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ABSTRACT. We show that any closed connected hypersurface in R4 with entropy less than
or equal to that of the round cylinder is smoothly isotopic to the standard three-sphere.

1. INTRODUCTION

If Σ is a hypersurface, that is, a smooth properly embedded codimension-one submani-
fold of Rn+1, then its Gaussian surface area is

(1.1) F [Σ] =

∫
Σ

Φ dHn = (4π)−
n
2

∫
Σ

e−
|x|2
4 dHn,

whereHn is n-dimensional Hausdorff measure. Following Colding–Minicozzi [19], define
the entropy of Σ to be

(1.2) λ[Σ] = sup
y∈Rn+1,ρ>0

F [ρΣ + y].

Throughout the paper, let Sn be the standard n-sphere in Rn+1 and Sn−1 × R the round
cylinder in Rn+1. The main result of the paper is the following.

Theorem 1.1. If Σ ⊂ R4 is a closed (i.e., compact without boundary) connected hyper-
surface with λ[Σ] ≤ λ[S2 × R], then Σ is smoothly isotopic to S3.

Remark 1.2. Theorem 1.1 was announced in [9]. While we were finishing the writing of
this paper, we learned about work of Chodosh-Choi-Mantoulidis-Schulze [16] on generic
mean curvature flow which provides an alternative approach to Theorem 1.1.

Entropy is a natural geometric quantity that measures complexity and is invariant under
rigid motion and dilations. It is known that λ[Rn] = 1 and, by a computation of Stone [36],

(1.3) 2 > λ[S1] >
3

2
> λ[S2] > . . . > λ[Sn] > . . .→

√
2.

In [3], we proved a conjecture of Colding-Ilmanen-Minicozzi-White [18, Conjecture 0.9]
(cf. [31,43]) that, for 2 ≤ n ≤ 6, the entropy of a closed hypersurface in Rn+1 is uniquely
(modulo translations and dilations) minimized by Sn. We further showed, in [4, Corollary
1.3] and [5, Theorem 1.1], that, for n = 2 or 3, any closed connected hypersurface Σ ⊂
Rn+1 with λ[Σ] ≤ λ[Sn−1 × R] is diffeomorphic to Sn. By Alexander’s theorem [1], any
surface in R3 that is topologically a two-sphere is isotopic to S2. The analogous question
for a three-sphere in R4 – known as the Schoenflies problem – is a major open problem;
see [33, 34] for partial results in which this conjecture is proved for hypersurfaces whose
embeddings are “simple” in certain topological senses. Theorem 1.1 may be thought of as
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an affirmative answer to the Schoenflies problem for hypersurfaces that are “simple” in a
geometric sense, namely, for those that have low entropy.

In [5], we also studied the topology of low entropy closed hypersurfaces in higher di-
mensions. In particular, strong evidence was provided that, for n ≥ 4, any closed con-
nected hypersurface Σ ⊂ Rn+1 with λ[Σ] ≤ λ[Sn−1 × R] is a homology Sn. However,
this result is necessarily conditional as it requires a better understanding than current exis-
tence of low entropy minimal cones and low entropy self-shrinkers in higher dimensions.
Using the more detailed analysis of this paper we are able to improve the conclusions of
this conditional result to their sharpest possible form.

In order to state the conditional result, first let Sn be the set of self-shrinkers in Rn+1,
that is Σ ∈ Sn if and only if Σ is a hypersurface in Rn+1 satisfying

(1.4) HΣ +
x⊥

2
= 0

where x is the position vector, the superscript ⊥ denotes the projection to the unit normal
nΣ of Σ, and HΣ = −HΣnΣ = −(divΣnΣ)nΣ is the mean curvature vector. Let S∗n be
the set of non-flat elements of Sn – these are precisely the models of how singularities of
mean curvature flow form. For any Λ > 0, let

Sn(Λ) = {Σ ∈ Sn : λ[Σ] < Λ} and S∗n(Λ) = S∗n ∩ Sn(Λ).

Next, let RMCn denote the space of regular minimal cones in Rn+1, that is C ∈ RMCn
if and only if it is a proper subset of Rn+1 and C\ {0} is a hypersurface in Rn+1\ {0} that
is invariant under dilations about 0 and with vanishing mean curvature. LetRMC∗n denote
the set of non-flat elements of RMCn – i.e., cones whose second fundamental forms do
not identically vanish. For any Λ > 0, let

RMCn(Λ) = {C ∈ RMCn : λ[C] < Λ} andRMC∗n(Λ) = RMC∗n ∩RMCn(Λ).

Let us now fix a dimension n ≥ 3 and a value Λ > 1. The first hypothesis is

(?n,Λ) For all 3 ≤ k ≤ n,RMC∗k(Λ) = ∅.
Observe that all regular minimal cones in R2 consist of unions of rays and soRMC∗1 = ∅.
As great circles are the only geodesics in S2,RMC∗2 = ∅. The second hypothesis is

(??n,Λ) S∗n−1(Λ) = ∅.

Obviously this holds only if Λ ≤ λ[Sn−1]. Denote by λn = λ[Sn]. We then show the
following conditional result in general dimensions.

Theorem 1.3. Fix n ≥ 3 and Λ ∈ (λn, λn−1]. If (?n,Λ) and (??n,Λ) both hold and Σ is a
closed connected hypersurface in Rn+1 with λ[Σ] ≤ Λ, then Σ is smoothly isotopic to Sn.

Remark 1.4. By the results of [3] and [43], there does not exist a closed hypersurface Σ
so that λ[Σ] ≤ λn unless Σ is a round sphere. Thus, we require Λ > λn in order to make
Theorem 1.3 non-trivial.

Remark 1.5. When n = 3, Marques-Neves’ proof of the Willmore conjecture [32, Theo-
rem B] and our earlier result [4, Corollary 1.2] ensure that (?3,λ2

) and (??3,λ2
) hold. Thus,

Theorem 1.1 is a corollary of Theorem 1.3.

As in our previous work [3–5], the tool we use is the mean curvature flow. Specifically,
we use a weak formulation of mean curvature flow, called matching motion (see [27], [38]
and [42]). What is new in the current paper is that we now use a careful analysis of low
entropy self-expanders of mean curvature flow carried out in [9] – which in turn builds on
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work done in [6–8, 10, 11] – in order to understand how certain singularities of the flow
resolve. In previous work, we considered only properties of low entropy self-shrinkers –
i.e., we analyzed only how singularities formed.

Recall that a mean curvature flow is a one-parameter family of hypersurfaces Σt ⊂
Rn+1 that satisfies

(1.5)
(
∂x

∂t

)⊥
= HΣt .

A self-expander is a hypersurface Γ ⊂ Rn+1 satisfying

(1.6) HΓ −
x⊥

2
= 0.

For a self-expander Γ the family
{√

tΓ
}
t>0

is an immortal solution to the mean curva-
ture flow while for a self-shrinker Σ, i.e., a solution to (1.4), the family

{√
−tΣ

}
t<0

is
an ancient solution. A fundamental property of mean curvature flow is that the flow start-
ing from any closed initial hypersurface develops a singularity in finite time and that for
such initial hypersurface with entropy less than 2, if the flow does not disappear at this
singularity, then it can always be continued as a weak flow – see [27] and [38].

Important for our applications is that, by Huisken’s monotonicity formula [26], the en-
tropy is monotone non-increasing under mean curvature flow and that singularities of the
flow are modeled on self-shrinkers – see also [28]. As shown in [5], under the hypothe-
ses of Theorem 1.1, the flow starting from a closed connected hypersurface in R4 with
small entropy will develop only asymptotically conical singularities or closed singularities
before its extinction time and eventually shrinks to a round point – a similar fact is true
conditionally and so applies to Theorem 1.3. In fact we will show in Proposition 6.1 that
the only closed singularity occurs at the extinction time1.

