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ABSTRACT. We study a notion of relative entropy motivated by self-expanders of mean
curvature flow. In particular, we obtain the existence of this quantity for arbitrary hypersur-
faces trapped between two self-expanders that are asymptotic to the same cone and bound
a domain. This allows us to begin to develop the variational theory for the relative entropy
functional for the associated obstacle problem. We also obtain a version of the forward
monotonicity formula for mean curvature flow proposed by Ilmanen.

1. INTRODUCTION

A hypersurface, i.e., a properly embedded codimension-one submanifold, Σ ⊂ Rn+1,
is a self-expander if

(1.1) HΣ =
x⊥

2
.

Here
HΣ = ∆Σx = −HΣnΣ = −divΣ(nΣ)nΣ

is the mean curvature vector, nΣ is the unit normal, and x⊥ is the normal component of the
position vector. Self-expanders arise naturally in the study of mean curvature flow. Indeed,
Σ is a self-expander if and only if the associated family of homothetic hypersurfaces

{Σt}t>0 =
{√

tΣ
}
t>0

is a mean curvature flow (MCF). That is, a solution to(
∂x

∂t

)⊥
= HΣt .

Given integers k ≥ 1 and n ≥ 2, Σ is a Ck-asymptotically conical hypersurface in Rn+1

with asymptotic cone C = C(Σ) if limρ→0+ ρΣ = C in Ckloc(Rn+1 \ {0}), where C is a
Ck-regular cone. The space of such hypersurfaces is denoted by ACHkn. If Σ ∈ ACHkn
is a self-expander, then its associated flow emerges from C(Σ) and so these self-expanders
model how MCF resolves conical singularities.

Self-expanders are the critical points of the functional

E[Σ] =

∫
Σ

e
|x|2

4 dHn

whereHn is n-dimensional Hausdorff measure. Due to the rapid growth of the weight this
functional takes the value infinity on any asymptotically conical self-expander. However,
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following a suggestion of Ilmanen [22], for Γ0,Γ1 ∈ ACHkn with C(Γ0) = C(Γ1) one may
consider, when defined, the relative expander entropy

Erel[Γ1,Γ0] = lim
R→∞

Erel[Γ1,Γ0; B̄R]

where

Erel[Γ1,Γ0; B̄R] = E[Γ1 ∩ B̄R]− E[Γ0 ∩ B̄R]

=

∫
Γ1∩B̄R

e
|x|2

4 dHn −
∫

Γ0∩B̄R
e
|x|2

4 dHn.

In the curve case, this relative functional was studied by Ilmanen-Neves-Schulze [23] who
used it to prove the uniqueness of an expanding network in its topological class. More
recently, Deruelle-Schulze [13] investigated this relative functional in general dimensions
and showed it is well defined and finite for pairs of self-expanders asymptotic to the same
cone. Due to the rapid growth of the weight this is done by showing that the two self-
expanders converge to each other at a very rapid rate – see, for example, Proposition 2.1
below. As a consequence, they are able to consider Erel as a sort of smooth function on
the moduli space of self-expanders with varying cones – by [3], this space has a natural
manifold structure. Their analysis allows them to conclude thatErel is non-zero on pairs of
distinct self-expanders whose common asymptotic cone is generic in an appropriate sense.

In this paper we develop the variational theory of the functional Erel in the presence
of a natural two-sided obstacle. Among other things we show that Erel is well defined
and coercive for arbitrary hypersurfaces satisfying the obstacle condition – importantly,
we achieve this without assuming any regularity at infinity for the hypersurfaces. More
precisely, fix two self-expanders Γ0,Γ1 ∈ ACH2

n with C(Γ0) = C(Γ1) = C and assume
there are domains in Rn+1, U0 ⊆ U1 so that ∂Ui = Γi for i = 0, 1. Let

H(Γ0,Γ1) =
{

Γ = ∂U : U is a smooth domain in Rn+1 and U0 ⊆ U ⊆ U1

}
be the space of hypersurfaces trapped between Γ0 and Γ1. While elements ofH(Γ0,Γ1) are
asymptotic to C in the Hausdorff distance, in general there is no other asymptotic regularity.

We first show that the relative expander entropy Erel[·,Γ0] is well defined (possibly
positive infinite) for all Γ ∈ H(Γ0,Γ1).

Theorem 1.1. If Γ ∈ H(Γ0,Γ1), then

Erel[Γ,Γ0] = lim
R→∞

Erel[Γ,Γ0; B̄R] ∈ (−∞,∞].

That is, the limit exists and is either real valued or positive infinity.

Remark 1.2. Some simple observations:

(1) By [7, Theorem 4.1], when 2 ≤ n ≤ 6, for every C3-regular cone C ⊂ Rn+1,
there are unique smooth domains UL ⊆ UG satisfying ΓL = ∂UL and ΓG = ∂UG
are self-expanders both C2-asymptotic to C and so that any asymptotically conical
self-expander Γ with C(Γ) = C satisfies Γ ∈ H(ΓL,ΓG). Constructions of [1] –
see also [5] – provide many examples where H(ΓL,ΓG) is non-trivial, i.e., it has
more than one element.

(2) If Γ ∈ H(Γ0,Γ1) ∩ ACH2
n, i.e., Γ is both trapped between Γ0 and Γ1 and C2-

asymptotic to C, thenErel[Γ,Γ0] not only exists but is also finite – see Proposition
6.3. In this case the existence of Erel can be shown by adapting computations of
Deruelle-Schulze [13, Proposition 3.1].
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It is useful to study an anisotropically weighted analog of Erel. To describe the space
of admissible weights, first fix a subset W ⊆ Rn+1. For a function ψ ∈ Lip(W × Sn) and
any p ∈W , define ψ̂p(v) = ψ(p,v) and

∇Snψ(p,v) = ∇Sn ψ̂p(v).

Consider the Banach space

X(W ) = {ψ ∈ Lip(W × Sn) : ‖ψ‖X <∞}

where

‖ψ‖X = ‖ψ‖Lip + ‖∇Snψ‖Lip + sup
(p,v)∈W×Sn

(1 + |x(p)|)|∇Snψ(p,v)|.

We let

Xe(W ) = {ψ ∈ X(W ) : ψ(p,v) = ψ(p,−v), ∀(p,v) ∈W × Sn} .

Elements of Xe(W ) are said to be even. Observe that an even function is naturally identi-
fied with a function of the Grassman n-plane bundle of W .

For Γ ∈ H(Γ0,Γ1) and ψ ∈ Xe(Rn+1), let

Erel[Γ,Γ0;ψ; B̄R] =

∫
Γ∩B̄R

ψ(p,nΓ(p))e
|x|2

4 dHn −
∫

Γ0∩B̄R
ψ(p,nΓ0

(p))e
|x|2

4 dHn,

and
Erel[Γ,Γ0;ψ] = lim

R→∞
Erel[Γ,Γ0;ψ; B̄R]

when this limit exists. Observe that if ψ has compact support, then the limit is defined. We
show that if Erel[Γ,Γ0] is finite, then, for all ψ ∈ Xe(Rn+1), Erel[Γ,Γ0;ψ] exists and,
moreover, the map ψ 7→ Erel[Γ,Γ0;ψ] is a bounded linear functional on Xe(Rn+1).

Theorem 1.3. If Γ ∈ H(Γ0,Γ1) has Erel[Γ,Γ0] < ∞, then, for any ψ ∈ Xe(Rn+1),
Erel[Γ,Γ0;ψ] exists. Moreover, there is a constant L = L(Γ0,Γ1, n) ≥ 0 so that, for all
ψ ∈ Xe(Rn+1),

|Erel[Γ,Γ0;ψ]| ≤L(1 + |Erel[Γ,Γ0]|)‖ψ‖X.

In particular, the map ψ 7→ Erel[Γ,Γ0;ψ] is a bounded linear functional on Xe(Rn+1).

Theorems 1.1 and 1.3 allow us to begin to develop the variational theory of Erel in
H(Γ0,Γ1). In particular, in [6] a mountain pass theorem for Erel is proved. In this pa-
per we study the simpler question of minimizing Erel in H(Γ0,Γ1). An element Γ′ ∈
H(Γ0,Γ1) is an Erel-minimizer in H(Γ0,Γ1) if, for all Γ ∈ H(Γ0,Γ1), Erel[Γ,Γ0] ≥
Erel[Γ

′,Γ0]. We directly establish the existence of Erel-minimizers.

Theorem 1.4. When 2 ≤ n ≤ 6, there exists a self-expander, Γmin, that is an Erel-
minimizer inH(Γ0,Γ1).

Remark 1.5. It is worth comparing the notion of Erel-minimizer with the more stan-
dard notion of a local E-minimizer. Recall, Γ′ ∈ H(Γ0,Γ1) is a local E-minimizer in
H(Γ0,Γ1) provided E[Γ ∩ BR] ≥ E[Γ′ ∩ BR], for any Γ ∈ H(Γ0,Γ1) that satisfies
Γ\BR = Γ′\BR. Clearly, any Erel-minimizer in H(Γ0,Γ1) is a local E-minimizer in
H(Γ0,Γ1). As observed by Deruelle-Schulze [13, Theorem 4.1], the converse is also true:
a local E-minimizer inH(Γ0,Γ1) is also an Erel-minimizer inH(Γ0,Γ1). This is because
their argument uses only that Erel is well defined and not −∞ and a good estimate on the
area of ribbons as in Lemma 2.2.
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Another application is the existence of a forward monotonicity formula for mean cur-
vature flows trapped between two disjoint expanders coming out of the same cone. This
implies that any mean curvature flow that emerges from a cone and that is trapped between
two self-expanders is initially modeled by a self-expander – a fact used in [8]. Related
results for harmonic map flow were obtained previously by Deruelle [12].

Theorem 1.6. Let {Σt}t∈(0,T ) be a mean curvature flow that satisfies

(1) limt→0HnbΣt = HnbC for C a C2-regular cone;
(2) For each 0 < t < T , t−1/2Σt ∈ H(Γ0,Γ1).

Then, for any sequence ti → 0, there is a subsequence tij → 0 so that

t
−1/2
ij

Σtij → Γ

where Γ is a (possibly singular) self-expander C1-asymptotic to C and the convergence is
in the sense of measures.

Remark 1.7. In [21, Lecture 2, F], Ilmanen gave a sketch of the proof that the outermost
flow from a cone is made up of stable self-expanders asymptotic to the cone – see also [10,
Section 8.5]. Thus, Hypothesis (2) of Theorem 1.6 may be unnecessary.

Finally, we remark that all of the above theorems also apply to lower regularity surfaces,
specifically, to boundaries of Caccioppoli sets. They also apply to hypersurfaces trapped
inside regions that are slightly “thicker” than the one that lies between two ordered self-
expanders. Both of these more general situations are needed in applications [6] and are
treated in the body of the paper.

The organization of the paper is as follows. In Section 2, we fix notation and conven-
tions for the remainder of the paper. In Section 3, we prove that the relative entropy for
hypersurfaces that lie in an asymptotically “thin” set is well defined and not −∞. In Sec-
tion 4, we generalize results of Section 3 to an anisotropically weighted setting. In Section
5, we appeals to estimates derived in previous sections to show the relative entropy func-
tional is coercive and lower semi-continuous and consequently establish the existence of
minimizers for the relative entropy. In Section 6, we prove a version of weighted mono-
tonicity formula for mean curvature flows and apply it to study the asymptotic behavior of
flows coming out of a cone.
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Fellowship by the Institute for Advanced Study with funding from the Zürich Insurance
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2. NOTATION AND PRELIMINARIES

We fix notation and certain conventions we will use throughout the remainder of the
paper. We also recall certain facts we will need.
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2.1. Basic notions. Denote a (open) ball in Rn centered at p with radius R by BnR(p) and
the closed ball by B̄nR(p). We often omit the superscript, n, when it is clear from context.
We also omit the center when it is the origin. Likewise, denote an (open) annulus of inner
radius R1 and outer radius R2 by AR1,R2

and the closed annulus by ĀR1,R2
. We denote

the closure of a set U both by U and cl(U) and the topological boundary by ∂U .
Assume that n, k ≥ 2 are integers. A cone is a set C ⊆ Rn+1 \ {0} that is dilation

invariant around the origin. That is, ρC = C for all ρ > 0. The link of the cone is the set
L(C) = C ∩ Sn, the intersection of the cone and the unit n-sphere. The cone is Ck-regular
if its link is an embedded, codimension-one, Ck submanifold in Sn.

2.2. Caccioppoli sets. Let W be an open subset of Rn+1. A subset U ⊆W is a Cacciop-
poli set if it is a set of locally finite perimeter, that is 1U , the characteristic function of U ,
belongs to BVloc(W ). Given a Caccioppoli set U , let Γ = ∂∗U be the reduced boundary
of U and let nΓ be the outward unit normal to U . Without loss of generality, we assume
cl(∂∗U) = ∂U – see [17, Theorem 4.4].

For i ∈ {0, 1}, let Ui be Caccioppoli sets with Γi = ∂∗Ui. If U0 ⊆ U1, then let

C(Γ0,Γ1) = {U : U is a Caccioppoli set and U0 ⊆ U ⊆ U1} .

Let Ω = U1 \ cl(U0). Let U be an element of C(Γ0,Γ1) and Γ = ∂∗U . For a function
ψ ∈ C0

c (Ω) define

E[Γ,Γ0;ψ] =

∫
Γ

ψ(p)e
|x(p)|2

4 dHn −
∫

Γ0

ψ(p)e
|x(p)|2

4 dHn.

