CLOSED HYPERSURFACES OF LOW ENTROPY IN R* ARE ISOTOPICALLY
TRIVIAL

JACOB BERNSTEIN AND LU WANG

ABSTRACT. We show that any closed connected hypersurface in R* with entropy less than
or equal to that of the round cylinder is smoothly isotopic to the standard three-sphere.

1. INTRODUCTION

If X is a hypersurface, that is, a smooth properly embedded codimension-one submani-
fold of R™*!, then its Gaussian surface area is

(1.1) F[E]:/<I>d’}—l"=(47r)’%/e’¥d%”,
2 b

where H" is n-dimensional Hausdorff measure. Following Colding—Minicozzi [19], define
the entropy of 3 to be
(1.2) AMX]=  sup F[pX+y].

yER™HL,p>0
Throughout the paper, let S” be the standard n-sphere in R?*! and S"~! x R the round
cylinder in R™*1, The main result of the paper is the following.

Theorem 1.1. If ¥ C R* is a closed (i.e., compact without boundary) connected hyper-
surface with \[X] < \[S? x R], then X is smoothly isotopic to S3.

Remark 1.2. Theorem 1.1 was announced in [9]. While we were finishing the writing of
this paper, we learned about work of Chodosh-Choi-Mantoulidis-Schulze [16] on generic
mean curvature flow which provides an alternative approach to Theorem 1.1.

Entropy is a natural geometric quantity that measures complexity and is invariant under
rigid motion and dilations. It is known that A[R™] = 1 and, by a computation of Stone [36],

(13) 2>>\[Sl]>§>A[SQ]>...>)\[S"]>...—>\/§.

In [3], we proved a conjecture of Colding-Ilmanen-Minicozzi-White [18, Conjecture 0.9]
(cf. [31,43]) that, for 2 < n < 6, the entropy of a closed hypersurface in R" 1 is uniquely
(modulo translations and dilations) minimized by S™. We further showed, in [4, Corollary
1.3] and [5, Theorem 1.1], that, for n = 2 or 3, any closed connected hypersurface > C
R with A[X] < A[S"~! x R] is diffeomorphic to S™. By Alexander’s theorem [1], any
surface in R3 that is topologically a two-sphere is isotopic to S2. The analogous question
for a three-sphere in R* — known as the Schoenflies problem — is a major open problem;
see [33,34] for partial results in which this conjecture is proved for hypersurfaces whose
embeddings are “simple” in certain topological senses. Theorem 1.1 may be thought of as
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an affirmative answer to the Schoenflies problem for hypersurfaces that are “simple” in a
geometric sense, namely, for those that have low entropy.

In [5], we also studied the topology of low entropy closed hypersurfaces in higher di-
mensions. In particular, strong evidence was provided that, for n > 4, any closed con-
nected hypersurface ¥ C R with A\[¥] < A[S"~! x R] is a homology S™. However,
this result is necessarily conditional as it requires a better understanding than current exis-
tence of low entropy minimal cones and low entropy self-shrinkers in higher dimensions.
Using the more detailed analysis of this paper we are able to improve the conclusions of
this conditional result to their sharpest possible form.

In order to state the conditional result, first let S,, be the set of self-shrinkers in R?*1,
thatis ¥ € S,, if and only if ¥ is a hypersurface in R"*! satisfying

x L
where x is the position vector, the superscript L denotes the projection to the unit normal
ny of ¥, and Hy = —Hyny = —(divgny)ny is the mean curvature vector. Let S be

the set of non-flat elements of S,, — these are precisely the models of how singularities of
mean curvature flow form. For any A > 0, let

Sp(A) = {2 € 8,: A[Z] < A} and S¥(A) = S* NS, (A).

Next, let RMC,, denote the space of regular minimal cones in R™*! thatis C € RMC,
if and only if it is a proper subset of R™*1 and C\ {0} is a hypersurface in R" ™1\ {0} that
is invariant under dilations about 0 and with vanishing mean curvature. Let RMC;, denote
the set of non-flat elements of RMC,, — i.e., cones whose second fundamental forms do
not identically vanish. For any A > 0, let

RMC,(A) ={C € RMC,, : \[C] < A} and RMC;,(A) = RMC; N RMC,,(A).
Let us now fix a dimension n > 3 and a value A > 1. The first hypothesis is
(*n.A) Forall 3 < k <mn, RMC(A) = 0.
Observe that all regular minimal cones in R? consist of unions of rays and so RMC; = 0.
As great circles are the only geodesics in S?, RMC; = (). The second hypothesis is
(*kn,A) St (A =0.

Obviously this holds only if A < A[S*~!]. Denote by \,, = A[S"]. We then show the
following conditional result in general dimensions.

Theorem 1.3. Fixn > 3 and A € (A, \y—1]. If Gen,a) and (xxy, p) both hold and X is a
closed connected hypersurface in R" "1 with \[3J] < A, then ¥ is smoothly isotopic to S™.

Remark 1.4. By the results of [3] and [43], there does not exist a closed hypersurface >
so that A[X] < A, unless X is a round sphere. Thus, we require A > \,, in order to make
Theorem 1.3 non-trivial.

Remark 1.5. When n = 3, Marques-Neves’ proof of the Willmore conjecture [32, Theo-
rem B] and our earlier result [4, Corollary 1.2] ensure that (x3 »,) and (%3 »,) hold. Thus,
Theorem 1.1 is a corollary of Theorem 1.3.

As in our previous work [3—5], the tool we use is the mean curvature flow. Specifically,
we use a weak formulation of mean curvature flow, called matching motion (see [27], [38]
and [42]). What is new in the current paper is that we now use a careful analysis of low
entropy self-expanders of mean curvature flow carried out in [9] — which in turn builds on
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work done in [6-8, 10, 11] — in order to understand how certain singularities of the flow
resolve. In previous work, we considered only properties of low entropy self-shrinkers —
i.e., we analyzed only how singularities formed.

Recall that a mean curvature flow is a one-parameter family of hypersurfaces ¥; C
R"™*! that satisfies

ox\ "

1.5 — | =Hsy,.
" ()
A self-expander is a hypersurface I' C R"*! satisfying

L

For a self-expander I the family {v/¢T'},_ is an immortal solution to the mean curva-
ture flow while for a self-shrinker ¥, i.e., a solution to (1.4), the family {\/ftZ}KO is
an ancient solution. A fundamental property of mean curvature flow is that the flow start-
ing from any closed initial hypersurface develops a singularity in finite time and that for
such initial hypersurface with entropy less than 2, if the flow does not disappear at this
singularity, then it can always be continued as a weak flow — see [27] and [38].

Important for our applications is that, by Huisken’s monotonicity formula [26], the en-
tropy is monotone non-increasing under mean curvature flow and that singularities of the
flow are modeled on self-shrinkers — see also [28]. As shown in [5], under the hypothe-
ses of Theorem 1.1, the flow starting from a closed connected hypersurface in R* with
small entropy will develop only asymptotically conical singularities or closed singularities
before its extinction time and eventually shrinks to a round point — a similar fact is true
conditionally and so applies to Theorem 1.3. In fact we will show in Proposition 6.1 that
the only closed singularity occurs at the extinction time'.

