatif Y’ € BY (Y)and0 <t <
t + 1, then, forall R > R4,

6.1) |ErallY TR Bp)| < KiR2
where R and K both depend on €/, I'_, Y and ¢. Thus, by Proposition 4.2, one sees that
if ¢ € Y(), then, for all R > max {2R;,R1} > 1,
Vp:g/ [(1— ¢2R,1)¢]’ < Cqy (R_l + ‘Erel[l—‘?f(/,r—;RnH \ BR]D (1 — ¢2r,1)¢]ly
< 205(1+ K1) R H[Yly.
Hence, as one readily checks

R’ t}%I—I}(Y t) VFZ, [$2r1¥] = Vry [2m9);

combining these gives
lim Viy [¥] = Viy [¢].
(Y’,t’;a(Y,t) L [ L ]

As v is arbitrary, the claim follows immediately.
To prove the second, write

(D (1) V)[Z'] = 0(2y (1) V)[Z] = (P, (t') 4 V") [Z' - Z]
+0(Dy, ()4 V' — 23 ()4 V(2.
As Z' — Z in the ) norm, it is readily checked that
div(Z' — Z) - Quz—z) + % (Z'—Z) =0

in the 2) norm. By (6.1) and Propositions 4.2 and 5.1 one has, for any Y’ € B%’i (Y),0<
t<t4+1landV'e Bg;,

[Py (1) 5V ly- < C
where C = C(Q',T_,Y, Ro,t). Thus it follows that

li 5(®3, (1 V[Z' —Z] = 0.
(Z’,Y/,t’,V’l)rg(Z,Y,t,V) (®y ()4 V] )
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Invoking the first item and Proposition 5.1 gives

li (DT, () V' — dL ()L V)[Z] = 0.
(Y/,t’,V’l)g(Y,t,V) (P (#) v (O #V)[Z]

Hence, combining these limits gives
(D (1) V2] = 6(23 ()4 V) Z].

This completes the proof. O

im
(Z,Y7,t",V)=(Z,Y V)

6.2. E,.;-minimizing to first order. Let ).(£)") be the subset of elements of V(') with
compact support and let

Vo () ={aYo+Y1 €Y (V): Y1 € V(V)} CcY ().
IfY € YV, (€) and {@(t)};> is the family of diffeomorphisms in Q' generated by Y,

then, by the fact that Yy is tangent to I'_, one has ®(¢)(I'_) and I'_ agreeing outside a
compact set and so Vi (4)(r_) may be thought of as a measure with compact support. Thus,
by Proposition 5.1, given V' € 9* (), @(t);V is differentiable at £ = 0 and so, as I'_ is
a self-expander, we can define
_d
" dth=o
An element V € 9* () is E,.¢-minimizing to first order in ' if §TV[Y] > 0 for all
Y € ) ().

Suppose V' € Y (£Y; A) has decomposition

V= V+E -V

©2)  §TV]Y] OFVIL] = VY] =V [divY - Quy + 3 - Y].

x 2
for a weighted varifold V;F. Let V. = e_%Vf be a varifold such that, for any v €
CO(Y x SM),

x|2
Vilvl = [we ¥ ave.
For notation purposes, we write V; = e’%Vf and Vf = Vi. Then,as I'_ is a
self-expander and so E-stationary, Vjeing FE,c;-minimizing t&flrst order in € means that
V. is E-minimizing to first order in §)'. That is, for Y € Y (¥),
ogVi[Y] >0

where

d
SpVi[Y] =

=2 . X =2
%t:o/e do(t)4Vy = / (dleY + 5 -Y) e 1 dVi(x,9)

is the usual first variation formula for the E-functional. o

Observe that if spt(Y) C €, then both Y and —Y lie in ) (€/). Hence, if V is
E,.¢;-minimizing to first order in €, then *V[Y] = 0. In particular, V, is E-stationary
in .

We now summarize some properties of elements of @72(@, A) that are E,..;-minimizing
to first order in €Y.

Proposition 6.2. Fix any positive number A and let V € QT*;(W, A) have decomposition
=12

V=e3V, - VFE: for some varifold V... If V is E,.-minimizing to first order in {V,
then
(1) V(1] = E,a[V];
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(2) The support of V. lies in the closed set @ = Q (T_) N Q_(T4);

(3) V4 is an E-stationary varifold in Q';

(4) If V. is integer rectifiable, then there is an R > 0 so V| (R"T1\Bg) = H"|T
where T is a self-expanding end that is C*-asymptotic to C(T'_).

To prove the proposition, we will need the following lemma.

Lemma 6.3. Givene > 0andV € 95(V; A), there is a radius R = R. (', T_,V) > 1
so that if p € Y(V), then, for all Ry > Ry > R.,

Vg, ] = Vg, ¢]| <ell¥lly-
Here 1y is the indicator function of a set Y .

Proof. Let Vi, € ;(SV; A) satisfy Vr, — V in the weak-* topology. By Item (1) of
Proposition 4.2, if ¢» € 2)(Q’), then, forall0 < § < 1and Ry > Ry +6 > Ry > 2R; and
for all 7,

IVE, [0Rs.6¢] — Vi, [0R, s¥]| < Co (VD [@Rs.6) — VEu (R 8]l + B [14]l

where R; and C5 both depend on €’ and I'_. Sending i — oo, the weak-* convergence
gives

VI$r, 6] = VIdr, 9]l < Ca (|V[bRas] = VIdr, sl + B (¢l
Next, letting 6 — 0, the dominated convergence theorem implies
VI, 0] - ViLs,, vl| < Co (VB - VIBal| + BT) 0.

By Lemma 4.3, there is a radius R, = R.(C3, V) so that, for any Ry > Ry > R.,
Cy |V[BR2] — V[BRJ’ + CQRl_l < €.

Hence, combining these estimates yields, for any Ry > Ry > max {2R;, R.},

VILg,, vl = VILg,, vl] < el ]y,
The claim follows with R, = max {2R;, R.} which depends on €', T'_ and V. O
We are now ready to prove Proposition 6.2.

Proof of Proposition 6.2. We first prove Item (1). Let Y be the vector field from Section
5. Consider the cutoff function

or=(1-R2x?)| € C3R"Y).

AsV is E,..;-minimizing to first order in ' and —(1 — ¢r) Yo € YV, (), it follows from
Proposition 5.1 that

. x
V [div (1 = 6R)Y0) = Qu-smve) + 5 - (1= éR)Yo)| 0.
One appeals to Lemma A.1 to check that as R — oo
. X
div (1 = ¢r)Y0) = Qv(-gr)¥vo) + 5 - (1 = ¢r)Y0)
in the ) norm. Thus it follows that
(6.3) V[ < lim Vigg]

= 0m) =0
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As ||¢r|ly < 1+ 8R!, it follows from Lemma 6.3 that given € > 0 there is a radius
R, so that, for any R’ > R,,

(6.4) Vigr] — V[1p,, ¢rl| < e(1+8R71).

As|¢pr| < 1and ¢ — 1 pointwise as R — oo, it follows from the dominated convergence
theorem that

lim V[]'BR’ (bR] = V[BR/]
R—o00
Thus, taking the limit of both sides of (6.4) as R — oo, gives
lim Vigg] — V[Br]| <e.
R—o0

Hence, letting R’ — oo and appealing to Lemma 4.3, gives
Jim Vigp] < lim VIBr]+ €= E.a[V] +e
Invoking (6.3) and Lemma 4.3 again, implies that
EalV] < V1] < EalV]+e

As € > 0 is arbitrary, we have V[1] = E,;[V] proving the claim.
The second item follows from the strict maximum principle for stationary varifolds [42]
or [48]. Namely, as V is E,.;-minimizing to first order in {)’, one has that V is E-

S . = lx(p)|?
minimizing to first order in (/. For each p € R™T1, the set {w € R jwle < 1}

is equal to a closed ball in R"*! centered at the origin. Thus, the functional E is even
and elliptic. If spt(V,.) \ Q is non-empty, then, by Item (3) of Proposition 3.1, there is
an s, € (0,1 oran s_ € (0,1] so that spt(Vy) NTE # 0 but spt(Vy) NTE = 0
for s € (s+,1] — here I'T are the foliation of Q” \ €’ given by Proposition 3.1. By the
strict maximum principle of Solomon-White [42] and the additional remarks (1)-(2) in
pages 960-961 therein (see also [48, Theorem 1]) and the fact that Fsii is strictly expander
mean convex, this is impossible. Hence, spt(V,.) C Q and this completes the proof of the
second item. The third item is an immediate consequence fact that V. is E-minimizing to
first order in /, the fact that Q C € and Item (2).