More generally, for a function ψ ∈ C0
c (Ω× Sn) define

E[Γ,Γ0;ψ] =

∫
Γ

ψ(p,nΓ(p))e
|x(p)|2

4 dHn −
∫

Γ0

ψ(p,nΓ0
(p))e

|x(p)|2
4 dHn.

We remark that E[Γ,Γ0;ψ] is linear in ψ and that when ψ is even E[Γ,Γ0;ψ] is indepen-
dent of the choice of nΓ or nΓ0

.

2.3. Partial ordering of asymptotically conical hypersurfaces. Let C be a C2-regular
cone in Rn+1 so the link L(C) is an embedded codimension-one C2 submanifold of Sn.
Clearly, L(C) separates Sn and we fix a closed set ω ⊂ Sn so that ∂ω = L(C). A hyper-
surface Σ is asymptotic to C if

lim
ρ→0+

Hnb(ρΣ) = HnbC.

When this occurs set C(Σ) = C. For such Σ, let Ω−(Σ) be the subset of Rn+1 \ Σ so that
∂Ω−(Σ) = Σ and

lim
ρ→0+

cl(ρΩ−(Σ)) ∩ Sn = ω as closed sets.

Such Ω−(Σ) is well defined by the hypotheses on Σ. Denote by Ω+(Σ) = Rn+1 \Ω−(Σ).
For hypersurfaces Σ0,Σ1 for which C(Σ0) = C(Σ1) write

Σ0 � Σ1 provided Ω−(Σ0) ⊆ Ω−(Σ1).

It is straightforward to extend these notions to hypersurfaces in Rn+1 \ K where K is
compact.
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2.4. Conventions. We now fix conventions we will use in the remainder of the paper. Let
C be a C2-regular cone in Rn+1. Pick a closed set ω ⊂ Sn so ∂ω = L(C). Using ω,
let Γ0,Γ1 be two self-expanders both C2-asymptotic to C and assume Γ0 � Γ1. Denote
by Ω = Ω+(Γ0) ∩ Ω−(Σ1). Let ∇, div and ∆ denote, respectively, the gradient, the
divergence and the Laplacian on Rn+1.

If Γ is a C2-asymptotically conical self-expander in Rn+1, then it follows from the
interior estimates for MCF (see, e.g., Theorem 3.4 and Remark 3.6 (ii) of [15]) that

(2.1) CΓ,l = sup
p∈Γ

(
(1 + |x(p)|)

l∑
i=1

|∇iΓnΓ(p)|

)
<∞.

We also introduce the following test functions. Let

φR,δ(p) =


1 if p ∈ BR
1− |x(p)|−R

δ if p ∈ ĀR,R+δ

0 if p ∈ Rn+1 \ B̄R+δ

be a cutoff. Let

αR1,R2,δ(p) = φR2,δ(p)− φR1−δ,δ(p) ∈ Lipc(Rn+1)

be the cutoff adapted to the closed annulus ĀR1,R2 .
Finally recall that a set Y ⊂ Rn+1 is quasi-convex if there is a constant C > 0 so that

any pair of points p, q ∈ Y can be joined by a curve β in Y with

Length(β) ≤ C|x(p)− x(q)|.

It is readily checked that Ω and Ω \ B̄R are both quasi-convex and so, by [18, Theorem
4.1], the space of Lipschitz functions on these domains is the same as the W 1,∞ space.

2.5. Decay estimates for self-expanding ends and an area estimate. Using estimates of
the first author [2] – cf. [13, Theorem 2.1] – one obtains strong asymptotic decay results for
the ends of two expanders asymptotic to the same cone. We will use this in order to obtain
sharp area estimates for the slices of large spheres lying between two ordered expanders
asymptotic to the same cone.

Proposition 2.1. Let C be a C2-regular cone in Rn+1. Suppose Σ0 and Σ1 are self-
expanding ends both C2-asymptotic to C. There is a radius R̄0 = R̄0(Σ0,Σ1) > 1 and
a constant C̄0 = C̄0(Σ0,Σ1) > 0 so that there is a smooth function u : Σ0 \ B̄R̄0

→ R
satisfying

Σ1 \ B̄2R̄0
⊂
{
x(p) + u(p)nΣ0(p) : p ∈ Σ0 \ B̄R̄0

}
⊂ Σ1

and u satisfies the (sharp) pointwise estimate

|u|+ r−1|∇Σ0
u|+ r−2|∇2

Σ0
u| ≤ C̄0r

−n−1e−
r2

4

where r(p) = |x(p)| for p ∈ Σ0. Moreover, for any R > 2R̄0,

Σ1\BR ⊂ T
C̄0R−n−1e−

R2
4

(Σ0).

Here Tδ(Σ0) is the δ-tubular neighborhood of Σ0.

To prove Proposition 2.1 we need a couple of auxiliary lemmas which, due to their
technical nature, are collected in Appendix A.
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Proof of Proposition 2.1. As Σ0 and Σ1 are both C2-asymptotic to C, it follows from [4,
Proposition 3.3] that there are constants R = R(Σ0,Σ1) > 1 and M = M(Σ0,Σ1) > 0,
and functions f0 and f1 on C \ B̄R so that, for i ∈ {0, 1},

Σi \ B̄2R ⊂
{
fi(p̄) = x(p̄) + fi(p̄)nC(p̄) : p̄ ∈ C \ B̄R

}
⊂ Σi

with the curvature estimate

sup
p∈Σi\B̄2R

|x(p)||AΣi(p)| ≤M,

and fi satisfies

|fi(p̄)|+ |∇Cfi(p̄)| ≤M |x(p̄)|−1 ≤MR−1 ≤ 1

2
.

By the triangle inequality
1

2
|x(p̄)| ≤ |fi(p̄)| ≤ 2|x(p̄)|.

As
|f1(p̄)− f0(p̄)| ≤ |f1(p̄)|+ |f0(p̄)| ≤ 2M |x(p̄)|−1 ≤ 4M |f1(p̄)|−1

it follows that
dist(f1(p̄),Σ0) ≤ |f1(p̄)− f0(p̄)| ≤ 4M |f1(p̄)|−1.

Thus, for all q ∈ Σ1 \ B̄2R,

|x(q)−ΠΣ0(q)| ≤ 4M |x(q)|−1

where ΠΣ0 is the nearest point projection to Σ0. By our choice of M and the triangle
inequality, if q ∈ Σ1 \ B̄4R, then

1

2
|x(q)| ≤ |ΠΣ0(q)| ≤ 2|x(q)|

and, hence,

(2.2) |x(q)−ΠΣ0
(q)| ≤ 8M |ΠΣ0

(q)|−1.

Given q ∈ Σ1 \ B̄16R, suppose x(q) = f1(p̄) for some p̄ ∈ C \ B̄R. By the previous
estimates and the triangle inequality

|f0(p̄)−ΠΣ0
(q)| ≤ |f0(p̄)− f1(p̄)|+ |x(q)−ΠΣ0

(q)|
≤ 4M |x(q)|−1 + 8M |ΠΣ0

(q)|−1 ≤ 16M |ΠΣ0
(q)|−1.

In particular, |f0(p̄)| ≥ 1
2 |ΠΣ0(q)| and so both f0(p̄) and |ΠΣ0(q)| are in Σ0 \ B̄4R. By the

curvature decay of Σ0 and enlargingR, if needed, one has

dΣ0(f0(p̄),ΠΣ0(q)) ≤ 2|f0(p̄)−ΠΣ0(q)| ≤ 32M |ΠΣ0(q)|−1

and so
|nΣ0(f0(p̄))− nΣ0(ΠΣ0(q))| ≤ 8M |ΠΣ0(q)|−1.

One also uses the C1 bound for fi to get

|nΣ1(f1(p̄))− nΣ0(f0(p̄))| ≤ CM |x(p̄)|−1 ≤ 2CM |ΠΣ0(q)|−1

for some C = C(n). Thus, combining these two estimates gives

(2.3) |nΣ1
(q)− nΣ0

(ΠΣ0
(q))| ≤ 2(C + 4)M |ΠΣ0

(q)|−1.
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Hence, in view of (2.2) and (2.3), there are constants R̄0 = R̄0(n,C,M,R) > 1
and M̄ = M̄(n,C,M) > 0 (which, in turn, depend only on Σ0 and Σ1) and a function
u : Σ0 \ B̄R̄0

→ R so that

Σ1 \ B̄2R̄0
⊂
{
x(p) + u(p)nΣ0(p) : p ∈ Σ0 \ B̄R̄0

}
⊂ Σ1

and u satisfies the pointwise estimate

|u(p)|+ |∇Σ0u(p)|+ |∇2
Σ0
u(p)| ≤ M̄ |x(p)|−1 ≤ 1

2
.

This together with Lemma A.2 implies that

LΣ0u = ∆Σ0u+
x

2
· ∇Σ0u+

(
|AΣ0 |2 +

1

2

)
u = a · ∇Σ0u+ bu

and
|a|+ |b| ≤ C̄1

(
|u|+ |∇Σ0

u|+ |x · ∇Σ0
u|+ |∇2

Σ0
u|
)
≤ C̄1(1 + M̄)

where C̄1 = C̄1(n,Σ0) > 0. Thus, write

x

2
· ∇Σ0

u = −∆Σ0
u− |AΣ0

|2u+
1

2
u+ a · ∇Σ0

u+ bu

and so, by the curvature decay of Σ0 and estimates on u and |a|+|b|, one gets that |x·∇Σ0u|
decays linearly and, hence, so does |a|+ |b|. As such, one uses [2, Theorem 9.1] to see∫

Σ0\B̄R̄0

u2e
r2

8 dHn <∞.

Hence, by the L∞ estimate [16, Theorem 8.17] and the Schauder estimate [16, Theorem
6.2], one has that |u|, |∇Σ0

u| and |∇2
Σ0
u| all decay faster than e−

1
32 r

2

and so the same
holds true for |a| and b.

On Σ0\B̄R̄0
consider the barrier

ϕ = r−n−1e−
r2

4 − r−n−2e−
r2

4 ≤ r−n−1e−
r2

4 .

By increasing R̄0, if necessary, one may ensure ϕ > 0. Moreover, using Lemma A.1, one
readily evaluates that, up to increasing R̄0 in a way that depends only on Σ0 and u,

LΣ0ϕ ≤ a · ∇Σ0ϕ+ bϕ.

Pick γ > 1 large enough so that |u| ≤ γϕ on Σ0 ∩ ∂BR̄0
. As ϕ and u both tend to 0 as

r →∞ and, up to further increasing R̄0, |AΣ0
|2− 1

2−b < 0, it follows from the maximum
principle that

|u| ≤ γϕ on Σ0 \ B̄R̄0
.

The pointwise estimate on derivatives of u follow from standard Schauder estimates on
balls for an appropriate choice of C̄0 – see [11, Corollary 4.12] for the idea.

To complete the proof observe that when R > 2R̄0 if q ∈ Σ1\BR, then

|x(q)−ΠΣ0
(q)| ≤ 2M̄ |x(q)|−1 ≤ 2M̄R−1.

Thus,

|ΠΣ0(q)| ≥ R− 2M̄R−1 >
1

2
R.

One readily checks that

|u(ΠΣ0
(q))| ≤ γϕ(ΠΣ0

(q)) ≤ 2n+1γeM̄R−n−1e−
R2

4 .
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Hence, as long as one chooses C̄0 ≥ 2n+1γeM̄ , one has

Σ1\BR ⊂ T
C̄0R−n−1e−

R2
4

(Σ0)

and this proves the final claim. �

An immediate consequence of Proposition 2.1 is that if Γ0 and Γ1 are two asymptoti-
cally conical self-expanders with C(Γ0) = C(Γ1) and Γ0 � Γ1, then, for any R > 2R̄0,
the region Ω = Ω+(Γ0) ∩ Ω−(Γ1) satisfies

Ω\BR ⊂ T
C̄0R−n−1e−

R2
4

(Γ0)

The above result implies that Ω, the region between the two self-expanders Γ0 and Γ1, is
“thin” near infinity. For technical reasons important in later applications [6], it is useful to
consider slight “thickenings” of Ω that are still thin at infinity in this sense.

More precisely, let Γ′0 and Γ′1 be two asymptotically conical hypersurfaces, not neces-
sarily self-expanders, with C(Γ′0) = C(Γ′1) = C(Γ0) = C and so that Γ′0 � Γ0 � Γ′1.
Observe that if, in addition, Γ1 � Γ′1, then C(Γ0,Γ1) ⊆ C(Γ′0,Γ′1). Let Ω′ = Ω−(Γ′1) ∩
Ω+(Γ′0). The set Ω′ is thin at infinity relative to Γ0 if it is quasi-convex and there are
constants C̄ ′0 = C ′0(Ω′,Γ0) > 0 and R̄′0 = R̄′0(Ω′,Γ0) > 1 so that, for all R > R̄′0,

(2.4) Ω′\BR ⊂ T
C̄′0R

−n−1e−
R2
4

(Γ0).

Being thin at infinity may be thought of as a C0 notion of “thinness”. Our arguments
will mostly rely on a different notion of thinness related to the area of the ribbon sliced out
by the region inside spheres. This is a weaker condition than thin at infinity.

Lemma 2.2. If Ω′ is thin at infinity relative to Γ0, then there is a constant C̄ ′1 = C̄ ′1(Ω′,Γ0)
so that, for all R > 0,

Hn(Ω′ ∩ ∂BR) ≤ C̄ ′1R−2e−
R2

4 .

