RELATIVE EXPANDER ENTROPY IN THE PRESENCE OF A TWO-SIDED
OBSTACLE AND APPLICATIONS

JACOB BERNSTEIN AND LU WANG

ABSTRACT. We study a notion of relative entropy motivated by self-expanders of mean
curvature flow. In particular, we obtain the existence of this quantity for arbitrary hypersur-
faces trapped between two self-expanders that are asymptotic to the same cone and bound
a domain. This allows us to begin to develop the variational theory for the relative entropy
functional for the associated obstacle problem. We also obtain a version of the forward
monotonicity formula for mean curvature flow proposed by Ilmanen.

1. INTRODUCTION

A hypersurface, i.e., a properly embedded codimension-one submanifold, > C R+
is a self-expander if

xt

(1.1) Hy = -
Here

HZ = AZX = _HEHZ = —din(l’lz)nE
is the mean curvature vector, ny. is the unit normal, and x is the normal component of the
position vector. Self-expanders arise naturally in the study of mean curvature flow. Indeed,
> is a self-expander if and only if the associated family of homothetic hypersurfaces

{Et}t>0 = {\/%2}

is a mean curvature flow (MCF). That is, a solution to

ox\ "
((%) —Hzt.

Given integers k£ > 1 and n > 2, ¥ is a C*-asymptotically conical hypersurface in R™
with asymptotic cone C = C(X) if lim, ,o+ pX = C in C} (R"*! \ {0}), where C is a
C*-regular cone. The space of such hypersurfaces is denoted by ACHf;. IfY e AC’Hf;
is a self-expander, then its associated flow emerges from C(X) and so these self-expanders
model how MCEF resolves conical singularities.

Self-expanders are the critical points of the functional

B[] = / T
b

where H" is n-dimensional Hausdorff measure. Due to the rapid growth of the weight this
functional takes the value infinity on any asymptotically conical self-expander. However,

t>0
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following a suggestion of Ilmanen [22], for T, T'; € ACH" with C(I'g) = C(I';) one may
consider, when defined, the relative expander entropy

E.[T1,T0) = lim E,[y,To; Brl
R—o0
where

E,a[T1,To; Br) = E[I'1 N Bg) — E[l'y N Bg]

x‘Z
:/ e / B anr.
PmBR I'oNBr

In the curve case, this relative functional was studied by Ilmanen-Neves-Schulze [23] who
used it to prove the uniqueness of an expanding network in its topological class. More
recently, Deruelle-Schulze [13] investigated this relative functional in general dimensions
and showed it is well defined and finite for pairs of self-expanders asymptotic to the same
cone. Due to the rapid growth of the weight this is done by showing that the two self-
expanders converge to each other at a very rapid rate — see, for example, Proposition 2.1
below. As a consequence, they are able to consider E)..; as a sort of smooth function on
the moduli space of self-expanders with varying cones — by [3], this space has a natural
manifold structure. Their analysis allows them to conclude that E,..; is non-zero on pairs of
distinct self-expanders whose common asymptotic cone is generic in an appropriate sense.

In this paper we develop the variational theory of the functional FE,.; in the presence
of a natural two-sided obstacle. Among other things we show that E,..; is well defined
and coercive for arbitrary hypersurfaces satisfying the obstacle condition — importantly,
we achieve this without assuming any regularity at infinity for the hypersurfaces. More
precisely, fix two self-expanders I'y, T'; € ACH?2 with C(I'g) = C(T';) = C and assume
there are domains in R”*1, Uy C U, so that OU; = T'; fori = 0, 1. Let

H(To,T1) = {T'=0U: U is a smooth domain in R"* and Uy C U C U, }

be the space of hypersurfaces trapped between I'g and T';. While elements of H (T, ') are
asymptotic to C in the Hausdorff distance, in general there is no other asymptotic regularity.

We first show that the relative expander entropy E,..;[-, o] is well defined (possibly
positive infinite) for all ' € H(Ty, T'y).

Theorem 1.1. IfT € H(To,T'1), then
E,o[l,To] = lim E,q[I",Tg; Bg] € (—o0, oq].
R—o0

That is, the limit exists and is either real valued or positive infinity.

Remark 1.2. Some simple observations:

(1) By [7, Theorem 4.1], when 2 < n < 6, for every C*-regular cone C C R"*1,
there are unique smooth domains U, C Ug satisfying I';, = 0U, and ' = OUqg
are self-expanders both C2-asymptotic to C and so that any asymptotically conical
self-expander I" with C(T") = C satisfies I' € H(I'1,,I'). Constructions of [1] —
see also [5] — provide many examples where H(I'1,, ') is non-trivial, i.e., it has
more than one element.

2) IfT € H(Ty, 1) N AC?—[%, i.e., I' is both trapped between I'y and I'; and C?-
asymptotic to C, then E,.;[I", I'g] not only exists but is also finite — see Proposition
6.3. In this case the existence of E,; can be shown by adapting computations of
Deruelle-Schulze [13, Proposition 3.1].
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It is useful to study an anisotropically weighted analog of E,.;. To describe the space
of admissible weights, first fix a subset W C R"™*!. For a function ¢ € Lip(W x S™) and
any p € W, define ¢, (v) = ¢(p, v) and

Venth(p, V) = Vgnthy(V).
Consider the Banach space
X(W) ={¢ € Lip(W x §"): [[¢[lx < oo}
where

[¥llx = 9llLip + [VenthllLip +  sup (1 +|x(p)))|Venb(p, V).

(p,v)EW xS™
We let

X(W)={¢ e X(W): ¥(p,v) =¢¥(p,—V),¥(p,v) € W x S"}.

Elements of X¢(TV) are said to be even. Observe that an even function is naturally identi-
fied with a function of the Grassman n-plane bundle of .
ForT' € H(T,T'1) and ¢y € X¢(R"*1), let

B[l Tos v Br) = / $(p, nr(p))eF anr - / $(p,mry () am”,

I'NBgr I'oNBr
and
Erel[ra FO; ¢] = lim Erel [Fa FO; ¢7 BR]
R—o0

when this limit exists. Observe that if ©) has compact support, then the limit is defined. We
show that if E,.;[[', T] is finite, then, for all ¢» € X¢(R"*1), E,.i[[, To; 1] exists and,
moreover, the map ¢ — E,.;[I",[o; ¢] is a bounded linear functional on X¢(R"*1).

Theorem 1.3. If I' € H(T,T1) has E,.i[l,To] < oo, then, for any ¢ € X¢(R"1),
E,oi[T,To; 9] exists. Moreover, there is a constant L = L(T'y,T'1,n) > 0 so that, for all
P € Xe(R™HL),

|Ervet [l Tos ]| <L(1+ |[Erer[I', Tol ) 14)]| -
In particular, the map 1) — E,.[T, To; ] is a bounded linear functional on X¢(R™*1).

Theorems 1.1 and 1.3 allow us to begin to develop the variational theory of E,.; in
H(To,T'1). In particular, in [6] a mountain pass theorem for E,..; is proved. In this pa-
per we study the simpler question of minimizing E,..; in H(To,T'1). An element IV €
H(To,T'1) is an Ey.ep-minimizer in H(To,Ty) if, for all T € H(To,T1), Era[T,To] >
E,o[I",T]. We directly establish the existence of E..;-minimizers.

Theorem 1.4. When 2 < n < 6, there exists a self-expander;, 1 ,;, that is an E,.;-
minimizer in H(To,T'1).

Remark 1.5. It is worth comparing the notion of F,.;-minimizer with the more stan-
dard notion of a local E-minimizer. Recall, IV € #H(T'¢,I'1) is a local E-minimizer in
H(To,I'1) provided E[I' N Br] > E[I” N Bg), for any I' € H(T'p,T'1) that satisfies
I"\Br = I"\Bg. Clearly, any E,.;-minimizer in H(T'g,T';) is a local E-minimizer in
H(To,T'1). As observed by Deruelle-Schulze [13, Theorem 4.1], the converse is also true:
alocal E-minimizer in H(T'g, 1) is also an E,..;-minimizer in (g, T'1). This is because
their argument uses only that E,..; is well defined and not —oo and a good estimate on the
area of ribbons as in Lemma 2.2.
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Another application is the existence of a forward monotonicity formula for mean cur-
vature flows trapped between two disjoint expanders coming out of the same cone. This
implies that any mean curvature flow that emerges from a cone and that is trapped between
two self-expanders is initially modeled by a self-expander — a fact used in [8]. Related
results for harmonic map flow were obtained previously by Deruelle [12].

Theorem 1.6. Let {2}, 1) be a mean curvature flow that satisfies

(1) limy_,o H™ |2y = H"|C for C a C?-regular cone;
(2) Foreach0 <t < T, t~ /2%, € H(To,T1).

Then, for any sequence t; — 0, there is a subsequence t;; — 0 so that

t;l/taiv —T
J J
where T is a (possibly singular) self-expander C'-asymptotic to C and the convergence is

in the sense of measures.

Remark 1.7. In [21, Lecture 2, F], Ilmanen gave a sketch of the proof that the outermost
flow from a cone is made up of stable self-expanders asymptotic to the cone — see also [10,
Section 8.5]. Thus, Hypothesis (2) of Theorem 1.6 may be unnecessary.

Finally, we remark that all of the above theorems also apply to lower regularity surfaces,
specifically, to boundaries of Caccioppoli sets. They also apply to hypersurfaces trapped
inside regions that are slightly “thicker” than the one that lies between two ordered self-
expanders. Both of these more general situations are needed in applications [6] and are
treated in the body of the paper.

The organization of the paper is as follows. In Section 2, we fix notation and conven-
tions for the remainder of the paper. In Section 3, we prove that the relative entropy for
hypersurfaces that lie in an asymptotically “thin” set is well defined and not —oo. In Sec-
tion 4, we generalize results of Section 3 to an anisotropically weighted setting. In Section
5, we appeals to estimates derived in previous sections to show the relative entropy func-
tional is coercive and lower semi-continuous and consequently establish the existence of
minimizers for the relative entropy. In Section 6, we prove a version of weighted mono-
tonicity formula for mean curvature flows and apply it to study the asymptotic behavior of
flows coming out of a cone.
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2. NOTATION AND PRELIMINARIES

We fix notation and certain conventions we will use throughout the remainder of the
paper. We also recall certain facts we will need.



RELATIVE EXPANDER ENTROPY IN THE PRESENCE OF A TWO-SIDED OBSTACLE 5

2.1. Basic notions. Denote a (open) ball in R™ centered at p with radius R by B} (p) and
the closed ball by Bg(p). We often omit the superscript, n, when it is clear from context.
We also omit the center when it is the origin. Likewise, denote an (open) annulus of inner
radius R; and outer radius Ry by Ag, g, and the closed annulus by A R.,R,- We denote
the closure of a set U both by U and cl(U) and the topological boundary by oU.