Finally, to prove the fourth item, pick an (even) function ¢ € CZ((R"*1\ {0}) x S™).
Clearly, there is a constant C' > 1 so that the support of 1 is contained in B¢ \ Bo-1. Let

Ix(p)|2

Uplp,v) = p"e™ 5 (pp, V).
One readily computes that, for p € (0, 1),

1 _
o]l < 10CP" e 3 ||| ce.

As 1, has compact support, one immediately has (up to restricting) that 1, € 2,(€?’) and,
by definition,

[¥olly < [[pllx < 10Cp™ e 507 ||3h)| o
As E,[V] = V[1] < coby Item (1) and V € 9% ('; A), we have, by Proposition 4.2,
(6.5) VIl < 10CC(1+ [VA])p" e 7 ||l c2.

For p > 0,let Z,: R"*1 x §" — R™*! x S" be the dilation map given by Z,,(p, v) =
(pp,v), and let V_ be the usual varifold associated to I'_. It is straightforward to see that

Vol = p" Vil o D] — p" V[ 0 D] = ()4 Vi [¥] = (Do) V-1¥]
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where (:@p)#Vi are the usual pushforwards of varifolds V... Thus, by (6.5),
i ()4 V2 [0] = (9,)4V-[6)) = 0.

Aslim, o pI'_ = C(T_) = Cin C2,,(R"*1\ {0}),

lim(%,)5V-14] = | 9(p.nelp) ar.

p—0

As a consequence,

lin (7,4 Vil0] = [ 0l melr)

As C2((R™1\ {0}) x S") is dense in CO((R"F1\ {0}) x S™), it follows that as p — 0
the (Z,)4Vy converges to C in the sense of varifolds. Finally, as C is a C®-regular cone
and V is integral F-stationary varifold, one can appeal to [5, Proposition 3.3] to get the
C? convergence. O

7. MIN-MAX THEORY FOR ASYMPTOTICALLY CONICAL SELF-EXPANDERS

In this section we adapt a notion of parametrized family of hypersurfaces in [14] (see
also [12] and [15]) to the setting we are considering. Following the strategy of Almgren-
Pitts [37] and Simon-Smith [41] for the min-max construction of compact minimal hy-
persurfaces — see also [12], [14] and [15] — we show that there is a min-max sequence
that converges to an element of )7 (€¥; A) whose associated varifold is E-stationary, sup-
ported in Q) and has codimension-7 singular set. We continue to follow the conventions of
Sections 2.5 and 3.

7.1. Parameterized families. Let I* = [0, 1]* be the k-dimensional cube.

Definition 7.1. Fix k > 1. A generalized smooth family of hypersurfaces in Q' param-
eterized by I" is a family of pairs (U-,%,), for 7 € I*, where U, € C(I'"_,I",) and
¥, = 0*U, and that satisfies

(D Erel[EﬂF*} < 00;

(2) Foreach 7 € I*, there is a finite set S, C Q' so that ¥, is a smooth hypersurface

in O\ S;;

(3) The map 7 + V5 _ is continuous in the weak-* topology of 2)* (€?');

4) AsT = 79, Br — X in CF2 (RTINS, );

(5) The map 7 — 1p._ is continuous in L}, (R™T1).

The family {(Ur,¥7)},¢(o 1) is @ sweepout of Qif (Up, %) = (Q_(I'_),T_) and
(U1, %) = (Q-(T'4), T'y).

Remark 7.2. Notice that by Proposition 4.2, combined with the other requirements, Item
(3) of Definition 7.1 is equivalent to the condition that E,..;[Vx_] is continuous in 7 and
T — X, is continuous in the locally Hausdorff sense; c.f. [14, Definition 1.2] and [15, Defi-
nition 0.2]. We also emphasize that we don’t demand the sweepout of Q lies entirely within
Q only that it remains in €. This is, nevertheless, more restrictive than the analogous hy-
potheses of [14] and ensures the element produced by the min-max procedure lies in Q'
and hence in Q. The reason the region is thickened to ¥/ is that this gives more admissible
variations and so simplifies the regularity theory.

From now on we will refer to such objects in Definition 7.1 as families parameterized
by I k and we will omit the parameter space, [ k when it is clear from context.
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Definition 7.3. Two families {(U,, %)} and {(U’, %)} parameterized by I* are homo-
topic if there is a family {(W(Tw), E(np))} parameterized by I*+1 = I* x [0, 1] so that
(1) W0y, E¢r0) = (Ur, X7) forall 7 € Ik,
) (Wir1), E¢ryy) = (UL, X7) forall 7 € I*;
(3) Wirp)s E(rp)) = (Ur, S7) forall 7 € 91" and all p € [0, 1].
A set X of families parameterized by I* is homotopically closed if X contains the
homotopy class of each of its elements.

Definition 7.4. Let X be a homotopically closed set of families parameterized by I*. The
relative expander entropy min-max value of X denoted by m..;(X) is the value

Myer(X) = inf {Eéé}}k(Erel[VgT]: {(U:,Z7)} € X} .

The relative expander entropy boundary-max value of X is
bM,e(X) = max { E,o[Vs,]: {({Ur,2,)} € X, 7 €0IF}.
A minimizing sequence is a sequence of elements {{ (U£, X£)} }Z C X such that

lim max E.q [VE(] = Myel (X)
{—o0 TETk T

. . . . . . . . . g e
A min-max sequence is obtained from a minimizing sequence by taking slices { (U5,,%2%,) } P
for 7 € I* such that
Erel [ng_[] — m,_el(X).
It is obvious that any subsequence of a min-max sequence is a min-max sequence.

7.2. Min-max construction for E,..;. We adapt the classical min-max theory for compact
minimal surfaces to F,.; in our setting. The main result of this section is the following:

Theorem 7.5. Let X be a homotopically closed set of families in Q' parametrized by I*
with mye;(X) > bMyei(X). There is a minimizing sequence {{(Uf, Eﬁ)}T}Z in X so
that there is a min-max sequence {(U%,, £ }e and a pair (U, Ty) with Uy € C(T_,T4)
andT'g = 0*Uy so that
(1) Ty is E-stationary, has codimension-7 singular set and E,.¢;[To, T _] = my..;(X);
(2) Ef{ converges in the sense of varifolds to Ty and 1 ue, converges in Llloc to 1y,.

Remark 7.6. This is stronger than what is achieved in the more general situation considered
in [15] as the geometry of the expander problem implies the limit is with multiplicity one.

We now prove Theorem 7.5 by following the strategy in [14] which, in turn, is modified
from [12] and [15]. The proof is divided into several parts.

7.2.1. Pull-tight procedure for E,.;. Set
Ao = max {| E_|, 4fmyet (X)]}
where E_ is the uniform lower bound for E,..; given by Lemma 4.3. Let
Y =:(; Ao)
and let
Vs = {V € V: V is E,¢-minimizing to first order in W} .

By Proposition 4.2,V C Bgo* for Ry = C2(1 + Ag). Endow V with the weak-* topology.
Thus, by the Banach-Alaoglu theorem, V is metrizable and compact. Let D be a choice of
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such metrics. As, by Proposition 5.1, for Y € Y (€’) the map assigning 57V [Y] to each
V' € Vs continuous, one has that V; is a closed subset of V and so is compact.

Proposition 7.7. Let X be a homotopically closed set of families in Q) parameterized by
I* with mye;(X) > bMyei(X). There is a minimizing sequence {{UY, Ef}T}é in X so
that if {(U%,, 2t )}1g is a min-max sequence, then D(VE% ,Vs) = 0.

Te?) T Ty

Proof. Let Js(€) be the set of all isotopies of €/, i.e., smooth maps ®: [0,1] x Q" — Q'
so that each ® (¢, -) is a diffeomorphism of . If we denote by

bX = {Vs, : {£,} € X, 7 €9I*}.

then our hypothesis on X and Lemma 4.3 ensure that bX C V. We now adapt the main
steps of pull-tight arguments of De Lellis-Ramic [14], which are modified from Colding-
De Lellis [12], to our setting to construct a continuous map V — Js(Q2') givenby V — &y,
so that

(1) IV € Vs, UbX, then @y is the identity map;

() IV €V, UbX, then (v)LV[1] < V[1].

Step 1: A map from V to Y, (V). For j € Z, let
V;={Vev: 277t > DV, V,) > 2777%}.

For each V' € V;, as V is not E,..;-minimizing to first order in €, there is a vector field
Yy =avYo+Zy € YV, (V) where ay € Rand Zy € V() so that 5TV [Yy] < 0.
Moreover, by linearity we may assume that, for j > 1,

. ; 1
Yvily + 1Zv]les < G
By (6.2), for such V' there is an open ball BY (V) C (V, D) so that, for any V' € B (V),
_ 1 _
5+V/[Yv] < §5+V[Yv] < 0.