By our previous work [10], see also [2] and [20], self-expanders model the behavior of
a flow when it emerges from a conical singularity. While Huisken’s monotonicity formula
implies the tangent flow is backwardly self-similar, there is currently no known reason for
the forward in time behavior of the tangent flow to be that of a self-expander. Instead, we
use a forward monotonicity formula from [10] and take a second blowup to obtain a self-
expanding flow. This is the source of certain technical difficulties because singularities
may accumulate into the past. To handle this, we use a bubble-tree blowup argument
familiar from other areas of geometric analysis. Specifically, we combine such a blowup
argument with [9] to show the flow passing through asymptotically conical singularities is
smooth away from a negligible set of times and, moreover, stays within the same isotopy
class whenever it is smooth – i.e., the isotopy class does not change as one crosses any
intermediate singular time. The theorem then follows from this easily.
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1609340 and DMS-1904674 and the Institute for Advanced Study with funding provided
by the Charles Simonyi Endowment. The second author was partially supported by the
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Fellowship by the Institute for Advanced Study with funding from the Zürich Insurance
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1In [12], the first-named author and S. Wang used a different argument to show the flow in R4 of small entropy
will not be disconnected so the only closed singularity occurs at the extinction time.
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2. PRELIMINARIES

In this section, we fix notation for the rest of the paper and recall some background on
mean curvature flow. Experts should feel free to consult this section only as needed.

2.1. Basic notions. Here is a list of notation that we use throughout the paper.
BnR(p) the open ball in Rn centered at p with radius R;
B̄nR(p) the closed ball in Rn centered at p with radius R;
U the closure of a set U ;
∂U the topological boundary of a set U ;
∇Σ the covariant derivative on a Riemannian manifold Σ;
C a regular cone in Rn+1, i.e., C \ {0} is a hypersurface in Rn+1 \ {0} that

is invariant under dilations about 0.
We will omit the superscript, n, the dimension of a ball when it is clear from the context.

We will also omit the center of a ball when it is the origin. We will omit the subscript, Σ,
in the covariant derivative when it is clear from the context.

2.2. Weak mean curvature flow. In [13], Brakke introduced a measure-theoretic weak
notion of mean curvature flow, called Brakke flow. We will use the (slightly stronger)
notion introduced by Ilmanen [27, Definition 6.3], that is a family of Radon measures in
Rn+1 satisfying a certain variational inequality.

For a Brakke flow K = {µt}, a point (x0, t0) ∈ Rn+1 × R and ρ > 0, let

K(x0,t0),ρ =
{
µ

(x0,t0),ρ
t

}
where each µ(x0,t0),ρ

t is a Radon measure on Rn+1 given by

µ
(x0,t0),ρ
t (U) = ρ−nµt0+ρ2t(ρU + x0) for any measurable set U.

It is readily checked that K(x0,t0),ρ is also a Brakke flow. Combining the monotonicity
formula [26] and compactness result [13] (see also [27]), Ilmanen showed the following.

Proposition 2.1 ( [28, Lemma 8]). Given an integral Brakke flow K = {µt}t∈(t1,t2) with
bounded area ratios, a point (x0, t0) ∈ spt(K) with t0 > t1, and a sequence ρi → 0, there
is a subsequence ρij and an integral Brakke flow T = {νt}t∈R so thatK(x0,t0),ρij → T as
Brakke flows and, moreover, T is backwardly self-similar with respect to parabolic scaling
about (0, 0) ∈ Rn+1×R, that is, ν(0,0),ρ

t = νt for all t < 0 and ρ > 0, and the associated
varifold Vν−1

is the critical point of the Gaussian surface area F .
Such T is called a tangent flow to K at (x0, t0). We denote the set of all these tangent

flows by Tan(x0,t0)K.

A feature of Brakke flows is that they may suddenly vanish. To overcome this, Ilmanen
[27] introduced a notion called matching motion, (K, τ) where K is an integral Brakke
flow and τ is an (n+ 1)-current, and used it to synthesize the Brakke flow and the level set
flow (see [15] and [22–25]) as long as the latter does not fatten. As the current τ will not
be used in the proof, we will omit it. Of particular importance is a compactness theorem,
shown by S. Wang [38, Theorem 3.5], for matching motions with entropy less than 2.

We collect some useful facts from our previous work [5, 7]. The first is several com-
pactness results. A hypersurface Σ is asymptotically conical if limρ→0+ ρΣ = C in
C∞loc(Rn+1\{0}) where C is a regular cone in Rn+1. When this occurs denote by C = C(Σ)
the asymptotic cone of Σ and by L(Σ) = C(Σ) ∩ Sn the link of C(Σ). Let ACHn be the
set of all asymptotically conical hypersurfaces in Rn+1.
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Proposition 2.2. Fix n ≥ 3 and Λ ∈ (λn, λn−1] and assume that (?n,Λ) and (??n,Λ) hold.
For any ε0 ∈ (0,Λ), the following is true:

(1) The set ACSn[Λ− ε0] = {Σ ∈ ACHn : Σ is a self-shrinker with λ[Σ] ≤ Λ− ε0}
is compact in C∞loc(Rn+1);

(2) The set Ln[Λ− ε0] = {L(Σ): Σ ∈ ACSn[Λ− ε0]} is compact in C∞(Sn);
(3) The set En[Λ − ε0] = {Σ ∈ ACHn : Σ is a self-expander with λ[Σ] ≤ Λ− ε0} is

compact in C∞loc(Rn+1).

Proof. The first and second claim are, respectively, Corollary 3.4 and Proposition 3.5 of
[5]. The last is Theorem 1.1 of [7]. �

The next proposition summarizes some properties about tangent flows of low entropy.

Proposition 2.3. Fix n ≥ 3 and Λ ∈ (λn, λn−1] and assume that (?n,Λ) and (??n,Λ) hold.
If T = {νt}t∈R is a matching motion in Rn+1 such that ν−1 = HnbΣ for Σ ∈ Sn(Λ),
then the following is true:

(1) Σ is either smoothly isotopic to Sn or asymptotically conical;
(2) If Σ is asymptotically conical and λ[Σ] ≤ Λ− ε0 for some ε0 > 0, then there is a

radius R0 = R0(n,Λ, ε0) > 1 and a constant C0 = C0(n,Λ, ε0) > 0 so that for
each |t| ≤ 1 there is a function vt : C(Σ) \BR0

→ R satisfying

sup
C(Σ)\BR0

2∑
i=0

|x|i+1|∇ivt| ≤ C0

and so that

spt(νt) \B2R0
⊆
{
x(p) + vt(p)nC(Σ)(p) : p ∈ C(Σ) \BR0

}
⊆ spt(νt).

Proof. The first claim follows from [18, Theorem 0.7]2 and [5, Proposition 3.3]. The
second is Corollary 3.6 of [5] for t < 0 while, for t > 0, follows from Proposition 2.2, the
pseudo-locality [29, Theorem 1.5 and Remark 1.6]3 and the interior regularity [21]. �

2.3. Isotopies and related concepts. We say two smooth embeddings f0, f1 : M → Rn+1

are isotopic if there is a continuous map F : [0, 1] → C∞(M ;Rn+1) so that F(0) = f0,
F(1) = f1 and, for each τ ∈ [0, 1], F(τ) is an embedding. Two hypersurfaces Σ0,Σ1 ⊂
Rn+1 are isotopic if there exist smooth embeddings f0 : M → Σ0 and f1 : M → Σ1 so
that f0 and f1 are isotopic.

Fix a δ ∈ (0, 1). Two hypersurfaces Σ0,Σ1 ⊂ B4R(p) are δ-isotopic if there are
smooth embeddings f0 : M → Σ0 and f1 : M → Σ1 and a continuous map F : [0, 1] →
C∞(M ;Rn+1) so that

(1) F(0) = f0 and F(1) = f1;
(2) F(τ) is an embedding for each τ ∈ [0, 1];
(3) F(τ) ◦ f−1

0 (BR(p)) ⊂ B2R(p) for each τ ∈ [0, 1];
(4) For each τ ∈ [0, 1],

sup
Σ0∩(B4R(p)\BR(p))

1∑
i=0

Ri−1
∣∣∇iΣ0

(F(τ) ◦ f−1
0 )−∇iΣ0

x|Σ0

∣∣ ≤ δ.
2Although the result states for diffeomorphisms, the proof indeed gives smooth isotopies.
3Matching motions are constructed via Ilmanen’s elliptic regularization [27]. As remarked in [41, Page 1488],

White’s local regularity theorem holds for matching motions. Thus the proof of [29, Theorem 1.5] is valid for
matching motions.
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Fix a unit vector e, a point x0 ∈ Rn+1 and r, h > 0. Let

Ce(x0, r, h) =
{
x ∈ Rn+1 : |(x− x0) · e| < h, |x− x0|2 < r2 + |(x− x0) · e|2

}
be the solid open cylinder with axis e centered at x0 and of radius r and height 2h. A
hypersurface Σ is a C2 e-graph of size δ on scale r at x0 if there is a function f : Bnr ⊂
Pe → R with

2∑
i=0

ri−1‖∇if‖C0 < δ,

where Pe is the n-dimensional subspace of Rn+1 normal to e, so that

Σ ∩ Ce(x0, r, δr) = {x0 + x(x) + f(x)e : x ∈ Bnr } .