Proof. Let ΠΓ0
be the nearest point projection to Γ0. As Ω′ is thin at infinity, for any

q ∈ Ω′ \ B̄R̄′0 ,

|x(q)−ΠΓ0
(q)| ≤ C̄ ′0|x(q)|−n−1e−

|x(q)|2
4 .

ChoosingR0 > max
{
R̄′0, 2C̄

′
0

}
+ 1 if q ∈ Ω′ \BR0

, then

1

2
|x(q)| < |x(q)| − C̄ ′0|x(q)|−1 ≤ |ΠΓ0(q)| ≤ |x(q)|+ C̄ ′0|x(q)|−1 < 2|x(q)|

and so

|x(q)−ΠΓ0
(q)| < 2n+1C̄ ′0e

C̄′0 |ΠΓ0
(q)|−n−1e−

|ΠΓ0
(q)|2

4 .

Set
ϕ(p) = 2n+1C̄ ′0e

C̄′0 |x(p)|−n−1e−
|x(p)|2

4

and let
Ωϕ = {x(p) + tnΓ0

(p) : p ∈ Γ0, |t| ≤ ϕ(p)} .
Thus one has

Ω′ \BR0 ⊂ Ωϕ \BR0 .

Moreover, up to increasing R0 in a way that depends only on n and C̄ ′0 one can ensure
that, for all q ∈ Ωϕ \BR0

,

1

2
|x(q)| ≤ |ΠΓ0

(q)| ≤ 2|x(q)|.
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Let
Γ± = {x(p)± ϕ(p)nΓ0(p) : p ∈ Γ0} .

Observe that for R sufficiently large Γ±R = Γ±\B̄R are both asymptotically conical hyper-
surfaces in Rn+1\B̄R. Let δ0 = δ0(Γ0) be the constant given by Proposition B.1. Thus,
there is a radiusR1 = R1(Γ0, C̄

′
0, δ0) > R0 and functions θ± on Γ0 \ B̄R1

so that

Γ±R1
=
{
f±(p) = cos θ±(p)x(p) + |x(p)| sin θ±(p)νΓ0(p) : p ∈ Γ0 \ B̄R1

}
where νΓ0

(p) is the unit normal (in ∂B|x(p)|) to Γ0 ∩ ∂B|x(p)| at p, and θ± satisfy

sup
p∈Γ0\B̄R1

(
|θ±(p)|+ |x(p)||∇Γ0

θ±(p)|
)
≤ δ0.

Let Π̂Γ0
(y) be the nearest point projection (in ∂B|y|) of y to Γ0 ∩ ∂B|y|. Up to increasing

R1, Π̂Γ0 restricts to a C1 map from Ωϕ \ B̄R1 to Γ0 with its gradient bound by C > 1.
If h± = ΠΓ0

◦ f±, then one readily checks that, for any p ∈ Γ0 \ B̄2R1
,

|h±(p)− x(p)| = |Π̂Γ0
(f±(p))− Π̂Γ0

(h±(p))|

≤ ‖∇Π̂Γ0
‖C0 |h±(p)− f±(p)| ≤ Cϕ(h±(p)).

By increasingR1 in a way that depends on C̄ ′0 and C, this gives that

|ϕ(h±(p))− ϕ(p)| ≤ ‖∇ϕ‖C0 |h±(p)− x(p)| < 1

2
ϕ(h±(p))

and so ϕ(h±(p)) ≤ 2ϕ(p). Thus, using these estimates one computes, on Γ0 \ B̄2R1 ,

|x(p)|| sin θ±(p)| = |(h±(p)± ϕ(h±(p))nΓ0
(h±(p))) · νΓ0

(p)|
≤ |(h±(p)− x(p)) · νΓ0

(p)|+ ϕ(h±(p))|nΓ0
(h±(p)) · νΓ0

(p)|
≤ |h±(p)− x(p)|+ ϕ(h±(p))

≤ 2(C + 1)ϕ(p).

In particular, | sin θ±(p)| < 3
10 so |θ±(p)| ≤ 2| sin θ±(p)|. Hence one has, on Γ0 \ B̄2R1

,

|θ±(p)| ≤ 4(C + 1)|x(p)|−1ϕ(p).

It follows from Proposition B.1 that, for all R > 2R1,

Hn(Ωϕ ∩ ∂BR) ≤ 8(C + 1)

∫
Γ0∩∂BR

ϕdHn−1.

As Γ0 is asymptotic to C, up to increasingR1, for all R > 2R1,

Hn−1(Γ0 ∩ ∂BR) ≤ 2Rn−1Hn−1(L(C)).

Hence, for all R > 2R1,

Hn(Ωϕ ∩ ∂BR) ≤ 16(C + 1)C̄ ′0Hn−1(L(C))R−2e−
R2

4 .

As remarked before, for all R > 2R1,

Ω′ ∩ ∂BR ⊂ Ωϕ ∩ ∂BR
and, hence,

Hn(Ω′ ∩ ∂BR) ≤ 16(C + 1)C̄ ′0Hn−1(L(C))R−2e−
R2

4 .

The result follows for R > 2R1 as long as

C̄ ′1 > 16(C + 1)C̄ ′0Hn−1(L(C)).
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As R1 depends only on Γ0 and Ω′, the result automatically holds for R ≤ 2R1 as long as
one chooses C̄ ′1 sufficiently large. �

3. RELATIVE EXPANDER ENTROPY

In this section we prove that the relative entropy for singular hypersurfaces, i.e., re-
duced boundaries of Caccioppoli sets, that lie within an asymptotically “thin” set is well
defined and not −∞. To that end we always take Γ0 to be an asymptotically conical self-
expander and Γ′0,Γ

′
1 be asymptotical conical hypsersurfaces so Γ′0 � Γ0 � Γ1 � Γ′1 and

so Ω′ = Ω+(Γ′0)∩Ω−(Γ′1) is thin at infinity relative to Γ0 with constants C̄ ′0 = C̄ ′0(Ω′,Γ0)
and R̄′0 = R̄′0(Ω′,Γ0) given in the definition. In addition to these conventions and those
adopted in Section 2.4, we also will always take Γ = ∂∗U for some U ∈ C(Γ′0,Γ′1).

Theorem 3.1. If R2 > R1 > R0, then

Erel[Γ,Γ0; B̄R2
] ≥ Erel[Γ,Γ0; B̄R1

]− C2R
−1
1

where R0 = R0(Ω′,Γ0) > 1 and C2 = C2(Ω′,Γ0) > 0 are the constants given by
Proposition 3.4. In particular, Erel[Γ,Γ0] exists (possibly infinite) and, for any R > R0,
satisfies the estimate

Erel[Γ,Γ0] ≥ Erel[Γ,Γ0; B̄R]− C2R
−1.

Our main tool will be the divergence theorem applied to appropriately chosen vector
fields.

Lemma 3.2. Suppose Y ∈ Liploc(Ω′;Rn+1) satisfies the following bounds for some con-
stants M0 > 0 and γ0 < 1:

(1)
∣∣divY + x

2 ·Y
∣∣ ≤M0|x|γ0 ;

(2) |x ·Y| ≤M0|x|γ0+2.

If ψY ∈ C0
loc(Ω

′ × Sn) is defined by

ψY(p,v) = Y(p) · v,

then there is a positive constantC0 = C0(Ω′,Γ0, γ0) so that, for any 0 < 1
2R1 < R1−δ <

R1 < R2,
|E[Γ,Γ0;αR1,R2,δψY]| ≤ C0M0R

γ0−1
1 .

Proof. Denote by Ω+
U = U ∩ Ω+(Γ0) and Ω−U =

(
Rn+1\U

)
∩ Ω−(Γ0). The divergence

theorem implies that∫
Γ

αR1,R2,δY · nΓe
|x|2

4 dHn −
∫

Γ0

αR1,R2,δY · nΓ0
e
|x|2

4 dHn

=

∫
Ω+
U

(
αR1,R2,δ

(
divY +

x

2
·Y
)

+∇αR1,R2,δ ·Y
)
e
|x|2

4

−
∫

Ω−U

(
αR1,R2,δ

(
divY +

x

2
·Y
)

+∇αR1,R2,δ ·Y
)
e
|x|2

4 .

As spt(αR1,R2,δ) ⊆ ĀR1−δ,R2+δ and

∇αR1,R2,δ(p) =


x(p)
δ|x(p)| if p ∈ AR1−δ,R1

− x(p)
δ|x(p)| if p ∈ AR2,R2+δ

0 otherwise
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the hypotheses on Y ensure that∣∣∣∣∣
∫

Ω±U

(
αR1,R2,δ

(
divY +

x

2
·Y
)

+∇αR1,R2,δ ·Y
)
e
|x|2

4

∣∣∣∣∣
≤M0

∫
Ω±U∩(ĀR1−δ,R1

∪ĀR2,R2+δ)

δ−1|x|γ0+1e
|x|2

4 +M0

∫
Ω±U∩ĀR1−δ,R2+δ

|x|γ0e
|x|2

4

≤M0

∫
Ω′∩(ĀR1−δ,R1

∪ĀR2,R2+δ)

δ−1|x|γ0+1e
|x|2

4 +M0

∫
Ω′∩ĀR1−δ,R2+δ

|x|γ0e
|x|2

4 .

As R1 − δ > 0, we can use the co-area formula and Lemma 2.2 to see that∫
Ω′∩ĀR1−δ,R1

δ−1|x|γ0+1e
|x|2

4 =

∫ R1

R1−δ

∫
Ω′∩∂Bt

δ−1tγ0+1e
t2

4 dHndt

=

∫ R1

R1−δ
δ−1tγ0+1e

t2

4 Hn(Ω′ ∩ ∂Bt) dt

≤ C̄ ′1δ−1

∫ R1

R1−δ
tγ0−1 dt

where C̄ ′1 is given by Lemma 2.2. Hence, as γ0 < 1 and R1 − δ > 1
2R1,∫

Ω′∩ĀR1−δ,R1

δ−1|x|γ0+1e
|x|2

4 ≤ C̄ ′1(R1 − δ)γ0−1 ≤ 21−γ0C̄ ′1R
γ0−1
1 .

In the same way, we get∫
Ω′∩ĀR2,R2+δ

δ−1|x|γ0+1e
|x|2

4 ≤ C̄ ′1R
γ0−1
2 ≤ C̄ ′1R

γ0−1
1 .

Again, using the co-area formula and Lemma 2.2 gives that∫
Ω′∩ĀR1−δ,R2+δ

|x|γ0e
|x|2

4 ≤
∫ R2+δ

R1−δ
tγ0e

t2

4 Hn(Ω′ ∩ ∂Bt) dt

≤ C̄ ′1
∫ R2+δ

R1−δ
tγ0−2 dt

≤ 21−γ0

1− γ0
C̄ ′1R

γ0−1
1

where the last inequality used that 1− γ0 > 0 and R1 − δ > 1
2R1.

Combining the above estimates and choosing C0 appropriately prove the claim. �

We next use a foliation near infinity by almost self-expanders to introduce a good vector
field for applying the previous lemma.

Proposition 3.3. There are constants R0 = R0(Ω′,Γ0) > 1 and C1 = C1(Ω′,Γ0) > 0
and a smooth vector field N : Ω′\B̄R0

→ Rn+1 that satisfies:
(1) |N| = 1;
(2) N|Γ0

= nΓ0
;

(3) |x ·N|+
∑3
i=1 |∇iN| ≤ C1|x|−1;

(4) If DΓ0 is the signed distance to Γ0, then∣∣∣∣divN +
x

2
·N +

(
|AΓ0
|2 − 1

2

)
DΓ0

∣∣∣∣ ≤ C1D
2
Γ0
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and so ∣∣∣divN +
x

2
·N
∣∣∣ ≤ C1|x|−n−1e−

|x|2
4 .

Proof. Let ΠΓ0
be the nearest point projection to Γ0. As Γ0 is C2-asymptotically conical,

there is an ε0 = ε0(Γ0) ∈ (0, 1) so that

Ψ: Tε0(Γ0)→ Γ0 × (−ε0, ε0)

given by Ψ(p) = (ΠΓ0(p), DΓ0(p)) is a diffeomorphism. Hence, setting

N(p) = nΓ0(ΠΓ0(p))

one obtains a vector field on Tε0(Γ0) that is readily seen to satisfy Items (1) and (2). As Γ0

is a self-expander, both nΓ0
and ΠΓ0

are smooth and, by the chain rule, so is N.
By (2.1) with Γ = Γ0,

CΓ0,3 = sup
q∈Γ0

(
(1 + |x(q)|)

3∑
i=1

|∇iΓ0
nΓ0

(q)|

)
<∞.

As, up to shrinking ε0, one has, for i = 1, .., 3, |∇iΠΓ0(p)| ≤ 2, it follows from the chain
rule that, for all p ∈ Tε0(Γ0),

3∑
i=1

|∇iN(p)| ≤ 2CΓ0,3|ΠΓ0(p)|−1.

Observe that if p ∈ Tε0(Γ0) \ B̄2ε−1
0

, then

1

2
|x(p)| ≤ |ΠΓ0

(p)| ≤ 2|x(p)|

and so
3∑
i=1

|∇iN(p)| ≤ 4CΓ0,3|x(p)|−1.

It is readily checked that

x(p) ·N(p) = (ΠΓ0(p) +DΓ0(p)nΓ0(ΠΓ0(p))) · nΓ0(ΠΓ0(p))

= ΠΓ0(p) · nΓ0(ΠΓ0(p)) +DΓ0(p)

= −2HΓ0
(ΠΓ0

(p)) +DΓ0
(p).

