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ABSTRACT

The Fontan physiology is a surgically created circulation for patients with a single functioning ventricle. Patients with this circulation tend to have lower exercise
tolerance compared to those with a normal circulation. Important computational and experimental work has been done to investigate this reduction in exercise
tolerance. However, there are few systematic modeling studies that focus on the effect of several surgically determined parameters within the same framework.
We propose a mathematical model to describe the Fontan circulation under exercise. We then formulate a heuristic based on clinical data from Fontan patients
to estimate exercise tolerance. The model is used to investigate the effect of three important surgically determined parameters on exercise tolerance: the systemic
arterial compliance, the systemic-venous to pulmonary-venous fenestration, and the resistance of the total cavopulmonary connection.

1. Introduction

The Fontan procedure is a common operation for patients with sin-
gle ventricle physiology [14]. It is usually the third intervention in a
sequence of operations that gradually establish a serial circulation with
a single ventricle pump. For patients with hypoplastic left heart syn-
drome, the circulation is created by reconstructing and connecting the
aorta to the right ventricle and connecting the vena cavae to the pul-
monary arteries. The surgical reconstruction of the aorta impacts the
systemic arterial compliance, partially due to the patch material used
in building the new vessel needed for ventricular outflow [2,27]. The
connection of the vena cavae and pulmonary arteries, referred to as
the total cavopulmonary connection (TCPC), places the systemic or-
gans and lungs in series and establishes passive pulmonary blood flow.
Fontan patients generally have lower cardiac output and higher pul-
monary arterial pressure in part due to their abnormal physiology and
passive flow to the lungs. To mitigate these issues, an additional sur-
gical connection between the systemic and pulmonary veins, called a
fenestration, is optionally introduced. In this paper, we develop a com-
puter model of the Fontan circulation to study the impact of these three
surgically determined parameters, i.e. the systemic arterial compliance,
TCPC resistance, and fenestration size, on exercise tolerance.

The invention of the Fontan procedure marked a significant ad-
vance in the treatment of congenital heart disease [14,29,13]. However,
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Fontan patients have limited exercise tolerance [15,4,20,24]. Further-
more, the study of exercise tolerance in Fontan patients is of critical im-
portance; it has been observed that a decrease in exercise tolerance is a
predictor of subsequent hospitalization and death [43,12]. While there
is some clinical research evaluating this reduction in exercise tolerance
as well as studying how surgical decisions may impact it, investigations
from a computer modeling perspective remain relatively scarce [11]. Of
note is the work from Kung et al., who created a compartmental Fontan
model with exercise predictions that were consistent with clinical data
[21]. Their approach was used to predict the effects of several types of
cardiac dysfunction on exercise tolerance [22]. Marsden et al. created
a 3D modeling framework to simulate local fluid mechanics within the
TCPC [28]. The authors studied TCPC fluid flow at rest and at different
levels of exercise. Our paper complements these previous works by de-
veloping a compartmental Fontan model to systematically examine the
impact of several important surgical decisions on exercise tolerance. To
our knowledge, the effects of the systemic arterial compliance, TCPC
resistance, and fenestration size on exercise tolerance have not been
studied in the same computer modeling framework.

The work presented in this paper builds upon the at-rest fenestrated
Fontan model from Ahmad et al. [1]. We extend this model to en-
compass the Fontan physiology under exercise. Specifically, section 2
discusses the at-rest compartmental model and its calibration to clinical
data. Then, we discuss an empirically motivated model that describes
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Fig. 1. Compartmental model for the Fontan physiology.

physiological adaptations to exercise, and we provide a heuristic to es-
timate exercise tolerance from the model predictions. Section 3 details
the results, including a comparison of the exercise model to clinical
data. Finally, we use the model to predict how the systemic arterial
compliance, TCPC resistance, and fenestration size affect exercise toler-
ance.

2. Methods
2.1. At-rest model and calibration

In this paper, the Fontan circulation is modeled by five compart-
ments: the ventricular chamber (vc), the systemic arteries (sa), the sys-
temic veins (sv), the pulmonary arteries (pa) and the pulmonary veins
(pv); refer to Fig. 1a. A surgical connection called the total cavopul-
monary connection links the systemic venous and pulmonary arterial
compartments, allowing for passive flow from the systemic veins to
the lungs in the absence of a ventricular chamber. The quantities of
interest for compartment i are the blood pressure P, and volumetric
concentration of oxygen o;. The volumetric concentration of oxygen is
related to the oxygen saturation Sat; in compartment i by the equation
0; =0.201 x Sat; /100. This relationship ensures that Sat; = 100% corre-
sponds to ¢; = 0.201, the maximum volumetric concentration of oxygen
in blood [8,33].