By our previous work [10], see also [2] and [20], self-expanders model the behavior of
a flow when it emerges from a conical singularity. While Huisken’s monotonicity formula
implies the tangent flow is backwardly self-similar, there is currently no known reason for
the forward in time behavior of the tangent flow to be that of a self-expander. Instead, we
use a forward monotonicity formula from [10] and take a second blowup to obtain a self-
expanding flow. This is the source of certain technical difficulties because singularities
may accumulate into the past. To handle this, we use a bubble-tree blowup argument
familiar from other areas of geometric analysis. Specifically, we combine such a blowup
argument with [9] to show the flow passing through asymptotically conical singularities is
smooth away from a negligible set of times and, moreover, stays within the same isotopy
class whenever it is smooth — i.e., the isotopy class does not change as one crosses any
intermediate singular time. The theorem then follows from this easily.
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will not be disconnected so the only closed singularity occurs at the extinction time.
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2. PRELIMINARIES

In this section, we fix notation for the rest of the paper and recall some background on
mean curvature flow. Experts should feel free to consult this section only as needed.

2.1. Basic notions. Here is a list of notation that we use throughout the paper.
B (p) the open ball in R” centered at p with radius R;
B} (p) the closed ball in R™ centered at p with radius R;

U the closure of a set U;

ou the topological boundary of a set U;

Vs the covariant derivative on a Riemannian manifold XZ;

C aregular cone in R"*1 i.e., C \ {0} is a hypersurface in R"! \ {0} that

is invariant under dilations about 0.
We will omit the superscript, n, the dimension of a ball when it is clear from the context.
We will also omit the center of a ball when it is the origin. We will omit the subscript, 3,
in the covariant derivative when it is clear from the context.

2.2. Weak mean curvature flow. In [13], Brakke introduced a measure-theoretic weak
notion of mean curvature flow, called Brakke flow. We will use the (slightly stronger)
notion introduced by Ilmanen [27, Definition 6.3], that is a family of Radon measures in
R"*! satisfying a certain variational inequality.

For a Brakke flow KC = {;}, a point (xg,%p) € R"" x Rand p > 0, let

JC(o5t0),p — {ngo,to)’P}

t0),p - .
where each ugx“ ©)# is a Radon measure on R+ given by

uixo’to)’p(U) = p" "ty p2¢(pU + Xo) for any measurable set U.

It is readily checked that KC(X0:%0)-* is also a Brakke flow. Combining the monotonicity
formula [26] and compactness result [13] (see also [27]), [Imanen showed the following.

Proposition 2.1 ( [28, Lemma 8]). Given an integral Brakke flow K = {j1:},. (t1,t2) With
bounded area ratios, a point (xg,to) € spt(K) with ty > t1, and a sequence p; — 0, there
is a subsequence p;; and an integral Brakke flow T = {v;},y so that JoGRosto)pis s T g
Brakke flows and, moreover, T is backwardly self-similar with respect to parabolic scaling
about (0,0) € Rt x R, that is, Vt(O,O),p =y forallt < 0and p > 0, and the associated
varifold V,,_, is the critical point of the Gaussian surface area F.

Such T is called a tangent flow to K at (xo,to). We denote the set of all these tangent
flows by Tanx, +,)K.

A feature of Brakke flows is that they may suddenly vanish. To overcome this, Ilmanen
[27] introduced a notion called matching motion, (I, ) where K is an integral Brakke
flow and 7 is an (n + 1)-current, and used it to synthesize the Brakke flow and the level set
flow (see [15] and [22-25]) as long as the latter does not fatten. As the current 7 will not
be used in the proof, we will omit it. Of particular importance is a compactness theorem,
shown by S. Wang [38, Theorem 3.5], for matching motions with entropy less than 2.

We collect some useful facts from our previous work [5,7]. The first is several com-
pactness results. A hypersurface ¥ is asymptotically conical if lim,_,o+ p¥ = C in
Cro (R™T1\{0}) where C is aregular cone in R" 1. When this occurs denote by C = C(X)

the asymptotic cone of 3 and by £(X) = C(X) N'S™ the link of C(X). Let ACH,, be the
set of all asymptotically conical hypersurfaces in R"*1.
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Proposition 2.2. Fixn > 3and A € (A, \,—1] and assume that (x,, p) and (ky, ) hold.
For any ¢y € (0, A), the following is true:
(1) The set ACS,[A — €] = {X € ACH,,: X is a self-shrinker with A\[Z] < A — ¢}
is compact in C{2 (R™T1);
(2) The set L,[A —¢eg) = {L(X): X € ACS,[A — €]} is compact in O (S™);
(3) The set E,[A — €] = {3 € ACH,,: T is a self-expander with A\[X] < A — eg} is
compact in C{2 (R™ 1)

Proof. The first and second claim are, respectively, Corollary 3.4 and Proposition 3.5 of
[5]. The last is Theorem 1.1 of [7]. O

The next proposition summarizes some properties about tangent flows of low entropy.

Proposition 2.3. Fixn > 3and A € (A, \,—1] and assume that (x,, p) and (xkp, ) hold.
If T = {vi}ycp is a matching motion in R" 1 such that v_y = H"|X for & € S, (A),
then the following is true:

(1) X is either smoothly isotopic to S™ or asymptotically conical;

(2) If 3 is asymptotically conical and \[X] < A — € for some €y > 0, then there is a
radius Ry = Ro(n, A, €9) > 1 and a constant Cy = Co(n, A, eg) > 0 so that for
each |t| <1 there is a function v.: C(X) \ Br, — R satisfying

2
sup 3 x| V| < Co
C(Z)\Bry j—g

and so that
spt(v¢) \ Bar, € {x(p) + vi(p)ne(zy(p): p € C(X) \ Br, } C spt(v).

Proof. The first claim follows from [18, Theorem 0.7 and [5, Proposition 3.3]. The
second is Corollary 3.6 of [5] for t < 0 while, for ¢ > 0, follows from Proposition 2.2, the
pseudo-locality [29, Theorem 1.5 and Remark 1.6]% and the interior regularity [21]. [l

2.3. Isotopies and related concepts. We say two smooth embeddings fo, f; : M — R**!
are isotopic if there is a continuous map F: [0,1] — C°°(M;R"*1) so that F(0) = f,,
F(1) = f; and, for each 7 € [0, 1], F(7) is an embedding. Two hypersurfaces 3¢, %1 C
R™*1 are isotopic if there exist smooth embeddings fy: M — 3¢ and f;: M — ¥; so
that fy and f; are isotopic.

Fix a § € (0,1). Two hypersurfaces X9, X; C Bygr(p) are d-isotopic if there are
smooth embeddings fo: M — ¥ and f;: M — ¥; and a continuous map F: [0,1] —
C*>°(M;R"™*1) so that

(1) F(0) =fp and F(1) = fy;
(2) F(r) is an embedding for each 7 € [0, 1];
(3) F(1) o fy *(Br(p)) C Bar(p) foreach T € [0,1];
(4) Foreach 7 € [0, 1],
1
s SRV (F(r) oY) - Vi xls,| <4
ZoN(Bar(P)\Br(p)) j—g

2Although the result states for diffeomorphisms, the proof indeed gives smooth isotopies.