As V; is compact for the metric D, arguing as in [12, Proposition 4.1], one finds a
locally finite covering of V \ V; by these balls so that any ball intersects at most three of
V;. Let {¢;} be a partition of unity subordinate to this cover. Thus, as Y, (') is a convex
cone, we can define the map

V\V.3 Vs Yy =Y 0i(V)Yy, € Yy () NC™(@;TY)

where Y, (€') is endowed with the Y norm and C°°(Q; TY) is with the usual Fréchet
topology. Our construction ensures that

(1) 5tV[Yy] <Oforany V € V\ Vy;

(2) V — Yy is continuous;

Q) IYvlly +[Yvlein < 725 if D(V,V,) <277 and j > 2.
Extend the map V' — Yy to V by setting it identically equal to O on V,. By Item (3)
this extension is continuous in both ) and C'* norm. That is, the map V +— Yy is indeed
continuous in the C'*> space with its usual Fréchet topology.

Step 2: A map from V to Js('). For each V € V, denote by {®y ()}, the family

of diffeomorphisms generated by Y+y,. By Item (2) in Step 1 and Proposition 6.1, the map

[0,00) XV 3 (,V) = 65 (D (1) LV)[YV]
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is continuous. Thus, for each V' € V \ Vq, there is a positive time oy and a radius py so

that, forall ¢ € [0,0v] and V' € BY (V),

5+ @y (LY Y] < iwvwv] <.

Arguing as in the first step we can construct a continuous function o: ¥V — [0, 00) so that
(@) o =0o0nV;
(b) o >00nV\V;
(©) maxe(o,0(v) 67 (Py (1) LV)[Yv] < 0forevery V e V\ V..
Define b: V — [0, 1] by
b(V) =min {D(V,bX),1}.
Clearly, b is continuous. Now redefine a new Y- by multiplying the old one by b(V)o (V).

This newly defined Y still continuously depends on V' and vanishes identically on Vs,
however, property (c) becomes

(©) maxyejo,1) 6 (Pv (1)L V)[Yv] < 0forevery V e V\ (Vs UbX).
As Yy is tangent to I'_ outside a compact set and I'_ is a self-expander, it is not hard to
see thatif V € V\ (Vs UbX) and 0 < ¢t < 1, then

Oy () EVIL] = V1] + /Ot 5t (@y (s)5V)[Yv]ds < V[1].

Step 3: Construction of the competitor and conclusion. It is convenient to identify
I' with Vp. Take a minimizing sequence {{(Z%, Tf)}T}z C X and consider families
{(WE,EL)}  given by
W =&y (1,25) and E = e (1, T5).
Our construction ensures the map 7 — Y. is continuous. Next we use standard mollifier
techniques to construct a smooth map 7 — Xy¢ € Y™ (€¥') with the estimate

max ||Y'r£ - XTZ Hy S 6_1.
Telk T T

Notice that, unlike Yy, Xy¢ may not be in (€Y') but instead lies in the bigger space
Y7(). Let {¥ye(t)},., be the family of diffeomorphisms generated by Xrye. If
Ul = e (1, Z%) and ¥ = \Isz;(l,Tf), then the smoothness of Xy in 7 ensures
that {(UY, Zf)}T is an element of X. We will show {{(U%, Ef)}T}E is a minimizing

sequence in X with the desired property.
By construction and Proposition 6.1 one has

(7.1) lim maxD(X%,2) = 0.

L—oco Telk

Hence, Item (¢’) in Step 2 and (7.1), imply there is a ¢, \, 0 so
Ere [Ef—] —€ < Erg [Ef—} < Ere [Tf—}

Thus, as {{(Z%, Tf)}T}Z is a minimizing sequence, so is {{ (U%, Eﬁ)}T}Z. Moreover, if
{(UL,,%£,)}, is a min-max sequence, then so is {(Z7,,T%,)},. We claim D(Xf,, V) —
0. Suppose not and there were a subsequence ¢; so that D(Ef{ ,Vs) > 6 > 0. By
the compactness of V, up to passing to a further subsequence and relabelling, the T%i
converges in the weak-* topology to some V € V. It is enough to show that V[, € V, and

E%v — Vb. This would give a contradiction.
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L;
T({i

By Lemma 5.2 and Proposition 6.1, =2 — @VO(I);VO in the weak-* topology. As

remarked before, {Tﬁ;_ } is a min-max sequence while E,.¢;[E% ] — my.¢(X). Thus,

Dy, (1)L Vo[1] = Vo[1] = myar(X).
As My (X) > bM,.;(X) one has Vy ¢ bX. If Vi ¢ Vs, then by Item (c”)

By, (1)5V0[1] = Vol1] + / 5+ (@, (1) Vo) Yo dt < Vo[1].

This is a contradiction, so V5 € V,. By construction, Yy, = 0 and ‘I’Vo(l);Vo = V.
% — Vp and hence, by (7.1), so does 3% . This completes the proof. O

Hence, =7 :

7.2.2. Almost minimizing. We first observe that, with minor modifications, the proof from
Sections 4 and 5 of [14] (see also [12] and [15]) implies that there is a min-max sequence
produced by Proposition 7.7 that is almost-minimizing in appropriate annuli.

Let us first state what we mean by almost minimizing.

Definition 7.8. Fix ¢ > 0, W C R"*! an open subset — not necessarily bounded — and
k € N. A boundary 9*U for some U € C(I"_,I") is e-almost minimizing in W' if there is
no one-parameter family {0* U} €[0,1] satisfying the following properties:

(1) All the properties of Definition 7.1 hold for {(Us, 0"Us)} (o 11 3
(2) Uy = U and there is a bounded open subset W’ with W/ C W so that U,\W’' =
U\W' forall s € [0,1];
(3) Era[0*Us,T_] < Epq[0*U,T_] + o5 forall s € [0,1];
4) Eraq[0*Ur,T-] < Eq[0*U,T'_] —e
A sequence {8* U ’} of hypersurfaces is called almost minimizing (or a.m.) in W if each
0*U" is ¢;-almost minimizing for some €; — 0.

Remark 7.9. We emphasize the that the only difference with the definition in [14] is the
introduction of the fixed domain W’ that is pre-compact in . This is needed as we are
dealing with a non-compact domain, but does not affect any of the arguments.

Let
AN ,(p) = {An(p,r1,72) = B, (p) \ By, (p): 0 <71 <713 < p}

be the set of all (open) annuli centered at p with outer radius less than p. We will show the
following:

Proposition 7.10. There is a function o: Q' — (0, 00), an element Vo € D5 (V5 Ag) that

is Eyei-minimizing to first order in (Y, and a min-max sequence {(Ufg, Ef@ ) }Z so that

(1) {(UL,, 5! )}Z is a.m. in every An € ANy, (p) forallp € V';

Te? T Te
2) Vse converges in the metric D to Vi as £ — oo.
by 8
Te

We observe that De Lellis-Ramic’s version Almgren-Pitts combinatorial Lemma can be
adapted to our setting. As remarked before, it is convenient to allow unbounded sets. This
has almost no effect on the proof.

Definition 7.11. Letd € Nand W1, ... W9 be open sets in R"*!. A boundary 9*U for
some U € C(I'"_,I",) is said to be e-almost minimizing in (W', ..., W) if it is e-a.m. in
at least one of the open sets W, ... W4,
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Denote by COy the set of d-tuples (W, ..., W?) where W1, ... W are open subsets
of R"! with the property that, for all 4,5 € {1,...,d} and i # j,

dist(W*, W) > 4 min {diam(W*), diam(W7)} .

Here
dist(W?, W7) = inf x(p) — x(q)|.
W) = ()~ x(a)]
Observe that we do not require that the open sets W1, ..., W% are bounded, however,

for a tuple (W1, ..., W) to lie in CO4 all but one must be bounded.
We now state the Almgren-Pitts combinatorial lemma. The proof is identical to that
in [14, Proposition 5.8].

Proposition 7.12. Let X be a homotopically closed set of families in V' parametrized by

I* with mye)(X) > bM,e(X). Thereis ad € N, an element V, sz(ﬁ, Ao) that is

E\r.ei-minimizing to first order in ), and a min-max sequence {(Ufz, Zfé ) }e such that

(1) ng;e converges in the metric D to Vy as £ — oo;
(2) For any (W',..., W%) € COq, Efe is %-a.m. in (WY ...,W%) for { large
enough.