Assume that n,k > 2 are integers. A cone is a set C C R™™1 \ {0} that is dilation
invariant around the origin. That is, pC = C for all p > 0. The link of the cone is the set
L(C) = CNS", the intersection of the cone and the unit n-sphere. The cone is C*-regular
if its link is an embedded, codimension-one, C'* submanifold in S™.

2.2. Caccioppoli sets. Let W be an open subset of R"*1. A subset U C W is a Cacciop-
poli set if it is a set of locally finite perimeter, that is 1y, the characteristic function of U,
belongs to BV,.(WW). Given a Caccioppoli set U, let I' = 9*U be the reduced boundary
of U and let nr be the outward unit normal to U. Without loss of generality, we assume
cl(0*U) = 90U —see [17, Theorem 4.4].

For i € {0, 1}, let U; be Caccioppoli sets with I'; = 0*U,. If Uy C Uy, then let

C(To,T1) = {U: U is a Caccioppoli setand Uy C U C Us }.

Let Q@ = Uy \ cl(Uy). Let U be an element of C(I'g,I'1) and I' = 9*U. For a function
¥ € C9(Q) define

BT = [ wio)e™ [ v
More generally, for a function ¢ € C2(Q x S™) define
x<p)\ " ' EXC I
BN Toiv] = [ ome()e ™5 an = [ e (e ae
To

We remark that E'[I", T'g; 4] is linear in ) and that when 1) is even E[I", T'o; 9] is indepen-
dent of the choice of nr or nr,.

2.3. Partial ordering of asymptotically conical hypersurfaces. Let C be a C%-regular
cone in R™™! so the link £(C) is an embedded codimension-one C'? submanifold of S™.
Clearly, £(C) separates S™ and we fix a closed set w C S™ so that w = L£(C). A hyper-
surface X is asymptotic to C if

lim H"|(pX) =H"|C.
p—0+
When this occurs set C(X) = C. For such 3, let 2_ () be the subset of R™*1 \ 3 so that

0_(X) =X and

lim cl(pQ_ (X)) NS™ = w as closed sets.
p—0+

Such Q_ (%) is well defined by the hypotheses on Y. Denote by 2, () = R**1\ Q_(X).
For hypersurfaces g, X1 for which C(Xg) = C(X;) write

Yo = X provided Q_ (o) C Q_(24).

It is straightforward to extend these notions to hypersurfaces in R"*1 \ K where K is
compact.
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2.4. Conventions. We now fix conventions we will use in the remainder of the paper. Let
C be a C?-regular cone in R"*!. Pick a closed set w C S™ so dw = L(C). Using w,
let Ty, T'; be two self-expanders both C2-asymptotic to C and assume I'y < T';. Denote
by Q = Q4 (To) N Q_(X1). Let V, div and A denote, respectively, the gradient, the
divergence and the Laplacian on R"*1,

If T is a C?-asymptotically conical self-expander in R"*!, then it follows from the
interior estimates for MCF (see, e.g., Theorem 3.4 and Remark 3.6 (ii) of [15]) that

2.1 Cr,; = sup < 1+ |x(p) Z |Vinr(p >

pel’

We also introduce the following test functions. Let

1 if p e Bg
¢ro(p) =4 1-XBEE ity e Ap s
0 if pe R\ Bris

be a cutoff. Let
Ry Ry.5(P) = ORy5(P) — ORi—5.5(p) € Lipc(R™*1)

be the cutoff adapted to the closed annulus Ag, g,.
Finally recall that a set Y C R"*! is quasi-convex if there is a constant C' > 0 so that
any pair of points p, ¢ € Y can be joined by a curve 5 in Y with

Length(8) < Clx(p) — x(q)|-

It is readily checked that 2 and Q \ Bp are both quasi-convex and so, by [18, Theorem
4.1], the space of Lipschitz functions on these domains is the same as the W1 space.

2.5. Decay estimates for self-expanding ends and an area estimate. Using estimates of
the first author [2] — cf. [13, Theorem 2.1] — one obtains strong asymptotic decay results for
the ends of two expanders asymptotic to the same cone. We will use this in order to obtain
sharp area estimates for the slices of large spheres lying between two ordered expanders
asymptotic to the same cone.

Proposition 2.1. Let C be a C?-regular cone in R™"t'. Suppose ¥y and ¥, are self-
expanding ends both C?-asymptotic to C. There is a radius Ry = Ro(Xo,%1) > 1 and
a constant Cy = Co(X9,%1) > 0 so that there is a smooth function u: X9 \ Bg, — R
satisfying

31\ By, C {x(p) + u(p)ns,(p): p € X0 \ B, } € T
and u satisfies the (sharp) pointwise estimate
_ 2
lu| + 7~ Vs, u| + 7"_2|V220u| < Cor " le=7
where (p) = |x(p)| for p € Xo. Moreover, for any R > 2Ry,

¥1\Br CT P _Rj(zo)

Here T5(X0) is the §-tubular neighborhood of ¥.

To prove Proposition 2.1 we need a couple of auxiliary lemmas which, due to their
technical nature, are collected in Appendix A.
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Proof of Proposition 2.1. As ¥ and X, are both C2-asymptotic to C, it follows from [4,
Proposition 3.3] that there are constants R = R(¥o, ;) > 1and M = M (%, ¥1) > 0,
and functions f and f; on C \ By so that, for i € {0, 1},

%\ Bar C {fi(p) = x(p) + fi(p)nc(p): p€ C\ Br} C %

with the curvature estimate

sup  |x(p)||As, (p)| < M,
PEL;\Bar

and f; satisfies

i)+ Ve fi(P)| < Mx(p)| ™" < MR <

DN | =

By the triangle inequality

1, _ _

Zx@) = ()] < 2Ix(p)|-

As
£1(p) — fo(D)| < [/1(D)] + | fo()] < 2M|x(p)| ™! < 4M|f:(p)| ™
it follows that
dist(f1(p), Xo) < |£1(p) — fo(p)| < 4M|f:(p)| ™.
Thus, for all ¢ € ¥ \ Bag,
x(q) — s, (q)] < 4M|x(q)| "

where Iy, is the nearest point projection to %o. By our choice of M and the triangle
inequality, if ¢ € X1 \ Byg, then

1
2 x(@)] < [z, (g)] < 2/x(g)|
and, hence,

(2.2) x(q) — 15, (q)| < 8M|TIs;, (q)] "

Given ¢ € ¥ \ Bigr, suppose x(q) = f1(p) for some p € C \ Br. By the previous
estimates and the triangle inequality

Ifo(p) — s, (q)] < |fo(p) — £1(D)] + [x(q) — s, ()|
< AM|x(q)| ™" + 8M|TIx, (q)| " < 16M|IIg, (q)| .

In particular, |fy(p)| > 3|IIx, (¢)| and so both fo(p) and |IIx, (¢)| are in X \ Baw. By the
curvature decay of Xy and enlarging R, if needed, one has

ds, (fo(P), Iz, (q)) < 2/fo(p) — I, (q)] < 32MILx, (q)] 7
and so
Ins, (f0(p) — nx, (s, (q))] < 8M (s, (q)| 7
One also uses the C'* bound for f; to get

Ing, (£1(p) — 0, (fo(B))| < CM|x(p)| ™" < 20M|Ix, (q)|
for some C' = C'(n). Thus, combining these two estimates gives

2.3) Ins, (¢) — nx, (s, ()| < 2(C + 4)M Iz, (q)| "
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Hence, in view of (2.2) and (2.3), there are constants Ry = Ro(n,C,M,R) > 1
and M = M (n,C, M) > 0 (which, in turn, depend only on ¥, and ¥;) and a function
u: Yo\ Bg, — R so that

$1\ Bag, C {x(p) +u(p)ns, (p): p € o\ Bg,} C %

and u satisfies the pointwise estimate

u(p)] + [Vs,u(p)] + [VE,u(p)| < Mx(p)|~" <

N —

This together with Lemma A.2 implies that
1
Ls,u Agou—i— - Vsou + (|A20|2 ) u=a-Vsyu+bu

and
|al + [b]

<
where C; = C1(n, %

Ci (lu] + [Vsoul + [x - Vs,ul + |V220u\) <Cy(1+ M)
o) > 0. Thus, write

1
g “Vygou=—Agu— |AZD|2u + iu +a-Vygu+bu

and so, by the curvature decay of ¥y and estimates on v and |a|+|b|, one gets that |x- Vs u|
decays linearly and, hence, so does |a| + |b|. As such, one uses [2, Theorem 9.1] to see

/ wPes dH" < oo.
So\Bg,
Hence, by the L°° estimate [16, Theorem 8.17] and the Schauder estimate [16, Theorem
6.2], one has that |ul,|Vs,u| and |V, u| all decay faster than e~2"" and so the same
holds true for |a| and b.

On %o\ B R, consider the barrier

pe1 2 p_g 12 I
p=r"""lem T —pT 2T <pnleT T,

By increasing Ry, if necessary, one may ensure ¢ > 0. Moreover, using Lemma A.1, one
readily evaluates that, up to increasing R in a way that depends only on g and w,
Ly,p <a-Vs o+ be.

Pick v > 1 large enough so that [u| < yp on X9 N 0Bg,. As ¢ and u both tend to 0 as
r — oo and, up to further increasing Ro, |Ax, |*— 3 —b < 0, it follows from the maximum
principle that
|u| < ~pono\ Bg,.
The pointwise estimate on derivatives of u follow from standard Schauder estimates on
balls for an appropriate choice of Cp — see [11, Corollary 4.12] for the idea.
To complete the proof observe that when R > 2Ry if ¢ € X1\ Bg, then
[x(g) — s, (q)] < 2M |x(q)| ™" < 2MR™".
Thus,
_ 1
s, (q)] > R—2MR™*' > SR

One readily checks that

R2

(M, (q))] < vo(Tx, (q)) < 2" yeM R 1e=
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Hence, as long as one chooses Co > 2"+1fyeM , one has
Y1\Br CT. b))
1\ R 60R7"7167%2( 0)

and this proves the final claim. ]

An immediate consequence of Proposition 2.1 is that if I'g and I'; are two asymptoti-
cally conical self-expanders with C(T'y) = C(I';) and Ty < T'y, then, for any R > 2R,
the region Q = Q4 (Tg) N Q_(T') satisfies

DBrCT, . ()
The above result implies that €2, the region between the two self-expanders I'g and I'y, is
“thin” near infinity. For technical reasons important in later applications [6], it is useful to
consider slight “thickenings” of € that are still thin at infinity in this sense.