(3.1)

As Ω′ is thin at infinity, the definition ensures that there is a radiusR0 = R0(Γ0, ε0, R̄
′
0, C̄

′
0)

and a constantC = C(Γ0, C̄
′
0) so that Ω′\B̄R0

⊂ Tε0(Γ0)\B̄2ε−1
0

and, for all p ∈ Ω′\B̄R0
,

|x ·N(p)| ≤ C|x(p)|−1.

Thus we have shown Item (3) as long as we choose C1 > max {4CΓ0,3, C}.
To see the last claim, up to shrinking ε0 so ε0 < 1

8CΓ0,3
one has, for every t ∈ (−ε0, ε0),

Υt = {x(p) + tnΓ0
(p) : p ∈ Γ0}

is a hypersurface in Rn+1 and, by Lemma A.2,∣∣∣∣HΥt +
x

2
· nΥt +

(
|AΓ0
|2 − 1

2

)
t

∣∣∣∣ ≤ C̄1t
2

where C̄1 = C̄1(n,CΓ0,3) > 0. As

divN(p) +
x(p)

2
·N(p) = HΥt(p) +

x(p)

2
· nΥt(p)
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for p ∈ Υt and t = DΓ0
(p), it follows that∣∣∣∣divN(p) +
x(p)

2
·N(p) +

(
|AΓ0 |2 −

1

2

)
DΓ0(p)

∣∣∣∣ ≤ C̄1DΓ0(p)2.

The result follows by enlarging C1 so that C1 > max
{
C̄1, C̄

′
0(C̄1 + C2

Γ0,3
+ 1)

}
. �

Using the vector field of Proposition 3.3 we obtain a two-sided estimate on the func-
tional E for weights near infinity.

Proposition 3.4. There is a constantC2 = C2(Ω′,Γ0) > 0 so that if ψ ∈ Lip(Ω′) satisfies
‖ψ‖Lip ≤ 1 and ψ ≥ 0, then, for any R0 <

1
2R1 < R1 − δ < R1 < R2,

−C2R
−1
1 ≤ E[Γ,Γ0;αR1,R2,δψ] ≤ E[Γ,Γ0;αR1,R2,δ] + C2R

−1
1 .

Here R0 is the constant given by Proposition 3.3.

Proof. We first observe that the upper bound on E[Γ,Γ0;αR1,R2,δψ] follows from the
lower bound. Indeed, if ψ̃ = 1 − ψ, then ψ̃ satisfies the same hypotheses as ψ and so,
assuming the lower bound holds,

−C2R
−1
1 ≤ E[Γ,Γ0;αR1,R2,δψ̃] = E[Γ,Γ0;αR1,R2,δ(1− ψ)].

Hence, one has that

−C2R
−1
1 + E[Γ,Γ0;αR1,R2,δψ] ≤ E[Γ,Γ0;αR1,R2,δ],

proving the upper bound.
In order to prove the lower bound, set Y = ψN where N is given by Proposition 3.3.

One computes that

divY +
x

2
·Y = ∇ψ ·N + ψ

(
divN +

x

2
·N
)
.

Thus, Proposition 3.3 and the assumptions on ψ imply that, for p ∈ Ω′ \ B̄R0 ,∣∣∣∣divY(p) +
x(p)

2
·Y(p)

∣∣∣∣ ≤ C1 + 1.

Likewise,
|x(p) ·Y(p)| = ψ(p)|x(p) ·N(p)| ≤ C1|x(p)|−1.

Hence, as R0 < R1 − δ, appealing to Lemma 3.2 gives∫
Γ

αR1,R2,δψN · nΓe
|x|2

4 dHn ≥
∫

Γ0

αR1,R2,δψe
|x|2

4 dHn − C0(C1 + 1)R−1
1 .

However, as ψ ≥ 0, ψN · nΓ ≤ ψ and so∫
Γ

αR1,R2,δψe
|x|2

4 dHn ≥
∫

Γ0

αR1,R2,δψe
|x|2

4 dHn − C0(C1 + 1)R−1
1 .

That is,
E[Γ,Γ0;αR1,R2,δψ] ≥ −C2R

−1
1

for C2 = C0(C1 + 1). �

We may now prove Theorem 3.1.
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Proof of Theorem 3.1. By the dominated convergence theorem,

Erel[Γ,Γ0; B̄R] = lim
δ→0

E[Γ,Γ0;φR,δ].

Proposition 3.4 implies that, for any R2 > R1 + δ > R1 > 2R0,

E[Γ,Γ0;φR2,δ] = E[Γ,Γ0;φR1,δ] + E[Γ,Γ0;αR1+δ,R2,δ]

≥ E[Γ,Γ0;φR1,δ]− C2(R1 + δ)−1.

The first claim follows by sending δ → 0. This implies that

lim inf
R→∞

Erel[Γ,Γ0; B̄R] ≥ lim sup
R→∞

Erel[Γ,Γ0; B̄R]

so the limit exists. Finally, the first estimate implies the second by taking R2 →∞. �

4. WEIGHTED RELATIVE ENTROPY

We continue to follow the conventions of Sections 2.4 and 3 and assume Γ = ∂∗U for
some U ∈ C(Γ′0,Γ′1). In this section we prove the generalization of Theorem 1.3 to the
weak setting.

Theorem 4.1. If Erel[Γ,Γ0] <∞, then, for any ψ ∈ Xe(Ω′), Erel[Γ,Γ0;ψ] exists. More-
over, there is a constant C9 = C9(Ω′,Γ0) > 0 so that, for all ψ ∈ Xe(Ω′),

|Erel[Γ,Γ0;ψ]| ≤C9(1 + |Erel[Γ,Γ0]|)‖ψ‖X.

The proof of Theorem 4.1 will proceed in a similar fashion to the arguments of the
previous section. In particular, we will also use the divergence theorem, though in a more
involved way. Our first goal is to prove Theorem 4.1 for weights that are of a particularly
simple form – namely modeled on a (continuously varying) quadratic form of rank at most
two. Such forms will provide good approximations to elements of Xe. Here the rank of
a quadratic form QA on Rn+1 is the rank of the symmetric matrix A so that QA(v) =
v · (Av). The reason why quadratic forms of rank 2 are relevant is that if (z,w) ∈ TzSn
and A = 1

2

(
zw> + wz>

)
, then QA(v) = (z · v)(w · v) satisfies∇SnQA|z = w and QA

is the simplest even function for which this holds.
With this in mind, for continuous vector fields Y1,Y2 defined on a subset W of Rn+1,

define the function ψY1,Y2
∈ C0

loc(W × Sn) by

ψY1,Y2(p,v) = ψY1(p,v)ψY2(p,v) = (Y1(p) · v)(Y2(p) · v).

We first establish lower bound estimates and a quasi-triangle inequality near infinity for
rank-one quadratic forms.

Lemma 4.2. There is a constantC3 = C3(Ω′,Γ0) > 0 so that if Y ∈ Lip(Ω′\B̄R0
;Rn+1)

is a vector field of the form
Y = aN + Z

where |a| ≤ 1 and
‖|x|Z‖C0 + ‖∇Z‖L∞ ≤ 1,

then, for any R0 <
1
2R1 < R1 − δ < R1 < R2,

E[Γ,Γ0;αR1,R2,δψY,Y] ≥ −C3|E[Γ,Γ0;αR1,R2,δ]| − C3R
−1
1 .

As a consequence, if Yi ∈ Lip(Ω′ \ B̄R0 ;Rn+1), i ∈ {1, . . .m}, are vector fields of the
form

Yi = aiN + Zi
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where |ai| ≤ 1 and
‖|x|Zi‖C0 + ‖∇Zi‖L∞ ≤ 1,

and W =
∑m
i=1 Yi, then

E[Γ,Γ0;αR1,R2,δψW,W] ≤ 2m
m∑
i=1

E[Γ,Γ0;αR1,R2,δψYi,Yi
]

+m32mC3 |E[Γ,Γ0;αR1,R2,δ]|+m32mC3R
−1
1 .

Here R0 is the constant and N is the vector field given by Proposition 3.3.

Proof. Set
Ȳ = (Y ·N)Y.

Applying Proposition 3.3 to γ0 = 0, one computes that∣∣∣div Ȳ +
x

2
· Ȳ
∣∣∣ ≤ c(n)(C1 + 1)

and
|x · Ȳ| ≤ c(n)(C1 + 1).

Hence, by Lemma 3.2,∫
Γ

αR1,R2,δȲ · nΓe
|x|2

4 dHn ≥
∫

Γ0

αR1,R2,δȲ · nΓ0
e
|x|2

4 dHn − c(n)C0(C1 + 1)R−1
1 .

That is, as N|Γ0 = nΓ0 ,∫
Γ

αR1,R2,δ(Y ·N)(Y · nΓ)e
|x|2

4 dHn

≥
∫

Γ0

αR1,R2,δψY,Y(·,nΓ0
(·))e

|x|2
4 dHn − c(n)C0(C1 + 1)R−1

1 .

By Young’s inequality, on Γ,

1

2
ψY,Y(p,N(p)) +

1

2
ψY,Y(p,nΓ(p)) ≥ (Y(p) ·N(p))(Y(p) · nΓ(p)),

while, on Γ0,
1

2
ψY,Y(p,N(p)) +

1

2
ψY,Y(p,nΓ0

(p)) = ψY,Y(p,nΓ0
(p)).

Setting φY(p) = ψY,Y(p,N(p)), this yields

1

2
E[Γ,Γ0;αR1,R2,δφY] +

1

2
E[Γ,Γ0;αR1,R2,δψY,Y] ≥ −c(n)C0(C1 + 1)R−1

1 .

By construction, φY ≥ 0 and

‖φY‖Lip ≤ c(n)(C1 + 1).

Hence, by Proposition 3.4 and our previous remark,

E[Γ,Γ0;αR1,R2,δφY] ≤ c(n)(C1 + 1)E[Γ,Γ0;αR1,R2,δ] + c(n)(C1 + 1)C2R
−2
1 .

As such,

E[Γ,Γ0;αR1,R2,δψY,Y] ≥ −C3|E[Γ,Γ0;αR1,R2,δ]| − C3R
−1
1

as long as C3 ≥ 2c(n)(C1 + 1)(C2 + 1). This gives the desired lower bound.
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To complete the proof set, for 1 ≤ k ≤ m,

Wk =
k∑
i=1

Yi = Wk−1 + Yk

and, for 2 ≤ k ≤ m,

W̄k =
k−1∑
i=1

Yi −Yk = Wk−1 −Yk.

Clearly, Wm = W and

ψWk,Wk
+ ψW̄k,W̄k

= 2ψWk−1,Wk−1
+ 2ψYk,Yk

.

In particular, applying the lower bounds we already established to ψW̄k,W̄k
, gives

E[Γ,Γ0;αR1,R2,δψWk,Wk
] ≤ 2E[Γ,Γ0;αR1,R2,δψWk−1,Wk−1

]

+ 2E[Γ,Γ0;αR1,R2,δψYk,Yk
] + k2C3|E[Γ,Γ0;αR1,R2,δ]|+ k2C3R

−1
1 .

Iterating this estimate gives

E[Γ,Γ0;αR1,R2,δψW,W] ≤ 2m
m∑
k=1

E[Γ,Γ0;αR1,R2,δψYk,Yk
]

+m32mC3 |E[Γ,Γ0;αR1,R2,δ]|+m32mC3R
−1
1 .

This verifies the second claim. �

Using a polarization identity and the previous result, we establish a two-sided estimate
near infinity for general quadratic forms of rank at most 2.

Lemma 4.3. There is a constant C4 = C4(Ω′,Γ0) > 0 so that if Y1,Y2 ∈ Lip(Ω′ \
B̄R0

;Rn+1) are vector fields of the form

Yi = aiN + Zi

where |ai| ≤ 1 and
‖|x|Zi‖C0 + ‖∇Zi‖L∞ ≤ 1,

then, for any R0 <
1
2R1 < R1 − δ < R1 < R2,

|E[Γ,Γ0;αR1,R2,δψY1,Y2
]| ≤ C4|E[Γ,Γ0;αR1,R2,δ]|+ C4R

−1
1 .

Here R0 is the constant and N is the vector field given by Proposition 3.3.

Proof. We first establish the bound when

Y1 = Y2 = Y = aN + Z.

In this case, ψY1,Y2 = ψY,Y and so the lower bound onE[Γ,Γ0;αR1,R2,δψY1,Y2 ] follows
from the first part of Lemma 4.2 as long as C4 ≥ C3.

To prove the upper bound, we apply the second part of Lemma 4.2 to two vector fields
of the form aN and Z and obtain

E[Γ,Γ0;αR1,R2,δψY,Y] ≤ 4E[Γ,Γ0;αR1,R2,δψaN,aN] + 4E[Γ,Γ0;αR1,R2,δψZ,Z]

+ 32C3 |E[Γ,Γ0;αR1,R2,δ]|+ 32C3R
−1
1 .

As (N · nΓ)2 ≤ 1 on Γ while (N · nΓ0
)2 = 1 on Γ0, it follows that

E[Γ,Γ0;αR1,R2,δψN,N] ≤ E[Γ,Γ0;αR1,R2,δ] ≤ |E[Γ,Γ0;αR1,R2,δ]|
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and so, as |a| ≤ 1,

E[Γ,Γ0;αR1,R2,δψaN,aN] ≤ a2 |E[Γ,Γ0;αR1,R2,δ]| ≤ |E[Γ,Γ0;αR1,R2,δ]| .