Ahmad et al. [1] demonstrated that this compartmental model can
be used to effectively describe the Fontan circulation with and without
a fenestration. Each compartment i is described by a compliance C; and
a volume V;. The time-dependent compliance for the ventricular cham-
ber depends on the end-systolic compliance C s and the end-diastolic
compliance Cyg;,¢, and it is defined by the following equations:
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Paths between two compartments are described by resistances: R,, for
the path (pv,vc), R,, for the path (vc,sa), R, for the path (sa,sv),
Rrcpe for the path (sv,pa), and R, for the path (pa,pv). Mass balance
equations written for each compartment lead to a nonlinear system of
ordinary differential equations for the pressures P, and the concentra-
tions o;. Details are provided in appendix A.1.

2.2. Surgical fenestration

The fenestration is an additional connection that is optionally placed
within the Fontan circulation, depending on physiological conditions.
The main benefits of such a connection are a decrease in pulmonary
artery pressure and an increase in cardiac output. Fig. 1b shows the
compartmental model with the fenestration represented by the segment
between compartments sv and pv. The fenestration resistance is denoted
by Ry.,. The size of the fenestration is incorporated into the model us-
ing the Gorlin equation. The resistance is determined by the fenestration

cross-sectional area Ay, and the pressure gradient through the connec-
tion (sv,pv) via the following relationship [1,17]:
p
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The parameters p and R, are the density of blood and the viscous resis-
tance of the fenestration when flow is close to zero, respectively:

p=1.06 gml™! =2.2085x 10~ mmHg min> dm~2,

Ry =1073 mmHg min L',

We note that the resistance Ry, depends nonlinearly on the pressures in
the sv and pv compartments. Furthermore, equation (3) can be rewrit-
ten as a quadratic root finding problem for R, >0,
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in which the fenestration resistance is the distinct positive root.
2.3. Exercise model

In this work, exercise intensity is quantified through the body’s
systemic oxygen consumption rate ¥0,. To take into account the phys-
iological adaptations to exercise, we propose models for the heart rate,
systemic resistance, systemic arterial compliance, single ventricle com-
pliance, and venous dead volume as functions of the exercise intensity.
The relationship between heart rate and oxygen consumption rate is de-
termined from experimental data by Hedlund et al. [19] and is fitted to
a linear relation [40]:

HR=71.093 VO, + 60.441 min™". )

In order to approximate exercise-induced changes in systemic resistance
and arterial compliance, we derive relationships based on experimental
results from Larsson et al. [23]. Fontan patients in their study under-
went exercise, and cardiopulmonary parameters were recorded at both
rest and maximal exercise. While the work from Larsson et al. [23]
does not include measurements of arterial compliance C,, it contains
measurements of stroke volume SV, systolic blood pressure SBP, and
diastolic blood pressure DB P, which we can use to approximate com-
pliance by the following relation (see [31]):

C,, ~ sV
8" SBP-DBP’
Furthermore, we assume that exercise-induced parameter changes can
be described as an power law function of heart rate. For a physiological
parameter x with an at-rest value of x,, power law exponent y, and
resting heart rate HR,, the exercise-induced change in the parameter is
expressed as

HR,\’
X =Xq ﬁ N (7)
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where x, is the at-rest value of the parameter specified in appendix A.2.
We used tabulated data collected at rest and at maximal exercise from
Larsson et al. to estimate the power law exponent y for the systemic
resistance and arterial compliance [23]. Rounding to two significant
digits, we obtain the exponential factors y = 0.57 and y = 0.37 for R,
and C, respectively. Therefore, we propose the following relations to
describe exercise-induced changes in the systemic compartment:

0.57
R.=R HR, mmHg - min - L™ (8)
s — %s,0 HR g 5
HR,
Coa=Cspo TR

Following the exercise model from Han et al. [17], we model systemic
venous dead volume as a function of heart rate in the following way:

HRO 0.1
Vd,sv = Vd,sv,() ﬁ L. (10)

0.37
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Finally, the change in ventricular contractility is modeled by varying
the end-systolic and end-diastolic compliance of the ventricle chamber.
In exercise, the end-systolic compliance decreases and the end-diastolic
compliance increases so that stroke volume matches the body’s de-
mand for oxygen. A decrease in end-systolic compliance corresponds to
stronger ventricular contraction and an increase in end-diastolic com-
pliance allows for adequate ventricular filling. The exercise-induced
change in the end-systolic relationship is estimated from Najjar et al.
[30] for healthy individuals under the age of 40:

HRO 1.8
Csys = Csys,O <ﬁ> L- mmHg (].].)