More precisely, let 'y and T} be two asymptotically conical hypersurfaces, not neces-
sarily self-expanders, with C(T'y) = C(I'}) = C(I'y) = C and so that T'{, < T’y < T.
Observe that if, in addition, I’y < T', then C(T'o,T'y) C C(T'(,T). Let ' = Q_(T'}) N
Q4 (T)). The set Q' is thin at infinity relative to Ty if it is quasi-convex and there are
constants Cfy = C{ (€, T) > 0 and R, = R)(Q,T) > 1 so that, for all R > Ry,

/
2.4) O'\Bgr C Tééanfle*RTQ (To).

Being thin at infinity may be thought of as a C” notion of “thinness”. Our arguments
will mostly rely on a different notion of thinness related to the area of the ribbon sliced out
by the region inside spheres. This is a weaker condition than thin at infinity.

Lemma 2.2. If Q' is thin at infinity relative to Ty, then there is a constant C, = C} (€Y', T)
so that, for all R > 0,

2 _R2

H' (Y NOBR) < CiR %e 1.
Proof. Let I, be the nearest point projection to I'g. As 2’ is thin at infinity, for any
q€ '\ B,

Ix(a)]?

[x(q) = Try ()] < Colx(q)| " le™ 7.
Choosing Ry > max { R}, 2C(} + 1if g € '\ Bg,, then

%|X(Q)| < Ix(g)] = Colx(g)| ™" < M, (q)]| < [x(q)] + Colx(g)| ™" < 2[x(q)]

and so
ITp, ()12
4

[x(q) = Ty (g)] < 2" Che T, (g)] e~

Set
= & 1 =@
p(p) = 2" Ceolx(p)| e T
and let
Qp = {x(p) +tnr,(p): p € Lo, [t| < o(p)} .
Thus one has
Q \BRO C Qtp \ B’RU-

Moreover, up to increasing R in a way that depends only on n and C}) one can ensure
that, for all ¢ € Q, \ Bgr,,

LIx(a)] < [T, (0)] < 21x(o)].
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Let
* = {x(p) £ ¢(p)nr, (p): p € Lo}
Observe that for R sufficiently large 't = ['#\ By, are both asymptotically conical hyper-

surfaces in R" '\ Bg. Let 6y = do(I'o) be the constant given by Proposition B.1. Thus,
there is a radius Ry = R1(Tg, C}, o) > Ro and functions §* on Ty \ Bg, so that

Iz, = {f*(p) = cos 0= (p)x(p) + [x(p)| sin 6= (p)vry(p): p € To \ Br, }
where v (p) is the unit normal (in 9By (p)|) to I'o N O B|x ()| at p, and 6F satisfy

sup (6% ()| + [x(p)||Vr, 6% (p)]) < do.
p€lo\BRr,

Let Hpo( ) be the nearest point projection (in dB|y|) of y to I'o N dB,y. Up to increasing

R1, Hpo restricts to a C' map from €2, \ Bg, to I'y with its gradient bound by C' > 1.
If h* = I, o f*, then one readlly checks that, for any p € T'g \ B2R1»

[Ih* (p) — x(p)| = |, (£*(p)) — I, (h* (p))]
< || VIIr,[loo [0 (p) — £ (p)] < Cio(b* (p)).

By increasing R in a way that depends on C}) and C, this gives that
1
(b (p) = @(p)] < [[Vellco b (p) = x(p)| < Se(*(p))
2¢(p

and so p(h*(p)) <
[x(p)]| sin 6*(p)]

). Thus, using these estimates one computes, on I'g \ Bog,,
|(h*(p) £ (h™(p))nr, (h™(p))) - vr, (p)]
< |(0*(p) = x(p)) - vro (p)| + (0 (p))nr, (0 (p)) - vr, ()|
|h*(p) — x(p)| + p(h™(p))
2(C+ 1)p(p).
In particular, | sin 6% (p)| < < so [6%(p)| < 2|sin 6= (p)|. Hence one has, on Ty \ Bog,,
0% (p)] < 4(C+ 1)|x(p)| ' e(p)-
It follows from Proposition B.1 that, for all R > 2R,

I/\ IA

H™(Q, N OBR) < 8(C + 1)/ o dH"
T'oNOBRr

As I’y is asymptotic to C, up to increasing R, for all R > 2R,
H" Ty NOBR) < 2R H"1(L(C)).
Hence, for all R > 2R,

R2

H"(Q, NOBR) < 16(C + 1)C{H™ M (L(C))R e 7.
As remarked before, for all R > 2Rq,
Q' NIBr C Q,NIBgR
and, hence,
HP (2 NOBR) < 16(C + 1)CLH™ Y(L(C))R~2e~ % .
The result follows for R > 2R as long as

C1 > 16(C + 1)CyH"H(L(C)).



RELATIVE EXPANDER ENTROPY IN THE PRESENCE OF A TWO-SIDED OBSTACLE 11

As R depends only on I'g and ', the result automatically holds for R < 2R as long as
one chooses C] sufficiently large. d

3. RELATIVE EXPANDER ENTROPY

In this section we prove that the relative entropy for singular hypersurfaces, i.e., re-
duced boundaries of Caccioppoli sets, that lie within an asymptotically “thin” set is well
defined and not —oo. To that end we always take I'( to be an asymptotically conical self-
expander and I'(), I'] be asymptotical conical hypsersurfaces so I'y, < I'o < I';y < I'} and
so Q) = Q. (I'))NQ_(T%) is thin at infinity relative to I'y with constants C}, = C4 (Y, o)
and Ry = R} (€Y, Ty) given in the definition. In addition to these conventions and those
adopted in Section 2.4, we also will always take I' = 9*U for some U € C(T'},T').

Theorem 3.1. If R, > Ry > Ry, then
Erel [Fa FO; BRQ] Z Erel [Fa FO; BRl] - CQRl_l
where Ry = Ro(Q,To) > 1 and Cy = Co(¥,Tg) > 0 are the constants given by

Proposition 3.4. In particular, E,..;|U, To] exists (possibly infinite) and, for any R > Ry,
satisfies the estimate

Erel [Fa FO] 2 Erel [F7 FO; BR] - C2R_1~

Our main tool will be the divergence theorem applied to appropriately chosen vector
fields.

Lemma 3.2. Suppose Y € Lipyo.(SY; R" 1) satisfies the following bounds for some con-
stants Mo > 0 and vo < 1:
(1) |divY + 3 - Y| < M|x|";
(2) |x-Y| < Mg|x|["0+2
If Yy € CL (Y x S™) is defined by
Yy (p,v) =Y(p) v,

then there is a positive constant Cy = Co(2',Tg,70) so that, forany 0 < %Rl <Ri-6<
Ri < R,,
|E[T,To; apy ky s¥y]| < CoMoRY° ™.

Proof. Denote by Qf; = U N Q4 (I'g) and Q; = (R"*1\U) N Q_(Ty). The divergence
theorem implies that

Y ||
/ Ole,R%(;Y ‘nre ¢ dH™ — / aRl,Rg,éY -nrye 4 dH"
r To

x|2

:/ (aRl,RQ,(g (divY+§~Y)+VaRhRM~Y) et
o 2

1x|2

- / (aRl,RM (divY + % -Y) +Van, rys -Y) e
o

As Spt(aRl,Rz’é) C Aleé,Reré and

x(p)

Sy P EAm—on,
Vole,Rz,a(p) = —5|);((pp))‘ ifp e ARLRZJ,_(;

otherwise
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the hypotheses on Y ensure that

2
x|

. X B3l
/ (OéRl,RQ,(s (leY-F*-Y) —&—VaRl,Rz,yY)e 1
o 2

1x|2

\
SMO/ 1|X|’Yo+1 —|—M0/ |X|PY°€ 1
QEN(AR, —6,r; UARy Ry+s) QENAR, —sRryts

2

e
§MO/ 1|X|WJrl +Mo/ |x|"0e .
Q'N(AR, —6,Ry UARy Ry +5) QUNAR, —5,Ry+6

As R; — 6 > 0, we can use the co-area formula and Lemma 2.2 to see that

_ 2
/ 1|x|%'Irl / / s tleT anmdt
Q/OARI,&RI R1—0 'MOB:

2
:/ 5O e THM (Y N OB,) dt
R4 o
— Rl
<Cpot to~ L dt
Ri—§
where O is given by Lemma 2.2. Hence, as 7o < 1 and Ry — 0 > %Rl,
X 2 — —
/ 5 x|t < (R, — §)10t < 2= R,
VNAR,—s,R;
In the same way, we get
/ 67 xS < CiRP T < CRY
V'NARy Ry+5

Again, using the co-area formula and Lemma 2.2 gives that

T N By
) |x["Pe” < e T H™(Q NOBy)dt
Q'NAR|—5,Ry+6

R4 —6
_ Ro+6
<0 / t102 dt
Ri—§
1=y _
<2 CiR™!
L=
where the last inequality used that 1 —~y > O and Ry — § > %Rl.
Combining the above estimates and choosing Cyy appropriately prove the claim. ]

We next use a foliation near infinity by almost self-expanders to introduce a good vector
field for applying the previous lemma.