To find an upper bound on E[Γ,Γ0;αR1,R2,δψZ,Z], write Z =
∑n+1
j=1 zjej where ej is

the constant vector field given by the j-th coordinate vector. The estimate on Z implies
that the zj satisfy

‖|x|zj‖C0 + ‖∇zj‖L∞ ≤ 1.

By the second part of Lemma 4.2,

E[Γ,Γ0;αR1,R2,δψZ,Z] ≤ 2n+1
n+1∑
j=1

E[Γ,Γ0;αR1,R2,δψzjej ,zjej ]

+ (n+ 1)32n+1C3 |E[Γ,Γ0;αR1,R2,δ]|+ (n+ 1)32n+1C3R
−1
1 .

Observe that
n+1∑
k=1

ψzjek,zjek(p,v) = z2
j (p).

Hence,
n+1∑
k=1

E[Γ,Γ0;αR1,R2,δψzjek,zjek ] = E[Γ,Γ0;αR1,R2,δz
2
j ].

By the lower bound of Lemma 4.2, this implies

E[Γ,Γ0;αR1,R2,δψzjej ,zjej ] ≤ nC3 |E[Γ,Γ0;αR1,R2,δ]|+nC3R
−1
2 +E[Γ,Γ0;αR1,R2,δz

2
j ].

Appealing to Proposition 3.4, one has

E[Γ,Γ0;αR1,R2,δψzjej ,zjej ] ≤ (nC3 + 1) |E[Γ,Γ0;αR1,R2,δ]|+ (nC3 + C2)R−1
1 .

Hence,
E[Γ,Γ0;αR1,R2,δψZ,Z] ≤ C ′4 |E[Γ,Γ0;αR1,R2,δ]|+ C ′4R

−1
1 ,

where C ′4 is chosen sufficiently large depending on C3, C2 and n. Hence, we have proved
the two-sided bound for ψY,Y.

To prove the general inequality recall the polarization identity

ψY1,Y2 =
1

4
(ψY1+Y2,Y1+Y2 − ψY1−Y2,Y1−Y2) .

Observe that
1

4
ψY1+Y2,Y1+Y2

= ψ 1
2 (Y1+Y2), 12 (Y1+Y2)

and similarly for the second term. The vector fields Ȳ1 = 1
2 (Y1 + Y2) and Ȳ2 =

1
2 (Y1 −Y2) satisfy the hypotheses of the lemma and so, by what we have already shown,

|E[Γ,Γ0;αR1,R2,δψY1,Y2
]| ≤

∣∣E[Γ,Γ0;αR1,R2,δψȲ1,Ȳ1
]
∣∣+
∣∣E[Γ,Γ0;αR1,R2,δψȲ2,Ȳ2

]
∣∣

≤ 2C ′4 |E[Γ,Γ0;αR1,R2,δ]|+ 2C ′4R
−1
1 .

This verifies the lemma with C4 = 2C ′4. �

In order to study general functions in Xe it is necessary to subtract off the appropriate
quadratic approximation. This requires suitable pointwise estimates on the approximation
and its error.
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Lemma 4.4. Consider the constant R0 and the vector field N given by Proposition 3.3.
There is a constant C5 = C5(Ω′,Γ0) > 1 so that if ψ is an element of X(Ω′ \ B̄R0) and
one sets

Zψ(p) = ∇Snψ(p,N(p))

and
ψ̄(p,v) = ψ(p,v)− (Zψ(p) · v)(N(p) · v),

then the following is true:
(1) ‖|x|Zψ‖C0 + ‖∇Zψ‖L∞ ≤ C5‖ψ‖X;
(2) ‖ψ̄‖Lip ≤ C5‖ψ‖X;
(3) If, in addition, ψ is even, then∣∣ψ̄(p,v)− ψ̄(p,N(p))

∣∣ ≤ C5

(
1− (N(p) · v)2

)
‖ψ‖X.

Proof. By construction,

sup
p∈Ω′\B̄R0

|x(p)||Zψ(p)| ≤ ‖ψ‖X.

By the chain rule and Proposition 3.3,

‖∇Zψ‖L∞ ≤ (1 + c(n)C1)‖ψ‖X.
Hence, combining these estimates, Item (1) follows as long as C5 ≥ 2 + c(n)C1. And
using Item (1) and Proposition 3.3 one readily checks Item (2).

To see the final item observe first that if ψ is even, then so is ψ̄. In particular, it is
enough to establish the estimate when v ·N(p) ∈ [0, 1]. Furthermore, if v = N(p), then
the estimate is trivial and so we may assume that v ·N(p) ∈ [0, 1).

Set

w =
v − (v ·N(p))N(p)

|v − (v ·N(p))N(p)|
so w is of unit length and orthogonal to N(p). In particular, v = cos τ0N(p) + sin τ0w
where cos τ0 = N(p) · v ∈ [0, 1). As cos τ0 ∈ [0, 1), τ0 ∈ (0, π2 ]. It follows from the
Lipschitz bound on∇Sn ψ̄(p, ·) and the fact that∇Sn ψ̄(p,N(p)) = 0, that, for 0 ≤ τ ≤ τ0,∣∣∇Sn ψ̄(p, cos τN(p) + sin τw)

∣∣ =

∣∣∣∣∫ τ

0

d

dt
∇Sn ψ̄(p, cos tN(p) + sin tw) dt

∣∣∣∣ ≤ c(n)τ‖ψ̄‖X.

Integrating this estimate yields∣∣ψ̄(p,v)− ψ̄(p,N(p))
∣∣ ≤ c(n)τ2

0 ‖ψ̄‖X.
Hence, as

τ2
0 ≤

π2

4
sin2 τ0 =

π2

4
(1− cos2 τ0) =

π2

4

(
1− (N(p) · v)2

)
,

Item (3) follows with C5 ≥ π2

4 c(n). �

In order to extend from the quadratic approximation to the general case we need to
estimate the error and this may be thought of as a sort of bound on the weighted tilt-excess
near infinity in terms of the relative entropy.

Proposition 4.5. There is a constant C6 = C6(Ω′,Γ0) > 0 so that, for any R0 <
1
2R1 <

R1 − δ < R1 < R2,∫
Γ

αR1,R2,δ

(
1− (N · nΓ)2

)
e
|x|2

4 dHn ≤ 2E[Γ,Γ0;αR1,R2,δ] + C6R
−4
1 .

Here R0 is the constant and N is the vector field given by Proposition 3.3.
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Proof. Applying Lemma 3.2 with Y = N and Proposition 3.3 to γ0 = −3, gives∫
Γ

αR1,R2,δN · nΓe
|x|2

4 dHn ≥
∫

Γ0

αR1,R2,δe
|x|2

4 dHn − C0C1R
−4
1 .

Thus it follows that∫
Γ

αR1,R2,δ (1−N · nΓ) e
|x|2

4 dHn ≤ E[Γ,Γ0;αR1,R2,δ] + C0C1R
−4
1 .

Observe that

1− (N · nΓ)2 = (1−N · nΓ) (1 + N · nΓ) ≤ 2 (1−N · nΓ) .

Hence, combining these estimates, the claim follows with C6 = 2C0C1. �

Combining above results yields an analog of Proposition 3.4 for weights in Xe – i.e., an
estimate near infinity.

Proposition 4.6. There is a constant C7 = C7(Ω′,Γ0) > 0 so that if ψ ∈ Xe(Ω′) satisfies
‖ψ‖X ≤ 1 and ψ ≥ 0, then, for any R0 <

1
2R1 < R1 − δ < R1 < R2,

|E[Γ,Γ0;αR1,R2,δψ]| ≤ C7 |E[Γ,Γ0;αR1,R2,δ]|+ C7R
−1
1 .

Here R0 is the constant given by Proposition 3.3.

Proof. As R1 − δ > R0 and spt(αR1,R2,δ) ⊆ ĀR1−δ,R2+δ , we will treat ψ as an element
of Xe(Ω′ \ B̄R0

) in the following. Set

ψ̂(p,v) = ψ̄(p,v) + C5.

As ‖Zψ‖C0 ≤ C5 and ψ ≥ 0, this ensures that ψ̂ ≥ 0. One also has∣∣∣ψ̂(p,v)− ψ̂(p,N(p))
∣∣∣ ≤ C5

(
1− (N(p) · v)2

)
.

Now let
φ(p) = ψ̂(p,N(p)).

Using Lemma 4.4 and Proposition 3.3, one readily checks that

‖φ‖Lip ≤ c(n)C5.

Hence, Proposition 3.4 applied to φ gives

E[Γ,Γ0;αR1,R2,δφ] ≥ −c(n)C2C5R
−1
1 .

That is,∫
Γ

αR1,R2,δψ̂(p,N(p))e
|x|2

4 dHn ≥
∫

Γ0

αR1,R2,δψ̂(p,nΓ0
(p))e

|x|2
4 dHn−c(n)C2C5R

−1
1 .

The construction of ψ̂ ensures that

ψ̂(p,nΓ(p)) = ψ̂(p,N(p)) +
(
ψ̂(p,nΓ(p))− ψ̂(p,N(p))

)
≥ ψ̂(p,N(p))− C5

(
1− (N(p) · nΓ(p))2

)
.

Hence,∫
Γ

αR1,R2,δ

(
ψ̂(p,nΓ(p)) + C5

(
1− (N(p) · nΓ(p))2

))
e
|x|2

4 dHn

≥
∫

Γ0

αR1,R2,δψ̂(p,nΓ0(p))e
|x|2

4 dHn − c(n)C2C5R
−1
1 .
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Appealing to Proposition 4.5, one obtains∫
Γ

αR1,R2,δψ̂(p,nΓ(p))e
|x|2

4 dHn −
∫

Γ0

αR1,R2,δψ̂(p,nΓ0
(p))e

|x|2
4 dHn

≥ −2C5 |E[Γ,Γ0;αR1,R2,δ]| − (C6 + c(n)C2)C5R
−1
1 .

As ψ̂ = ψ̄ + C5, this implies∫
Γ

αR1,R2,δψ̄(p,nΓ(p))e
|x|2

4 dHn −
∫

Γ0

αR1,R2,δψ̄(p,nΓ0
(p))e

|x|2
4 dHn

≥ −3C5 |E[Γ,Γ0;αR1,R2,δ]| − (C6 + c(n)C2)C5R
−1
1 .

Hence, by Lemma 4.3,∫
Γ

αR1,R2,δψ(p,nΓ(p))e
|x|2

4 dHn −
∫

Γ0

αR1,R2,δψ(p,nΓ0
(p))e

|x|2
4 dHn

≥ −(3C5 + C4) |E[Γ,Γ0;αR1,R2,δ]| − (C6 + c(n)C2 + C4)C5R
−1
1 .

This proves the lower bound for C7 sufficiently large depending on n,C6, C2, C4 and C5.
To prove the upper bound observe that if ψ̃ = 1− ψ, then ψ̃ satisfies the hypotheses of

the proposition. Observe that

|E[Γ,Γ0;αR1,R2,δ]| ≥ E[Γ,Γ0;αR1,R2,δ] = E[Γ,Γ0;αR1,R2,δ(ψ + ψ̃)].

Hence, using the lower bound we have established, one has

|E[Γ,Γ0;αR1,R2,δ]| ≥ E[Γ,Γ0;αR1,R2,δψ] + E[Γ,Γ0;αR1,R2,δψ̃]

≥ E[Γ,Γ0;αR1,R2,δψ]− C7 |E[Γ,Γ0;αR1,R2,δ]| − C7R
−1
1

and so the upper bound holds after, possibly, increasing C7 by one. �

Corollary 4.7. Suppose Erel[Γ,Γ0] < ∞ and that ψ ∈ Xe(Ω′) satisfies ‖ψ‖X ≤ 1
and ψ ≥ 0. For every ε > 0, there is a radius Rε = Rε(Ω

′,Γ0,Γ, ε) > R0 so that if
R2 > R1 > Rε, then ∣∣E[Γ,Γ0;ψ; B̄R2 ]− E[Γ,Γ0;ψ; B̄R1 ]

∣∣ ≤ ε.
Here R0 is the constant given by Proposition 3.3.

Proof. By the dominated convergence theorem, for any ζ ∈ Xe(Ω′),

Erel[Γ,Γ0; ζ; B̄R2
]− Erel[Γ,Γ0; ζ; B̄R1

] = lim
δ→0

E[Γ,Γ0;αR2,R1+δ,δζ].

Hence, by Proposition 4.6 and the above observation with ζ = ψ and ζ = 1, one has∣∣Erel[Γ,Γ0;ψ; B̄R2
]− Erel[Γ,Γ0;ψ; B̄R1

]
∣∣

≤ C7

∣∣Erel[Γ,Γ0; B̄R2
]− Erel[Γ,Γ0; B̄R1

]
∣∣+ C7R

−1
1 .

Observe that, by Theorem 3.1 and the fact that Erel[Γ,Γ0] < ∞, there is an R′ε > 0 so
that if R > R′ε, then ∣∣Erel[Γ,Γ0]− Erel[Γ,Γ0; B̄R]

∣∣ ≤ ε

4C7
.

Hence, by the triangle inequality, for R2 > R1 > R′ε, one has∣∣Erel[Γ,Γ0; B̄R2 ]− Erel[Γ,Γ0; B̄R1 ]
∣∣ ≤ ε

2C7
.

Hence, setting Rε = max
{
R′ε, 2C7ε

−1, R0

}
proves the claim. �
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Proposition 4.8. There is a constant C8 = C8(Ω′,Γ0) > 0 so that if ψ ∈ Xe(Ω′) satisfies
‖ψ‖X ≤ 1 and ψ ≥ 0, then, for any 0 < δ < 1 and R > 8R0,

|E[Γ,Γ0;φR,δψ]| ≤ C8 + C8 |E[Γ,Γ0;φR,δ]| .
Here R0 is the constant given by Proposition 3.3.