3Matching motions are constructed via [lmanen’s elliptic regularization [27]. As remarked in [41, Page 1488],
White’s local regularity theorem holds for matching motions. Thus the proof of [29, Theorem 1.5] is valid for
matching motions.
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Fix a unit vector e, a point xg € R™*! and r, A > 0. Let
Ce(x0,m,h) = {x e R"": |(x — x0) - €] < h,|x —x0|* <7+ |(x — x0) - €]*}

be the solid open cylinder with axis e centered at xy and of radius r and height 2h. A
hypersurface 3 is a C? e-graph of size § on scale r at X if there is a function f: B C

Pe — R with
2

> IV flleo <6,
i=0
where P, is the n-dimensional subspace of R”*+1 normal to e, so that
YN Ce(x0,7,0r) = {x0 + x(2) + f(x)e: x € B]'}.
Lemma 24. Let By, (p1),. .., Bar, (ps) be pairwise disjoint open balls in R" 1. Let
Yo C R™ ! be a hypersurface that is a C? ny, -graph of size 1 on scale cory at every
pE X\ U;'I:1 B, (p;). Then there is a sufficiently small 5o = do(n,co) > 0 so that if a
hypersurface ¥y C R"T1 satisfies:
(1) Xo N Bar, (p;) is dg-isotopic to 31 N Byy, (pj) foreach 1 < j < J;
(2) There is a continuous family of functions u,: 3g \ U;‘le B, (pj) = R fort €
[0, 1] with u, = 0 and

1
sup Zri_1|v%0ur| <o
EU\U_;‘]:1 Br (pj) i=0

and so that
J J
=\ [ Bar (p) € { x(p) + w1 (p)nx,y (p): p € Zo\ | Bri(p)) ¢ € T,
j=1 j=1

then there is an isotopy F: [0,1] — C°°(Z¢; R") with F(0) = x|, and F(1)(2o) =
31 and so that, for each T € [0, 1],
(1) F(7)(Bar,(p;)) C Bsr, (p;) for each 1 < j < J;
J
(2) F(7)(p) = x(p) + -y (p)ns, (p) for p € o \ U=, Bar, (pj) where £: [0,1] —
[0, 1] is a continous increasing function with £(0) = 0 and £(1) = 1.

Proof. Define Fo(7): 3o\ U;.Izl B, (p;) — R""1 by

Fo() = x(p) + ur (p)nz, (p)-
By the hypotheses on ¥y and u., for §y sufficiently small Fy(7) is an embedding for each
T €[0,1].
Set Uy = R™ T\ U;]:l By, (pj) and Uj = By, (p;) for 1 < j < J. Let {¢;}, ;< ;
be a partition of unity subordinate to the open cover {Uj }, <j<g SO Vol < 2 ! for each
. For 7 € [0, 1], we define F(7): ¥g — R"*! by

J
F(r) =) ¢;F;(7)
7=0
where F; for 1 < j < .J are the dp-isotopies with F;(0) = x|s,ny, that the hypotheses
ensure exist.
Up to shrinking &y, one has that F'(7) are all embeddings with F(0) = x|s,. Moreover,
¥h = F(1)(%) is sufficiently close, in the C'! topology, to ¥; so they are isotopic via the
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normal exponential map on 3}. As F(1) = F(1) on ¢ \ Uj:o By, (pj), combining the
isotopy between X} and X7 with F gives the desired isotopy between ¥y and ;. (]

We will need a notion of a.c.-isotopies between asymptotically conical hypersurfaces
which is closely related to those introduced in [9, Section 2]. Fix an asymptotically con-
ical hypersurface I' ¢ R™*! with asymptotic cone C = C(I'). Thus, for some R > 1
large enough, m¢ — the nearest point projection onto C — restricts to a diffeomorphism of
I'r = I'\ Bg onto its image and denote its inverse by . For any integer k > 2, let
ACEfL(F) be the space of C*-asymptotically conical C* embeddings of I" into R"*!, i.e.,
C* embeddings g: I' — R™ " so thatlim, ¢+ p(go6r,,)(p~'p) = h(p) in Cf_(C\{0})
where h: C — R™*! is a homogeneous of degree one (i.e., ph(p~'p) = h(p) forallp € C
and p > 0) C* embedding and denote by tr’_[g] = h|cns». Equip the space ACE" (T')

with the CF norm
2

lgller = sup > (1 + [x(p)) 1 V'g|.
Peli—o
We then let ACE,,(T') = =4 ACE® (') with the usual Fréchet topology.

Two elements gg, g, € ACE, (T) are a.c.-isotopic if there exists a continuous path
G:[0,1] = ACE,(T) with G(0) = gp and G(1) = g and trl_ [G(t)] = trl [G(0)] for
all t € [0,1]. Two asymptotically conical hypersurfaces I'g, 'y C R"*! are a.c.-isotopic
if there are two elements g; € ACE,,(T') with g;(T") =T, for j € {0, 1} so that they are
a.c.-isotopic. By composing with g; ', we will always take T' = Ty and G(0) = xX|r,.
Furthermore, for fixed R > 1 and C' > 0 we say G is (R, C')-regular if there exists a
continuous family of functions v : C(T'y) \ Bg — R for 7 € [0, 1] satisfying

2
sup Z x| Viv, | < C
C(FO)\BR i=0

and so that

G(7)(To) \ Bar C {x(p) +v-(p)ncry) (p)): p € C(To) } € G(7)(To).
In this case, we also call 'y and I'; = G(7)(T'9) are (R, C)-regular a.c.-isotopic.

Lemma 2.5. Fix a regular cone C C R"*! that is a C? n¢-graph of size 1 on scale
ro at every p € L = CNS™ Let Iy and T'y be two asymptotically conical hyper-
surfaces in R"1 with C(Toy) = C(I'y) = C and that are (Ry, Cy)-regular a.c.-isotopic
for some constants Ry > 1 and Cy > 0. Then for every § € (0,1) there is a radius
Ry = Ri(n,rq, Ry, Co,0) > 1 so that, for any R > Ry, T'g N Byg is d-isotopic to
I'1 N Byg.

Proof. Suppose G: [0,1] — ACE,(Ty) is an (Ry, Cp)-regular a.c.-isotopy between I'g
and I'1. Fix a k € (0,1) to be determined later in the proof. Let II¢(p) be the nearest
point projection (in 9B);|) of p onto C N dBy,. Let I'x = G(7)(I'g). Then there is a
radius Ry = Ry (n,rg, Ry, Co, 0, k) > 2Ry so that, for each 7 € [0, 1], ¢ restricts to a
diffeomorphism of I'> \ B onto C \ By and its inverse f; satisfies
2
sup Y [x["TH V', — Vixe| < k0.
Br, i=0

By the continuity of G there is a radius Ry > 2R;, which may depend on the isotopy G,
so that for each 7 € [0, 1]
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d G(T)(FO OBQRO) C B4R0;
1 i i i
® SuPry\ g, Lico X [VIG(T) = VixIr,| < .
Let ¢: R™* — [0, 1] be a radial cutoff so that ¢ = 1 outside B, and ¢ = 0in By .