Proposition 3.3. There are constants Ry = Ro(,Ty) > 1 and C; = C1 (2, Ty) >0
and a smooth vector field N: Y\ Bg, — R"*! that satisfies:

(1) IN| =1,

(2) N|p, =nr,;

(3) [x - NJ+ 320, [VIN| < Cafx|

(4) If Dr,, is the signed distance to Iy, then

1
divN + g'N+ <AF0|2 - 2) Dr,

< C1D},
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and so
|2

divN + g N| < Cyjx| " te
Proof. Let I, be the nearest point projection to I'g. As I'g is C'?-asymptotically conical,
there is an €9 = €9(Ig) € (0, 1) so that
. 7:;0 (Fo) — F() X (760, 60)
given by ¥(p) = (IIr, (p), Dr,(p)) is a diffeomorphism. Hence, setting

N(p) =, (HFO (p))

one obtains a vector field on T, (Ty) that is readily seen to satisfy Items (1) and (2). As Ty
is a self-expander, both nr, and I, are smooth and, by the chain rule, so is N.
By 2.1) with I = I,

3
Cry,3 = sup <(1 +x(a)) ) |V%OHFO(Q)> < 00,
7€lo i=1

As, up to shrinking €, one has, fori = 1,..,3, |[VIIr, (p)| < 2, it follows from the chain
rule that, for all p € T, (T'o),
3

> IV'N(p)| < 2Cr, 5|, (p)|
=1

Observe that if p € T, (To) \ BQEO—I, then

SIx()] < [T, ()] < 21x(p)

and so s
> IVIN(p)| < 4Cr, slx(p)| .
i=1

It is readily checked that
x(p) - N(p) = (IIr, (p) + Dr,, (p)nr, (Ir, (p))) - v, (I (p))
(3.1 = Ir,(p) - nr, (r, (p)) + Dr, (p)
= —2Hr,(Ilr, (p)) + Dr, (p)-

As €Y is thin at infinity, the definition ensures that there is a radius Ro = Ro (T, o, R}, ,76_'6)
and a constant C' = C(I'y, C{) so that '\ Bg, C T, (I‘o)\B2651 and, forallp € '\ Bg,,

[x - N(p)| < Clx(p)| "

Thus we have shown Item (3) as long as we choose C; > max {4Cr, 3, C'}.
To see the last claim, up to shrinking €y s0 €g < ng one has, for every t € (—¢g, €9),
o

T, = {x(p) + tar,(p): p € T'o}
is a hypersurface in R"*! and, by Lemma A .2,

1 _
Hy, + g ‘nr, + <|AF0|2 - 2) t’ < Cht?
where C; = C1(n,Cr, 3) > 0. As

aivN(p) + X2 N(p) = Hr, () + 22 n, ()
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forp € T; and t = Dr, (p), it follows that

1

NG+ 20N + (145, - 3 ) Dr )] < CuDr 0

The result follows by enlarging C; so that C; > max {C1, Cj(Cy + CR, 3+ 1}. O

Using the vector field of Proposition 3.3 we obtain a two-sided estimate on the func-
tional E for weights near infinity.

Proposition 3.4. There is a constant Cy = Co (€Y, Tg) > 050 that if ) € Lip(Y) satisfies
1]l Lip < 1 andp > 0, then, for any Ry < %Rl < R1 — 6 < R1 < Ry,

~CyRy ' < E[T,To;ap, ko s¢] < EL,To; R, Ry 5] + CoaRy
Here R is the constant given by Proposition 3.3.

Proof. We first observe that the upper bound on E[I',Tg; ag, g, s¥] follows from the
lower bound. Indeed, if ©» = 1 — 4, then 1 satisfies the same hypotheses as ¢ and so,
assuming the lower bound holds,

—~CoRT* < E[N\To; oy ry 5%) = B[, Tos apy py.s(1 — ).
Hence, one has that
_OQRl_l + E[F7 FOa O‘R],Rz,éw] S E[Fv F07 aRl,Rz,5]7

proving the upper bound.
In order to prove the lower bound, set Y = ¢)IN where N is given by Proposition 3.3.
One computes that

divY+;Y:v¢.N+¢(divN+g~N).

Thus, Proposition 3.3 and the assumptions on 1 imply that, for p € Q" \ Bg,,

divY(p) + @ -Y(p)’ <Cp+1.

Likewise,
[x(p) - Y (p)| = ¥(p)Ix(p) - N(p)| < Crlx(p)|~".
Hence, as Ry < Ry — 9, appealing to Lemma 3.2 gives
=2 =2 _
/ QR, Ry, s¥WN -npe 2 dH" > / QR, Rys¥e * dH" — Co(Cy + 1)R1 L
T To
However, as ¥ > 0, N - np < 4 and so
|2

. P
/ aR17R2751,/)€|T dH™ > / Ole,RQ,(;we% dH"™ — 00(01 + 1)R1_1.
I

o
That is,
E[,To; aR, k5] > —CoRy
for Cy = Cy(Cy + 1). ]

We may now prove Theorem 3.1.
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Proof of Theorem 3.1. By the dominated convergence theorem,

E,[T,To; Br] = }i_{% E',To; ¢r.s)-

Proposition 3.4 implies that, for any Ry > R; +§ > R; > 2Ry,

B, To; ry.5) = E[L,To; ér, 5] + E[L, To; R, +6,R,06)
> E[L,To; ¢r,.6] — Co(R1 +0) 1.
The first claim follows by sending 6 — 0. This implies that
liminf By [[',To; Bg] > li?jolip E,l[T,To; Br]

so the limit exists. Finally, the first estimate implies the second by taking Re — 0. O

4. WEIGHTED RELATIVE ENTROPY

We continue to follow the conventions of Sections 2.4 and 3 and assume I' = 0*U for
some U € C(T'y,T%). In this section we prove the generalization of Theorem 1.3 to the
weak setting.

Theorem 4.1. If E,[T, o] < oo, then, for any 1) € X¢(V), E.[T, Lo; 4] exists. More-
over, there is a constant Cg = Cy(QY,Tg) > 0 so that, for all ¢ € X¢(V),

|Erel[1—‘ar0;w]| SCQ(I + |Erel[F7 FOH)H’(/}HX

The proof of Theorem 4.1 will proceed in a similar fashion to the arguments of the
previous section. In particular, we will also use the divergence theorem, though in a more
involved way. Our first goal is to prove Theorem 4.1 for weights that are of a particularly
simple form — namely modeled on a (continuously varying) quadratic form of rank at most
two. Such forms will provide good approximations to elements of X¢. Here the rank of
a quadratic form Q4 on R"*! is the rank of the symmetric matrix A so that Q4(v) =
v - (Av). The reason why quadratic forms of rank 2 are relevant is that if (z, w) € T,S™
and A= 3 (zw' +wz'),then Q4(v) = (z- v)(w - V) satisfies VgnQal, = w and Q 4
is the simplest even function for which this holds.

With this in mind, for continuous vector fields Y1, Y defined on a subset W of R"*1,
define the function ¢y, v, € Cp (W x S™) by

U1 v, (P, V) = v, (9, V), (V) = (Y1(p) - v)(Ya(p) - v).
We first establish lower bound estimates and a quasi-triangle inequality near infinity for

rank-one quadratic forms.

Lemma 4.2. Thereis a constant C3 = C5(Y,Tg) > 0so thatif Y € Lip(QV\ Bg,; R"*1)
is a vector field of the form
Y =aN+7Z

where |a| < 1 and
Ix|Z]|co + [VZ][ 1= < 1,
then, for any Ry < %Rl <Ry -6 <R <Ry,
E[T,To; ar, ko 5%y, y] > —Cs|E[L,To; ar, rys)| — CaRy '

As a consequence, if Y; € Lip(¥ \ Bg,;R"*1), i € {1,...m}, are vector fields of the
Sform
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where |a;| < 1 and
I1%|Z;]|co + [|VZi||p~ <1,
and W =" | 'Y, then

m
E[L,To; ar, myotw,w] < 2™ Y E[,To;ar, ky oty ]
=1

+m32™C3 | E[T,To; ARy Ry 6| + m*2mC3 Ry
Here R is the constant and N is the vector field given by Proposition 3.3.

Proof. Set

Y = (Y -N)Y.
Applying Proposition 3.3 to o = 0, one computes that

’divY +3 .Y] < e(n)(Cy + 1)

and
Ix- Y| <e(n)(Cy +1).
Hence, by Lemma 3.2,

2
[x|

vV = S | |2 , _
/ QR,,Ry,s Y -mre + dH" > / Ry Ry Y smrge - dH" — c(n)Co(Cr + )Ry
r To
That is, as N|p, = np,,
=2
/aRl,Rz,s(Y “N)(Y -nr)e + dH
r

=2 -
> [ anm sty (e (D di" — e(m)CalCy+ DR
Io
By Young’s inequality, on T',

Sv v (0 N) + vy (me() > (Y(0) - N@) (Y () - me(p)),

while, on Iy,

1 1

§¢Y,Y(p7N(p)) + §¢Y,Y(p, nr, (p)) = Yy v (p,nr, (p))-
Setting ¢y (p) = 1y, v (p, N(p)), this yields

%E[F,Fo; QR Ry,50Y] + %E[Rro; R, R 6%y, Y] = —c(n)Co(C1 + 1Ry
By construction, ¢y > 0 and
[ov llzip < e(n)(Cr + 1).
Hence, by Proposition 3.4 and our previous remark,
E[L,To;ap, rys0y) < c(n)(Ci + 1)E[,To; ap, Ry 5] + c(n)(Cr + 1)CoRy 2.
As such,
E[L,To; ap, ry s%y.y] = —C3| EIL,Tos R,y ]| = C3 Ry

as long as C'3 > 2¢(n)(Cy + 1)(Cy + 1). This gives the desired lower bound.
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To complete the proof set, for 1 < k < m,
k
W = ZYi =Wi_1+Yy
i=1

and, for 2 < k < m,
k—1

W, = ZYi ~Y,=W,_1 - Y,
=1
Clearly, W,,, = W and
Yw,wy +Uw, w,, = 20w, Wi, 20y, v,

In particular, applying the lower bounds we already established to ¥y, v, gives

E,To;ar, ry 50w, Wil < 2E[L,To; Ry Ry 6VWi 1 W1
+2E[[,To; @R, Ry .s%vs ve) + K2°C3|E[T,To; R, ry.s)| + K2 Cs R

Iterating this estimate gives

E[T,To; ar, ry sw,w] < 2™ Y E[L,To; ar, sty v
k=1

+m32™Cy |E[T,To; agr, r,.s)| + m*2mC3Ry .
This verifies the second claim. O

Using a polarization identity and the previous result, we establish a two-sided estimate
near infinity for general quadratic forms of rank at most 2.

Lemma 4.3. There is a constant Cy = C4(Q,To) > 050 that if Y1,Y2 € Lip(Q\
Br,; R"™1) are vector fields of the form

where |a;| < 1 and
[1xZillco + [VZillL= < 1,
then, for any Ry < %Rl < Ri —6 < Ri < R,
|E[T,To; g, ooy, Y| < Cal BT, To; ar, ry o]l + CaRy
Here Ry is the constant and N is the vector field given by Proposition 3.3.
Proof. We first establish the bound when
Y1:Y2:YZGN+Z.

In this case, ¥y, vy, = ¥y vy and so the lower bound on E[I', T'o; g, g, 5%y, v,] follows
from the first part of Lemma 4.2 as long as Cy > Cs.