Lemma 2.4. Let B4r1(p1), . . . , B4r1(pJ) be pairwise disjoint open balls in Rn+1. Let
Σ0 ⊂ Rn+1 be a hypersurface that is a C2 nΣ0

-graph of size 1 on scale c0r1 at every
p ∈ Σ0 \

⋃J
j=1Br1(pj). Then there is a sufficiently small δ0 = δ0(n, c0) > 0 so that if a

hypersurface Σ1 ⊂ Rn+1 satisfies:
(1) Σ0 ∩B4r1(pj) is δ0-isotopic to Σ1 ∩B4r1(pj) for each 1 ≤ j ≤ J;
(2) There is a continuous family of functions uτ : Σ0 \

⋃J
j=1Br1(pj) → R for τ ∈

[0, 1] with uτ = 0 and

sup
Σ0\

⋃J
j=1 Br1 (pj)

1∑
i=0

ri−1
1 |∇iΣ0

uτ | ≤ δ0

and so that

Σ1\
J⋃
j=1

B2r1(pj) ⊆

x(p) + u1(p)nΣ0(p) : p ∈ Σ0\
J⋃
j=1

Br1(pj)

 ⊆ Σ1,

then there is an isotopy F : [0, 1] → C∞(Σ0;Rn+1) with F(0) = x|Σ0
and F(1)(Σ0) =

Σ1 and so that, for each τ ∈ [0, 1],
(1) F(τ)(B4r1(pj)) ⊂ B8r1(pj) for each 1 ≤ j ≤ J;
(2) F(τ)(p) = x(p) +u`(τ)(p)nΣ0

(p) for p ∈ Σ0 \
⋃J
j=1B4r1(pj) where ` : [0, 1]→

[0, 1] is a continous increasing function with `(0) = 0 and `(1) = 1.

Proof. Define F0(τ) : Σ0\
⋃J
j=1Br1(pj)→ Rn+1 by

F0(τ) = x(p) + uτ (p)nΣ0
(p).

By the hypotheses on Σ0 and uτ , for δ0 sufficiently small F0(τ) is an embedding for each
τ ∈ [0, 1].

Set U0 = Rn+1 \
⋃J
j=1 B̄3r1(pj) and Uj = B4r1(pj) for 1 ≤ j ≤ J . Let {φj}0≤j≤J

be a partition of unity subordinate to the open cover {Uj}0≤j≤J so |∇φj | ≤ 2r−1
1 for each

j. For τ ∈ [0, 1], we define F̃(τ) : Σ0 → Rn+1 by

F̃(τ) =
J∑
j=0

φjFj(τ)

where Fj for 1 ≤ j ≤ J are the δ0-isotopies with Fj(0) = x|Σ0∩Uj that the hypotheses
ensure exist.

Up to shrinking δ0, one has that F̃(τ) are all embeddings with F̃(0) = x|Σ0 . Moreover,
Σ′1 = F̃(1)(Σ0) is sufficiently close, in the C1 topology, to Σ1 so they are isotopic via the
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normal exponential map on Σ′1. As F̃(1) = F(1) on Σ0 \
⋃J
j=0B4r1(pj), combining the

isotopy between Σ′1 and Σ1 with F̃ gives the desired isotopy between Σ0 and Σ1. �

We will need a notion of a.c.-isotopies between asymptotically conical hypersurfaces
which is closely related to those introduced in [9, Section 2]. Fix an asymptotically con-
ical hypersurface Γ ⊂ Rn+1 with asymptotic cone C = C(Γ). Thus, for some R > 1
large enough, πC – the nearest point projection onto C – restricts to a diffeomorphism of
ΓR = Γ \ B̄R onto its image and denote its inverse by θΓR . For any integer k ≥ 2, let
ACEkn(Γ) be the space of Ck-asymptotically conical Ck embeddings of Γ into Rn+1, i.e.,
Ck embeddings g : Γ→ Rn+1 so that limρ→0+ ρ(g◦θΓR)(ρ−1p) = h(p) in Ckloc(C\{0})
where h : C → Rn+1 is a homogeneous of degree one (i.e., ρh(ρ−1p) = h(p) for all p ∈ C
and ρ > 0) Ck embedding and denote by tr1

∞[g] = h|C∩Sn . Equip the space ACEkn(Γ)
with the Ck1 norm

‖g‖Ck1 = sup
p∈Γ

k∑
i=0

(1 + |x(p)|)i−1|∇ig|.

We then let ACEn(Γ) =
⋂
k≥2ACE

k
n(Γ) with the usual Fréchet topology.

Two elements g0,g1 ∈ ACEn(Γ) are a.c.-isotopic if there exists a continuous path
G : [0, 1] → ACEn(Γ) with G(0) = g0 and G(1) = g1 and tr1

∞[G(t)] = tr1
∞[G(0)] for

all t ∈ [0, 1]. Two asymptotically conical hypersurfaces Γ0,Γ1 ⊂ Rn+1 are a.c.-isotopic
if there are two elements gj ∈ ACEn(Γ) with gj(Γ) = Γj for j ∈ {0, 1} so that they are
a.c.-isotopic. By composing with g−1

0 , we will always take Γ = Γ0 and G(0) = x|Γ0
.

Furthermore, for fixed R > 1 and C > 0 we say G is (R,C)-regular if there exists a
continuous family of functions vτ : C(Γ0) \BR → R for τ ∈ [0, 1] satisfying

sup
C(Γ0)\BR

2∑
i=0

|x|i+1|∇ivτ | ≤ C

and so that

G(τ)(Γ0) \B2R ⊆
{
x(p) + vτ (p)nC(Γ0)(p)) : p ∈ C(Γ0)

}
⊆ G(τ)(Γ0).

In this case, we also call Γ0 and Γ1 = G(τ)(Γ0) are (R,C)-regular a.c.-isotopic.

Lemma 2.5. Fix a regular cone C ⊂ Rn+1 that is a C2 nC-graph of size 1 on scale
r0 at every p ∈ L = C ∩ Sn. Let Γ0 and Γ1 be two asymptotically conical hyper-
surfaces in Rn+1 with C(Γ0) = C(Γ1) = C and that are (R0, C0)-regular a.c.-isotopic
for some constants R0 > 1 and C0 > 0. Then for every δ ∈ (0, 1) there is a radius
R1 = R1(n, r0, R0, C0, δ) > 1 so that, for any R > R1, Γ0 ∩ B4R is δ-isotopic to
Γ1 ∩B4R.

Proof. Suppose G : [0, 1] → ACEn(Γ0) is an (R0, C0)-regular a.c.-isotopy between Γ0

and Γ1. Fix a κ ∈ (0, 1) to be determined later in the proof. Let ΠC(p) be the nearest
point projection (in ∂B|p|) of p onto C ∩ ∂B|p|. Let Γτ = G(τ)(Γ0). Then there is a
radius R̃1 = R̃1(n, r0, R0, C0, δ, κ) > 2R0 so that, for each τ ∈ [0, 1], ΠC restricts to a
diffeomorphism of Γτ \BR̃1

onto C \BR̃1
and its inverse fτ satisfies

sup
C\BR̃1

2∑
i=0

|x|i−1|∇ifτ −∇ix|C | ≤ κδ.

By the continuity of G there is a radius R̃0 > 2R̃1, which may depend on the isotopy G,
so that for each τ ∈ [0, 1]
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• G(τ)(Γ0 ∩B2R̃0
) ⊂ B4R̃0

;
• supΓ0\BR̃0

∑1
i=0 |x|i−1

∣∣∇iG(τ)−∇ix|Γ0

∣∣ ≤ κδ.

Let φ : Rn+1 → [0, 1] be a radial cutoff so that φ = 1 outside B2R̃1
and φ = 0 in BR̃1

.
Let Vτ = φ|x|2|xT |−2xT be a vector field on Γτ whose flow dilates on Γτ . If {Φτ (t)}t∈R
is the family of diffeomorphisms of Γτ generated by Vτ , then

∂

∂t
|Φτ (t, p)| = φ(Φτ (t, p))|Φτ (t, p)|.