Let V, = ¢[x|*|x”|72x” be a vector field on I'; whose flow dilates on I';. If {® ()},
is the family of diffeomorphisms of I generated by V ., then

2 2(0,)] = 0(@(0.p) - (1))
Thus, fort > 0,
x(p)] < |2-(t,p)| < €'|x(p)|
with equality in the second inequality for p € I'z \ B,z 5o @, (I'x NIBg) = T'> N0Betr
and ®.(T'; N Br) =Ty N Betg for R > 2R;. Likewise, for t < 0,

e'[x(p)| < |2, (t,p)| < [x(p)],
with equality in the first equality as longas p € I'; \ B,z .. Now define
G(7) = @, (log(R1 Ry ")) 0 G(7) 0 ®o(log( Ry ' Rp)).

It is readily checked that, for an appropriate choice of £ = x(n) and corresponding Ry, as
log(Ry ' Ry) > 0 one has

o (:;(T)(Fo) =T, foreach T € [0,1];

e G(7)(ToN Byg,) CT-NB,p foreach 7 € [0, 1];

® SUpr\p,, Z%:o x|"~1V!G(r) — Vix|r,| < 6 foreach T € [0, 1].

Hence the result follows with R; = 2R1. O

3. BASIC TANGENT FLOW ANALYSIS

In this section we combine the forward monotonicity formula for flows coming out of a
cone and trapped between two expanders from [10] with the main theorem of [9] to prove
an initial structural result for model tangent flows of low entropy. Backwards in time these
flows will be self-shrinkers and so the emphasis is on the forward in time behavior.

We first need a lemma showing that expander mean convex solutions coming out of a
cone can be rescaled to produce self-expanders.

Lemma 3.1. Fixn > 3 and A € (A, A\_1] and assume that (x, n) holds. Let {¥:},.
be a mean curvature flow of connected asymptotically conical hypersurfaces in Rt so
that
lim H"| ¥, =H"|C
t—0+t
where C is a regular cone in R and, for a consistent choice of unit normal, ny,,, of Xy,
EQ" = 2tHs, +x - ng, < 0.
If A\[24] < A for all t, then
lim ¢+1/2%, = T in C%,(R™HY)

t—0+
where T is an asymptotically conical self-expander with C(T') = C. In fact, T is a.c.-
isotopic to 31. Finally, if Uy are components of R"1\ ¥, so ny, points out of Uy and Us,
is the corresponding component of R"*1 \ T, then one has U, C t1_1/2Ut1 - tQ_I/QUt2
for 0 <ty < to.
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Proof. This is essentially proved in [9, Proposition 5.1] for ¢ — oo. For the reader’s
convenience, we recall the relevant arguments (with slight modifications) in the proof of [9,
Proposition 5.1]. First consider the rescaled mean curvature flow associated to {3 };~0
given by I'; = t1/2%, where s = logt. Let K be the closure of t~/2U,. By the
hypothesis on Eot’t, one has that K C int(Ky ) forall s < s’. For7 < 0,1letI'T =T',,.
Thus, by Brakke’s compactness theorem [13], given 7, — —oo there is a subsequence
7;, and an integral rescaled Brakke flow {1is}scr so that H™ Ll"zij — s for each s.
Moreover, by the monotonicity of K¢ and the upper semi-continuity of Gaussian density,
spt(us) = OK for all s where K = (), K. Hence, {js}cr is a static solution of
the rescaled Brakke flow and H™|I'T — us as 7 — —oo. By the scaling invariance of
entropy, A[['s] = A[Z;] < A < 2 for all s. Thus, by the lower semi-continuity of entropy,
Aps) < A < 2forall s and so s = H™|OK. Let Vyk be the varifold associated to OK.
As the flow {Zt}t>0 comes out of a cone at t = 0, [9, Lemma 5.3]4 and the Arzela-Ascoli
theorem ensure that the tangent cone of Vg at infinity is equal to C.

The major difference when ¢ — 0 is that the limit Vpx will, generally, not be E-stable.
This is only relevant for the regularity of the limit and of the convergence. Instead, one may
appeal to a dimension reduction argument [40] and the entropy bound and (%, ») to obtain
that Vyx is a regular multiplicity-one E-stationary® varifold. Thus, OK is a self-expander
in R"*!. Finally, by Brakke’s regularity theorem [13] — see also [41] — as s — —o0,
I'y - 0K in C’l‘ffc(R”*l). Combining this with [9, Lemma 5.3], it is readily checked that
the flow {I's} provides a natural a.c.-isotopy between Iy = 3; and K. Therefore, the
lemma follows with I' = K. O

Proposition 3.2. Fixn > 3, A € (A, \p,_1] and €y € (0, A). Assume that (x,, ) and
(%kn,p) hold. Let T = {v},.p be a matching motion in R such that v_; = H" | for
Y € ACS,[A — €] Then thereis a py = p4+(T) € (0,1) so that

(1) T|R™ x (0, p3) is a smooth flow;

(2) Forallt € (0,p?%), the asymptotically conical hypersurfaces I'y = spt(v;) are
(Ro, Co)-regular a.c.-isotopic to ¥, where Ry = Ro(n, A, ) and Cy = Cy(n, A, €g)
are given by Proposition 2.3.

Proof. 1If ¥ = R", then the proposition is trivially true. To that end, we assume X is
non-flat. As ¥ is an asymptotically conical self-shrinker, it is connected by the Frankel
property of self-shrinkers (see, e.g., [39, Theorem 7.4] and a combination of [30, Theorem
C] and [37]). Let f € C*°(X) be the unique positive function that satisfies

x2
/ f]2e " dHm = 1
)
and
X 1
—Lyf=- (Az ~3 +|A2|2+2) f=uof

where 19 < —1 is the lowest eigenvalue of the shrinker stability operator — see [4, Propo-
sition 4.1] for the existence of such a function. As observed in [4, Proposition 4.1] this f

4Although the lemma applies to mean curvature flows starting from a smooth asymptotically conical hyper-
surface, the arguments in the proof are local and only relevant for regions outside a compact set and so also work

for flows starting from a regular cone.
I|?
SAn integral varifold V' is E-stationary if it is a critical point of the functional E[V] = [e 4 dV.
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has sublinear growth. Hence, as X is asymptotically conical, there is an € > 0 so that for
all € € (—¢, €) one has

¥ = {x(p) + ef(p)ns(p) : p € X}

are embedded asymptotically conical hypersurfaces with C(¥X¢) = C(X). Up to shrinking
e, one can ensure that A\[X¢] < A[X] < A — ¢y when € # 0 and each ¢ has shrinker
mean curvature, Hye + % that points away from ¥ = X° for € # 0. These facts are all
proved in [4, Proposition 4.2] — though the direction of the shrinker mean curvature is not
explicitly stated it is easily determined from the argument. These hypersurfaces also form
a foliation around ¥ = X°.

Use the choice of unit normal on ¥ to define 2_(X) as the component of R* 1\
for which ny, points outward — as X is connected there are only two components. This
definition extends in an obvious and compatible way to the >¢. Using this, Let U¢ =
Q_(X€). Clearly, for ¢; < €3, one has Ut C U<2. Observe that for ¢ > 0 the shrinker
mean curvature of 3¢ points out of U*¢, while for € < 0 it points into the region.