To prove the upper bound, we apply the second part of Lemma 4.2 to two vector fields
of the form alN and Z and obtain

E,To;aRr, my.s0y,v] <4AE[L,To; R, Ry 6VaN,an]| +4E([L, To; r, Ry 607,7)
+32C5 |E[T,To; ar, vy .6]| + 32C3 Ry
As (N -nr)? <1onT while (N -np,)? = 1on Iy, it follows that

E[T,To; @R, ry,s¥NN| < E[T,To; R, Ry s) < |E[L,To; @R, Ry ]
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and so, as |a| < 1,
EL,To; Ry Ry s%aN,aN] < a® |E[T,To; ar, k.6l < |[EL,To; Ry Ry 5| -

To find an upper bound on E[I',I'o; g,  r,,s%z,z], Write Z = E?;l z;je; where e; is
the constant vector field given by the j-th coordinate vector. The estimate on Z implies
that the z; satisfy

I1x[2jllco + [[VzjllLee < 1.
By the second part of Lemma 4.2,

n+1

E[F7 FO; aR1,R2,6¢Z,Z] S 277«“1’1 Z E[Fy FO; aR],RQ,éijej,Zje]'}
j=1

+ (n+1)°2"*C5 |E[T, Lo; ag, ko sl + (n 4+ 1)%2" T Cs Ry

Observe that
n+1

Z djzjekazjek (p,v) = ij (p)-
k=1

Hence,
n+1

Z E[Fv To; aRl;Rméwzjek:Zjek] = E[Fv Lo; aRl’R%‘sZJQ']'
k=1
By the lower bound of Lemma 4.2, this implies
E[D,T0; R, Ry 6%zs0;.250;] < nCs |E[LD,To; ar, Ry.s)|[+nCsRy '+ E[L, To; ar, ry 73]
Appealing to Proposition 3.4, one has
E[Fa FO; OéRl,RQ,(s/l/}Zjej,Zje]‘] < (TLCg + 1) |E[F7 FO; O‘Rl,Rz,t;” + (nCB + CQ)Rl_l
Hence,
E[T,To; ary py 6%2.2] < Cy |E[L, To; any my 6| + CLRT Y,
where C is chosen sufficiently large depending on C3, Cy and n. Hence, we have proved
the two-sided bound for ¢y y.
To prove the general inequality recall the polarization identity

1
¢Y1,Y2 = Z (¢Y1+Y2,Y1+Y2 - le —Y2,Y1—Y2) :

Observe that
1
1¢Y1+Y2,Y1+Y2 = VLY, 4Y2), 1 (Y14Y2)

and similarly for the second term. The vector fields Y1 = (Y1 4+ Y3) and Y, =

%(Yl —Y ) satisfy the hypotheses of the lemma and so, by what we have already shown,

|E[D,T0; @y, Ro,59v1, Y| < |E[D,Tos R, Ry 5%y, v, )| + | B0, To; @k, Ra sy, 35|
< 2C4 |[E[T,To; g, r, 5| + 205 Ry
This verifies the lemma with Cy = 2CY. O

In order to study general functions in X* it is necessary to subtract off the appropriate
quadratic approximation. This requires suitable pointwise estimates on the approximation
and its error.
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Lemma 4.4. Consider the constant Ry and the vector field N given by Proposition 3.3.
There is a constant C5 = C5(Y,Tg) > 1 so that if ¢ is an element of X()' \ Bpg,) and
one sets

Zy(p) = Vsnip(p, N(p))
and

'J)(pa V) = ¢(pav) - (Zw(p) : V)(N(p) : V)7
then the following is true:
(1) [x[Zpllco + [VZy|[e < C5]l4))|
(2) |¥llLip < CsllYllxs
(3) If, in addition, 1 is even, then
[0 (p,v) = (p,N(p))| < Cs (1 = (N(p) - v)?) [ x-

Proof. By construction,

X

sup  [x(p)||Zy ()] < [[¥]|x-
PEQ'\BR,

By the chain rule and Proposition 3.3,
IVZy||L < (14 c(n)C1)[[¢]lx-

Hence, combining these estimates, Item (1) follows as long as C5 > 2 + ¢(n)Cy. And
using Item (1) and Proposition 3.3 one readily checks Item (2).

To see the final item observe first that if 1) is even, then so is ¢). In particular, it is
enough to establish the estimate when v - N(p) € [0, 1]. Furthermore, if v = N(p), then
the estimate is trivial and so we may assume that v - N(p) € [0, 1).

Set
v — (v-N(p))N(p)

v~ (v-N(p))N(p)|
so w is of unit length and orthogonal to N(p). In particular, v = cos 79N (p) + sin 7ow
where cos7p = N(p) - v € [0,1). Ascosty € [0,1), 70 € (0, F]. It follows from the

Lipschitz bound on Vgn1)(p, -) and the fact that Vs~ (p, N(p)) = 0, that, for 0 < 7 < 79,

w

_ T d _ _
’VSnz/)(p, cos TIN(p) + sin TW)‘ = ’/ %Vgnqﬁ(p, costN(p) + sintw) dt| < c¢(n)7||¥] x-
0
Integrating this estimate yields

[0(p,v) = (0, N(p))| < c(n)7||9]|x-

Hence, as
2 w2 2
8 < —sin’ 719 = —(1 —cos®7p) = — (1 — (N(p) -V)2) ,
4 4 4
Item (3) follows with C5 > 7rTzc(n). O

In order to extend from the quadratic approximation to the general case we need to
estimate the error and this may be thought of as a sort of bound on the weighted tilt-excess
near infinity in terms of the relative entropy.

Proposition 4.5. There is a constant Cs = Cg(2',T) > 0 so that, for any Ry < %Rl <
Ry — 6 < Ri < Ry,

=2 -
/aRl,ng (17 (N'np)z)e 1 dH" < QE[F,FO;QR17R275]+CGR1 4,
T

Here Ry is the constant and N is the vector field given by Proposition 3.3.
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Proof. Applying Lemma 3.2 with Y = N and Proposition 3.3 to vo = —3, gives
/ ARy, R,y 6N - nre$ dH™ > / aRl,RQ,(se% dH" — CoC1 Ry,

r r

Thus it follows that 0
/FaRl’Rg’g (1-=N-nr) e¥ dH" < EI,\To; R, R,.6] + COClR;‘l.

Observe that
1-(N-np)?=(1-N-np)(1+N-np) <2(1 -N-nr).
Hence, combining these estimates, the claim follows with Cs = 2C,C}. [l

Combining above results yields an analog of Proposition 3.4 for weights in X¢ —i.e., an
estimate near infinity.

Proposition 4.6. There is a constant C7 = C7(Y',Ty) > 0 so that if i € X°(QV) satisfies
lllx < Tand ¥ > 0, then, for any Ry < 1Ry < Ry =8 < Ry < Ry,

|E[T,To; @y, ks 69| < Cr | BT, To; gy, ry ]| + CrRY
Here R is the constant given by Proposition 3.3.

Proof. As Ry — & > Ry and spt(ag, . r,.5) C AR, —s Rr,+s. we will treat 1 as an element
of X¢(€Y' \ Bg,) in the following. Set

w(pa V) = QL(paV> + 05-
As |Zy||co < Cs and ¢ > 0, this ensures that ) > 0. One also has

blpv) = D N)| < C5 (1= (N(p) - v)?).
Now let

é(p) = ¥(p, N(p)).

Using Lemma 4.4 and Proposition 3.3, one readily checks that
[¢llzip < e(n)Cs.
Hence, Proposition 3.4 applied to ¢ gives
E[L,To; R, k0] = —c(n)CoCs R
That is,

~ ﬁ n n ﬁ n —
/OéRl,Rz,W(p,N(p))@ i dH 2/ R, Ry (pomr, (p))e + dH"—c(n)C2Cs5 Ry
T To

The construction of 1ﬁ ensures that
b(p.nr () = 0, N(p) + (Y(pnr(p) — 0. N(p)))
> (p,N(p)) — Cs (1 — (N(p) - nr(p))?) -

Hence,

Ix|2

/FaRl,Rm (Z/;(p, nr(p)) +Cs (1 — (N(p) - nr(p))2)> e 1 dH"

~ 1x|? _
> / e s 5901 (p)€ 5 AHT — c(n)CaCs Ry,
To
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Appealing to Proposition 4.5, one obtains

- =2 . =2
/OZRl,RQ,W(p, nr(p))e = dH" — [ ag, Rr,s¥(p,nr,(p))e + dH
T T'o

> 7205 |E[F,F0; Ole’R%(;” — (Cﬁ + c(n)Cg)C'5R1_1.
As ¢) = 1 + Cs, this implies

- =2 - =2
/ Ay 5P (0.0 (p))e S dH™ / oy e 5P ey (p))e - dH
I

To
> —3C5 |E[F,F0; 043173275” — (CG + c(n)Cg)C5R1_1.
Hence, by Lemma 4.3,
ﬁ n ﬁ n
/OZRI,RQ,M/J(IL nr(p))e * dH —/ QR R,y 5% (p,nr, (p))e 2~ dH
r

To
> —(305 + 04) |E[F,F0; Ole’R%(;H — (CG + C(n)CQ + C4)Cst1.

This proves the lower bound for C7 sufficiently large depending on n, Cs, C'z, C'y and C.
To prove the upper bound observe that if 1) = 1 — 1), then 1) satisfies the hypotheses of
the proposition. Observe that

|E[L,Lo; R, ry6ll = E[U,Los g,y ry.6] = E[L, Lo apy Ry, (4 + 9]
Hence, using the lower bound we have established, one has
‘E[F’ FO? aR17R276H 2 E[Fa FOa O‘R1,R2,5¢] + E[F’ FO? CIRLR%(S?;]
> BT, To; R, ry6%] — C7 |E[L,To; ar, ry.s)| — C7 R
and so the upper bound holds after, possibly, increasing C'; by one. (]

Corollary 4.7. Suppose E,[l',To] < oo and that v € X°(V) satisfies ||[¢||x < 1
and ¢ > 0. For every € > 0, there is a radius R. = R.(QY,To,T,e) > Ry so that if
Ry > Ry > R, then

|E[T',To; ¢; Br,] — E[T',To; ¢; Br,]| <e.
Here R is the constant given by Proposition 3.3.
Proof. By the dominated convergence theorem, for any ¢ € X¢(),
Era[l,To; ; Bry] — Erall',To; ¢; Br,] = }13(1) E[T,To; ary R, +6,5¢]-
Hence, by Proposition 4.6 and the above observation with ( = 1) and ( = 1, one has
| Eretll, To; 3 Br,) — Eret[l', o3 3 Br, ]|
< C7|Erall,To; Br,] — Erall,To; Br,]| + Cr Ry .

Observe that, by Theorem 3.1 and the fact that E,.;[T", Ty] < oo, there is an R, > 0 so
that if R > R/, then
€

< —.
— 40,
Hence, by the triangle inequality, for Ro > R; > R., one has

’Erel [Fa FO] - Erel [Fa FO; BRH

_ _ €
|Evei[T,To; Br,| — Erei[l,To; Br, ]| < =~

2C
Hence, setting R, = max {Ré, 2C7¢ 1, RO} proves the claim. [
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Proposition 4.8. There is a constant Cg = Cg (€2, Tg) > 0 so that if 1 € X¢() satisfies
l¥||x < 1and v > 0, then, forany 0 < 6 < 1 and R > 8Ry,

E[L,To; ¢r,s¥]| < Cs + C |E[T,To; dr 5]l -

Here R is the constant given by Proposition 3.3.