We can now modify the arguments in [14, Proposition 5.3] to prove Proposition 7.10.

Proof of Proposition 7.10. Let d € N and {¥f, }, be the number and min-max sequence
given by Proposition 7.12. Write £¢ = X% . We will show that a subsequence of {%*}
satisfies the desired properties. For any 1 > 0 and ro,...,rq with 0 < r; < %ri,l, set

/

7/ = $r;i—1 and consider the tuple (W}, (p), ..., W (p)) given by
W, (p) =R""\ By, (p);
W;.(p) = By/(p) \ By, (p) for2 <i<d—1;
W, (p) = By, (p).
By definition (W2, (p),..., W< (p)) € CO4 and so X* is -a.m. in at least one W} (p).
For any r; > 0 fixed, one of the two situations occurs:
(1) ¢ is $-am. in (W2(q),..., W2 (q)) for every ¢ € €' and every choice of
ra,...,Tq and for ¢ large; o
(2) Foreach K € N, there is an {x > K and a point p’% € 0 so that X% is i—a.m.
in R"*! \ Bm (pﬁf )-

First assume there is no r; > 0 so that Case (1) holds. Thus, by choosing Case (2) with
r1 =1/jand K = j for every j € N, we obtain a subsequence { %% }j and a sequence of
points { pﬁj } in € so that $% is --a.m. in R" 1\ B, (pﬁj ). If pﬁj is unbounded, then ¥4

j J J
is %-a.m. in any bounded open subset of R™*! once j is large. In particular, this shows
the claim with o = 1. Otherwise, up to passing to a subsequence, pﬁj converges to a point
po € . It then follows that, for every N € N, X4 is 1-am. in R"*1\ B% for j large.
Thus, if ¢ € Q' \ {po}, then we can choose o(q) so that B,y4)(q) € R™ ™\ {po} whereas
0(po) can be chosen arbitrarily. Hence, { %% }j is a.m. in any annulus of AN 4 (q) for
any q € (V. o

Now assume there is some ry > 0 so that Case (1) holds. Fix any R > 1 and, as )’ By,
is compact, we can divide )’ N Bp, into finitely many closed subsets €21, ..., so that
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diam(€2;) < 74 for all . Similar to the reasoning above, for each (2;, starting with €,
consider the two mutually exclusive cases:

(a) Thereis some fixed r5; > 0 so that {ZZ} must be 1 gam in(W2 (q),..., W (q)
for every g € Q); and every r3,...,rq with r3 < 7‘2 jand r; < érj_l and for ¢
large;

(b) Thereisa subsequence {Ef} (not relabeled) and a sequence of points {p; ¢} in ©;
so that ¢ is -a.m. in By (pie) \ B1 1 (Pie)-

If Case (b) holds, then p; , — p; € €; and we can choose g(p;) € (diam(£2;), r5). For any
other g € €;, we can choose ¢(q) so that B,(4)(q) C By(p,)(pi) \ {pi}. We then proceed
onto 2,11, where either Case (a) is chosen, or a further subsequence is extracted and
define further values of the function g. For the subsets §2;, , ..., 2;, where Case (a) holds,
we define ro = min {ra,, ..., 72, } and then continue iteratively by first subdividing the
sets and consider the relevant cases. Note that if in the last instance of the iteration Case
(a) holds, it follows that ©¢ is 3-a.m. in B,,(¢) for some r4 > 0 and all ¢, hence we can
choose g(q) = r4. Finally, the result follows from a standard diagonal argument. O

By Lemma 4.3 and Proposition 6.2, V{ has a decomposition V) = et V+ Vi¥ where

V4 is a varifold supported in Qc . And V. is E-stationary, that is, for any compactly
supported vector field Y on R* 1,

SpVi[Y] = / (divSY + g ~Y> e AV, (x,S) = 0.

Let g/f = e 5 5” be a metric on R"*! conformal to the Euclidean metric. A standard
computation verifies that V, is stationary in (€', g j). Observe that in any bounded open
set our definition of an a.m. sequence (see Definition 7.8) is the same as in [15] — a similar
notion was introduced earlier in the work of Pitts [37]. As the proof is local, one may
argue as in [15] (cf. [37]) and use the Schoen-Simon regularity estimates [39] to obtain the
following interior regularity for the limit of an a.m. sequence.

x|2
Proposition 7.13. Let V}y be given by Proposition 7.10. Then Vy = et Vi —Vi¥ where
V. is an integer multiplicity E-stationary varifold with codimension-7 singular set.

7.2.3. Proof of Proposition 7.5. Appealing to Propositions 7.7, 7.10 and 7.13 one ob-
tains a min-max sequence {(U*, %)} = {(U%,, %)} and a pair (Up, Vo) for (Up, Vo) €
C(T_,Ty) x PE('; Ag) so that

o V= et Vi — Vi¥ for some integer multiplicity E-stationary varifold V.. with
codimension-7 singular set;

e (U*, Vsy) converges in the sense of Corollary 4.4 to (Up, Vj).
Let I'y be the regular part of (the support of) V.. By the last item of Proposition 6.2, I'g is
C?-asymptotic to C(I'_) and V;, = H"|T'g in R**1\ By, for some R > 0. As the support
of V. has no compact components, the constancy theorem implies that V., has multiplicity
one and so, by the first item of Proposition 6.2,

Erel [F07 ] VO[ ] - hnolo VE%[ ] - Zli>nolo Erel [VEﬁZ] = mrel(X)'

It remains only to show 9*Uy = Iy. By the nature of convergence, 0*Uy C Ty and 1y,
is constant on each component of R"*1 \ Ty. As ©¢ = §*U* converges as varifolds with
multiplicity one to I'y the claim follows immediately.



A MOUNTAIN-PASS THEOREM FOR ASYMPTOTICALLY CONICAL SELF-EXPANDERS 35

8. LOWER BOUND ON THE RELATIVE EXPANDER ENTROPY OF SWEEPOUTS

Continue to use the conventions of Sections 2.5 and 3. Using a calibration argument
together with a certain observation about E-minimizers we show that any sweepout of
Q) must pass through a hypersurface of uniformly larger relative entropy. We refer the
interested reader to [14, Section 11] and [36] for alternative approaches that are built on
work of White [47].

This section is devoted to proving the following:

Proposition 8.1. There is a constant 5y = 6o(I'-,I'y) > 0o that if {(Ur, 1)}, (9 1) IS
a sweepout of Q, then

rn[%)i] E’rel [Z‘ra F,] > max {Erel [F,, F,], Erel[r+7 F,]} + 60 > 50-
T7€|0,

To prove Proposition 8.1 we will need several auxiliary lemmas. The first is an obser-
vation that the truncation to {2 decreases the relative expander entropy.

Lemma 8.2. ForU € C(I'"_,T",), let
ZU] = (UNQ_(T4))UQ_(T_) e C(T_,T,).

Then we have

1.

(1) The map 1y — lgu is continuous in Ly,

(2) Epe[0*U,T_] > E.q[0*Z|U],T_].
Proof. As
1zw) =1lvla_r,) +1lo @) — lvlo_@pla_ @)
the first claim follows from this.
To prove the second, we may assume F,..;[0*U,'_] < +oc as otherwise the inequality

holds trivially. By Proposition 3.1 one can define V: Q7" N Q. (I'y) — R**! by
V(p) =np+(p)ifp e Iy
and so

(8.1) divV+§-V20.

As UAZ|U] C o C Q, setting Vr = ¢r,1V and using the divergence theorem, one
readily computes

Ix|2

x|2
/ Srae T dH" — / Srae T dH"
8*UﬂQ+(F+) 6*%[U]QQ+(F+)

2
x|

«|2
Z/ Vg -ngpye = dH" — / Vg na*g[U]e% dH"
o*UNQy (Ty) O*ZUINQy (T')

: X ﬂ n+1
(dlvVR +3 -VR) e de

/(UA«%[U])QQNFH

z/ bR (divV +X. V) 5 gt - 2/ 5 gt
(UAZIUDNQ; (T 2 N (Bri1\Br)
Thus, appealing to (8.1) and [8, Lemma 2.2], one sees
E[0*U,T_;¢r1; Q. (T4)] — E[0*Z[U],T—; ¢r.1; Q4 (04)] > —CR >
for some C' = C(Q'). Likewise,
E[0*U,T ;¢p1;Q(T-)] - BE0*Z|[U],T ;¢p1; Q2 (T-)] > —CR™.
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As 0*U N Q = 9*Z[U] N £, combining these estimates gives
E0"U,T—; épa] — E[0*B[U),T—; 1] > ~20R .
Hence, sending R — o0, it follows from Proposition 2.1 that
E.[0"U,T_] — E.q[0"Z|U],T_] > 0.