Fore # 0, let T° = {¥{},.|_; . be the mean curvature flow with initial data deter-
mined by 3. As proved in [4, Proposition 4.5] these flows are smooth for all times and
remain asymptotic to C(X). Moreover, the maximum principle ensures that if €; # o,
then X' is disjoint from 33> for all ¢ € [—1,00). In addition, each X is a.c.-isotopic
to 3. Choose the unit normal ny: on X that is compatible with the one on ¢, Using
this normal, let Uf be the component of R™*1 \ 3¢ so nye points out of it. Clearly, as
the flows of distinct values of e remain disjoint, one has that, for e, < €3, U* C U2
for all t > —1. Moreover, one has that spt(1;), the support of the initial flow 7, satisfies
spt(vy) CU; T \Uf~ forany —€ < e_ <0< ey <é.

By the compactness of Brakke flows [13] (see also [27] and [38]), one can consider
T+ = limo 7€ and 7~ = limgo 7¢. Write T+ = {uti}te[flm). These limits
exist as the flows are topologically ordered. Indeed, let U,” = Nee(o,e) Us and Uy =
U. €(=,0) U — one readily checks these are sets of locally finite perimeter. By the entropy

bound one has Vt:t = H"|0*U. Moreover, by the uniqueness for smooth mean curva-
ture flows of bounded curvature, one has that 7= = 7 in R*t! x [-1,0) and, hence, in
R"™*1 x [~1,0]. However, in general, 7+, 7~ and T can be disjoint in R"*! x (0, 00).
Nevertheless, they are ordered in the expected way. Indeed, U, C U;r and spt(v;) C
Q =U\U;.

As each X is shrinker mean convex for € # 0, it follows from the parabolic maximum
principle (e.g., [4, Proposition 4.4]) that ¢ is also shrinker mean convex for ¢t € [—1,0)
and is expander mean convex for t € (0,00). Note that for ¢ € (—1,0) the shrinker
mean curvature points away from 0, = V—tX, while, for t > 0, the expander mean
curvature points toward ;. The strict maximum principle and (%, A) and (*x, ) and
standard blowup arguments imply that for ¢ > 0 either spt(v;") = v/t '* for 't a smooth
self-expander or spt(v;”) = ¥ where {3 },_  is a smooth mean curvature flow that
is strictly expander mean convex and satisfies the other hypotheses of Lemma 3.1. If the
latter case occurs, then Lemma 3.1 implies lim;_,¢ =Y 22: = I't for I'" a smooth self-
expander. A similar argument produces a self-expander I'~ corresponding to 7 ~. In either
case, for t > 0, Q) lies between v/¢ '~ and /¢ '". As I'F are smooth and are either limits
of ] or are a.c.-isotopic to these limits, they are both a.c.-isotopic to X.

Now consider any tangent flow 77 to 7 at (0, 0). As 7T is trapped between /¢ I'~ and
VtT't for t > 0, one can appeal to the forward monotonicity formula [10, Theorem 6.1]
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(see also Appendix A) and (%, 5) to see that, fort > 0, 7" = {\/EF’}DO for IV a smooth
self-expander trapped between I'™ and I'". By the main result of [9] (see also Appendix
B), I' is a.c.-isotopic to I'~ and hence to X..

One proves the existence of p by contradiction. To see the first claim, suppose there
was no such p_ , then there would be a sequence of singular points of T, (x;,t;) € R"! x
(0, 00) with t; — 0. By Brakke’s regularity theorem (e.g., [13] and [41]) (x;,t;) — (0,0).
Letr; = (|x;|>+;)Y/? sor; — Oand (x}, ;) = (r; 'x;,7; *t;). By what we have already
shown, the rescaled flows 7(%-0):" up to passing to a subsequence, converge to a tangent
flow 77 which is v/—t X for t < 0 and v/¢I"” for t > 0 for I'” a smooth self-expander. As
|x%|2+1t, = 1, up to passing to a further subsequence, (x}, ;) — (x{, t;) and, by the upper
semicontinuity of Gaussian density, (x{),t}) lies on the support of 7". As |x{|? +t{ = 1
and ¢, > 0, (x{,, t(,) is a regular point of 7' and so, invoking Brakke’s regularity again, for
all large 7 the (x/, ;) are regular points of 7(%:0):7i, That is, the (x;, t;) are regular points
of 7. This contradiction proves the first claim.

To see the second claim, again suppose there was no such p., then there would be a
sequence ¢; > 0 with t; — 0 so that the spt (14, ) are not (R, Cy)-regular a.c.-isotopic to
. Consider the rescaled flows 7(©:0):V#i — {1/,? } tcr SO- Up tO passing to a subsequence,
they converge to a tangent flow 7’ = {v/},.p. As remarked before, spt(v;) = /—tX
for ¢ < 0 and spt(v}) = /tI" for I a self-expander that is a.c.-isotopic to X. Let 6y =
o(n,1) € (0,1) be the number given by Lemma 2.4. As spt(vi) — I in C52,(R™H1),
for any sufficiently large R, for all large i the spt(v?) N Byp are dp-isotopic to X N Byg.
That is, spt(vs,) N Byg.z; is do-isotopic to (v/#; X) N By, ;- By Proposition 2.3 and
the pseudo-locality [29, Theorem 1.5], up to increasing R, for ¢ large and ¢t € [—t;,t,],
spt(v4) outside a compact set is given by the normal exponential graph of a function u;
over (v/; X) \ Bz with (Ry/E;) " Huy| 4+ [Vuy| < 8o. Thus, by Lemma 2.4, for i
large there is an isotopy between +/t; ¥ and spt(vy,) so that each slice of the isotopy
outside By, /7; is contained in spt(v;) for some ¢ € [—t;,%;]. In particular, the isotopy is
(Ro, Cp)-regular for constants Ry and Cy given by Proposition 2.3. This is a contradiction
and completes the proof. ([

4. ALMOST ISOTOPIES

In this section we show that if all the tangent flows of a mean curvature flow of low
entropy are “‘almost isotopies” in a certain sense, then the flow itself is an almost isotopy.

First of all, given a matching motion K let sing(K) C spt(K) be the set of singular
points of K and reg(K) = spt(K) \ sing(KC) be the set of regular points. We then let

ST(K) = {to € R: (x0,t0) € sing(K) for some x; € R" ™}
be the set of singular times.

Definition 4.1. Let K = {4u},¢|_; ;) be a matching motion with spt(s) compact. We
call K an almost isotopy if

(1) ST(K) C (—1,1) has £! measure zero;

(2) Forevery ¢t ¢ ST(K) either spt(u:) = 0 or spt(u) is isotopic to spt(p—1).

Definition 4.2. Let K = {1}, be a matching motion such that 1 = H" | for ¥ an
asymptotically conical self-shrinker in R"*1. We call K an almost a.c.-isotopy if

(1) ST(K) N 0,1) has £! measure zero;
(2) Foreveryt € [0,1) \ ST(K), spt(p:) is a.c.-isotopic to 3.
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For fixed R > 1 and C > 0, an almost a.c.-isotopy K is called (R, C)-regular if spt(u;)
is (R, C)-regular a.c.-isotopic to 3 for every t ¢ ST(K).
Define the distance d on space-time R"*! x R to be
d((x,1),(y,8) = VIx —y[> + [t = s|.