Thus, for t ≥ 0,
|x(p)| ≤ |Φτ (t, p)| ≤ et|x(p)|

with equality in the second inequality for p ∈ Γτ \B2R̃1
so Φτ (Γτ ∩∂BR) = Γτ ∩∂BetR

and Φτ (Γτ ∩BR) = Γτ ∩BetR for R > 2R̃1. Likewise, for t < 0,

et|x(p)| ≤ |Φτ (t, p)| ≤ |x(p)|,
with equality in the first equality as long as p ∈ Γτ \B2R̃1e−t

. Now define

G̃(τ) = Φτ (log(R̃1R̃
−1
0 )) ◦G(τ) ◦ Φ0(log(R̃−1

1 R̃0)).

It is readily checked that, for an appropriate choice of κ = κ(n) and corresponding R̃1, as
log(R̃−1

1 R̃0) > 0 one has

• G̃(τ)(Γ0) = Γτ for each τ ∈ [0, 1];
• G̃(τ)(Γ0 ∩B2R̃1

) ⊂ Γτ ∩B4R̃1
for each τ ∈ [0, 1];

• supΓ0\B2R̃1

∑1
i=0 |x|i−1|∇iG̃(τ)−∇ix|Γ0

| ≤ δ for each τ ∈ [0, 1].

Hence the result follows with R1 = 2R̃1. �

3. BASIC TANGENT FLOW ANALYSIS

In this section we combine the forward monotonicity formula for flows coming out of a
cone and trapped between two expanders from [10] with the main theorem of [9] to prove
an initial structural result for model tangent flows of low entropy. Backwards in time these
flows will be self-shrinkers and so the emphasis is on the forward in time behavior.

We first need a lemma showing that expander mean convex solutions coming out of a
cone can be rescaled to produce self-expanders.

Lemma 3.1. Fix n ≥ 3 and Λ ∈ (λn, λn−1] and assume that (?n,Λ) holds. Let {Σt}t>0

be a mean curvature flow of connected asymptotically conical hypersurfaces in Rn+1 so
that

lim
t→0+

HnbΣt = HnbC

where C is a regular cone in Rn+1 and, for a consistent choice of unit normal, nΣt , of Σt,

EO,tΣt
= 2tHΣt + x · nΣt < 0.

If λ[Σt] < Λ for all t, then

lim
t→0+

t−1/2Σt = Γ in C∞loc(Rn+1)

where Γ is an asymptotically conical self-expander with C(Γ) = C. In fact, Γ is a.c.-
isotopic to Σ1. Finally, if Ut are components of Rn+1 \Σt so nΣt points out of Ut and U∞
is the corresponding component of Rn+1 \ Γ, then one has U∞ ⊂ t

−1/2
1 Ut1 ⊂ t

−1/2
2 Ut2

for 0 < t1 < t2.
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Proof. This is essentially proved in [9, Proposition 5.1] for t → ∞. For the reader’s
convenience, we recall the relevant arguments (with slight modifications) in the proof of [9,
Proposition 5.1]. First consider the rescaled mean curvature flow associated to {Σt}t>0

given by Γs = t−1/2Σt where s = log t. Let Ks be the closure of t−1/2Ut. By the
hypothesis on EO,tΣt

, one has that Ks ⊂ int(Ks′) for all s < s′. For τ < 0, let Γτs = Γs+τ .
Thus, by Brakke’s compactness theorem [13], given τi → −∞ there is a subsequence
τij and an integral rescaled Brakke flow {µs}s∈R so that HnbΓ

τij
s → µs for each s.

Moreover, by the monotonicity of Ks and the upper semi-continuity of Gaussian density,
spt(µs) = ∂K for all s where K =

⋂
s∈RKs. Hence, {µs}s∈R is a static solution of

the rescaled Brakke flow and HnbΓτs → µs as τ → −∞. By the scaling invariance of
entropy, λ[Γs] = λ[Σt] < Λ < 3

2 for all s. Thus, by the lower semi-continuity of entropy,
λ[µs] < Λ < 2 for all s and so µs = Hnb∂K. Let V∂K be the varifold associated to ∂K.
As the flow {Σt}t>0 comes out of a cone at t = 0, [9, Lemma 5.3]4 and the Arzelà-Ascoli
theorem ensure that the tangent cone of V∂K at infinity is equal to C.

The major difference when t→ 0 is that the limit V∂K will, generally, not be E-stable.
This is only relevant for the regularity of the limit and of the convergence. Instead, one may
appeal to a dimension reduction argument [40] and the entropy bound and (?n,Λ) to obtain
that V∂K is a regular multiplicity-one E-stationary5 varifold. Thus, ∂K is a self-expander
in Rn+1. Finally, by Brakke’s regularity theorem [13] – see also [41] – as s → −∞,
Γs → ∂K in C∞loc(Rn+1). Combining this with [9, Lemma 5.3], it is readily checked that
the flow {Γs} provides a natural a.c.-isotopy between Γ0 = Σ1 and ∂K. Therefore, the
lemma follows with Γ = ∂K. �

Proposition 3.2. Fix n ≥ 3, Λ ∈ (λn, λn−1] and ε0 ∈ (0,Λ). Assume that (?n,Λ) and
(??n,Λ) hold. Let T = {νt}t∈R be a matching motion in Rn+1 such that ν−1 = HnbΣ for
Σ ∈ ACSn[Λ− ε0]. Then there is a ρ+ = ρ+(T ) ∈ (0, 1) so that

(1) T bRn+1 × (0, ρ2
+) is a smooth flow;

(2) For all t ∈ (0, ρ2
+), the asymptotically conical hypersurfaces Γt = spt(νt) are

(R0, C0)-regular a.c.-isotopic to Σ, whereR0 = R0(n,Λ, ε0) andC0 = C0(n,Λ, ε0)
are given by Proposition 2.3.

Proof. If Σ = Rn, then the proposition is trivially true. To that end, we assume Σ is
non-flat. As Σ is an asymptotically conical self-shrinker, it is connected by the Frankel
property of self-shrinkers (see, e.g., [39, Theorem 7.4] and a combination of [30, Theorem
C] and [37]). Let f ∈ C∞(Σ) be the unique positive function that satisfies∫

Σ

|f |2e−
|x|2
4 dHn = 1

and

−LΣf = −
(

∆Σ −
x

2
+ |AΣ|2 +

1

2

)
f = µ0f

where µ0 < −1 is the lowest eigenvalue of the shrinker stability operator – see [4, Propo-
sition 4.1] for the existence of such a function. As observed in [4, Proposition 4.1] this f

4Although the lemma applies to mean curvature flows starting from a smooth asymptotically conical hyper-
surface, the arguments in the proof are local and only relevant for regions outside a compact set and so also work
for flows starting from a regular cone.

5An integral varifold V is E-stationary if it is a critical point of the functional E[V ] =
∫
e
|x|2
4 dV .
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has sublinear growth. Hence, as Σ is asymptotically conical, there is an ε̃ > 0 so that for
all ε ∈ (−ε̃, ε̃) one has

Σε = {x(p) + εf(p)nΣ(p) : p ∈ Σ}

are embedded asymptotically conical hypersurfaces with C(Σε) = C(Σ). Up to shrinking
ε, one can ensure that λ[Σε] < λ[Σ] ≤ Λ − ε0 when ε 6= 0 and each Σε has shrinker
mean curvature, HΣε + x⊥

2 that points away from Σ = Σ0 for ε 6= 0. These facts are all
proved in [4, Proposition 4.2] – though the direction of the shrinker mean curvature is not
explicitly stated it is easily determined from the argument. These hypersurfaces also form
a foliation around Σ = Σ0.

Use the choice of unit normal on Σ to define Ω−(Σ) as the component of Rn+1\Σ
for which nΣ points outward – as Σ is connected there are only two components. This
definition extends in an obvious and compatible way to the Σε. Using this, Let U ε =
Ω−(Σε). Clearly, for ε1 < ε2, one has U ε1 ⊆ U ε2 . Observe that for ε > 0 the shrinker
mean curvature of Σε points out of U ε, while for ε < 0 it points into the region.