Proof. Set Ry = 4Ry > 4 and observe that R > Ry > Ry — § > %Rl > Ry. One has
E[T,To; ¢r,s¢] = EI',To; ¢r,—s5,6¢] + E[L', To; ar, r.sY]-

As 0 <9 < 1, one readily sees that

i
— | or,—sse¢ * dH" < E[I'\To;dr,—ss¥]
To

and

[FER.
E[l,To; ¢p,—s,6¢] < E[I',To; dR, —5,] +/ bR, —ss¢ + dH".
o
Hence, setting

ﬁ n
Cé = Cé(l—‘o) = ¢R1,5’56 1 dH
To

one has

—Cy < E[,To; ¢r,—5,6¢] < E[L,To; ¢r,—5.5) + Cg
and so

|E[T,To; ¢r, —5,5¢]| < |E[T,To; or, 55| + Cg-

By Proposition 4.6,

|EIT,To; ar, rot]| < Cr|EL, Lo; ap, ro)l + CrRy
Finally, Proposition 3.4 implies that
E,To;¢r,—ss) — CoRy " < B[, To; ¢r,—s5) + E[L,To; ar, rs) = B[, To; ¢r.s]
and so

|EIL,To; ¢r,—s.6)] < Cg + CaRy' + |E[L,To; dris)| -
Likewise,

E[I,To;ar, rs] — Cy < E[L,To; g, —s55] + E[I',Lo; agr, rs] = E[T',To; ¢r,s)

and so

|E[Fv To; O‘RLRAS” < C’2]{1_1 + Cé + |E[F, Lo; ¢R75]| .
Hence,
|E[D,To; or.sv]| < Ch+ CrRT +(Cr +1)(Ch + CoRTY) + (14 C7) |E[D, To; bR -
and the claim follows by choosing Cy large enough. ]

We now prove Theorem 4.1.

Proof of Theorem 4.1. If ||¢||x = 0, then the theorem holds trivially. So suppose ||9||x #
0 and set ¢ = m (¥ + [|9]||x)- Observe that ¢ > 0 and ||¢||x < 1. As E.q[I',To] <
00, it is an immediate consequence of Corollary 4.7 that

Eyal,To, 9] = lim E,aT,To;v; Brl

exists and is finite.
By the dominated convergence theorem,

E,a[T,To;1); Bg] = (}i_{% E[T,To; r.s¢].
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Hence, for R > 4Ry, it follows from Proposition 4.8 by taking  — 0 that
|Eret[T, To; 3 Bg]| < Cs + Cs|Epel [T, To; BR]|-

Taking the limit as R — oo, which is well defined on both sides by Theorem 3.1 and what
we have already shown, gives

|Eret [T, To; ]| < Cs + Cs|Evea[T, Do -
Finally, by linearity of ( — E,.;[[, T'p; ] and the triangle inequality one has
|Erel[Fa FO; de < 208 (1 + 2|Erel[ra FO]') W)Hx
and so the claim follows by setting Cg = 4Cy. O

Finally, we record the following analog of the dominated convergence theorem for the
FE,..; functional.

Proposition 4.9. Suppose E,.;[T',To] < oo. If ; € X¢(Q') is a sequence with ||1;||x <
M, < oo and so that 1; — 1o pointwise, where 1), € X¢(Q) satisfies ||t ||x < My,
then

hm Erel [F7 FO; 1/%] = Erel [Fa FO; woo]

71— 00

Proof. For1 < i < oo, set 1[)1 = ﬁ (v; + M7) and observe that ||1/A)Z||35 < 1land zﬁl > 0.
For every € > 0, Corollary 4.7 implies that there is an R, > Ry so that, for all R > R,
andall 1 <1 < oo,

Erel [F7 FO; 1&1} - Erel [F; FO; 12}1’; BR] <

wl o

By the dominated convergence theorem,

}g& EreaU,To; ¥ Bar.] = Erear|l, To; Yoo; Bar.]-
Hence, there is an ig so that for ¢ > iy one has

‘Eml [0, T0; ¥s; Bag,] — Eretl', To; Yoo Bar,|
It follows from the triangle inequality that, for i > i,

‘Erel [F7 FO; i)z] - Erel [F, FO; 772}00] ’ <€

<

Wl m

That is, X R
lim B[, To; 9] = Era L, To; ¥oo].-
71— 00

The result then follows by the linearity of ( — E,.;[T", T'o; ¢]. O

5. E,¢;-MINIMIZERS

Continue to use the conventions of Section 2.4. In this section we use the previously
established facts about E,.;[-, I'g] to show that this functional is coercive and lower-semi-
continuous in an appropriate sense. Hence, there is a minimizer of E,..; in C(T'0,T'1). As
this minimizer is a local E-minimizer, when 2 < n < 6, Theorem 1.4 follows immediately
from this by standard regularity results.

Theorem 5.1. There is a Caccioppoli set Upip, € C(To,T'1) with Uiy = 0*Uppin @
critical point of the functional E so that, for allU € C(Ty,I'1),

Ercl [a* U7 FO] Z Erel [8*Um,inv FO] .

Moreover, if 2 < n < 6, then I',,;,, is a smooth self-expander.



24 JACOB BERNSTEIN AND LU WANG

Proof. Set Epin, = inf {E,.i[0"U,To]: U € C(I'g,I'1)}. By Theorem 3.1, there is a con-
stant E = E(I'1,Ty) > 0so that, forall U € C(T'y,T'1),

Erel [a*U; FO] > _E
Hence, if U; is a minimizing sequence in (T, T'1) for E,.¢;[-, T'o], then

lim E,[0*U;,To) = Epin > —E > —o0.

1—00

and so, up to throwing out finitely many terms, one has
Emin S Erel [a*Ulv FO] S Emzn + 1.
For R > 0,

|2 _
Pg (U;) < [ e 1 < Eo(R) + Era[0*Us, To; Brl.
BrNo*U;

%2

Here Pp_(U;) is the perimeter of U; inside By and Eo(R) = fBRﬁFo e s dH". Tt
follows from Theorem 3.1 that, for any R > R,

Erel [a*Ulv FO; BR} S Erel [a* Ui» FO] + C2R71
and so, for any R > Ry fixed,
Pg (Uj)) <M = Eo(R) + Epin + 1+ CoR™ < 0

is uniformly bounded independent of 7.

Hence, by the standard compactness theorem for Caccioppoli sets, up to passing to a
subsequence and relabeling, U; — U, where U is a Caccioppoli set in C(I'g,I'1) and
the convergence is in the topology of Caccioppoli sets (i.e., 17, — 1y in the weak-*
topology of BVj,.). It follows from Theorem 3.1 that, for all R > Ry,

Er0*UsTo) > Epet[0°U;, To; Br] — CoR™!
Hence, passing to a limit and using the nature of the convergence of U; — Uy,
Enmin = lim Epq[0*U;,To] > liminf (E,¢[0*U;, To; Br] — CoR™Y)
1—> 00 11— 00
Z Erel [8*U007 FO; BR] - CQR_l-

Taking R — oo and appealing to Theorem 3.1 gives E,,ip, > Epei[0*Uso, To]. AS Eppin 18
the infimum of E,.;[-,T'o] inC(Ty, 1) and Uy, € C(To,T1), Emin = Eret[0*Uso; To] and
so the infimum is achieved. Hence, it remains only to show that I',,;,, = 0*Ux is a self-
expander. However, it is clear that 9*U,, must be (locally) E-minimizing in cl(U7)\Uy as
otherwise E,,;, would not be the infimum of E,..;[-, I'g].

When 2 < n < 6, standard regularity theory for minimizing sets with obstacles, e.g.,
[24, Section 37], implies I';,;,, is a smooth self-expander each of whose components is
either entirely disjoint from I'g U I'; or entirely agrees with a component of I'g U T';. That
is, I'ynin € H(Fo, Fl). U

By adapting the approach sketched by Ilmanen [21] and carried out by Ding [14] to the
obstacle setting, one may use standard GMT methods to construct a local E/-minimizer in
H(Ty,T'1). Combined with Remark 1.5, this gives an alternative approach to Theorem 5.1.
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6. FORWARD MONOTONICITY

We continue to follow the conventions of Section 2.4 and Section 3. Following Ilmanen
[20, Section 6] (cf. [9]), a Brakke flow is a family of Radon measures {Mt}te(o,T) on R*+1

which satisfies, for all non-negative ¢ € C}(R"™!) and all 0 < to < t; < T,

ty
Jodun < [vdu,+ [ [ (~oP+ VoSt B dut
to

Here S = S(x) = Tyu is the generalized tangent plane of y; at x and H = H,,, is
the generalized mean curvature vector of p;. The inner integral on the right-hand side
of the inequality is interpreted according to the convention that if any quantities are not
defined, then take the integral to be —occ. We call a Brakke flow {4u:},¢ (o 1) integral if
1 has integer multiplicity for a.e. t. It is technically convenient to restrict our study to
a smaller class of integral Brakke flows that are unit regular, i.e., near every space-time
point of Gaussian density 1 the flow is regular in a two-sided parabolic ball; cf. the class
S(A\,m, N) defined in page 1513 of [25, Section 7]. Such a unit regularity assumption
prevents sudden and gratuitous vanishing of Brakke flows and is equivalent to the hypoth-
esis that no quasi-hyperplanes could appear as tangent flows. This class is closed under
the convergence of Brakke flows and is quite general, for instance it includes the flows
constructed by Ilmanen’s elliptic regularization procedure. In what follows we assume the
integral Brakke flows under consideration are unit regular.

In this section we prove a version of weighted forward monotonicity formula and use it
to show the asymptotic behavior of flows coming out of a cone. Theorem 1.6 is a special
case of the following theorem.

Theorem 6.1. Let {Mt}te(o,T) be an integral Brakke flow that satisfies

(1) limyso e = H"|C; B

(2) Foreacht € (0,T), t71/2Spt(/Lt) c .
For any sequence t; — 0, there is a subsequence t;; — 0 and a (possibly singular) self-
expander U asymptotic to C and with spt(2) C V' so that

@tfl/Q/J‘tz‘j — .

'3

Here, for a measure (i and p > 0, D, is the measure given by
Dou(Y) = p"u(p~ 1Y) for all i-measurable subsets Y C R* 1.