The result follows from rearranging this inequality. (]

Foreach U € C(I'_,T}), let iy be the open region between 0*U and T'_, and let
«|2
M[U] = / e dLnt
Qu

be the weighted volume of Q. We have, for U € C(I'_, '),
0 < M[U] < My = M[2_(I',)] < oc
where the finiteness of M[Q_ (T';.)] follows from [8, Lemma 2.2]. Given m € [0, Mg], we
then let
CT_,Ty;m)={U €C(l'_,Ty): M[U] =m}.
Notice that, for U € C(T'_,T'}), if M[U] = 0, then, up to a measure-zero set, U =
Q_(T_), and if M[U] = My, then U = Q_(T';). Observe that it is possible to perturb

the distance to _(T'_) to a uniformly bounded Morse function f on £ which coincides
with the distance function near I'_. Thus the function a — M[{f < a}] is continuous and
so, for any 0 < m < My, C(I'_, '} ;m) is nonempty and we can define a number

E,, =inf{E,[0"U,T_]: UcC(T_,T1;m)}.

Lemma 8.3. For each m € [0, M), there is an element U], € C(I'_,T'y;m) so that
E,.[0*U},,T_]| = E,,.
Proof. By Lemma 4.3 there is a constant E_ = E_(I'_ ") < 0 so that, for any U €
c(r_,ry),
E.q[0*UT_| > E_.
In particular, one has
E, >FE_ > —c.

We may assume E,, < oo as otherwise E,[0*U,T_] = oo for all such U and so
the claim holds trivially. Then pick a minimizing sequence U; € C(I'_,T'1;m) so that
E,[0*U;, T_] — E,,. By Proposition 2.1, up to passing to a subsequence, 1y, — 1y
in the weak-* topology of BV}, for some U,, € C(I'_,T'}). Appealing to [8, Lemma
2.2] one has, for any R > 1,

x 2
/ P ALt < CR
Qu;\Br

where C' = C(I'_,T'}). Thus it follows that M[Us] = m and so Uy, € C(T'_,T';m).
By the nature of convergence and Proposition 2.1

Erel[ﬁ*UomF—] < lim Epq [a*UiaF—] = B
1—00
Hence E,¢;[0*Us, '] = E,, and so the claim follows with U}, = Ux. O

Given R > 0 and ¢ > 0, let
Wge= (BrRN\T(T2).
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Lemma 8.4. There are positive constants Ry = R,(T'—,T'y) and €, = (T, T'1) so that
ifU € C(T'_,Ty) satisfies Wry o NU = 0, then E,¢;[0*U,T'_] > 0 and the inequality is
strict when 0*U # T'_.

Proof. We may assume F,..;[0*U,T'_] < oo as otherwise the claim holds trivially. Using
Lemma 3.3 with I' = I"_, one obtains a foliation {I's} and a number ¢y > 0 so that

() I'g=T_andT, < Iy if s < §;
(2) For s > 0, the expander mean curvature of I' points towards I'_;

(3) Forp € I',, dist(p, ) > coeo(1 + |x(p)|2)_%(”+1)+006_%.

Let
Qo = U Iy
s€[0,e0]
and define the vector field V: Qg — R"*! by

V(p) = nr,(p)ifp € Ts.

s€[0,e0]

By Items (1) and (2)

(8.2) div V(p) + @ “V(p) >0

and the inequality is strict when p € I'; for some s > 0.
Appealing to [8, Proposition 2.1] gives that

I \Baor € {x(p) + u(p)nr_(p): pe T _\Br} C Ty
where R = R(I'_,T';) > 1 and v satisfies

1x|2

0<u<Cl+|x?) 2"

for some C'= C(I'—,I'y.). Thus, by Item (3), there is a radius R = Ry(I'-, ') > R so
that Q \ Br; C €. Hence there is a constant e, = ;(I"_, ') > 0 so that

Q\ Wry . = (2\ Bry) U(QN T (To)) € Q

and so V is well defined on Q \ Wr; .
AsU € C(T',T'y) satisfies U N Wy, . = 0, one has

Q7U C Q \ WR&,E/ .
Applying the divergence theorem to Vr = ¢ 1V gives

Ix|2 Ix|2

¢R71€ i dH™ — ¢R71€ i dH"
o*U r_
[ETER. IE TG
> Vg -ng-ye a dH" — Ve -nr e+ dH
o*U r_

x 2
:/ (div Vit = -VR) 5 aontt
Qu 2

x 2 x 2
2/ OR.1 (divV + -V) e drtt — 2/ e grntt,
Qu 2 QN(Br+1\Br)

Thus, by [8, Lemma 2.2],

[x

2
E[0*U,T_; ¢pa] > / OR1 (divV n % : V) P dLntt — o'R?
Qu
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for some C’ = C’(§2). Hence, sending R — oo and invoking (8.2), it follows from the
monotone convergence theorem and Proposition 2.1 that

(8.3) E,q[0*U,T_] > /

(divv +=. V) e ALt > 0.
Qu 2

Finally, if 9*U # I'_, then Q¢ \ I'_ has positive measure and
divv+;v>00nQU\r_.

Thus, the second inequality in (8.3) is strict. That is, E,.;[0*U,T'_] > 0. This completes
the proof. (I

Lemma 8.5. There is a 61 = 61(Ry,€) > 1 so that given U € C(I'_,T) there are

constants R} = Ry (U) € (2R{,4R;) and € = €, (U) € (5e€p, 5€5) so that

x 2
E[U N 0Wry o] = / e aur < s MUY,
UﬂaVVR/PE/1

Proof. First, the coarea formula yields

47?'6 |x|2 1x|2
/ e dH"dp = / e 1 dL"T < MU
oR; JOB,NQy (Bury \Bary )00

Hence,

2Rl inf / ¢ dH™ < M[U]
2R6<P<4R6 8Bpﬁm

and so there is a radius R} € (2R}, 4R{) so that
x|2 1
(8.4) / e dHm < — MU
8BR/1 NQy RO
Next, let f: T¢ (- )\Q—(T'-) — [0, €) be the function given by f(p) = dist(p, '-).

The choice of ¢, ensures this function is Lipschitz and |V f| = 1. Thus, invoking the
coarea formula again,

% x|2 x|2
I/ Sarrdp= [ V71 aemt < Mo
% =By, {#<r<dravnsg,

Hence,

!/ 2
O inf / T At <ML
4 20 cp<p HH{f=p}NQuNBr,
As such there is an €] € (Fe(, 3€() so that
o, 8
8.5) " anr < S M.
{#=c1}nQunByr, €o

As

w2 2
E[U N 0Wg, ] < / ¢ ann 4 / ¢ ayn
0Br; Ny {f:e’l}mmmBR,l

the claim follows by combining (8.4)-(8.5) and choosing d; = R%) + % O

e
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Lemma 8.6. There is a constant vy = o(Rp, €y) > 0 so that if U € C(T'_,T'}) is such

that 0*U is E-stationary in Bogy \T1 (I'-) and U N Wy o # 0, then

w. nNo*U
2R def

Proof: U N Wgy o # (), then there is a point p € WRe,e;, N O*U. Clearly, if 1o =
min {R}, 3€4} > 0, then 0*U is E-stationary in B, (p). As By,(p) C By, one has
that |[Hp+y| < R{. By the monotonicity formula [40, Section 17], there is a constant
0 = Y0(R{,70) > 0, which in turn depends on Rj, and €, so that

EWar, ye, 10°U) > E[Bry () N0°U] = H"(By, (p) 10°U) > 70
proving the claim. U

Proposition 8.7. There is an mo = mo(d1,70) > 0 so that if U € C(T'_,T'y) is such that
0 < M[U] < my, then E,.;[0*U,T_] > 0.

Proof. Given such U and R}, and ¢, from Lemma 8.4, choose R and ¢} as in Lemma 8.5
and let

C(Fferr; U, WR'I,ell) = {W € C(F77F+)Z WAU C WR/I’E/I} .
By standard compactness results for sets of finite perimeter, there is an element U’ €
C(P',T4;U,Wgy o) so that, forall W € C(T'_,I'; U, Wry ),

E[0*U’ ﬁm} < E[0"W ﬁm}
Clearly, one has
Epq[0*U,T_| > E.q[0*U',T_].
We now treat two situations. If U’ N WR{)@B = (), then Lemma 8.4 implies that
E,a[0*U,T_] > E,q[0*U',T_] >0

and the inequality is strict as otherwise, up to zero-measure sets, U = U’ = Q_(T_)
which contradicts M[U] > 0.
The other situation is U’ N Wry e, # (. In this case, we first observe that *U’ is

E-stationary in Bag;\T1 (I'-). Indeed, this is true by construction in Wyg, 1., The

only other points of 9*U" in Byg; \T1¢, (') are those that lie in 'y N By, . However, if
this occurs, then the maximum principle (see Solomon-White [42]) implies that
9"U' N (Bary \Wapy 1) € I' N Bagy,
and so 9*U’ is automatically E-stationary at any such point. Next, by Lemma 8.6,
E[B*U’ N WR/I’E/I] > E[&*U’ N W2R(’),%e(’)] > v > 0.