For ε 6= 0, let T ε = {Σεt}t∈[−1,∞) be the mean curvature flow with initial data deter-
mined by Σε. As proved in [4, Proposition 4.5] these flows are smooth for all times and
remain asymptotic to C(Σ). Moreover, the maximum principle ensures that if ε1 6= ε2,
then Σε1t is disjoint from Σε2t for all t ∈ [−1,∞). In addition, each Σεt is a.c.-isotopic
to Σ. Choose the unit normal nΣεt

on Σεt that is compatible with the one on Σε. Using
this normal, let U εt be the component of Rn+1 \ Σεt so nΣεt

points out of it. Clearly, as
the flows of distinct values of ε remain disjoint, one has that, for ε1 < ε2, U ε1t ⊆ U ε2t
for all t ≥ −1. Moreover, one has that spt(νt), the support of the initial flow T , satisfies
spt(νt) ⊆ U ε+t \ U

ε−
t for any −ε̃ < ε− < 0 < ε+ < ε̃.

By the compactness of Brakke flows [13] (see also [27] and [38]), one can consider
T + = limε↓0 T ε and T − = limε↑0 T ε. Write T ± =

{
ν±t
}
t∈[−1,∞)

. These limits

exist as the flows are topologically ordered. Indeed, let U+
t =

⋂
ε∈(0,ε̃) U

ε
t and U−t =⋃

ε∈(−ε̃,0) U
ε
t – one readily checks these are sets of locally finite perimeter. By the entropy

bound one has ν±t = Hnb∂∗U±t . Moreover, by the uniqueness for smooth mean curva-
ture flows of bounded curvature, one has that T ± = T in Rn+1 × [−1, 0) and, hence, in
Rn+1 × [−1, 0]. However, in general, T +, T − and T can be disjoint in Rn+1 × (0,∞).
Nevertheless, they are ordered in the expected way. Indeed, U−t ⊆ U+

t and spt(νt) ⊆
Ωt = U+

t \ U−t .
As each Σε is shrinker mean convex for ε 6= 0, it follows from the parabolic maximum

principle (e.g., [4, Proposition 4.4]) that Σεt is also shrinker mean convex for t ∈ [−1, 0)
and is expander mean convex for t ∈ (0,∞). Note that for t ∈ (−1, 0) the shrinker
mean curvature points away from Ωt =

√
−tΣ, while, for t > 0, the expander mean

curvature points toward Ωt. The strict maximum principle and (?n,Λ) and (??n,Λ) and
standard blowup arguments imply that for t > 0 either spt(ν+

t ) =
√
tΓ+ for Γ+ a smooth

self-expander or spt(ν+
t ) = Σ+

t where
{

Σ+
t

}
t>0

is a smooth mean curvature flow that
is strictly expander mean convex and satisfies the other hypotheses of Lemma 3.1. If the
latter case occurs, then Lemma 3.1 implies limt→0 t

−1/2Σ+
t = Γ+ for Γ+ a smooth self-

expander. A similar argument produces a self-expander Γ− corresponding to T −. In either
case, for t > 0, Ωt lies between

√
tΓ− and

√
tΓ+. As Γ± are smooth and are either limits

of Σε1 or are a.c.-isotopic to these limits, they are both a.c.-isotopic to Σ.
Now consider any tangent flow T ′ to T at (0, 0). As T is trapped between

√
tΓ− and√

tΓ+ for t > 0, one can appeal to the forward monotonicity formula [10, Theorem 6.1]
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(see also Appendix A) and (?n,Λ) to see that, for t > 0, T ′ =
{√

tΓ′
}
t>0

for Γ′ a smooth
self-expander trapped between Γ− and Γ+. By the main result of [9] (see also Appendix
B), Γ′ is a.c.-isotopic to Γ− and hence to Σ.

One proves the existence of ρ+ by contradiction. To see the first claim, suppose there
was no such ρ+, then there would be a sequence of singular points of T , (xi, ti) ∈ Rn+1×
(0,∞) with ti → 0. By Brakke’s regularity theorem (e.g., [13] and [41]) (xi, ti)→ (0, 0).
Let ri = (|xi|2 +ti)

1/2 so ri → 0 and (x′i, t
′
i) = (r−1

i xi, r
−2
i ti). By what we have already

shown, the rescaled flows T (0,0),ri , up to passing to a subsequence, converge to a tangent
flow T ′ which is

√
−tΣ for t < 0 and

√
tΓ′ for t > 0 for Γ′ a smooth self-expander. As

|x′i|2 +t′i = 1, up to passing to a further subsequence, (x′i, t
′
i)→ (x′0, t

′
0) and, by the upper

semicontinuity of Gaussian density, (x′0, t
′
0) lies on the support of T ′. As |x′0|2 + t′0 = 1

and t′0 ≥ 0, (x′0, t
′
0) is a regular point of T ′ and so, invoking Brakke’s regularity again, for

all large i the (x′i, t
′
i) are regular points of T (0,0),ri . That is, the (xi, ti) are regular points

of T . This contradiction proves the first claim.
To see the second claim, again suppose there was no such ρ+, then there would be a

sequence ti > 0 with ti → 0 so that the spt(νti) are not (R0, C0)-regular a.c.-isotopic to
Σ. Consider the rescaled flows T (0,0),

√
ti =

{
νit
}
t∈R so, up to passing to a subsequence,

they converge to a tangent flow T ′ = {ν′t}t∈R. As remarked before, spt(ν′t) =
√
−tΣ

for t < 0 and spt(ν′t) =
√
tΓ′ for Γ′ a self-expander that is a.c.-isotopic to Σ. Let δ0 =

δ0(n, 1) ∈ (0, 1) be the number given by Lemma 2.4. As spt(νi1) → Γ′ in C∞loc(Rn+1),
for any sufficiently large R, for all large i the spt(νi1) ∩ B4R are δ0-isotopic to Σ ∩ B4R.
That is, spt(νti) ∩ B4R

√
ti is δ0-isotopic to (

√
ti Σ) ∩ B4R

√
ti . By Proposition 2.3 and

the pseudo-locality [29, Theorem 1.5], up to increasing R, for i large and t ∈ [−ti, ti],
spt(νt) outside a compact set is given by the normal exponential graph of a function ut
over (

√
ti Σ) \ BR√ti with (R

√
ti)
−1|ut| + |∇ut| < δ0. Thus, by Lemma 2.4, for i

large there is an isotopy between
√
ti Σ and spt(νti) so that each slice of the isotopy

outside B8R
√
ti is contained in spt(νt) for some t ∈ [−ti, ti]. In particular, the isotopy is

(R0, C0)-regular for constants R0 and C0 given by Proposition 2.3. This is a contradiction
and completes the proof. �

4. ALMOST ISOTOPIES

In this section we show that if all the tangent flows of a mean curvature flow of low
entropy are “almost isotopies” in a certain sense, then the flow itself is an almost isotopy.

First of all, given a matching motion K let sing(K) ⊆ spt(K) be the set of singular
points of K and reg(K) = spt(K) \ sing(K) be the set of regular points. We then let

ST(K) =
{
t0 ∈ R : (x0, t0) ∈ sing(K) for some x0 ∈ Rn+1

}
be the set of singular times.

Definition 4.1. Let K = {µt}t∈[−1,1) be a matching motion with spt(µt) compact. We
call K an almost isotopy if

(1) ST(K) ⊆ (−1, 1) has L1 measure zero;
(2) For every t /∈ ST(K) either spt(µt) = ∅ or spt(µt) is isotopic to spt(µ−1).

Definition 4.2. Let K = {µt}t∈R be a matching motion such that µ−1 = HnbΣ for Σ an
asymptotically conical self-shrinker in Rn+1. We call K an almost a.c.-isotopy if

(1) ST(K) ∩ [0, 1) has L1 measure zero;
(2) For every t ∈ [0, 1) \ ST(K), spt(µt) is a.c.-isotopic to Σ.
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For fixed R > 1 and C > 0, an almost a.c.-isotopy K is called (R,C)-regular if spt(µt)
is (R,C)-regular a.c.-isotopic to Σ for every t /∈ ST(K).

Define the distance d on space-time Rn+1 × R to be

d((x, t), (y, s)) =
√
|x− y|2 + |t− s|.