Denote by B%((xo,t0)) the (open) ball in the metric d centered at (xo, to) with radius R.
Given a matching motion K = {y;} and a point Xy = (xo, tg) € reg(K), let

R}, ,(Xo) = sup {r > 0: £, = spt(uy,) is a C? ny, -graph of size 1 on scale r at xo }

reg

be the regularity radius of IC at X;. We will omit the superscript, KC, when it is clear from
the context.

Lemma 4.3. Let K = {Mt}te[—l,l) be a matching motion in R"*! and Xy = (xq,t0) €
spt(KC). Suppose every T = {vi},cp € Tanx, K satisfies v_y = H"|% for ¥ an asymp-
totically conical self-shrinkerS. Then there exists py = po(KC, Xo) > 0 so that

(1) K[(B% (Xo) N {t < to}) is a smooth flow;

(2) ko = inf {d(X, Xo) "' Rreg(X): X € reg(K) N B4 (Xo) N{t <to}} > 0.

Proof. We argue by contradiction. Suppose there was no such pg, then there would be a
sequence of points X; = (x;,t;) € spt(K) with ¢t; < t¢ and d(X;, Xy) — 0 and so that
one of the following situations occurs:

(1) X; € sing(K) for all large ;

(2) X; € reg(K) and d(X;, Xo) ' Rreg(X;) — 0.
Let 7; = d(X;, Xo) > 0and X; = (r; ! (x; — xo),7; 2(t; — to)) so d(X;,0) = 1 where
O = (0,0) € R x R. Up to passing to a subsequence, one may assume X, = X,
with d(Xo, O) = 1. Consider the rescaled flows X" and, up to passing to a further
subsequence, they converge to a tangent flow 7 = {14}, p where v_; = H"|E for
¥ an asymptotically conical self-shrinker. As X; € spt(KCXo-m4) for all large 4, by the
upper semi-continuity of Gaussian density, one has X, € spt(7). As X, # O and
TL((R*1\ {0}) x (o0, 0]) is a smooth flow, it follows that X € reg(7). By Brakke’s
regularity theorem [13], for all large 4, X; € reg(KXom) and RTSQ(XZ-) >k >0 It
follows that, for all large i, X; € reg(K) and d(X;, Xo) ' Ryeg(X;) > £ > 0. That is,
neither of the situations occurs and this is a contradiction, finishing the proof. (]

Combining Proposition 2.3 and Lemma 4.3 we obtain the following corollary.

Corollary 4.4. Fixn > 3 and A € (A, \n—1] and assume that (x, ) and (xxy ) hold.
Let K = {pi}se(_1,1) be a matching motion in R with A[u—1] < A and assume that
spt(p—1) is either a closed hypersurface or an asymptotically conical self-shrinker. Then
the following is true:

(1) Foreveryty € (—1,1), sing; (K) = {xo: (X0, t0) € sing(K)} is a finite set;

(2) For every tg € ST(K), there is a Ag > 0 so that (tg — Ao, to) N ST(K) = 0.

Lemma 4.5. Fixn > 3, A € (A, 1), €0 € (0,A) and § € (0,1). Assume that
(*n,p) and (xxpp) hold. Let K = {lut}te[fl,l) be a matching motion in R with
Alp—1] < A — eo. Suppose that (xo,t0) € spt(K) is such that every T € Tan(x, +,)K

6By recent work of Chodosh-Schulze [17], the asymptotically conical multiplicity-one tangent flow is unique.
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is an (Rg, Cy)-regular almost a.c.-isotopy. Given « > Ry and v € (0,1), there exists
P1 = pl(’CaX()ath O‘fY) > 0 so that: lfp < p1 and

I5(p) = {s € (0,p°): spt(kses) is not 25-isotopic 10 spt(ps,—s) in Biap(x0)},
then one has
L (I5(p)) < vp*.
Here Ry = Ro(n, A, eq) and Cy = Co(n, A, €) are given by Proposition 2.3, and Ry =
Ri(n, A, €q, ) is chosen by Proposition 2.2 and Lemma 2.5.

Proof. We argue by contradiction. That is, suppose there was no such p;. That means
there are a sequence of p; — 0 so that £ (I¢(p;)) > vp?.

Up to passing to a subsequence, one has that C(¥0:%0)-7i converges to an element 7 =
{Vthier € Tan(x, 1)K with v_; = H™| ¥ for ¥ an asymptotically conical self-shrinker.
By our hypotheses, 7 is an (R, Cp)-regular almost a.c.-isotopy. Thus, ST(7) N (0,1)
has Lebesgue measure zero and, by Lemma 2.5, for every ¢ € (0,1) \ ST(7), spt(14)
is d-isotopic to spt(v_¢) in Byo. As (0,1) \ ST(T) is an open subset of (0, 1), there
exists a decomposition J = {Jg} of (0,1) \ ST(7") where each .J; is an open interval in
(0,1)\ST(T). That is, the sets in J are pairwise disjoint and their union is (0, 1) \ST(T).
Furthermore, as Q is dense in R, we may assume the index set of 7 is equal to N. As
LY(Ug Js) = L1((0,1) \ ST(T)) = 1, there is a finite subcollection {.Jy, ..., Jx} C J
so that £1(J) > 1 — 1~ for J = ngl Jg. As the set J is bounded and a finite union of
open intervals, there is a compact subset Jo C J so L1(Jp) > 1 — %fy. As T is regular
at all [¢t| € J, it follows from White’s version [41] of Brakke’s regularity theorem that
K (x0:t0):pi converges smoothly to 7 at those times. Hence, for large i, spt(,ugxo’tOW 9
is 24-isotopic to spt(u(_xto’to)’pi) in By, for all t € Jy. It follows that spt(fis,+s) is 26-
isotopic to Spt(pe,—s) in Baay, (o) for all s € p2Jy. Thus, L1 (I§(p;)) < 2vp?, giving a
contradiction. This proves the lemma. (]

Proposition 4.6. Fixn > 3, A € (A,, \—1] and €9 € (0, A). Assume that (%, ) and
(%xp,A) hold. Let K = {Mt}te[fl,l) be a matching motion in R" 1 with A\[u_1] < A — ¢
and assume Y. = spt(u_1) is a closed hypersurface. If to € (—1,1) is such that, for every
(x0,t0) € spt(K), every T € Tan(y, +,)K is an (Ro, Co)-regular almost a.c.-isotopy,
where Ry and Cy are given by Proposition 2.3, then there exists py = pa(K,tg) > 0 so
that: if p < p2 and

Iicso(p) = {5 € (O7p2): Spt(:u“to-l's) is not iSOtOpiC fo Spt(p’to—s)} )
then one has )
‘Cl(Iicso(p)) S 5/72

The same conclusions hold if one instead supposes ¥ = spt(u—1) is an asymptotically
conical self-shrinker, with the set

If . (p) = {s € (0,p%): spt(pes) is not (Ro, Co)-regular a.c.-isotopic tospt(jiy—s) } -

Proof. By Lemma 4.3 and Corollary 4.4, there exist pg = po(K,t) > 0 and ¢g =
co(K,tg) > 0so that if X = (x,t) € spt(K) with t € (to — p2,to), then X € reg(K)
and Rycq(X) > cod(X,sing, (K)). Let 6o = do(n,co) be the number given by Lemma