The variation in end-diastolic compliance is chosen such that the result-
ing cardiac output attains a reasonable range and the predicted exercise
tolerance, as described in the coming sections, aligns well with clinical
data:

HR,\ ™2
Clias = Cias,0 <—HR ) L- mmHg. 12)

The at-rest heart rate HR,, is evaluated from equation (5) with V02 =
0.2 L - min~!. The cycle period is the inverse of the heart rate:

T min.

~ HR

2.4. Exercise tolerance estimation

The baseline model in section 2.1 and the exercise adaptations de-
scribed in section 2.3 give a description of the physiologic response
while undergoing exercise at a specific intensity. For a given oxygen
consumption rate, the model predicts the physiologic response in terms
of time-dependent compartment pressures and oxygen concentrations.
Since oxygen is consumed in the tissues between systemic arterial and
systemic venous compartments, the systemic venous oxygen concentra-
tion oy, is related to the body’s response to the corresponding level of
exercise. Qualitatively, a lower o, implies worse exercise tolerance as,
per Fick’s law, the body is not able to adequately match the cardiac
output to its oxygen needs. However, since this is only an approximate
means for measuring exercise response, we sought to establish a more
precise method for quantifying exercise tolerance in the context of this
model. Although the characterization of exercise tolerance is generally
malleable and depends on the type of exercise, the maximal oxygen con-
sumption rate, ¥ 0,-max, i.e. the maximal rate at which the body can
metabolically utilize oxygen, is a widely used metric for quantifying an
individual’s exercise tolerance [38].

We propose a heuristic method for estimating V' O,-max from our
compartmental model using the predicted systemic venous oxygen sat-
uration Satg,. Shachar et al. measured an average venous oxygen sat-
uration of 31% in exercising Fontan patients [37]. Although their data

Table 1

Hemodynamic variables predicted by the model for the scenarios
of at-rest (I'/O2 =0.20 L - min™" ), moderate (0.885 L - min~! ), and
maximal exercise (1.570 L - min~"! ).

Variable At-rest Moderate Maximal
Systolic Blood Pressure (mmHg) 120.03 162.30 182.46
Diastolic Blood Pressure (mmHg) 69.69 92.00 102.09
Cardiac Output (L - min™") 4.26 7.67 10.32
Stroke Volume (mL) 57.00 62.17 59.97
Systemic Oxygen Saturation (%) 95 95 95
Venous Oxygen Saturation (%) 70.39 34.56 15.32

did not include maximal oxygen consumption rate or other metrics for
maximal exercise tolerance, we cross-examine their results with those
of Hedlund et al. [19] via the patients’ work output during exercise.
In the work of Shachar et al., the body surface area indexed work rate
was estimated to be 40-60 W - m~2 [37]. For an average body surface
area of 1.5 m?, the absolute work rate was 60-90 W. Taking the oxy-
gen consumption rate at maximal exercise from the work of Hedlund et
al. to correspond to 100% of the V' O,-max, the average work rate from
Shachar et al. would correspond to approximately 75% of the ¥ O,-max.
Thus, for the purposes of our analysis, we assume that 0.75 - ¥ O,-max
is the oxygen consumption that results in a systemic venous saturation
of 31%.

2.5. Numerical methods

The system of nonlinear ordinary differential equations is discretized
using the backward Euler time-stepping scheme. This approach gives
rise to a nonlinear system where the nonlinearity appears in the valve
states as well as the resistance of the fenestration in equation (3). We
use a fixed-point iterative method to solve the nonlinear system. Iter-
ations are stopped when the residual is sufficiently small. Details of
the numerical algorithm are provided in appendix A.3. Initial condi-
tions are as follows: compartmental pressures are set to zero, except
for P,, = 11.6909 mmHg; this implies that the blood volume is 5 L.
Compartmental concentrations in each compliance chamber are set to
0.15 Lo, /Lyjgoq- Simulations are run for 1000 cardiac cycles with 200
timesteps per cardiac cycle. We found that, for our system and these pa-
rameters, solutions obtain a periodic steady state within this number of
cycles.