Denote by BdR((x0, t0)) the (open) ball in the metric d centered at (x0, t0) with radius R.
Given a matching motion K = {µt} and a point X0 = (x0, t0) ∈ reg(K), let

RKreg(X0) = sup
{
r > 0: Σt0 = spt(µt0) is a C2 nΣt0

-graph of size 1 on scale r at x0

}
be the regularity radius of K at X0. We will omit the superscript, K, when it is clear from
the context.

Lemma 4.3. Let K = {µt}t∈[−1,1) be a matching motion in Rn+1 and X0 = (x0, t0) ∈
spt(K). Suppose every T = {νt}t∈R ∈ TanX0

K satisfies ν−1 = HnbΣ for Σ an asymp-
totically conical self-shrinker6. Then there exists ρ0 = ρ0(K, X0) > 0 so that

(1) Kb(Bdρ0(X0) ∩ {t < t0}) is a smooth flow;
(2) κ0 = inf

{
d(X,X0)−1Rreg(X) : X ∈ reg(K) ∩Bdρ0(X0) ∩ {t < t0}

}
> 0.

Proof. We argue by contradiction. Suppose there was no such ρ0, then there would be a
sequence of points Xi = (xi, ti) ∈ spt(K) with ti < t0 and d(Xi, X0) → 0 and so that
one of the following situations occurs:

(1) Xi ∈ sing(K) for all large i;
(2) Xi ∈ reg(K) and d(Xi, X0)−1Rreg(Xi)→ 0.

Let ri = d(Xi, X0) > 0 and X̃i = (r−1
i (xi − x0), r−2

i (ti − t0)) so d(X̃i, O) = 1 where
O = (0, 0) ∈ Rn+1 × R. Up to passing to a subsequence, one may assume X̃i → X̃0

with d(X̃0, O) = 1. Consider the rescaled flows KX0,ri and, up to passing to a further
subsequence, they converge to a tangent flow T = {νt}t∈R where ν−1 = HnbΣ for
Σ an asymptotically conical self-shrinker. As X̃i ∈ spt(KX0,ri) for all large i, by the
upper semi-continuity of Gaussian density, one has X̃0 ∈ spt(T ). As X̃0 6= O and
T b((Rn+1 \ {0})× (−∞, 0]) is a smooth flow, it follows that X̃0 ∈ reg(T ). By Brakke’s
regularity theorem [13], for all large i, X̃i ∈ reg(KX0,ri) and Rreg(X̃i) > κ > 0. It
follows that, for all large i, Xi ∈ reg(K) and d(Xi, X0)−1Rreg(Xi) > κ > 0. That is,
neither of the situations occurs and this is a contradiction, finishing the proof. �

Combining Proposition 2.3 and Lemma 4.3 we obtain the following corollary.

Corollary 4.4. Fix n ≥ 3 and Λ ∈ (λn, λn−1] and assume that (?n,Λ) and (??n,Λ) hold.
Let K = {µt}t∈[−1,1) be a matching motion in Rn+1 with λ[µ−1] ≤ Λ and assume that
spt(µ−1) is either a closed hypersurface or an asymptotically conical self-shrinker. Then
the following is true:

(1) For every t0 ∈ (−1, 1), singt0(K) = {x0 : (x0, t0) ∈ sing(K)} is a finite set;
(2) For every t0 ∈ ST(K), there is a ∆0 > 0 so that (t0 −∆0, t0) ∩ ST(K) = ∅.

Lemma 4.5. Fix n ≥ 3, Λ ∈ (λn, λn−1], ε0 ∈ (0,Λ) and δ ∈ (0, 1). Assume that
(?n,Λ) and (??n,Λ) hold. Let K = {µt}t∈[−1,1) be a matching motion in Rn+1 with
λ[µ−1] ≤ Λ − ε0. Suppose that (x0, t0) ∈ spt(K) is such that every T ∈ Tan(x0,t0)K

6By recent work of Chodosh-Schulze [17], the asymptotically conical multiplicity-one tangent flow is unique.
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is an (R0, C0)-regular almost a.c.-isotopy. Given α > R1 and γ ∈ (0, 1), there exists
ρ1 = ρ1(K,x0, t0, α, γ) > 0 so that: if ρ < ρ1 and

Icδ (ρ) =
{
s ∈ (0, ρ2) : spt(µt0+s) is not 2δ-isotopic to spt(µt0−s) in B4αρ(x0)

}
,

then one has
L1(Icδ (ρ)) ≤ γρ2.

Here R0 = R0(n,Λ, ε0) and C0 = C0(n,Λ, ε0) are given by Proposition 2.3, and R1 =
R1(n,Λ, ε0, δ) is chosen by Proposition 2.2 and Lemma 2.5.

Proof. We argue by contradiction. That is, suppose there was no such ρ1. That means
there are a sequence of ρi → 0 so that L1(Icδ (ρi)) > γρ2

i .
Up to passing to a subsequence, one has that K(x0,t0),ρi converges to an element T =

{νt}t∈R ∈ Tan(x0,t0)K with ν−1 = HnbΣ for Σ an asymptotically conical self-shrinker.
By our hypotheses, T is an (R0, C0)-regular almost a.c.-isotopy. Thus, ST(T ) ∩ (0, 1)
has Lebesgue measure zero and, by Lemma 2.5, for every t ∈ (0, 1) \ ST(T ), spt(νt)
is δ-isotopic to spt(ν−t) in B4α. As (0, 1) \ ST(T ) is an open subset of (0, 1), there
exists a decomposition J = {Jβ} of (0, 1) \ ST(T ) where each Jβ is an open interval in
(0, 1)\ST(T ). That is, the sets in J are pairwise disjoint and their union is (0, 1)\ST(T ).
Furthermore, as Q is dense in R, we may assume the index set of J is equal to N. As
L1(
⋃
β Jβ) = L1((0, 1) \ ST(T )) = 1, there is a finite subcollection {J1, . . . , JN} ⊂ J

so that L1(J) > 1 − 1
4γ for J =

⋃N
β=1 Jβ . As the set J is bounded and a finite union of

open intervals, there is a compact subset J0 ⊂ J so L1(J0) > 1 − 1
2γ. As T is regular

at all |t| ∈ J , it follows from White’s version [41] of Brakke’s regularity theorem that
K(x0,t0),ρi converges smoothly to T at those times. Hence, for large i, spt(µ

(x0,t0),ρi
t )

is 2δ-isotopic to spt(µ
(x0,t0),ρi
−t ) in B4α for all t ∈ J0. It follows that spt(µt0+s) is 2δ-

isotopic to spt(µt0−s) in B4αρi(x0) for all s ∈ ρ2
iJ0. Thus, L1(Icδ (ρi)) <

1
2γρ

2
i , giving a

contradiction. This proves the lemma. �

Proposition 4.6. Fix n ≥ 3, Λ ∈ (λn, λn−1] and ε0 ∈ (0,Λ). Assume that (?n,Λ) and
(??n,Λ) hold. Let K = {µt}t∈[−1,1) be a matching motion in Rn+1 with λ[µ−1] ≤ Λ− ε0
and assume Σ = spt(µ−1) is a closed hypersurface. If t0 ∈ (−1, 1) is such that, for every
(x0, t0) ∈ spt(K), every T ∈ Tan(x0,t0)K is an (R0, C0)-regular almost a.c.-isotopy,
where R0 and C0 are given by Proposition 2.3, then there exists ρ2 = ρ2(K, t0) > 0 so
that: if ρ < ρ2 and

Iciso(ρ) =
{
s ∈ (0, ρ2) : spt(µt0+s) is not isotopic to spt(µt0−s)

}
,

then one has
L1(Iciso(ρ)) ≤ 1

2
ρ2.

The same conclusions hold if one instead supposes Σ = spt(µ−1) is an asymptotically
conical self-shrinker, with the set

Iciso(ρ) =
{
s ∈ (0, ρ2) : spt(µt0+s) is not (R0, C0)-regular a.c.-isotopic to spt(µt0−s)

}
.