Now let U" = U\Wg; . Clearly, U" € C(I'-, 'y ) satisfies U" N Wr, o« = () and so,
by Lemma 8.4,
FEre [3*UH, r_]>o.
Finally, as
* " * !
o*U" C (8 U \WR’I,E’I) U (U n aWR’l,e’l)
one has

Epq0*U",T_| < E.q[0*U',T_] - E[0*U'N WR/175/1] +E[UN 0WR/11€/1]
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Hence, by Lemmas 8.5 and 8.6,
E,[0*U",T_] < E[0*U',T_] + 51 M[U] — 7.
Picking my < 07 Lo gives
0< Eq[0*U",T_] < Epq[0*U", T_] < Epq[0*U,T_].
This proves the claim. O
Corollary 8.8. If0 < m < my, then E,,, > 0.

Proof. For m € (0,my), let U], € C(T'_,T';;m) be the element given by Lemma 8.3.
Thus, by Proposition 8.7, one has E,,, = E,.¢;[0*U},,, T -] > 0 proving the claim. O

We can now complete the proof of the main result of this section.

Proof of Proposition 8.1. We treat two cases. The firstis E,¢;/[[';,I'_] < 0. As such, we
are trying to show

max Erel[ET,F,] >8>0
7€[0,1]

for some 6y = §p(I'—,T'}). By definition of sweepouts and Lemma 8.2, the map 7 —
M[Z[U,]] is a continuous map from [0, 1] to [0, M[y] and the value at 7 = 0 is 0 while the
value at 7 = 1 is M. Moreover, for all 7 € [0, 1],

Erel [8*%[[]7], F—] < Erel [27—, F—]-

As such, there is a 7. € (0,1) with M[Z[U,,]] = % = m, where myg is given by

Proposition 8.7. It then follows from Corollary 8.8 that

m[%)i] Erel [2771—‘—] > ETel [27*71—‘—] > ETel [a*%[UT*]a F—] > Em* > 0.
T€|0,

As FE,,, depends only on I'_ and I' ., we prove the claim by setting §p = E,
The second is Ey¢[I',T'—] > 0. As such, we need to show

m[ax] Erel [E'n F—] > Erel [F+, F—] + 50 > 60-
r€0,1

e

Reversing orientation (which swaps I'_ with I' ), by what we have shown

max Epe[2:,T4] > do.

T€[0,1]
Thus, as
E.. 277 I ]=E.l' ’ r- E.. 27’; r
max l ] (I, T+ max P2
the claim follows immediately. (]

9. EXISTENCE OF SWEEPOUTS AND PROOF OF THE RESULTS

In this section we complete the proof of Theorem 1.1 and Corollaries 1.2 and 1.4. This
will mostly require us to show the existence of at least one sweepout of €2. In order to do
this, we adapt arguments of [14, Lemma 12.1] and [33] to prove the existence of sweepouts.

Proposition 9.1. There exists a sweepout of .

Proof. We will construct a suitable Morse function on €2, the closure of the open region
between I'_ and I', and use it to obtain the desired sweepout. First, by our hypotheses on
I'_ and I'y, there is a radius R = R(I',T"y) > 1 and a foliation {=s} ., ;) of Q\ Br
so that

(1) Z=T_-NO)\BrandZ; = (T4 NQ) \ Br;
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(2) Each E; is given by a smooth graph over I'_ outside a compact set;
(3) Forevery s, sup,c=_ |x(p)||Az, (p)| < K for some K = K(I'_,T';).

Using this foliation one can define fo: Q \ Br — [0, 1] by

folp) = sifp € Es.

Clearly, f;*(0) = (T_NQ)\ Br, f; *(1) = (T+NQ)\ Br and f, has no critical points.
Next let e = ¢(T'_,T'1) > 0 be sufficiently small so that the distance to 'y, dist(-,T'+)
on T5.(I'+) are smooth functions without critical points. Shrinking e if needed, we may
assume T (I'_) and T3 (") are disjoint in Q N Bog. Set Wi = T2(I'_) N QN Byr and
define f;: W7 — R by
fi(p) = dist(p,T').

Likewise, set Wo = To.(I'y ) N QN By and define fo: Wy — R by
f2(p) =1 —dist(p,I'4).

Thus, 0 < f; < 1 with f7*(0) = T_NQN Byg,and 0 < fo < 1 with f; (1) =
F+ ﬂﬁ N BQ'R. Let W3 = (Q N BQR) \ (7;(].1,) U 7;(F+)) and fg: W3 — R be the
constant-1 function.

Set Wy = R™! \ Bg and the family {W;},.,., forms an open cover of Q. Let
{pi}o< ;<5 be a partition of unity subordinate to this cover. Now define f:  — R by

fo) =Y @) fip)-

0<i<3

By definition fHo)y=r_nQ, f! (1) =T NQ and f has no critical points in Q\ Bar
or W1 U Ws. Indeed, only ¢ # 0in Q \ Bog and 50 f = fo, as remarked before, has no
critical points. One readily computes, atp € I'_ N QN Bag,

Var f(0)= Y Var @i i)+ Y #i(p)Var_ filp)-

0<i<3 0<i<3

First observe that the first sum vanishes. By construction p2(p) = ¢3(p) = 0 and
Vi fi(p) > 0fori € {0,1}. Thus the second sum is positive and so V. f(p) > 0.

Hence, by further shrinking ¢ if necessary, it follows that f has no critical points in Wj.
Similar arguments show the same for f in W5. This proves the claim.

To make f Morse, we need to modify f in W3. As the set of Morse functions is an open
dense subset of C? functions, for sufficiently small § > 0 (which will be chosen later)
there is a Morse function g on W = (2N Byg) \ (T3 (T-) U T (T'4)) with

lg = flle= <o

Let ¢: Q — [0, 1] be a cutoff function so that ¢ = 11in W3 and ¢ = 0 outside By and in
<-tubular neighborhood of I';.. Define h: 2 — R by

2
h(p) = ¢(p)g(p) + (1 — &(p)) f(p).

Clearly, h~1(0) = T_ N Q and h~(1) = Ty N Q. By what we have shown, h has no
degenerate critical points in the region where ¢ = 0 or ¢ = 1. In the intermediate region,
i.e.,, 0 < ¢ < 1, applying the chain rule gives

Dh = Df + Dé¢(g— f)+ ¢D(g — f).
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As f has no critical points outside Bog or in e-tubular neighborhood of I'y, one has
|Df| > n > 0 in the region where 0 < ¢ < 1. Thus, by the triangle inequality,

|Dh| = [Df| = |Déllg — f| = |D(g — )| =2n—Cllg = fllecz =2n—Cd
where C' > 0 depends only on ¢ (which in turn depends only on €). Hence, choosing
§ < n/C, it follows that |[Dh| > 0 in the region where 0 < ¢ < 1. Therefore we have
shown h is a Morse function.

Finally, for 7 € [0,1], let U, = {h <7} UQ_(I'_) and ¥, = 9*U,. We show that
{(Ur,E7)} 0,1 is a sweepout of Q. By construction, except for the first and third all
other properties in Definition 7.1 are satisfied. To show the rest, as X- \ Byg = Z; \ Bagr,
invoking Items (2) and (3), it follows from Proposition 2.4 that, for all R > R, > 4R,

Eral2,, T ;R\ Bp] < K;R™?

where K and Ry dependon I'_,T', , R and K. Thus it follows that the map 7 — X is
continuous in the weak-* topology of 9)* (') and E,;[X,,T'_] < oo for every 7 € [0, 1].
This proves the claim and completes the proof. (I

We now prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 9.1, there is a sweepout of Q. Let X be the homo-
topically closed set of families in {2’ generated by this sweepout. As any element of X is a
sweepout of €2, invoking Proposition 8.1 gives

bM,e)(X) = max {E,;[['+,T_],0} < my.e(X).