Proof. Set R1 = 4R0 > 4 and observe that R > R1 > R1 − δ > 1
2R1 > R0. One has

E[Γ,Γ0;φR,δψ] = E[Γ,Γ0;φR1−δ,δψ] + E[Γ,Γ0;αR1,R,δψ].

As 0 ≤ ψ ≤ 1, one readily sees that

−
∫

Γ0

φR1−δ,δe
|x|2

4 dHn ≤ E[Γ,Γ0;φR1−δ,δψ]

and
E[Γ,Γ0;φR1−δ,δψ] ≤ E[Γ,Γ0;φR1−δ,δ] +

∫
Γ0

φR1−δ,δe
|x|2

4 dHn.

Hence, setting

C ′8 = C ′8(Γ0) =

∫
Γ0

φR1−δ,δe
|x|2

4 dHn

one has
−C ′8 ≤ E[Γ,Γ0;φR1−δ,δψ] ≤ E[Γ,Γ0;φR1−δ,δ] + C ′8

and so
|E[Γ,Γ0;φR1−δ,δψ]| ≤ |E[Γ,Γ0;φR1−δ,δ]|+ C ′8.

By Proposition 4.6,

|E[Γ,Γ0;αR1,R,δψ]| ≤ C7 |E[Γ,Γ0;αR1,R,δ]|+ C7R
−1
1 .

Finally, Proposition 3.4 implies that

E[Γ,Γ0;φR1−δ,δ]− C2R
−1
1 ≤ E[Γ,Γ0;φR1−δ,δ] + E[Γ,Γ0;αR1,R,δ] = E[Γ,Γ0;φR,δ]

and so
|E[Γ,Γ0;φR1−δ,δ]| ≤ C ′8 + C2R

−1
1 + |E[Γ,Γ0;φR,δ]| .

Likewise,

E[Γ,Γ0;αR1,R,δ]− C ′8 ≤ E[Γ,Γ0;φR1−δ,δ] + E[Γ,Γ0;αR1,R,δ] = E[Γ,Γ0;φR,δ]

and so
|E[Γ,Γ0;αR1,R,δ]| ≤ C2R

−1
1 + C ′8 + |E[Γ,Γ0;φR,δ]| .

Hence,

|E[Γ,Γ0;φR,δψ]| ≤ C ′8 +C7R
−1
1 + (C7 + 1)(C ′8 +C2R

−1
1 ) + (1 +C7) |E[Γ,Γ0;φR,δ]| .

and the claim follows by choosing C8 large enough. �

We now prove Theorem 4.1.

Proof of Theorem 4.1. If ‖ψ‖X = 0, then the theorem holds trivially. So suppose ‖ψ‖X 6=
0 and set ψ̂ = 1

2‖ψ‖X (ψ + ‖ψ‖X). Observe that ψ̂ ≥ 0 and ‖ψ̂‖X ≤ 1. As Erel[Γ,Γ0] <

∞, it is an immediate consequence of Corollary 4.7 that

Erel[Γ,Γ0, ψ̂] = lim
R→∞

Erel[Γ,Γ0; ψ̂; B̄R]

exists and is finite.
By the dominated convergence theorem,

Erel[Γ,Γ0; ψ̂; B̄R] = lim
δ→0

E[Γ,Γ0;φR,δψ̂].
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Hence, for R > 4R0, it follows from Proposition 4.8 by taking δ → 0 that

|Erel[Γ,Γ0; ψ̂; B̄R]| ≤ C8 + C8|Erel[Γ,Γ0; B̄R]|.
Taking the limit as R→∞, which is well defined on both sides by Theorem 3.1 and what
we have already shown, gives

|Erel[Γ,Γ0; ψ̂]| ≤ C8 + C8|Erel[Γ,Γ0]|.
Finally, by linearity of ζ 7→ Erel[Γ,Γ0; ζ] and the triangle inequality one has

|Erel[Γ,Γ0;ψ]| ≤ 2C8 (1 + 2|Erel[Γ,Γ0]|) ‖ψ‖X
and so the claim follows by setting C9 = 4C8. �

Finally, we record the following analog of the dominated convergence theorem for the
Erel functional.

Proposition 4.9. Suppose Erel[Γ,Γ0] < ∞. If ψi ∈ Xe(Ω′) is a sequence with ‖ψi‖X ≤
M1 < ∞ and so that ψi → ψ∞ pointwise, where ψ∞ ∈ Xe(Ω′) satisfies ‖ψ∞‖X ≤ M1,
then

lim
i→∞

Erel[Γ,Γ0;ψi] = Erel[Γ,Γ0;ψ∞].

Proof. For 1 ≤ i ≤ ∞, set ψ̂i = 1
2M1

(ψi +M1) and observe that ‖ψ̂i‖X ≤ 1 and ψ̂i ≥ 0.
For every ε > 0, Corollary 4.7 implies that there is an Rε > R0 so that, for all R > Rε
and all 1 ≤ i ≤ ∞, ∣∣∣Erel[Γ,Γ0; ψ̂i]− Erel[Γ,Γ0; ψ̂i; B̄R]

∣∣∣ < ε

3
.

By the dominated convergence theorem,

lim
i→∞

Erel[Γ,Γ0; ψ̂i; B̄2Rε ] = Erel[Γ,Γ0; ψ̂∞; B̄2Rε ].

Hence, there is an i0 so that for i ≥ i0 one has∣∣∣Erel[Γ,Γ0; ψ̂i; B̄2Rε ]− Erel[Γ,Γ0; ψ̂∞; B̄2Rε ]
∣∣∣ < ε

3
.

It follows from the triangle inequality that, for i ≥ i0,∣∣∣Erel[Γ,Γ0; ψ̂i]− Erel[Γ,Γ0; ψ̂∞]
∣∣∣ < ε.

That is,
lim
i→∞

Erel[Γ,Γ0; ψ̂i] = Erel[Γ,Γ0; ψ̂∞].

The result then follows by the linearity of ζ 7→ Erel[Γ,Γ0; ζ]. �

5. Erel-MINIMIZERS

Continue to use the conventions of Section 2.4. In this section we use the previously
established facts about Erel[·,Γ0] to show that this functional is coercive and lower-semi-
continuous in an appropriate sense. Hence, there is a minimizer of Erel in C(Γ0,Γ1). As
this minimizer is a localE-minimizer, when 2 ≤ n ≤ 6, Theorem 1.4 follows immediately
from this by standard regularity results.

Theorem 5.1. There is a Caccioppoli set Umin ∈ C(Γ0,Γ1) with Γmin = ∂∗Umin a
critical point of the functional E so that, for all U ∈ C(Γ0,Γ1),

Erel[∂
∗U,Γ0] ≥ Erel[∂∗Umin,Γ0].

Moreover, if 2 ≤ n ≤ 6, then Γmin is a smooth self-expander.
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Proof. Set Emin = inf {Erel[∂∗U,Γ0] : U ∈ C(Γ0,Γ1)}. By Theorem 3.1, there is a con-
stant Ē = Ē(Γ1,Γ0) ≥ 0 so that, for all U ∈ C(Γ0,Γ1),

Erel[∂
∗U,Γ0] ≥ −Ē.

Hence, if Ui is a minimizing sequence in C(Γ0,Γ1) for Erel[·,Γ0], then

lim
i→∞

Erel[∂
∗Ui,Γ0] = Emin ≥ −Ē > −∞.

and so, up to throwing out finitely many terms, one has

Emin ≤ Erel[∂∗Ui,Γ0] ≤ Emin + 1.

For R > 0,

PB̄R(Ui) ≤
∫
B̄R∩∂∗Ui

e
|x|2

4 ≤ E0(R) + Erel[∂
∗Ui,Γ0; B̄R].

Here PB̄R(Ui) is the perimeter of Ui inside B̄R and E0(R) =
∫
B̄R∩Γ0

e
|x|2

4 dHn. It
follows from Theorem 3.1 that, for any R > R0,

Erel[∂
∗Ui,Γ0; B̄R] ≤ Erel[∂∗Ui,Γ0] + C2R

−1

and so, for any R > R0 fixed,

PB̄R(Ui) ≤M = E0(R) + Emin + 1 + C2R
−1 <∞

is uniformly bounded independent of i.
Hence, by the standard compactness theorem for Caccioppoli sets, up to passing to a

subsequence and relabeling, Ui → U∞ where U∞ is a Caccioppoli set in C(Γ0,Γ1) and
the convergence is in the topology of Caccioppoli sets (i.e., 1Ui → 1U∞ in the weak-*
topology of BVloc). It follows from Theorem 3.1 that, for all R > R0,

Erel[∂
∗Ui; Γ0] ≥ Erel[∂∗Ui,Γ0; B̄R]− C2R

−1

Hence, passing to a limit and using the nature of the convergence of Ui → U∞,

Emin = lim
i→∞

Erel[∂
∗Ui,Γ0] ≥ lim inf

i→∞

(
Erel[∂

∗Ui,Γ0; B̄R]− C2R
−1
)

≥ Erel[∂∗U∞,Γ0; B̄R]− C2R
−1.

TakingR→∞ and appealing to Theorem 3.1 givesEmin ≥ Erel[∂∗U∞,Γ0]. AsEmin is
the infimum ofErel[·,Γ0] in C(Γ0,Γ1) andU∞ ∈ C(Γ0,Γ1),Emin = Erel[∂

∗U∞; Γ0] and
so the infimum is achieved. Hence, it remains only to show that Γmin = ∂∗U∞ is a self-
expander. However, it is clear that ∂∗U∞ must be (locally) E-minimizing in cl(U1)\U0 as
otherwise Emin would not be the infimum of Erel[·,Γ0].

When 2 ≤ n ≤ 6, standard regularity theory for minimizing sets with obstacles, e.g.,
[24, Section 37], implies Γmin is a smooth self-expander each of whose components is
either entirely disjoint from Γ0 ∪ Γ1 or entirely agrees with a component of Γ0 ∪ Γ1. That
is, Γmin ∈ H(Γ0,Γ1). �

By adapting the approach sketched by Ilmanen [21] and carried out by Ding [14] to the
obstacle setting, one may use standard GMT methods to construct a local E-minimizer in
H(Γ0,Γ1). Combined with Remark 1.5, this gives an alternative approach to Theorem 5.1.
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6. FORWARD MONOTONICITY

We continue to follow the conventions of Section 2.4 and Section 3. Following Ilmanen
[20, Section 6] (cf. [9]), a Brakke flow is a family of Radon measures {µt}t∈(0,T ) on Rn+1

which satisfies, for all non-negative ψ ∈ C1
c (Rn+1) and all 0 < t0 ≤ t1 < T ,∫

ψ dµt1 ≤
∫
ψ dµt0 +

∫ t1

t0

∫ (
−ψ|H|2 +∇ψ · S⊥ ·H

)
dµtdt.

Here S = S(x) = Txµt is the generalized tangent plane of µt at x and H = Hµt is
the generalized mean curvature vector of µt. The inner integral on the right-hand side
of the inequality is interpreted according to the convention that if any quantities are not
defined, then take the integral to be −∞. We call a Brakke flow {µt}t∈(0,T ) integral if
µt has integer multiplicity for a.e. t. It is technically convenient to restrict our study to
a smaller class of integral Brakke flows that are unit regular, i.e., near every space-time
point of Gaussian density 1 the flow is regular in a two-sided parabolic ball; cf. the class
S(λ,m,N) defined in page 1513 of [25, Section 7]. Such a unit regularity assumption
prevents sudden and gratuitous vanishing of Brakke flows and is equivalent to the hypoth-
esis that no quasi-hyperplanes could appear as tangent flows. This class is closed under
the convergence of Brakke flows and is quite general, for instance it includes the flows
constructed by Ilmanen’s elliptic regularization procedure. In what follows we assume the
integral Brakke flows under consideration are unit regular.

In this section we prove a version of weighted forward monotonicity formula and use it
to show the asymptotic behavior of flows coming out of a cone. Theorem 1.6 is a special
case of the following theorem.

Theorem 6.1. Let {µt}t∈(0,T ) be an integral Brakke flow that satisfies

(1) limt→0 µt = HnbC;
(2) For each t ∈ (0, T ), t−1/2spt(µt) ⊆ Ω′.

For any sequence ti → 0, there is a subsequence tij → 0 and a (possibly singular) self-
expander ν̂ asymptotic to C and with spt(ν̂) ⊆ Ω′ so that

D
t
−1/2
ij

µtij → ν̂.

Here, for a measure µ and ρ > 0, Dρµ is the measure given by

Dρµ(Y ) = ρnµ(ρ−1Y ) for all µ-measurable subsets Y ⊆ Rn+1.

In order to prove Theorem 6.1, we will need several auxiliary lemmas and propositions.
The first two of these show the relative entropy near infinity is arbitrarily small for C2-
asymptotically conical ends trapped between the ends of Γ′0 and Γ′1. The computations are
very similar in spirit to those of [13, Proposition 3.1].