2.4. Let N(to) be the number of elements of sing, (K) = {x1,...,Xn(,)}. Hence, it

follows from Lemma 4.5 with § = %0 and v = ﬁ(to) that for every large « there exists

p1 = p1(K,to, ) > 0 so that for every p < p; forall s € (0,p%) \ I5,(p) = Isi(p)
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one has spt(giy,+s) is d-isotopic to spt(g,—s) in Baa,(x;) where (x;,t0) € sing(/C),
1 <4 < N(tp). As o may be arbitrarily large, using the pseudo-locality [29] one sees that
forall t € [tg — s,to + s| the spt(u;) away from x1, ..., Xy, are given by the normal
graph of a function u; over spt(us,—s) \ UN(tD) Ba,(x;) with (ap) " Hug| + |Vug| < 6.
Thus, invoking Lemma 2.4, one gets an isotopy between spt(pt,+s) and spt(pt,—s) for
any s € ﬂN( o) I5.;(p) with p > 0 small. Clearly,

N(to) N (to)
IC

’LSO( ﬂ ‘[51 U ]61

and so, by Lemma 4.5 and the choice of +y, one has
N(to)

’L€O Z 7p

Moreover, if ¥ is an asymptotically conical self-shrinker, then Proposition 2.3 implies
these isotopies are ( Ry, C)-regular. This last observation concludes the proof. (]

Theorem 4.7. Fixn > 3, A € (Ay, A\—1] and ¢y € (0,A). Assume that (x, a) and
(%*p,A) hold. Let K = {“t}te[—l,l) be a matching motion in R with A\[u_1] < A — ¢
and assume ¥ = spt(u—_1) is a closed connected hypersurface (resp. ¥ = spt(p—_1) is
an asymptotically conical self-shrinker). If for every (xq,to) € spt(KC) withty € (—1,1)
(resp. to € (0,1)), every T = {vi},cp € Tan(x, 4K satisfies either

(1) spt(v_1) is compact; or

(2) spt(v—1) is non-compact and T is an (Ry, Cy)-regular almost a.c.-isotopy, where

Ry and Cy are given by Proposition 2.3,

then K is an almost isotopy (resp. K is an (Rg, Co)-regular almost a.c.-isotopy).

Proof. By Corollary 4.4, every point in ST(K) has Lebesgue density at most . As ST(K)
is a closed set, the Lebesgue density theorem implies ST(K) has Lebesgue measure zero.

We first suppose > = spt(p—_1) is a closed connected hypersurface. Without loss of
generality we assume K does not disappear, as otherwise we restrict the flow up to the
extinction time, and translate in time and do a parabolic dilatation to obtain a new flow
satisfying the hypotheses that does not go extinct. Let

B={te(-1,1)\ ST(K): spt(u) is not isotopic to L} .

The openness of B ensures that it is enough to show that B has Lebesgue measure zero in
order to conclude /K is an almost isotopy.
Let
B¢ ={te (—1,1)\ ST(K): spt(u) is isotopic to X}
so BUB® = (—1,1)\ST(K). First we show that forany I = (a,b) with —1 <a<b<1
and a € B¢
tr=sup{t € B°NI}=0b.

As a € B¢, in particular a is a regular time and so times near a are also in B°. Thus,
B¢ NI is non-empty so ¢y is well defined and ¢t; > a. Take a sequence of times t; €
B¢ NI sothat t; — t;. Clearly, t; € ST(K). By Corollary 4.4, there is a 6 > 0 so
that (¢; — 6,t7) € BN 1. If t; < b, then ¢; is not the extinction time and, as X is
connected by hypothesis, all tangent flows at time ¢; have non-compact support. Hence,
by our hypotheses, it follows from Proposition 4.6 that there is a small A > 0 so that
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spt(pe;+) is isotopic to spt(us,—a) and hence to . That is, t; + A € BN I but
t; + A > t;. This contradicts the definition of ¢; and thus ¢; = b proving the claim.

Fix any € > 0. As ST(K) is compact and has Lebesgue measure zero, one finds a finite
cover of ST(K), I; = (a;,b;) for 1 < j < Jwitha; < as < --- < ay, that satisfies
all aj,b; arein (—1,1) \ ST(K);
IinI, #Qonlyif |j — k| < 1;
I; is not a subset of I, when |j — k| = 1.
Yol <e
We claim that it is possible to choose all a; € B€. Indeed, as the flow is smooth on [—1, a1],
one has a; € B¢. We next consider two situations. The first situation is that Iy N I5 is
empty. By the previous claim, b; € B¢, soeitheras = b; € B€or,if b; < as, one observes
the flow is smooth on [by, as] and so also concludes a; € B¢. The second situation is that
I, N I is non-empty. In this case the properties of the intervals ensure a; < as < by < bs.
Replace I5 by I5 = (b1, by) in the cover to obtain an new cover {1} = (a/;, b;)}lSjSJ that
satisfies the same properties as the original cover but has a), = b; is in B¢. Iterate this
procedure on subsequent intervals to obtain a new cover {I 7= (af, b )} << satisfying
all properties of I; and, in addition, with all a;-’ € B¢. Appealing to the previous claim,
one also has all b;-’ € B¢ and, hence,

J
L\ 17 B
j=1

Hence,
J J
LY(BY=2-> |If|22-) || >2—e
j=1 j=1

Sending € — 0, gives £L}(B¢) = 2. As B, B¢, and ST(K) are pairwise disjoint and their
union is (—1,1),

£Y(B) =2-L"(B) - L(ST(K)) = 0.
This proves the claim.

We now consider the case that > = spt(u_1 ) is an asymptotically conical self-shrinker.
Observe that, by the Frankel property of self-shrinkers, ¥ is connected. The arguments
are essentially the same as the previous case and so we only discuss needed modifications.
Namely, the sets B and B¢ are replaced by, respectively,

B={te(0,1)\ ST(K): spt(u) is not (Ro, Co)-regular a.c.-isotopic to £}
and
B¢ ={t e (0,1)\ ST(K): spt(u) is (Ro, Co)-regular a.c.-isotopic to X} .

The only difference is that spt(ug) = C(X) is singular. This can be addressed by using
Proposition 3.2, that is, for all 0 < ¢ < p? the spt () are (Rg, Cp)-regular a.c.-isotopic to
3. Hence the result follows from the previous arguments with the above modifications. [

5. ENTROPY QUANTIZATION AND A BUBBLE TREE-LIKE STRUCTURE

We need to improve the estimates on singularities given by Proposition 3.2 in order to
show that any non-compact tangent flow to a low entropy flow is actually an a.c.-almost
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isotopy. To do this requires an iterated blowup procedure that is reminiscent of the bubble-
tree structure occurring in other areas of geometric analysis. This ultimately shows that
any tangent flow to a low entropy flow is an almost a.c.-isotopy by iterated blowups.

We first establish a gap for the entropy of cones of asymptotically conical self-shrinkers.

Lemma 5.1. Let ¥ be a non-flat asymptotically conical self-shrinker. One has
A > M),

Proof. As ¥ is a non-flat self-shrinker, it follows from White’s version [41] of Brakke’s
regularity theorem that A\[X] > 1+ € for some € = e(n) > 0 (cf,, [14]). If A[C(2)] < 1+,
then the claimed inequality holds trivially. Otherwise, as C(X) is a smooth cone it follows
that there is a point xo € R™"! so that

F[C(X) + xo] = A[C(X)].