Hence, appealing to Theorem 7.5, one obtains a C2-asymptotically conical (possibly sin-
gular) self-expander T'y with C(T'g) = C and T~ =< Ty < T'; and that has codimension-7
singular set and E,.;[To,T'~] = my¢;(X), in particular, I'g # T'y.. O

We now use Theorem 1.1 to prove Corollaries 1.2 and 1.4.

Proof of Corollary 1.2. Let I'} be the self-expander produced by applying Theorem 1.1 to
Ty. If T3 N Q # 0, then we are done with 'y = I'y. Otherwise, I} is the union of some
components of I'_ and I';.. Thus, ' is a strictly stable C2-asymptotically conical self-
expander with C(I'}) = Cand ' < T’} < I';.. As common components of I'_ and 'y are
also components of 'y and T’y # 'y, T'_ shares strictly more common components with
'} than T'y. Apply Theorem 1.1 to I'_ and '} and iterate the previous arguments. After
iterating [ times, we end up with two situations. The first situation is that T, N2 # (). Thus
we stop and set 'y = I'. The second is that except one component of I' _ all others are also
components of I'}. Again, applying Theorem 1.1 to ' _ and '}, gives a C%-asymptotically
conical self-expander I'g with C(I'g) =CandsoI'_ < Ty < T} < T, and

ToNQ 2 TN (Q_(rg) \Q_(F_)) £ 0.

This proves the first claim.

To see the second claim, we now assume C is generic. Take any sequence of stable self-
expanders, ¥, that are C2-asymptotic to C. By [5, Proposition 3.3] and the Azela-Ascoli
theorem and standard elliptic regularity [20, Theorems 6.17 and 8.24], there is an R =
R(C) > 1 so that, up to passing to a subsequence, ¥; \ Bp converges — with multiplicity
one —in C° (R"+1\ Bg) to a smooth self-expander >’ in R" 1\ B, that is C2-asymptotic
to C. By [5, Lemma 3.6], the areas of the 33; N B, g are uniformly bounded by a constant
depending only on C. As the ¥; N Byp are stable, the Schoen-Simon compactness [39]
implies that, up to passing to a further subsequence, the ¥, N Byg converge in Cys.(Bag)
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to a smooth self-expander X" in Byr — here the convergence may, in principle, be with
multiplicity greater than one. However, ¥ = ¥ in B3 \ Bog and so ¥ = ¥/ U ¥
is a smooth self-expander asymptotic to C. By the construction, the fact that ¥ has no
closed components and the constancy theorem, ¥; — ¥ in C;2, (R™™!) with multiplicity
one. This implies that the set of stable self-expanders C?-asymptotic to C has finitely many
diffeomorphism types and, by [4, Theorem 1.1] and the fact that C is generic, it is indeed a
finite set consisting of strictly stable elements. Hence one can apply Theorem 1.1 with the
first claim finitely many times and obtain an unstable self-expander trapped between I'_

and I'y. (]

Proof of Corollary 1.4. Let Cy be a generic C'3-regular cone that is very close to a rotation-
ally symmetric double cone with sufficiently large apertures. If C is a cone C3-close to Co,
then the results of [4] ensure that C is generic as well. And the link of C has exactly two con-
nected components £1 and £ so that, for each ¢ € {1, 2}, the cone C; over £; is an entire
uniformly Lipschitz graph over some hyperplane in R"*1. Thus, by the dilation invariance
of cones and the work of Ecker-Huisken [17] on the existence and uniqueness of mean cur-
vature flow of entire graphs, for each i € {1,2} there is a unique smooth self-expander 3},
that is an entire graph asymptotic to C;. Thus, X = 3} U %2 is the unique disconnected
smooth self-expander asymptotic to C. In particular, X is strictly stable. Using an ap-
propriate rotationally symmetric self-expander as a barrier and a minimizing argument for
the expander functional (which is sketched by Ilmanen [24] and carried out by Ding [16]),
one obtains a connected strictly stable self-expander 31 asymptotic to C — See [6, Lemma
8.2] for details. By the strong maximum principle we may assume X, =< ;. Hence, by
the uniqueness of disconnected self-expanders asymptotic to C, Theorem 1.1 implies that
there is a third connected smooth self-expander ¥ asymptotic to C and 3y = ¥ < ¥;. This
completes the proof. [

APPENDIX A. ESTIMATES ON THE FLOW OF VECTOR FIELDS

We collect here various estimates and properties of the vector fields and associated flows
used in Section 5. Throughout this appendix, let Y = aYo+Y; € Y~ () and {®(?)},5,

be the vector field and the family of diffeomorphisms in €/, respectively. As in Proposition
5.1, assume
Y1y = lal + Y1y < Mo.

For convenience, we define the following Banach space

C3(Y) = {f € Chbe): I fllcy < oo}
with the weighted norm

[flleg = 21615(1 +x()) S ).

First is an estimate on the asymptotic properties of the vector field Y.

Lemma A.l. There is a constant Cy = C’O(Q’, I'_, My) > 0 so that

3
1Y —axlx| ?xflco, + > V'Y lleo, < Co.
1=1
Proof. Write
Y — ax|x|7%x = Y; — ax|x|"?(x - N)N.
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The hypotheses on Y; and Lemma 2.3 ensure that there is a constant C’é = 6’6 (Q,T_, My) >
1 so that
—2 !
1Y — ax|x|x|[co, < C.
Next, we compute, on ' \ Br, 11,

ViYO = |X‘_2 (ei - 2XiY0) + ‘X|_2Pi,

V,;ViYo = x|V YoV, x| 72 + x| 72V, (e; — 2x;Y0) + |x| ?V,P;

= —2|x|72(6:;; Y0 +x; VYo +x:V;Y0) + |x| 2V, P,

and

ViV;V: Yy = —2|x\_2 (xxV,;ViYo+x;,V;Vi Yo + %,V VYY)
—21%|72(6:;VEYo + 65 ViYo + 61V, Yo) + [x| 2V, V,P;

where e; is the ¢-th coordinate vector, x; = X - e;, and
P,=—(e; - N)N— (x-V;N)N — (x-N)V;N.

It is readily checked that there is a constant C' = C(Q)',T'_) > 0 so that, for all i,

2
D IVPilleo < C.

1=0
Thus, inductively, it follows that there is a constant C’ = C" (€', T"_) > 0 so that

3
Y IV Yoo, < C,

=1

and this together with the hypotheses on Y implies the desired estimates on V'Y for
1<1<3. O

Lemma A.2. There is a constant Cy = C'l(Q’, T'_, My, T) > 0sothat, forall0 <t < T,
@6 = x> = 2at[co, + [VE(E) = Tugallco, + Y V' @(#)]co, < Ch

1=2,3

where L, 11 is the (n + 1) x (n + 1) identity matrix.
Proof. As %@(t,p) =Y (®(t,p)) and ®(0,p) = p, it follows that
(A1) %I@(t,p)ﬁ =20(t,p) - Y(2(t,p)) and [(0, p)|* = [x(p)[*
By the triangle inequality and Lemma A.1,

- Y —al < [x (Y = ax|x|7?%)| + [a(1 - x)|

< (Co+ Mo+ Ra)?) (14 [x) 2.
Thus, integrating (A.1) gives that, for all (¢,p) € [0, 7] x €,
(1P > [x(p)[> = 2 (Co + Mo (1+ 2+ R)?) ) T

and so there is a constant C' = C'(Q',T'_, My, T) > 1 so that
(A2) CA+[e(p)]) = (1 + [x(@))-
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Thus one readily computes, for (¢,p) € [0,7] x €,

¢
0
1@ (t,p)|* — |x(p)|* — 2at| < / §|<I>(T,p)\2 —2aldr
0

:2/0 XY — a|(®(r,p)) dr
<2(Co+ Mo(2+ R1)?) /ot(l + (7, p)) " dr

<2(Co+ Mo+ Ra)?) TC2(1 + Ix(p))) 2.

Hence, as long as C; > 2(Cy + My(2 + R1)?)TC?,
12(0) — [xI? — 2atlcs, < Cu.