Proof. By Lemma 4.3 and Corollary 4.4, there exist ρ0 = ρ0(K, t0) > 0 and c0 =
c0(K, t0) > 0 so that if X = (x, t) ∈ spt(K) with t ∈ (t0 − ρ2

0, t0), then X ∈ reg(K)
and Rreg(X) > c0d(X, singt0(K)). Let δ0 = δ0(n, c0) be the number given by Lemma
2.4. Let N(t0) be the number of elements of singt0(K) =

{
x1, . . . ,xN(t0)

}
. Hence, it

follows from Lemma 4.5 with δ = δ0
2 and γ = 1

2N(t0) that for every large α there exists
ρ1 = ρ1(K, t0, α) > 0 so that for every ρ < ρ1 for all s ∈ (0, ρ2) \ Icδ,i(ρ) = Iδ,i(ρ)
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one has spt(µt0+s) is δ-isotopic to spt(µt0−s) in B4αρ(xi) where (xi, t0) ∈ sing(K),
1 ≤ i ≤ N(t0). As α may be arbitrarily large, using the pseudo-locality [29] one sees that
for all t ∈ [t0 − s, t0 + s] the spt(µt) away from x1, . . . ,xN(t0) are given by the normal
graph of a function ut over spt(µt0−s) \

⋃N(t0)
i=1 Bαρ(xi) with (αρ)−1|ut| + |∇ut| < δ.

Thus, invoking Lemma 2.4, one gets an isotopy between spt(µt0+s) and spt(µt0−s) for
any s ∈

⋂N(t0)
i=1 Iδ,i(ρ) with ρ > 0 small. Clearly,

Iciso(ρ) ⊆ (0, ρ2) \
N(t0)⋂
i=1

Iδ,i(ρ) =

N(t0)⋃
i=1

Icδ,i(ρ)

and so, by Lemma 4.5 and the choice of γ, one has

L1(Iciso(ρ)) ≤
N(t0)∑
i=1

γρ2 =
1

2
ρ2.

Moreover, if Σ is an asymptotically conical self-shrinker, then Proposition 2.3 implies
these isotopies are (R0, C0)-regular. This last observation concludes the proof. �

Theorem 4.7. Fix n ≥ 3, Λ ∈ (λn, λn−1] and ε0 ∈ (0,Λ). Assume that (?n,Λ) and
(??n,Λ) hold. Let K = {µt}t∈[−1,1) be a matching motion in Rn+1 with λ[µ−1] ≤ Λ− ε0
and assume Σ = spt(µ−1) is a closed connected hypersurface (resp. Σ = spt(µ−1) is
an asymptotically conical self-shrinker). If for every (x0, t0) ∈ spt(K) with t0 ∈ (−1, 1)
(resp. t0 ∈ (0, 1)), every T = {νt}t∈R ∈ Tan(x0,t0)K satisfies either

(1) spt(ν−1) is compact; or
(2) spt(ν−1) is non-compact and T is an (R0, C0)-regular almost a.c.-isotopy, where

R0 and C0 are given by Proposition 2.3,
then K is an almost isotopy (resp. K is an (R0, C0)-regular almost a.c.-isotopy).

Proof. By Corollary 4.4, every point in ST(K) has Lebesgue density at most 1
2 . As ST(K)

is a closed set, the Lebesgue density theorem implies ST(K) has Lebesgue measure zero.
We first suppose Σ = spt(µ−1) is a closed connected hypersurface. Without loss of

generality we assume K does not disappear, as otherwise we restrict the flow up to the
extinction time, and translate in time and do a parabolic dilatation to obtain a new flow
satisfying the hypotheses that does not go extinct. Let

B = {t ∈ (−1, 1) \ ST(K) : spt(µt) is not isotopic to Σ} .

The openness of B ensures that it is enough to show that B has Lebesgue measure zero in
order to conclude K is an almost isotopy.

Let
Bc = {t ∈ (−1, 1) \ ST(K) : spt(µt) is isotopic to Σ}

soB∪Bc = (−1, 1)\ST(K). First we show that for any I = (a, b) with−1 ≤ a < b ≤ 1
and a ∈ Bc

tI = sup {t ∈ Bc ∩ I} = b.

As a ∈ Bc, in particular a is a regular time and so times near a are also in Bc. Thus,
Bc ∩ I is non-empty so tI is well defined and tI > a. Take a sequence of times ti ∈
Bc ∩ I so that ti → tI . Clearly, tI ∈ ST(K). By Corollary 4.4, there is a δ > 0 so
that (tI − δ, tI) ⊆ Bc ∩ I . If tI < b, then tI is not the extinction time and, as Σ is
connected by hypothesis, all tangent flows at time tI have non-compact support. Hence,
by our hypotheses, it follows from Proposition 4.6 that there is a small ∆ > 0 so that
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spt(µtI+∆) is isotopic to spt(µtI−∆) and hence to Σ. That is, tI + ∆ ∈ Bc ∩ I but
tI + ∆ > tI . This contradicts the definition of tI and thus tI = b proving the claim.

Fix any ε > 0. As ST(K) is compact and has Lebesgue measure zero, one finds a finite
cover of ST(K), Ij = (aj , bj) for 1 ≤ j ≤ J with a1 < a2 < · · · < aJ , that satisfies

• all aj , bj are in (−1, 1) \ ST(K);
• Ij ∩ Ik 6= ∅ only if |j − k| ≤ 1;
• Ij is not a subset of Ik when |j − k| = 1.
•
∑J
j=1 |Ij | < ε.

We claim that it is possible to choose all aj ∈ Bc. Indeed, as the flow is smooth on [−1, a1],
one has a1 ∈ Bc. We next consider two situations. The first situation is that I1 ∩ I2 is
empty. By the previous claim, b1 ∈ Bc, so either a2 = b1 ∈ Bc or, if b1 < a2, one observes
the flow is smooth on [b1, a2] and so also concludes a2 ∈ Bc. The second situation is that
I1∩ I2 is non-empty. In this case the properties of the intervals ensure a1 < a2 < b1 < b2.
Replace I2 by I ′2 = (b1, b2) in the cover to obtain an new cover

{
I ′j = (a′j , b

′
j)
}

1≤j≤J that
satisfies the same properties as the original cover but has a′2 = b1 is in Bc. Iterate this
procedure on subsequent intervals to obtain a new cover

{
I ′′j = (a′′j , b

′′
j )
}

1≤j≤J satisfying
all properties of Ij and, in addition, with all a′′j ∈ Bc. Appealing to the previous claim,
one also has all b′′j ∈ Bc and, hence,

(−1, 1) \
J⋃
j=1

I ′′j ⊆ Bc.

Hence,

L1(Bc) ≥ 2−
J∑
j=1

|I ′′j | ≥ 2−
J∑
j=1

|Ij | > 2− ε.

Sending ε → 0, gives L1(Bc) = 2. As B, Bc, and ST(K) are pairwise disjoint and their
union is (−1, 1),

L1(B) = 2− L1(Bc)− L1(ST(K)) = 0.

This proves the claim.
We now consider the case that Σ = spt(µ−1) is an asymptotically conical self-shrinker.

Observe that, by the Frankel property of self-shrinkers, Σ is connected. The arguments
are essentially the same as the previous case and so we only discuss needed modifications.
Namely, the sets B and Bc are replaced by, respectively,

B̂ = {t ∈ (0, 1) \ ST(K) : spt(µt) is not (R0, C0)-regular a.c.-isotopic to Σ}

and

B̂c = {t ∈ (0, 1) \ ST(K) : spt(µt) is (R0, C0)-regular a.c.-isotopic to Σ} .

The only difference is that spt(µ0) = C(Σ) is singular. This can be addressed by using
Proposition 3.2, that is, for all 0 < t < ρ2

+ the spt(µt) are (R0, C0)-regular a.c.-isotopic to
Σ. Hence the result follows from the previous arguments with the above modifications. �

5. ENTROPY QUANTIZATION AND A BUBBLE TREE-LIKE STRUCTURE

We need to improve the estimates on singularities given by Proposition 3.2 in order to
show that any non-compact tangent flow to a low entropy flow is actually an a.c.-almost
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isotopy. To do this requires an iterated blowup procedure that is reminiscent of the bubble-
tree structure occurring in other areas of geometric analysis. This ultimately shows that
any tangent flow to a low entropy flow is an almost a.c.-isotopy by iterated blowups.

We first establish a gap for the entropy of cones of asymptotically conical self-shrinkers.

Lemma 5.1. Let Σ be a non-flat asymptotically conical self-shrinker. One has

λ[Σ] > λ[C(Σ)].