In order to prove Theorem 6.1, we will need several auxiliary lemmas and propositions.
The first two of these show the relative entropy near infinity is arbitrarily small for C2-
asymptotically conical ends trapped between the ends of I'|, and I'}. The computations are
very similar in spirit to those of [13, Proposition 3.1].

Lemma 6.2. Fix Cy > 0 and RO_> 1. There is a radius Ry = Rl(Fm o, Co, ]%0) > Ry
so that if I' € H(I'g \ B ,I'1 \ By, ) is asymptotic to C and satisfies

sup [x(p)||Ar (p)| < Co,
per

then there is a smooth function v: T'g \ BRl — Rwith || Vr,v||co < 1 so that

I'\ Byp, C {x(p) +v(p)nr,(p): p € To \ Bf%l} <r
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Proof. Our hypotheses on I ensures that it is embedded and C'*-asymptotic to C. Thus it
is enough to prove that there is a uniform radius outside of which I' is a local graph over Iy
with the desired estimates. This is proved by contradiction. Indeed, suppose there was no
such radius, then there would be a sequence of hypersurfaces Y; in R"*1\ B &, satisfying

the hypotheses and a sequence of points ¢; € Y, NOBgr, with R; > Ry going to infinity so
that if p; is the nearest point projection of ¢; to I'g, then |nv, (¢;) - nr, (p;)| < € for some
fixed ¢ € (0,1). Up to passing to a subsequence and relabeling, R Ygi — q for some
q € CNOB;. Thus, by the linear decay on | A, |, it follows from the Arzela-Ascoli theorem
that, up to passing to a subsequence and relabeling, the I?;” v, n Bi(R; 1qi) converges
in the C! topology to a C2- hypersurface, ¥, in B;(g) which transversally intersects C at
g. However, as I'y, I'j and I"} are all asymptotic to C, the hypotheses on Y; imply that ¥
must be contained in C. This is a contradiction. (]

Proposition 6.3. Fix éo > 0 and Ro > 1. There is a radius Ry = Ry (To, O, C’O, Ro) >
Ry and a constant Cy = C1(To, ¥, Co) > 050 that if T € H(Ty\ By , T\ By, ) is
asymptotic to C and satisfies

sup |x(p)||Ar(p)| < Co,
pel

then, for any Ry > Ry > Roand 0 < 6 < 1,
|E[T,To; apy ky.sl| < C1R; 2.

Proof. By the definition of thin at infinity relative to I'y and Lemma 6.2, there is a radius
R’Q > max {R{), Ry } depending on 'y, €/, Co and Ry, so that there is a smooth function
v: T\ BR; — R which satisfies

P\ By © {x(0) + v(p)nr (p)s p € To\ By, p < T

and

Ix(p)|2
4

[o(p)| < 2Cq|x(p)| ™" e™ <l

Here Ry = R{(To, ') and C) = C{ (g, ') are determined from the definition of thin at
infinity. By the linear decay of | Ar| and the gradient estimate from Lemma 6.2, there is a
constant Ko = K(T'g, Co) > 0 so that

V2 v(p)| < Kolx(p)| .

Thus, by the interpolation inequality [16, Lemma 6.32], there is a K1 = K;(I'g, C}), Ko)
(which, in turn, depends on I'g, Q' and Cp) so that

_Ixm?
4

Vr,v(p)? < Kulx(p)| ™" "%

For 0 < s <1,let

s = {fs(p) = x(p) + sv(p)nr, (p): p € To \ BR’z} '
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Observe that Iy = Iy \ BR; and T\ BQR; c Iy CT.If Ry > Ry > 4R}, then the bound

on v ensures spt(ar, r,.5) C I',. Thus, by the first variation formula,

a
ds

€1

2o, x\ w2
. QR Ry,5€ T dH" = N _aRth,ﬁYS ' Hl:‘é - 7 et di
P, P,

/ VOéRhRQ’(; YL den
=T1+1II

where Y, = (vnp,) o £7! is a vector field along I's. By the above established estimates
for v and Vr,v and enlarging R/, if needed, it is readily checked that, for any 0 < s < 1
andp € T \ BR&’

Ifs (p)|2

e & dvoly (f5(p)) < 2¢ =%

T dvolr, (p) and |V, |fs(p)|| >

L\D\»—*

and thereAis a Ky = K3(I'g,C}, K1) > 0, thus depending on 'y, 2’ and Co, so that, for
all R > R,

H' T ({If| = R}) < KoR™
One also appeals to the estimates for v and V%Ov and Lemma A.2 to see that if s € [0, 1]
andp € Ty \ BR/Q’ then

X

(fu(p)) < Ks|x(p)|~"

‘Hfs

where K3 = K3(Tg, Y, C’o) > (. Thus, using these estimates and the co-area formula
one computes that

‘I‘ < 2K3/ (Ole R2§Of )‘U||X| 1 dHn

Ro+2
< 2K3 / lolt™! dH"tdt
Ri—2 Jronas, IVrol I
- Ro+2
< 8C)K3 / T EH N (T N OBy dt
Ry{—-2

< AC K3Ko(Ry — 2) 72

where the second inequality used that spt(a g, r,.50fs) C Ar,—2. r,+2 asspt(ar, r,s) C
AR, s Ro+s and

Ifs(p) — x(p)| < 1.
Likewise, one has

[I1| < 2/ [Var, rys0fs ||v|e d?—l"

x 1
<267 / / vle dH™Ldt
{I£.|= t} |VFo|f I

< 85—105/ (t— 1) M ({8 = 1)) de
Y
< 64C, Ko(Ry — 2) 72
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where the second inequality used that spt(Vag, r,.s) € AR, —s.r, U ARy Rots and Y =
[R1 — 0, R1] U [Ra, R2 + ¢]. Hence, combining estimates on I and IT gives that, as
Ry —2> %Rl,

d

=2
- |. QRy,R,,6€ i dH
s

< C1R;?
ds = 1M

where € = 28C! K5 (K3 + 1) depends on T, ' and Co. Therefore,

1
|E[L,To; ar, Ry 6]l < /
0

d x|2 .
*/ Ole‘Rz,(;e% d%n‘ds < OlRl_2
ds Jp, ’

and so the claim follows with Ry = 41%’2 g

Given a Brakke flow {111}, 1) set
Vs = Dy-1/2 4 Where s = log t.

One readily verifies that {vs},_,,, 1 satisfies, for all nonnegative ¢» € C}(R"*") and all
—00 < 50 < 51 <logT,

J3¢/2 I 51 X 2 |x|2
/weT dv,, < /weT dv,, —/ /w’H— E.SL' e du,ds
S0

+/5:1/V¢-SL-<H—;)ex4rzdysds.

Such {Vs},)oq 1 is called the associated rescaled Brakke flow.
We will prove a forward monotonicity formula for rescaled Brakke flows. To achieve
this goal, we first introduce a useful cut-off function on space-time.

Lemma 6.4. Consider the cut-off function

o 5
¢r(p,s) = (1 - R72e*(Ix(p)* + 2n)) .
Fix any real numbers 5y < 51. The following is true:
(1) imp_oo ®r = 1 uniformly on compact subsets;

(2) There is a constant My = My(n, 59, 81) so that

sup  [|Vor(-,)llor + 105 —-ZL)or(-,)lloo < MoR™

50<s<31

where &£ = A+ % -V;
(3) There is a constant M, = Ml(n, S0, 51) so that, for all 50 < s < 51,

2
6R(9)les + 1050 (- 9) e + Y 1L+ [X) V@R (- 8|00 < M.
=1

Proof. The first claim follows from the definition of ¢ . The second and third claim can
be checked by straightforward, but tedious, computations, so we omit the details. O

Proposition 6.5. Let {11}, (0, be an integral Brakke flow that satisfies

(1) limyyo pe = H"[C; o
(2) Foreveryt e (0,T), t~2spt(u;) C V.
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Let {vs}, 1oq 7 be the associated rescaled flow. There is a constant Eq = Eo(I'o, ', C)
so that, for all s < logT,

Erellvs, To] = lim / ¢ v, _/ 5 gHn
R— o0 B BrnTo

exists and is bounded by Ey. Moreover, for any —oo < 50 < 51 < logT, if f > 0 satisfies

2
M= swp [If(9)lles +10:fC8)llor + DA+ XNVf(8)]leo < oo,

S0<s<51 i=1

then, for all 5o < s¢p < 51 < 51,

S1 2 x|2
Erel[l/so;FO;f] > Erel[l/smrﬂ;.ﬂ +/ /f ’H — g . SL‘ 6% dl/st
6.1) o "
[ BT 0.~ 2)f + Qo] ds.
S0

Here S = S(x) = Tyxvs and Qg2 ¢(p,v) = V2f(p, s)(v, V).
Remark 6.6. When {41}, o 1y is a smooth MCF there is an equality in (6.1).

Proof of Proposition 6.5. By our hypotheses, it follows from the pseudo-locality result
[23, Theorem 1.5] and interior regularity for mean curvature flow [15] (cf. [4, Proposition
3.3]) that there are sufficiently large constants g = Ro(C) and Cp = C(C) so that, for ev-
ery s < log T, there is an asymptotically conical hypersurface I's € H(I'o\ B ,I'1\ B, )
that satisfies

sup [x(p)[|Ar, (p)] < Co and v [R"'\ By = H"[T..

pel’s
We remark that this is the only place where the unit regular hypothesis plays a role.

It then follows from Proposition 6.3 and the dominated convergence theorem that, for

any Ry > R; > R,

x|2 Ix|2

/ e 1 dyg — / e 1 d?—["| = %ir% |Erei[T's, Tos ar, Ry s]| < CA'1R1_2
—

ARy, Ry

ARq,ryNT0

where Ry and C} both depend only on 'y, 2 and C. It follows immediately that

Erei[vs, To] = lim / et dv, _/ e ayn
R— o B BrMTo

exists and is finite. By Huisken’s monotonicity formula [19], for all s < logT and all
R>1,

VS(BR) S K()Rn
where Ky = Ky(C) > 0 and so

lx|? B n
e 2 dvs — e+ dH
B BQﬁ2ﬂF0

2Ro

< E

where £ = Eq (T, ]322, Ky), in turn, depends only on T'g, 2’ and C. Hence, by the triangle
inequality and the two bounds already established, for any R > 2R,,

=2 =2
e+ dvs — e+ dH
B BrNIy

and so the first claim follows with Fyg = F; + %C’llfiz_ ! depending on 'y, Q' and C.