Similarly, differentiating the equation for ® up to three times gives that

d
—Vi®=(VYo0®) V,;d,
prd (VY 0 ®)-V

%Vjviq)(t,p) = (VY 0®)-V;V;®+ (VY 0 ®)(V;®,V,d),

and

kavjvi@ =(VY 0 ®) - V,V,V;® + (VY 0 ®)(V, 0, V,; VD)

ot
+ (V2Y 0 ®)(V;®,VV,;®) + (VZY 0 ®)(V; D,V V)
+ (VY 0 @)(V;®,V;0,V;®).
Observe that by our hypotheses on Y and the standard ODE theory
sup [|(t)[cs < '
0<t<T
where C' = C'(Q,T_,T) > 0. Hence, as V®(0,p) = I,41 and V!®(0,p) = O for

[ = 2, 3, integrating the above equations and appealing to Lemma A.1 and (A.2), gives the
desired estimates for the covariant derivatives of ®(¢). O

Corollary A.3. There is a constant Co = C'Q(Q', I'_, My, T) > 0 so that, for any 0 <
a,t <T,

12D P X)) — o3 (1B(ap)P—Ix(p)) (1 n %(t —a)(x-Y)o @(a,p))

+ (t - a)QQO(av tap) € Q‘J(W)
where Qo(a,t) = Qo(a, t,-) satisfies

1 1 5 ala —a
HQo<a,t>4a2/0 a0 (1 _ ) dp

+[IVQo(a,t)|lco, < Ca.
co,

Proof. Tt is convenient to set

F(t,p) = eF(2EDIP <))

By the Taylor expansion and the chain rule,

) = fla) (14 5= a)lx- Y) 00(a,p)) + (¢~ 0 Qula )
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where

1 1
Qo(atip) = [ hla+ (= a)pp)flat (t= o)1= ) dp
0
and
h(t,p) = ((x-Y)* +2[Y[* +2x - VyY) o ®(t,p).
By Lemma A.1 there is a constant K = K (', I'_, Myp) > 0 so that
1+ Y)? = 0o, + IV(x- Y)?[lco, + I[YPllco, + IVIYP[lco,
+lx-VyYlco, +[V(x-VyY)|co, < K.
Together with estimates on ®(¢, p), Lemma A.2, and the chain rule, it follows that
sup_(IIA(t,) = allco, + VAL o, ) < C
0<t<T

where C' = C(QV,T'_, My, T) > 0. Likewise, one uses Lemmas A.1 and A.2 to obtain the
estimates for f:

sup (1) = 5 lca, + 190 Men, ) < €
0<t<T

where ¢’ = C'(QV,T_, My, T) > 0. Hence, the desired estimate for Qg follows from
combining these estimates. In particular, for all 0 < a,t < T, Qo(a,t) € (). Again,
appealing to Lemma A.1 gives x- Y € (V). Thus, fixing a = 0, it follows that f(¢,-) €
2)(Q) for all 0 < t < T, completing the proof. d

Corollary A.4. There is a constant C3 = C5(¥,T_, My, T) > 0 so that, for any 0 <
a,t <T,

JO(t,p,v) = JP(a,p,v) + (t — a)%J@(a,p,v) + (t— a)QQl(cut,p, V)

where JO(t,-,-), %J@(t, ) € V(YY) satisfy J®(0,p,v) = 1 and
0 . .
EJCP(O,;D, v)=divY(p) — Qvy(p,v) =divY(p) — VY (p) - v,
and Q1(a,t) = Q1(a,t, -, ) satisfies, for any R > 0,
”Ql(aﬂt)”x(W\BR) = é5(R + 1)_2,
50 Q1(a,t) € P(V).

Proof. By the Taylor expansion,
(A3) JO(t,p,v)=JP(a,p,v)+ (t — a)%(]fl)(a,p, V) + (t —a)*Q1(a,t,p,V)
where
1 62
Qi(a,t,p,v) = / i lat (t —a)p,p,v)(1 - p)dp.
0

For v € S™, choose an orthonormal basis T, = {7;: 1 <1 < n} for T, S™. Notice that,
for any vy € S™ fixed, one may choose T, so it smoothly depends on v in a neighborhood
of vq. Define b(¢, p, Ty) = (b;;) to be a matrix-valued function given by

bij = V., ®-V,, .

JO(t,p,v) = v/det(b(t,p, Ty))

Then
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of which the right side is independent of the choice of orthonormal basis for 7, S™. By
Jacobi’s formula

0 _1 db
(A4 &JQ = (JCI)) tr (adj( )615)
Appealing to the equation for ® gives
(A.5) %bi]‘ =((VY0®) -V, @)V, &+ (VY 0®) V. ®) -V,

As ®(0,p) = pand V®(0,p) = I,,11, one has
J®(0,p,v) =1and %@(O,p, v) =divY(p) — Qvy(p,v).

Moreover, by Lemmas A.1 and A.2, there is a constant C = C(Q',T'_, My, T) > 0 so that

[(J®)"(t, - )= + [ladi(b(t, -, ) |lc2 < C
and, for all R > 0,
Hab(ta *y ) = ¢ .
ot x@\py fH1

This together with the algebra property of X implies %J O(t,-,-) € D).
Next we estimate ). Differentiating (A.4) gives
82

1,y (9 ob &b
@Jq) —§(J<I>) tr <8tadJ( )at +adj(b)at2)

- )2 (o (s >%'j))

Differentiating (A.5) and appealing to the equation of ® give

82
50 = (VYo ®)(Yod,V,®) V. &+ (VY0d) (Yo, V, D) V, &

+ (VY 0®)- (VY 0®) -V, @) -V, 2+ ((VY0®) (VY 0®) -V, ) -V, O
+2((VY 0 @) -V, 8) - (VY 0 ) - V.., D).

Invoking Lemmas A.1 and A.2 again, there is a constant C' = C'(Q',T'_, My, T) > C so
that, for any R > 0,
Cl

82

ot2 b(t7 Y )

(R+1)H

’ adj(b(t,-,-))

X(Q'\Br)

Combining this with the previous estimates on (J®)~*', adj(b) and 2 a ¢ it follows from
the algebra property of X that
82 ’ 7 -2
J® c(n)(C'"+1D)(R+1)

9 lx@\Ba)

Hence, the claimed estimate for Q; follows by choosing Cs > ¢(n)(C’+1)". In particular,

Q1(a,t) € D).
Finally, by Lemma A.1 one has divY — Qvy € 9(). As, fixing a = 0, (A.3) gives

Jq)(tap7 V) =1+t (leY(p) - QVY( 7V)) =+ t2Q1(Oa t,p, V)a
by what we have shown J®(t, -, -) is an element of 2)(Q’). This completes the proof. [
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Lemma A.5. Let ®: ) — Q be a local diffeomorphism which satisfies, for some constant
Mg > 0,

[@]lc> + [[19f* = [x[*lco < Mo < oo
There is a constant Cy = Cy(n, My) > 0 so that if 1 is an element of ('), then so is
<I>#1/) and, moreover,

[9% ¢l < Cullvlly.

Proof. By definition ¢ = c1 + vy where ¢ € R and 1y € 2o(’). Fix any ¢ > 0 and
there is a pair (£,¢) € 20(Q) x X(') so that ¢y = £ + ¢ and

1€l + IClx < llbolly + €.
x(p)| < My"* +|®(p)| and so

s 1+ |x(p)| < 4(1+M3/2).

One readily checks that

()12 1+ [x(p) \"* 1 2o ()2
1+ Ix(p)) " e =25 |0 (. v)| < ( A P12 | ¢

n ~12n
§4+1(1+M0/)

MO

1€l aw-
Thus, choosing Ko = 4" (1 + Mé/z)”ﬂem}/‘l, one has
[®%¢|ay < Kol|¢|av-

Next, by the chain rule and the fact that {’ is quasi-convex,

127 CNzip + [ Vsn (27 )| 2ip < c(n) (L + Mo)?[I¢ ]l

Furthermore, one evaluates that

(1+ %)) [Ver (950 (0. v) < (14 [x(2) I VonC|(2(0), Vo @ (1)) V| ()
1+ x(p)] v 172\ 1
< T agyICleito < 4 (14 317%) Wt

Thus, by choosing K1 = ¢(n)(1 + My)? + 4(1 + MI/Q)M +1 > 1, one has
197 ¢]|x < K[|l

Hence, combining these estimates gives that, for CN'Z’1 = max { Ky, K1},

[ 2% 4oy < 197 ¢law + 27 Cllx < Ch(l€llaw + II¢Ilx) < Chlllvolly +€)
Sending € — 0, it follows that

1% 40lly < Cillolly-

As g € Do ('), Item (6) of Proposition 4.1 ensures there is a sequence ¥; € C° (€Y x
S™) that converges in the 2) norm to v, the hypotheses on ® ensure that each ®#1); has
compact support, and by what we have shown these elements converge in the ) norm to
O#hg. As such, @7y € (). Clearly, ®#1 = 1 and so ®#tp = cl + d# 1)y €
92)(Q). Finally, appealing to Item (4) of Proposition 4.1 gives

1279y = lle1 + @F4olly < || + Cillvolly < 4CHI¥lly.
This completes the proof with Cy = 46’4’1. O
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