Lemma 6.2. Fix Ĉ0 > 0 and R̂0 > 1. There is a radius R̂1 = R̂1(Γ0,Ω
′, Ĉ0, R̂0) > R̂0

so that if Γ ∈ H(Γ′0 \ B̄R̂0
,Γ′1 \ B̄R̂0

) is asymptotic to C and satisfies

sup
p∈Γ
|x(p)||AΓ(p)| ≤ Ĉ0,

then there is a smooth function v : Γ0 \ B̄R̂1
→ R with ‖∇Γ0

v‖C0 ≤ 1 so that

Γ \ B̄2R̂1
⊂
{
x(p) + v(p)nΓ0

(p) : p ∈ Γ0 \ B̄R̂1

}
⊂ Γ.
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Proof. Our hypotheses on Γ ensures that it is embedded and C1-asymptotic to C. Thus it
is enough to prove that there is a uniform radius outside of which Γ is a local graph over Γ0

with the desired estimates. This is proved by contradiction. Indeed, suppose there was no
such radius, then there would be a sequence of hypersurfaces Υi in Rn+1 \ B̄R̂0

satisfying
the hypotheses and a sequence of points qi ∈ Υi∩∂BRi withRi ≥ R̂0 going to infinity so
that if pi is the nearest point projection of qi to Γ0, then |nΥi(qi) · nΓ0(pi)| < ε for some
fixed ε ∈ (0, 1). Up to passing to a subsequence and relabeling, R−1

i qi → q for some
q ∈ C∩∂B1. Thus, by the linear decay on |AΥi |, it follows from the Arzelà-Ascoli theorem
that, up to passing to a subsequence and relabeling, the R−1

i Υi ∩ B1(R−1
i qi) converges

in the C1 topology to a C2- hypersurface, Σ, in B1(q) which transversally intersects C at
q. However, as Γ0, Γ′0 and Γ′1 are all asymptotic to C, the hypotheses on Υi imply that Σ
must be contained in C. This is a contradiction. �

Proposition 6.3. Fix Ĉ0 > 0 and R̂0 > 1. There is a radius R̂2 = R̂2(Γ0,Ω
′, Ĉ0, R̂0) >

R̂0 and a constant Ĉ1 = Ĉ1(Γ0,Ω
′, Ĉ0) > 0 so that if Γ ∈ H(Γ′0 \ B̄R̂0

,Γ′1 \ B̄R̂0
) is

asymptotic to C and satisfies

sup
p∈Γ
|x(p)||AΓ(p)| ≤ Ĉ0,

then, for any R2 > R1 > R̂2 and 0 < δ < 1,

|E[Γ,Γ0;αR1,R2,δ]| ≤ Ĉ1R
−2
1 .

Proof. By the definition of thin at infinity relative to Γ0 and Lemma 6.2, there is a radius
R̂′2 > max

{
R̄′0, R̂1

}
, depending on Γ0,Ω

′, Ĉ0 and R̂0, so that there is a smooth function

v : Γ0 \ B̄R̂′2 → R which satisfies

Γ \ B̄2R̂′2
⊂
{
x(p) + v(p)nΓ0

(p) : p ∈ Γ0 \ B̄R̂′2
}
⊂ Γ

and

|v(p)| ≤ 2C̄ ′0|x(p)|−n−1e−
|x(p)|2

4 < 1.

Here R̄′0 = R̄′0(Γ0,Ω
′) and C̄ ′0 = C̄ ′0(Γ0,Ω

′) are determined from the definition of thin at
infinity. By the linear decay of |AΓ| and the gradient estimate from Lemma 6.2, there is a
constant K0 = K0(Γ0, Ĉ0) > 0 so that

|∇2
Γ0
v(p)| ≤ K0|x(p)|−1.

Thus, by the interpolation inequality [16, Lemma 6.32], there is a K1 = K1(Γ0, C̄
′
0,K0)

(which, in turn, depends on Γ0,Ω
′ and Ĉ0) so that

|∇Γ0v(p)|2 ≤ K1|x(p)|−n−2e−
|x(p)|2

4 .

For 0 ≤ s ≤ 1, let

Γ̂s =
{
fs(p) = x(p) + sv(p)nΓ0

(p) : p ∈ Γ0 \ B̄R̂′2
}
.
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Observe that Γ̂0 = Γ0 \ B̄R̂′2 and Γ \ B̄2R̂′2
⊂ Γ̂1 ⊂ Γ. If R2 > R1 > 4R̂′2, then the bound

on v ensures spt(αR1,R2,δ) ⊂ Γ̂s. Thus, by the first variation formula,

d

ds

∫
Γ̂s

αR1,R2,δe
|x|2

4 dHn =

∫
Γ̂s

−αR1,R2,δYs ·
(
HΓ̂s

− x⊥

2

)
e
|x|2

4 dHn

+

∫
Γ̂s

∇αR1,R2,δ ·Y⊥s e
|x|2

4 dHn

=: I + II

where Ys = (vnΓ0) ◦ f−1
s is a vector field along Γ̂s. By the above established estimates

for v and ∇Γ0
v and enlarging R̂′2 if needed, it is readily checked that, for any 0 ≤ s ≤ 1

and p ∈ Γ0 \ B̄R̂′2 ,

e
|fs(p)|2

4 dvolΓ̂s(fs(p)) ≤ 2e
|x(p)|2

4 dvolΓ0
(p) and |∇Γ0

|fs(p)|| ≥
1

2
,

and there is a K2 = K2(Γ0, C̄
′
0,K1) > 0, thus depending on Γ0,Ω

′ and Ĉ0, so that, for
all R > R̂′2,

Hn−1({|fs| = R}) ≤ K2R
n−1.

One also appeals to the estimates for v and ∇iΓ0
v and Lemma A.2 to see that if s ∈ [0, 1]

and p ∈ Γ0 \ B̄R̂′2 , then ∣∣∣∣HΓ̂s
− x⊥

2

∣∣∣∣ (fs(p)) ≤ K3|x(p)|−1

where K3 = K3(Γ0,Ω
′, Ĉ0) > 0. Thus, using these estimates and the co-area formula

one computes that

|I| ≤ 2K3

∫
Γ0

(αR1,R2,δ ◦ fs)|v||x|−1e
|x|2

4 dHn

≤ 2K3

∫ R2+2

R1−2

∫
Γ0∩∂Bt

|v|t−1e
t2

4
1

|∇Γ0 |x||
dHn−1dt

≤ 8C̄ ′0K3

∫ R2+2

R1−2

t−n−2Hn−1(Γ0 ∩ ∂Bt) dt

≤ 4C̄ ′0K3K2(R1 − 2)−2

where the second inequality used that spt(αR1,R2,δ◦fs) ⊆ ĀR1−2,R2+2 as spt(αR1,R2,δ) ⊆
ĀR1−δ,R2+δ and

|fs(p)− x(p)| < 1.

Likewise, one has

|II| ≤ 2

∫
Γ0

|∇αR1,R2,δ ◦ fs||v|e
|x|2

4 dHn

≤ 2δ−1

∫
Y

∫
{|fs|=t}

|v|e
|x|2

4
1

|∇Γ0
|fs||

dHn−1dt

≤ 8δ−1C̄ ′0

∫
Y

(t− 1)−n−1Hn−1({|fs| = t}) dt

≤ 64C̄ ′0K2(R1 − 2)−2
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where the second inequality used that spt(∇αR1,R2,δ) ⊆ ĀR1−δ,R1
∪ ĀR2,R2+δ and Y =

[R1 − δ,R1] ∪ [R2, R2 + δ]. Hence, combining estimates on I and II gives that, as
R1 − 2 > 1

2R1, ∣∣∣∣ dds
∫

Γ̂s

αR1,R2,δe
|x|2

4 dHn
∣∣∣∣ ≤ Ĉ1R

−2
1

where Ĉ1 = 28C̄ ′0K2(K3 + 1) depends on Γ0,Ω
′ and Ĉ0. Therefore,

|E[Γ,Γ0;αR1,R2,δ]| ≤
∫ 1

0

∣∣∣∣ dds
∫

Γ̂s

αR1,R2,δe
|x|2

4 dHn
∣∣∣∣ ds ≤ Ĉ1R

−2
1

and so the claim follows with R̂2 = 4R̂′2. �

Given a Brakke flow {µt}t∈(0,T ) set

νs = Dt−1/2µt where s = log t.

One readily verifies that {νs}s<log T satisfies, for all nonnegative ψ ∈ C1
c (Rn+1) and all

−∞ < s0 ≤ s1 < log T ,∫
ψe
|x|2

4 dνs1 ≤
∫
ψe
|x|2

4 dνs0 −
∫ s1

s0

∫
ψ
∣∣∣H− x

2
· S⊥

∣∣∣2 e |x|24 dνsds

+

∫ s1

s0

∫
∇ψ · S⊥ ·

(
H− x

2

)
e
|x|2

4 dνsds.

Such {νs}s<log T is called the associated rescaled Brakke flow.
We will prove a forward monotonicity formula for rescaled Brakke flows. To achieve

this goal, we first introduce a useful cut-off function on space-time.

Lemma 6.4. Consider the cut-off function

φR(p, s) =
(
1−R−2es(|x(p)|2 + 2n)

)5
+
.

Fix any real numbers s̄0 < s̄1. The following is true:

(1) limR→∞ φR = 1 uniformly on compact subsets;
(2) There is a constant M̂0 = M̂0(n, s̄0, s̄1) so that

sup
s̄0≤s≤s̄1

‖∇φR(·, s)‖C1 + ‖(∂s −L )φR(·, s)‖C0 ≤ M̂0R
−1

where L = ∆ + x
2 · ∇;

(3) There is a constant M̂1 = M̂1(n, s̄0, s̄1) so that, for all s̄0 ≤ s ≤ s̄1,

‖φR(·, s)‖C3 + ‖∂sφR(·, s)‖C1 +
2∑
i=1

‖(1 + |x|)∇iφR(·, s)‖C0 ≤ M̂1.

Proof. The first claim follows from the definition of φR. The second and third claim can
be checked by straightforward, but tedious, computations, so we omit the details. �

Proposition 6.5. Let {µt}t∈(0,T ) be an integral Brakke flow that satisfies

(1) limt→0 µt = HnbC;
(2) For every t ∈ (0, T ), t−

1
2 spt(µt) ⊆ Ω′.
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Let {νs}s<log T be the associated rescaled flow. There is a constant E0 = E0(Γ0,Ω
′, C)

so that, for all s < log T ,

Erel[νs,Γ0] = lim
R→∞

(∫
B̄R

e
|x|2

4 dνs −
∫
B̄R∩Γ0

e
|x|2

4 dHn
)

exists and is bounded by E0. Moreover, for any −∞ < s̄0 < s̄1 < log T , if f ≥ 0 satisfies

M̂ = sup
s̄0≤s≤s̄1

‖f(·, s)‖C3 + ‖∂sf(·, s)‖C1 +
2∑
i=1

‖(1 + |x|)∇if(·, s)‖C0 <∞,

then, for all s̄0 ≤ s0 ≤ s1 ≤ s̄1,

Erel[νs0 ,Γ0; f ] ≥ Erel[νs1 ,Γ0; f ] +

∫ s1

s0

∫
f
∣∣∣H− x

2
· S⊥

∣∣∣2 e |x|24 dνsds

−
∫ s1

s0

Erel
[
νs,Γ0; (∂s −L )f +Q∇2f

]
ds.

(6.1)

Here S = S(x) = Txνs and Q∇2f (p,v) = ∇2f(p, s)(v,v).

Remark 6.6. When {µt}t∈(0,T ) is a smooth MCF there is an equality in (6.1).

Proof of Proposition 6.5. By our hypotheses, it follows from the pseudo-locality result
[23, Theorem 1.5] and interior regularity for mean curvature flow [15] (cf. [4, Proposition
3.3]) that there are sufficiently large constants R̂0 = R̂0(C) and Ĉ0 = Ĉ0(C) so that, for ev-
ery s < log T , there is an asymptotically conical hypersurface Γs ∈ H(Γ′0\B̄R̂0

,Γ′1\B̄R̂0
)

that satisfies

sup
p∈Γs

|x(p)||AΓs(p)| ≤ Ĉ0 and νsbRn+1 \ B̄R̂0
= HnbΓs.

We remark that this is the only place where the unit regular hypothesis plays a role.
It then follows from Proposition 6.3 and the dominated convergence theorem that, for

any R2 > R1 > R̂2,∣∣∣∣∣
∫
ĀR1,R2

e
|x|2

4 dνs −
∫
ĀR1,R2

∩Γ0

e
|x|2

4 dHn
∣∣∣∣∣ = lim

δ→0
|Erel[Γs,Γ0;αR2,R1,δ]| ≤ Ĉ1R

−2
1

where R̂2 and Ĉ1 both depend only on Γ0, Ω′ and C. It follows immediately that

Erel[νs,Γ0] = lim
R→∞

(∫
B̄R

e
|x|2

4 dνs −
∫
B̄R∩Γ0

e
|x|2

4 dHn
)

exists and is finite. By Huisken’s monotonicity formula [19], for all s < log T and all
R > 1,

νs(BR) ≤ K0R
n

where K0 = K0(C) > 0 and so∣∣∣∣∣
∫
B2R̂2

e
|x|2

4 dνs −
∫
B2R̂2

∩Γ0

e
|x|2

4 dHn
∣∣∣∣∣ ≤ E1

whereE1 = E1(Γ0, R̂2,K0), in turn, depends only on Γ0,Ω
′ and C. Hence, by the triangle

inequality and the two bounds already established, for any R > 2R̂2,∣∣∣∣∫
B̄R

e
|x|2

4 dνs −
∫
B̄R∩Γ0

e
|x|2

4 dHn
∣∣∣∣ ≤ E1 +

1

2
Ĉ1R̂

−2
2

and so the first claim follows with E0 = E1 + 1
2 Ĉ1R̂

−1
2 depending on Γ0,Ω

′ and C.
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To prove the forward monotonicity formula, appealing to [9, Section 3.5] and the diver-
gence theorem, one computes

E[νs0 ,Γ0;φRf ] ≥ E[νs1 ,Γ0;φRf ] +

∫ s1

s0

∫
φRf

∣∣∣H− x

2
· S⊥

∣∣∣2 e |x|24 dνsds

−
∫ s1

s0

E[νs,Γ0; ζR] ds

(6.2)

where

ζR = φR (∂s −L ) f + φRQ∇2f + f (∂s −L )φR + fQ∇2φR

− 2∇φR · ∇f + 2Q∇φR(∇f)T ∈ C0
c (Rn+1 × Sn × [s̄0, s̄1]).