Proof. As Σ is a non-flat self-shrinker, it follows from White’s version [41] of Brakke’s
regularity theorem that λ[Σ] ≥ 1+ ε for some ε = ε(n) > 0 (cf., [14]). If λ[C(Σ)] < 1+ ε,
then the claimed inequality holds trivially. Otherwise, as C(Σ) is a smooth cone it follows
that there is a point x0 ∈ Rn+1 so that

F [C(Σ) + x0] = λ[C(Σ)].

See [7, Lemma 3.7] for a proof. It follows from Huisken’s monotonicity formula [26] and
the fact that Σ is smooth and non-flat that

λ[Σ] ≥ F [
√

2 Σ + x0] > F [C(Σ) + x0] = λ[C(Σ)].

This proves the claim. �

Using this result and a compactness result from previous work we have the following:

Proposition 5.2. Fix n ≥ 3, Λ ∈ (λn, λn−1] and ε0 ∈ (0,Λ). Assume that (?n,Λ) and
(??n,Λ) hold. There is a δ1 = δ1(n,Λ, ε0) > 0 so that: if Σ ∈ ACSn[Λ − ε0] is non-flat,
then

λ[Σ] ≥ λ[C(Σ)] + δ1.

Proof. We argue by contradiction. Indeed, suppose there is a sequence Σi ∈ ACSn[Λ−ε0]
that are non-flat and so λ[Σi] ≤ λ[C(Σi)] + 1

i .
By White’s version [41] of Brakke’s regularity theorem, λ[Σi] = F [Σi] ≥ 1 + ε(n)

where ε(n) > 0 is some fixed constant independent of the Σi. By Proposition 2.2, up to
passing to a subsequence, one has Σi → Σ∞ in C∞loc(Rn+1) for Σ∞ ∈ ACSn[Λ− ε0] and
L(Σi) → L(Σ∞) in C∞(Sn). As λ[Σ∞] = F [Σ∞] = limi→∞ F [Σi] = limi→∞ λ[Σi],
one has λ[Σ∞] ≥ 1 + ε(n) and so Σ∞ is not flat. Moreover, λ[Σ∞] ≤ limi→∞ λ[C(Σi)].
However, by [7, Lemma 3.8] one has λ[C(Σ)] = limi→∞ λ[C(Σi)] and so

λ[Σ∞] ≤ λ[C(Σ∞)].

As Σ∞ is not flat, this contradicts Lemma 5.1 and proves the claim. �

We conclude

Theorem 5.3. Fix n ≥ 3, Λ ∈ (λn, λn−1] and ε0 ∈ (0,Λ). Assume that (?n,Λ) and
(??n,Λ) hold. Let T = {νt}t∈R be a matching motion in Rn+1 such that ν−1 = HnbΣ
for Σ ∈ ACSn[Λ − ε0]. Then T is an (R0, C0)-regular almost a.c.-isotopy, where R0 =
R0(n,Λ, ε0) and C0 = C0(n,Λ, ε0) are given by Proposition 2.3.

Proof. We argue by contradiction. Suppose T is not an (R0, C0)-regular almost a.c.-
isotopy. By Proposition 2.3, all the tangent flows of T are either isotopic to Sn or asymptot-
ically conical. Appealing to Theorem 4.7 gives a point (x0, t0) ∈ spt(T ) with t0 ∈ (0, 1)
and a tangent flow T ′ = {ν′t}t∈R ∈ Tan(x0,t0)T so that spt(ν′−1) is non-compact, but
T ′ is not an (R0, C0)-regular almost a.c.-isotopy. As t0 > 0, Proposition 5.2 implies that
λ[T ′] ≤ λ[T ] − δ1 for some uniform δ1 > 0. Repeating this argument, one constructs a
sequence of matching motions T (l) each of same form as T –i.e., non-compact and not
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an (R0, C0)-regular almost a.c.-isotopy – but with λ[T (l)] ≤ λ[T ] − δ1l. Hence, for l
sufficiently large one can apply White’s version [41] of Brakke regularity theorem and see
that all T (l) are smooth flows and, hence, are (R0, C0)-regular almost a.c.-isotopies. This
is a contradiction and proves the claim. �

6. CONCLUDING THE PROOF

Proposition 6.1. Fix n ≥ 3 and Λ ∈ (λn, λn−1] and assume that (?n,Λ) and (??n,Λ) hold.
Let Σ be a closed connected hypersurface in Rn+1 with λ[Σ] ≤ Λ. If K = {µt}t≥0 is
a matching motion with µ0 = HnbΣ, then K is an almost isotopy and the only compact
singularity of K occurs at a single spatial point at the extinction time.

Proof. If Σ is (after a translation and dilation) a self-shrinker, then K is self-similarly
shrinking and disappears at a point in finite time and so the proposition is immediate.
Otherwise, by Huisken’s monotonicity formula [26], the entropy is strictly decreasing un-
der the flow. By hypothesis that Σ is connected and by Proposition 2.3 and Theorem
5.3, every tangent flow T = {νt}t∈R satisfies that either spt(ν−1) is compact or T is an
(R0, C0)-regular a.c.-isotopy. Thus, it follows from Theorem 4.7 that K is an almost iso-
topy. Moreover, as Σ is connected, the only compact singularity of K occurs at a single
point in space-time where the flow disappears. �

We now prove Theorem 1.3. Theorem 1.1 is an immediate consequence of this.

Proof of Theorem 1.3. First we construct a matching motion associated to Σ. By [27, The-
orem 11.4], there is a sequence of closed connected hypersurfaces Σi with Σi → Σ
in C∞(Rn+1) so that for each i there is a matching motion Ki associated to Σi. As
λ[Σ] ≤ Λ < 2, λ[Σi] < 2 for large i. Thus, by the compactness of matching motion with
low entropy [38, Theorem 3.5], up to passing to a subsequence, Ki → K where K is a
matching motion associated to Σ. Hence, invoking Proposition 6.1, it follows that K is an
almost isotopy. By the authors’ previous work [3, Sections 4 and 5] singularity models at
the extinction time are closed and so, by Proposition 2.3, must be isotopic to Sn. Hence,
K at every non-empty regular time is isotopic to Sn. Therefore, Σ is isotopic to Sn. �

APPENDIX A. FORWARD MONOTONICITY FORMULA

For a Radon measure µ on Rn+1 and a number ρ > 0, let Dρµ be the measure given by

Dρµ(Y ) = ρnµ(ρ−1Y ) for any µ-measurable subsets Y ⊆ Rn+1.

For a hypersurface Γ ⊂ Rn+1 and a Radon measure µ on Rn+1, let

Erel[µ,Γ] = lim
R→∞

(∫
B̄R

e
|x|2
4 dµ−

∫
Γ∩B̄R

e
|x|2
4 dHn

)
whenever it exists. Proposition 6.5 and Theorem 6.1 of [10] imply the following.

Theorem A.1. For n ≥ 2, let Γ0 and Γ1 be two disjoint self-expanders in Rn+1 that are
both smoothly asymptotic to a regular cone C. Assume Γ0 and Γ1 bound an open domain
Ω ⊂ Rn+1. If K = {µt}t∈(0,T ) is a match motion that satisfies

(1) limt→0 µt = HnbC;
(2) For each t ∈ (0, T ), t−1/2 spt(µt) ⊆ Ω,
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then there exists a constant E0 so that, for all 0 < t0 ≤ t1 < T ,

E0 ≥ Erel[Dt
−1/2
0

µt0 ,Γ0] ≥ Erel[Dt
−1/2
1

µt1 ,Γ0]+

∫ t1

t0

∫ ∣∣∣∣H− x⊥

2t

∣∣∣∣2 (4πt)−
n
2 e
|x|2
4t dµtdt.

Consequently, for any sequence ti → 0 there is a subsequence tij → 0 and a possibly
singular self-expander ν̂ asymptotic to C with spt(ν̂) ⊆ Ω so that

D
t
−1/2
ij

µtij → ν̂.

APPENDIX B. TOPOLOGICAL UNIQUENESS FOR SELF-EXPANDERS THAT ARE
ASYMPTOTIC TO A LOW ENTROPY CONE

Theorem 1.2 of [9] implies the following.

Theorem B.1. Fix n ≥ 3 and Λ ∈ (λn, λn−1] and assume that (?n,Λ) and (??n,Λ) hold.
Let C be a regular cone in Rn+1 with λ[C] < Λ. If Γ0 and Γ1 are two self-expanders both
smoothly asymptotic to C, then Γ0 and Γ1 are a.c.-isotopic.
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