1.~ 4
§E1+501R2_2
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To prove the forward monotonicity formula, appealing to [9, Section 3.5] and the diver-

gence theorem, one computes

S1 x n 2 ﬁ
Blvey To; onf] = Blve, Toionfl+ | [ énf[H=T -5 e dvds
(6.2) %0

7/ E[VSaFO;CR] dS

S0

where
CrR=0Rr(0s — L) f+ OrQv2s + [(0s — L) dr + fQv24,
- 2V¢R ° Vf + 2QV¢R(Vf)T € C?(Rn-i-l X Sﬂ X [go, gl})
The hypotheses on f and Lemma 6.4 ensure that (z(-, s) € X¢(R"*!) and, moreover,

I<k(+, s)||x has a uniform (in s and R) bound in terms of n, M and M;. The hypotheses
on f and Lemma 6.4 further imply that, for each fixed s,

IIzimo Cr = (0s — &) f + Qv2 uniformly on compact subsets.
—

By linearity,
Erelvs, ToiCr] = Era[ls, To; (1 = ¢y, 5)Cr] + E[vs, Tos ¢y, 5Cr]-
As ¢y 5, sCr has compact support, the uniform convergence implies
Aim Elvs,Lo; 6,5, 5Ck] = Elvs, Dos ¢op, 5 (05 = Z) [+ Qe
Likewise, as uniform convergence on compact sets implies pointwise convergence, Propo-
sition 4.9 implies
Jim Elvs,Lo; (1= by, 5)Cr] = Blvs, Loi (1 = @y, 5) (05 = L) f + Quzy]-
Hence,
Jim Elvs, To; Cr] = Elvs, To; (05 = 2) f + Quzy]
Finally, by (suitably modifying) Theorem 4.1, one has
|E[vs,To; Crl| < Co(1 + Eo)|I¢rllx

is uniformly bounded on compact intervals of time. Hence, by the dominated convergence
theorem,

S1

lim [ Blve, To: Cal ds — / Elve.To: (0 — 2) f + Qo] ds.

R—o0 s0 0

Similarly, for each fixed s, as imp_,o ¢rf = f pointwise and ||¢rf (-, s)| rip has
a uniform (in R) bound, it follows from Proposition 4.9 and the dominated convergence
theorem that
Jim Blv, To; o f] = lim (E[Dy,Tos (1= 0y, 5)0nS] + Elve,Toi 6, s0nS))
= El's,To; (1 = ¢y, 5)f1+ Elvs, Los ¢, 5.1 = Elvs, To; f.

Therefore, (6.1) follows from (6.2) by sending R — co and the monotone convergence
theorem. [l

We are now ready to prove Theorem 6.1.
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Proof of Theorem 6.1. Let {vs}
sition 6.5 with f =1,

Si X n 2 x2

lim / /‘H—7-5‘64 dvgds = 0.

S;—>—00 — 0 2

Letv! = v, , and so each {V; }s logT—s: is an integral rescaled Brakke flow. By the area

estimates and Brakke’s compactness theorem, [9] or [20, Section 7], there is a subsequence
1; — 00 so that

s<log T be the associated rescaled Brakke flow. By Propo-

i .
{VSJ }s<log T_S'ij - {VS}SGIR
as rescaled flows. It is not hard to see that, for any s,
Erel [ﬁsa FO} = Efoo

S1 2 x|2
/ /h{—ffﬂ‘&%dnga
So 2

In particular, for a.e. s, ¥ is a critical point for the functional E. This implies 7, = 7 is
static and, as spt(vij) C &, it follows that spt(#) C €’. Finally, as observed in the proof
of Proposition 6.5, the v, are C'*-asymptotic to C in a uniform manner and so # is also
asymptotic to C. The claim follows from this by unwinding the construction of v, (I

and, for any sp < s1,

APPENDIX A. AUXILIARY LEMMAS
For a hypersurface 3, let
iﬂ;:Az—&-%-Vz—M
and when p = § we write jfé = Y. We then let
Ly :$g+\Ag|2:Ag+g-Vg—%+|Az\2.
Lemma A.1. If Y is a C?-asymptotically conical self-expanding end in R"*1, then
A (rdefﬁ) = fé (n +d+ 0(7*2)) rdefﬁ
where r(p) = |x(p)| for p € %.
Proof. By the chain rule

and

2 2 1 d2 —d d 2
o) {(§ a b ) s (1)}t

Thus, combining these gives

e d+1 d*—d d v ]
fg (Tde 1 ) = {(—2 + 2 > |VZ7’|2 + <7‘ - 2) AZ""} rle™ 7.

Observe that by our hypotheses on X

|Vsr|? =14+ 0(r*) and Axr = anl +O(r™3).
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Hence,
2 1 2
22 (rde_T) =-3 (n +d+ O(T_Q)) rde™ T,
proving the claim. g

Lemma A.2. Fixan My > 1 and suppose Y. is a self-expander in an open subset of R+
with supy, |[As| + |VsAs| < M. If v € C%(X) with ||[v|lc2 < (8Mp)~! is such that
h = x|x + vny is a C? embedding, then atp € %

Hy sy + g ‘np(yy = —Lyv + Q(v,x - Vgv, Vg, Vo)
where Q) depends on p, v, and 3. and is a homogeneous degree-two polynomial of the form
Q(s,p,d, T) =a(s,p,d, T)-d+b(s,d, T)s.
Here a and b are homogeneous degree-one polynomials with coefficients bounded by Ci =
Cy(n, My).
Proof. Denote by I' = h(X). First, by [3, Lemma 7.2],

n

(A1)  Hr+ g ‘np = — | Z(ng)+ Y (95" — 957 (VEh);; | - (nroh)

i,j=1
where gp, and gy, are the pull-back metrics of the Euclidean one via h and x
and we used the fact Zsx = 0. One readily computes that

», respectively,

(gh) (QZ)U + (9 Ua v+ 2v AE Zj Z AZ zkz AE

and so the hypotheses ensure

1
29y > gn > 59=-

Using this, a direct computation gives
(9" — 92" = —24%v + QY (v, Vxv)

where ()1 is a homogeneous degree-two polynomial valued in (2, 0)-tensors and of the
form

Q1(v,Vyv) = a1(Vgv) - Vao + by (v)v
where a; and b; are homogeneous degree-one polynomials valued in (2,0)-tensors and
with coefficients bounded by K; = K (n, Mj). Likewise,

v%h = VQEX|Z + QQ(Uv VZUa V%U)

where Qg is a degree-one polynomial with coefficients bounded by Ko = Ky(Mj) and
valued in vector-valued symmetric (0, 2)-tensors. Finally,

nroh =ny + Q3(Vyv)
where Qg is a vector-valued homogeneous degree-one polynomial of the form
Qs (Vz’U) = ag(ng) + ag(Vzv)nE.

Here a3 and a} have coefficients bounded by K3 = K3(n, My) and a3 - ny = 0.
By [3, Lemma 5.9], on a self-expander

fgng + |Ag|2n§; =0.
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Using this, one obtains
Zs(vny) - (nr oh) = % (vny) - ny + % (vny) - Q3(Vsv)
= % (vny) - nyg + Q4(v, Vyv,x - Vyo, V%v)
where ()4 is a homogeneous degree-two polynomial of the form
Q4(v,Veu,x - Vyu, V%v) =ay(v,x - Vyv, Vyo, V%v) - Vxw.

Moreover, the coefficients of a4 are bounded by K; = K4(n, My). Similarly, as ny, -
(V3x)ij = (As)ij,
n

(nroh)- Z (9" —95")7(V5h);; = 2ony - Z —AY(VEx[s)ij + Qs (v, Vyv, VEv)

ij=1 i,j=1
= 2|45 v + Q5(v, Vxv, Vi)

where Qs (v, Vxv, V4v) is a homogeneous degree-two polynomial of the form

Qs(v, Vv, Viv) = as(v, Vv, V&) - Vv + bs(v, Vv, VEv)v

and the coefficients of a; and of b5 are bounded by K5 = K5(n, My).
Hence, substituting these into the above expressions into the formula (A.1) gives

Hr + g ‘np = — (L (vny) -ny + 2|45 *v) + Q(v,x - Vo, Vs, Vo).

Here Q@ = —Q4 — (5, and so is of the form desired and with coefficients bounded by
Cl == 01 (n, Mo).
Finally, we compute

gg(’l)ng) ‘ny = %v+vny - fgng + Q(VE’U . Vgng) ‘ny = %0 — |A2|2’U,
which completes the proof. (]

APPENDIX B. GEOMETRIC COMPUTATIONS
Proposition B.1. Let o be a C?-hypersurface in S™ with unit normal v, and assume that
K, =sup|A,(p)| < oc.
pEo
There is a constant 5o = do(K,,n) € (0,1) so that if §: o — (0, §) satisfies ||0]|1 < do,
then the set
w = {cos(tf(p))x(p) + sin(t(p))v,(p): 0 <t < 1,p € o}

is an open domain in S™ with the volume estimate
H (W) < 2/ 0.
g

Proof. Fix any point p € o. Let ¢! be the normal coordinates on an open neighborhood
of pino;ie., ¢: B"1 — o C R*""! is a C? diffeomorphism onto its image so that
¢(0) =pand, forl <i,j <n-1,

ar,(b(o) : 87‘,¢(0) = 51']' and Vayn(p) : 8T,¢(0) = 578T,¢(0)

where the r; are principle curvatures of o at p. Write 8(x) = 6(¢(z)) and v,(x) =
Vo (p(2)). Define

f(t,z) = cos(td(x))p(x) + sin(tl(z))v, ().
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Next we compute f*dvolg- (t,0).
Ot (t,0) = —sin(¢0(0))6(0)(0) + cos(t6(0))0(0)v,(0); and;
0, £(t,0) = —tsin(t0(0))d,,0(0)¢(0) 4 cos(t6(0))x, 0(0) v (0)
+ (cos(t6(0)) + k; sin(¢6(0)))d., ¢(0).

A straightforward computation gives that

It follows that
O£ (t,0) - 0,£(t,0) = 6%(0);
0:£(t,0) - 9,,£(t,0) = t0(0)9,,0(0); and;
0z, £(t,0) - 0, £(t,0) = 65 + (ki + k) cos(t0(0)) sin(t6(0))d;;
+ (kirj — 1) sin®(t0(0)))8;; + t°0,,0(0)0,,0(0),

where we used the fact that |¢| = |[v| = 1 and ¢ - v = 0;,¢ - v = 0. Hence, if Jy is chosen
sufficiently small, then |sin(¢0(0))| < t0(0) and

0 < f*dvolgn (t,0) < 26(0) dxdt.

In particular, f is a C'! diffeomorphism from (0, 1) x ¢ onto its image and so the set w is
an open domain in S™. O
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