See [7, Lemma 3.7] for a proof. It follows from Huisken’s monotonicity formula [26] and
the fact that X is smooth and non-flat that

AIE] > FIVZE +x0] > FIC(E) +x0] = A[C(E)]-
This proves the claim. ]
Using this result and a compactness result from previous work we have the following:

Proposition 5.2. Fixn > 3, A € (A,, \p—1] and €9 € (0, A). Assume that (%, ) and
(*xn,A) hold. There is a 61 = 61(n, A, €9) > 0 so that: if £ € ACS,[A — €] is non-flat,
then

AZ] > AC(2)] + 1.

Proof. We argue by contradiction. Indeed, suppose there is a sequence ; € ACS,,[A—e]
that are non-flat and so A\[2;] < A[C(%;)] + +.

By White’s version [41] of Brakke’s regularity theorem, A[X;] = F[¥;] > 1 + ¢(n)
where €(n) > 0 is some fixed constant independent of the X;. By Proposition 2.2, up to
passing to a subsequence, one has ¥; — X in C72 (R" 1) for ¥, € ACS,[A — €] and
L(3;) = L(Ex) in C®°(S"). As A\[Ex] = FlEoo] = lim; 00 F[X;] = lim;— 00 A[X;],
one has A\[X] > 1 + €(n) and so X, is not flat. Moreover, A\[Xo] < lim; o0 A[C(3;)].
However, by [7, Lemma 3.8] one has A\[C(X)] = lim;_, o A[C(X;)] and so

AZoo] < AC(B0)]-
As Y is not flat, this contradicts Lemma 5.1 and proves the claim. |
We conclude

Theorem 5.3. Fixn > 3, A € (Ay, A\—1] and ¢y € (0,A). Assume that (%, a) and
(%kn,A) hold. Let T = {vi},cp be a matching motion in R™*! such that v_1 = H" |
for ¥ € ACS,[A — eo]. Then T is an (Ry, Cy)-regular almost a.c.-isotopy, where Ry =
Ro(n, A, €9) and Cy = Co(n, A, €y) are given by Proposition 2.3.

Proof. We argue by contradiction. Suppose 7T is not an (Ry, Cp)-regular almost a.c.-
isotopy. By Proposition 2.3, all the tangent flows of 7~ are either isotopic to S™ or asymptot-
ically conical. Appealing to Theorem 4.7 gives a point (X, to) € spt(7T) with ¢y € (0,1)
and a tangent flow 7" = {v{},.p € Tan(y, 4,)7 so that spt(+” ;) is non-compact, but
T is not an (Rg, Cy)-regular almost a.c.-isotopy. As to > 0, Proposition 5.2 implies that
AT'] < A[T] — &; for some uniform 6; > 0. Repeating this argument, one constructs a
sequence of matching motions 7() each of same form as 7 —i.e., non-compact and not



CLOSED HYPERSURFACES OF LOW ENTROPY IN R* ARE ISOTOPICALLY TRIVIAL 17

an (R, Cp)-regular almost a.c.-isotopy — but with \[7()] < A[T] — ;1. Hence, for I
sufficiently large one can apply White’s version [41] of Brakke regularity theorem and see
that all 7() are smooth flows and, hence, are ( Ry, Cp)-regular almost a.c.-isotopies. This
is a contradiction and proves the claim. (]

6. CONCLUDING THE PROOF

Proposition 6.1. Fixn > 3 and A € (A, A\—1] and assume that (x,, p) and (xkp, ) hold.
Let Y be a closed connected hypersurface in R" T with A\[X] < A. If K = {ut},~0 is
a matching motion with iy = H"| X, then K is an almost isotopy and the only compact
singularity of IC occurs at a single spatial point at the extinction time.

Proof. 1f % is (after a translation and dilation) a self-shrinker, then /C is self-similarly
shrinking and disappears at a point in finite time and so the proposition is immediate.
Otherwise, by Huisken’s monotonicity formula [26], the entropy is strictly decreasing un-
der the flow. By hypothesis that 3 is connected and by Proposition 2.3 and Theorem
5.3, every tangent flow 7 = {1}, satisfies that either spt(»_1) is compact or 7 is an
(Ro, Cp)-regular a.c.-isotopy. Thus, it follows from Theorem 4.7 that K is an almost iso-
topy. Moreover, as Y is connected, the only compact singularity of /C occurs at a single
point in space-time where the flow disappears. t

We now prove Theorem 1.3. Theorem 1.1 is an immediate consequence of this.

Proof of Theorem 1.3. First we construct a matching motion associated to 2. By [27, The-
orem 11.4], there is a sequence of closed connected hypersurfaces ¥; with ¥, — X
in C°°(R™*1) so that for each i there is a matching motion K; associated to ¥;. As
AZ] < A < 2, A\[Z;] < 2 for large 4. Thus, by the compactness of matching motion with
low entropy [38, Theorem 3.5], up to passing to a subsequence, K; — K where K is a
matching motion associated to 3. Hence, invoking Proposition 6.1, it follows that /C is an
almost isotopy. By the authors’ previous work [3, Sections 4 and 5] singularity models at
the extinction time are closed and so, by Proposition 2.3, must be isotopic to S™. Hence,
KC at every non-empty regular time is isotopic to S™. Therefore, X is isotopic to S™. O

APPENDIX A. FORWARD MONOTONICITY FORMULA
For a Radon measure £ on R™*! and a number p > 0, let 9,1 be the measure given by
Z,u(Y) = p"u(p~Y) for any pi-measurable subsets Y C R™1.

For a hypersurface I' C R"*! and a Radon measure . on R" 1, let

Ere[p, T] = lim e dup — e dH"
R—o0 BR FﬂBR

whenever it exists. Proposition 6.5 and Theorem 6.1 of [10] imply the following.

Theorem A.1. Forn > 2, let Ty and Ty be two disjoint self-expanders in R" 1 that are
both smoothly asymptotic to a regular cone C. Assume I'y and 'y bound an open domain
QCc R K = {Mt}te(o,T) is a match motion that satisfies

(1) limg_yo py = H"[C; _
(2) Foreacht € (0,T), t*/?spt(us) C Q,
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then there exists a constant Ey so that, forall 0 < tqg <t1 < T,
2

L n Lxl?
(dmt) " 2e ot dugdt.

X
2t

t1
Ey > Ere [%U—wzuthol > Erel[gt—1/2ut1,ro}+/ /‘H -
1 to

Consequently, for any sequence t; — 0 there is a subsequence t;; — 0 and a possibly
singular self-expander U asymptotic to C with spt(0) C Q so that

.@t:.l/2l/6tij — V.
J

APPENDIX B. TOPOLOGICAL UNIQUENESS FOR SELF-EXPANDERS THAT ARE
ASYMPTOTIC TO A LOW ENTROPY CONE

Theorem 1.2 of [9] implies the following.

Theorem B.1. Fixn > 3 and A € (A, \p,—1] and assume that (x,, ) and (%, 5) hold.
Let C be a regular cone in R™"*! with \[C] < A. If Ty and T'y are two self-expanders both
smoothly asymptotic to C, then I'g and 'y are a.c.-isotopic.
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