The hypotheses on f and Lemma 6.4 ensure that ζR(·, s) ∈ Xe(Rn+1) and, moreover,
‖ζR(·, s)‖X has a uniform (in s and R) bound in terms of n, M̂ and M̂1. The hypotheses
on f and Lemma 6.4 further imply that, for each fixed s,

lim
R→0

ζR = (∂s −L ) f +Q∇2f uniformly on compact subsets.

By linearity,

Erel[νs,Γ0; ζR] = Erel[Γs,Γ0; (1− φ2R̂2,δ
)ζR] + E[νs,Γ0;φ2R̂2,δ

ζR].

As φ2R̂2,δ
ζR has compact support, the uniform convergence implies

lim
R→∞

E[νs,Γ0;φ2R̂2,δ
ζR] = E[νs,Γ0;φ2R̂2,δ

(∂s −L ) f +Q∇2f ]

Likewise, as uniform convergence on compact sets implies pointwise convergence, Propo-
sition 4.9 implies

lim
R→∞

E[νs,Γ0; (1− φ2R̂2,δ
)ζR] = E[νs,Γ0; (1− φ2R̂2,δ

) (∂s −L ) f +Q∇2f ].

Hence,
lim
R→∞

E[νs,Γ0; ζR] = E[νs,Γ0; (∂s −L ) f +Q∇2f ]

Finally, by (suitably modifying) Theorem 4.1, one has

|E[νs,Γ0; ζR]| ≤ C9(1 + E0)‖ζR‖X
is uniformly bounded on compact intervals of time. Hence, by the dominated convergence
theorem,

lim
R→∞

∫ s1

s0

E[νs,Γ0; ζR] ds =

∫ s1

s0

E[νs,Γ0; (∂s −L ) f +Q∇2f ] ds.

Similarly, for each fixed s, as limR→∞ φRf = f pointwise and ‖φRf(·, s)‖Lip has
a uniform (in R) bound, it follows from Proposition 4.9 and the dominated convergence
theorem that

lim
R→∞

E[νs,Γ0;φRf ] = lim
R→∞

(
E[Γs,Γ0; (1− φ2R̂2,δ

)φRf ] + E[νs,Γ0;φR̂2,δ
φRf ]

)
= E[Γs,Γ0; (1− φ2R̂2,δ

)f ] + E[νs,Γ0;φR̂2,δ
f ] = E[νs,Γ0; f ].

Therefore, (6.1) follows from (6.2) by sending R→∞ and the monotone convergence
theorem. �

We are now ready to prove Theorem 6.1.
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Proof of Theorem 6.1. Let {νs}s<log T be the associated rescaled Brakke flow. By Propo-
sition 6.5 with f ≡ 1,

lim
si→−∞

∫ si

−∞

∫ ∣∣∣H− x

2
· S⊥

∣∣∣2 e |x|24 dνsds = 0.

Let νis = νs+si and so each
{
νis
}
s<log T−si

is an integral rescaled Brakke flow. By the area
estimates and Brakke’s compactness theorem, [9] or [20, Section 7], there is a subsequence
ij →∞ so that {

νijs
}
s<log T−sij

→ {ν̂s}s∈R
as rescaled flows. It is not hard to see that, for any s,

Erel[ν̂s,Γ0] = E−∞

and, for any s0 ≤ s1, ∫ s1

s0

∫ ∣∣∣H− x

2
· S⊥

∣∣∣2 e |x|24 dν̂sds = 0.

In particular, for a.e. s, ν̂s is a critical point for the functional E. This implies ν̂s = ν̂ is
static and, as spt(ν

ij
s ) ⊆ Ω′, it follows that spt(ν̂) ⊆ Ω′. Finally, as observed in the proof

of Proposition 6.5, the νs are C1-asymptotic to C in a uniform manner and so ν̂ is also
asymptotic to C. The claim follows from this by unwinding the construction of νijs . �

APPENDIX A. AUXILIARY LEMMAS

For a hypersurface Σ, let

L µ
Σ = ∆Σ +

x

2
· ∇Σ − µ

and when µ = 1
2 we write L

1
2

Σ = LΣ. We then let

LΣ = LΣ + |AΣ|2 = ∆Σ +
x

2
· ∇Σ −

1

2
+ |AΣ|2.

Lemma A.1. If Σ is a C2-asymptotically conical self-expanding end in Rn+1, then

L 0
Σ

(
rde−

r2

4

)
= −1

2

(
n+ d+O(r−2)

)
rde−

r2

4

where r(p) = |x(p)| for p ∈ Σ.

Proof. By the chain rule

∇Σ

(
rde−

r2

4

)
=

(
d

r
− r

2

)
rde−

r2

4 ∇Σr

and

∆Σ

(
rde−

r2

4

)
=

{(
r2

4
− d− 1

2
+
d2 − d
r2

)
|∇Σr|2 +

(
d

r
− r

2

)
∆Σr

}
rde−

r2

4 .

Thus, combining these gives

L 0
Σ

(
rde−

r2

4

)
=

{(
−d+ 1

2
+
d2 − d
r2

)
|∇Σr|2 +

(
d

r
− r

2

)
∆Σr

}
rde−

r2

4 .

Observe that by our hypotheses on Σ

|∇Σr|2 = 1 +O(r−4) and ∆Σr =
n− 1

r
+O(r−3).
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Hence,

L 0
Σ

(
rde−

r2

4

)
= −1

2

(
n+ d+O(r−2)

)
rde−

r2

4 ,

proving the claim. �

Lemma A.2. Fix an M̄0 > 1 and suppose Σ is a self-expander in an open subset of Rn+1

with supΣ |AΣ| + |∇ΣAΣ| ≤ M̄0. If v ∈ C2(Σ) with ‖v‖C2 ≤ (8M̄0)−1 is such that
h = x|Σ + vnΣ is a C2 embedding, then at p ∈ Σ

Hh(Σ) +
x

2
· nh(Σ) = −LΣv +Q(v,x · ∇Σv,∇Σv,∇2

Σv)

where Q depends on p, v, and Σ and is a homogeneous degree-two polynomial of the form

Q(s, ρ,d,T) = a(s, ρ,d,T) · d + b(s,d,T)s.

Here a and b are homogeneous degree-one polynomials with coefficients bounded by C̄1 =
C̄1(n, M̄0).

Proof. Denote by Γ = h(Σ). First, by [3, Lemma 7.2],

(A.1) HΓ +
x

2
· nΓ = −

LΣ(vnΣ) +

n∑
i,j=1

(g−1
h − g

−1
Σ )ij(∇2

Σh)ij

 · (nΓ ◦ h)

where gh and gΣ are the pull-back metrics of the Euclidean one via h and x|Σ, respectively,
and we used the fact LΣx = 0. One readily computes that

(gh)ij = (gΣ)ij + ∂iv∂jv + 2v(AΣ)ij + v2
n∑
k=1

(AΣ)ik(AΣ)kj

and so the hypotheses ensure

2gΣ > gh >
1

2
gΣ.

Using this, a direct computation gives

(g−1
h − g

−1
Σ )ij = −2AijΣv +Qij1 (v,∇Σv)

where Q1 is a homogeneous degree-two polynomial valued in (2, 0)-tensors and of the
form

Q1(v,∇Σv) = a1(∇Σv) · ∇Σv + b1(v)v

where a1 and b1 are homogeneous degree-one polynomials valued in (2, 0)-tensors and
with coefficients bounded by K1 = K1(n, M̄0). Likewise,

∇2
Σh = ∇2

Σx|Σ + Q2(v,∇Σv,∇2
Σv)

where Q2 is a degree-one polynomial with coefficients bounded by K2 = K2(M̄0) and
valued in vector-valued symmetric (0, 2)-tensors. Finally,

nΓ ◦ h = nΣ + Q3(∇Σv)

where Q3 is a vector-valued homogeneous degree-one polynomial of the form

Q3(∇Σv) = a3(∇Σv) + a′3(∇Σv)nΣ.

Here a3 and a′3 have coefficients bounded by K3 = K3(n, M̄0) and a3 · nΣ = 0.
By [3, Lemma 5.9], on a self-expander

L 0
ΣnΣ + |AΣ|2nΣ = 0.
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Using this, one obtains

LΣ(vnΣ) · (nΓ ◦ h) = LΣ(vnΣ) · nΣ + LΣ(vnΣ) ·Q3(∇Σv)

= LΣ(vnΣ) · nΣ +Q4(v,∇Σv,x · ∇Σv,∇2
Σv)

where Q4 is a homogeneous degree-two polynomial of the form

Q4(v,∇Σv,x · ∇Σv,∇2
Σv) = a4(v,x · ∇Σv,∇Σv,∇2

Σv) · ∇Σv.

Moreover, the coefficients of a4 are bounded by K4 = K4(n, M̄0). Similarly, as nΣ ·
(∇2

Σx)ij = (AΣ)ij ,

(nΓ ◦ h) ·
n∑

i,j=1

(g−1
h − g

−1
Σ )ij(∇2

Σh)ij = 2vnΣ ·
n∑

i,j=1

−AijΣ (∇2
Σx|Σ)ij +Q5(v,∇Σv,∇2

Σv)

= 2|AΣ|2v +Q5(v,∇Σv,∇2
Σv)

where Q5(v,∇Σv,∇2
Σv) is a homogeneous degree-two polynomial of the form

Q5(v,∇Σv,∇2
Σv) = a5(v,∇Σv,∇2

Σv) · ∇Σv + b5(v,∇Σv,∇2
Σv)v

and the coefficients of a5 and of b5 are bounded by K5 = K5(n, M̄0).
Hence, substituting these into the above expressions into the formula (A.1) gives

HΓ +
x

2
· nΓ = −

(
LΣ(vnΣ) · nΣ + 2|AΣ|2v

)
+Q(v,x · ∇Γv,∇Σv,∇2

Σv).

Here Q = −Q4 − Q5, and so is of the form desired and with coefficients bounded by
C̄1 = C̄1(n, M̄0).

Finally, we compute

LΣ(vnΣ) · nΣ = LΣv + vnΣ ·L 0
ΣnΣ + 2(∇Σv · ∇ΣnΣ) · nΣ = LΣv − |AΣ|2v,

which completes the proof. �

APPENDIX B. GEOMETRIC COMPUTATIONS

Proposition B.1. Let σ be a C2-hypersurface in Sn with unit normal νσ and assume that

Kσ = sup
p∈σ
|Aσ(p)| <∞.

There is a constant δ0 = δ0(Kσ, n) ∈ (0, 1) so that if θ : σ → (0, π2 ) satisfies ‖θ‖1 < δ0,
then the set

ω = {cos(tθ(p))x(p) + sin(tθ(p))νσ(p) : 0 < t < 1, p ∈ σ}

is an open domain in Sn with the volume estimate

Hn(ω) ≤ 2

∫
σ

θ dHn−1.

Proof. Fix any point p ∈ σ. Let φ−1 be the normal coordinates on an open neighborhood
of p in σ; i.e., φ : Bn−1

ε → σ ⊂ Rn+1 is a C2 diffeomorphism onto its image so that
φ(0) = p and, for 1 ≤ i, j ≤ n− 1,

∂xiφ(0) · ∂xjφ(0) = δij and ∇σνσ(p) · ∂xiφ(0) = κi∂xiφ(0)

where the κi are principle curvatures of σ at p. Write θ(x) = θ(φ(x)) and νσ(x) =
νσ(φ(x)). Define

f(t, x) = cos(tθ(x))φ(x) + sin(tθ(x))νσ(x).
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Next we compute f∗dvolSn(t,0). A straightforward computation gives that

∂tf(t,0) = − sin(tθ(0))θ(0)φ(0) + cos(tθ(0))θ(0)νσ(0); and;

∂xif(t,0) = −t sin(tθ(0))∂xiθ(0)φ(0) + t cos(tθ(0))∂xiθ(0)νσ(0)

+ (cos(tθ(0)) + κi sin(tθ(0)))∂xiφ(0).

It follows that

∂tf(t,0) · ∂tf(t,0) = θ2(0);

∂tf(t,0) · ∂xif(t,0) = tθ(0)∂xiθ(0); and;

∂xif(t,0) · ∂xj f(t,0) = δij + (κi + κj) cos(tθ(0)) sin(tθ(0))δij

+ (κiκj − 1) sin2(tθ(0)))δij + t2∂xiθ(0)∂xjθ(0),

where we used the fact that |φ| = |ν| = 1 and φ · ν = ∂xiφ · ν = 0. Hence, if δ0 is chosen
sufficiently small, then | sin(tθ(0))| ≤ tθ(0) and

0 < f∗dvolSn(t,0) ≤ 2θ(0) dxdt.

In particular, f is a C1 diffeomorphism from (0, 1) × σ onto its image and so the set ω is
an open domain in Sn. �
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