3. Results
3.1. Baseline exercise model

In this section, we verify that our model predicts variables within
reasonable ranges compared to available clinical data. A baseline ver-
sion of the model described in sections 2.1 and 2.3 is tested for the
case of a closed fenestration. Parameters values are based on Ahmad et
al. [1] except for Rycpc, which is determined based on data that char-
acterizes energy losses in total cavopulmonary connections [41,44,34].
Exercise intensity is characterized by the systemic oxygen consumption
V 0,. In our first set of tests, we simulate three scenarios: at-rest, moder-
ate exercise, and maximal exercise. The at-rest VO, value is taken to be
0.200 L - min~". The maximal V' O, value is taken to be 1.570 L - min~",
as observed by Hedlund et al. [19]. The V02 value at moderate ex-
ercise is defined to be the average between the at-rest and maximal
values corresponding to 0.885 L - min~'. In analyzing results, we con-
sider the solution at the periodic steady state. Table 1 summarizes the
model-predicted hemodynamics for the at-rest, moderate, and maximal
exercise scenarios. Fig. 2 displays the pressure-volume relationships and
pressure waveforms for these three scenarios. The trends seen in the
model predicted variables are consistent with both clinical observations
[23] and animal experiments [7], including a decrease in ventricular di-
astolic pressure and increases in systemic pressures and cardiac output
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(b) Pressure waveforms in the systemic arteries and flow
waveforms through the aortic valve for the different ex-
ercise intensities. The figure illustrates two cardiac cy-
cles for the at-rest case as well as the simulated exercise
cases for the same period of time.

Fig. 2. Simulation results for the cases of at-rest (V02 =0.200 L - min~" ), moderate exercise (VOZ =0.885 L -min~! ), and maximal exercise (I'/O2 =1.570 L-min~! ).

Table 2

Comparison between predicted and measured hemodynamic values. The
measurements from Larsson [23] and Shachar [37] were done at VO, =
1.47 L -min~! and 1.01 L - min~' respectively. A body surface of area
of 1.5 m? was assumed for the latter study. Simulations are performed
using the average oxygen consumption rate between the two studies cor-
responding to 1.24 L - min~".

Variable Numerical  Experiment  Reference
Systolic Blood Pressure (mmHg) 174.55 164 [23]
Diastolic Blood Pressure (mmHg) 98.14 88 [23]
Cardiac Output (L - min™") 9.13 8.0 [23]
Stroke Volume (mL) 61.41 64 [23]
Systemic Oxygen Saturation (%) 95.00 93 [37]
Venous Oxygen Saturation (%) 23.84 31 [37]

in exercise. We also note the very mild increase in stroke volume in ex-
ercise. This trend seems to align with clinical data from Gewillig et al.,
who reported that stroke volume did not increase at the same rate as
cardiac output, and in their “worst ten” group of Fontan patients, stroke
volume decreased with exercise intensity [16].

Next, we compare predictions from our model with the clinical stud-
ies of Larsson et al. and Shachar et al. [23,37]. For this comparison, we
must determine the value for V'O, that is consistent with these stud-
ies. Shachar et al. reported a V'O, indexed by body surface area of
0.671 L - min~'m=2. With a body surface area of 1.5 m?, this corre-
sponds to an oxygen consumption rate of 1.01 L - min~'. Larsson et
al. reported a VO, of 1.47 L- min~!. For this comparison, we take VO,
to 1.24 L - min~! in our model, which is the average of the oxygen con-
sumption rates observed in these two studies. Table 2 shows the values
of the model-predicted variables compared against the corresponding
clinical data. Our results agree well with the data reported in the two
clinical studies.

The exercise tolerance estimation method in section 2.4 requires
computing the ¥V 0, corresponding to Sat,, = 31%. Since V'O, is an in-
dependent variable in our model, we achieve this by varying V'O, in
the range [0.2,1.2] L - min~! at intervals of 0.1 L - min~! and com-
puting the corresponding Saty,. The functional relationship between
Sat,, and VO, predicted from our model is shown in Fig. 3 and
called the saturation-consumption curve. The systemic venous oxy-
gen saturation decreases as V'O, increases, and we interpolate the
points defining this curve to approximate the VO, value that cor-
responds to Saty, = 31%. For the baseline exercise model, we obtain
VO,-max = 1.33 L - min~!, which is close to clinical measurements of
VO,-max =147 and 1.5 L - min~! [23,26].

- Systemic Venous Oxygen Saturation

0.6 0.8 1
VO, (L/min)

Fig. 3. Systemic venous oxygen concentration (Sat,, ) as a function of the oxygen
consumption rate (VOZ) for the baseline exercise model. The blue solid line
intersects the grey dashed line when the oxygen consumption rate results in a
systemic venous concentration of 31%. This value for the consumption is used
to estimate V' O,-max as described in section 2.4.

3.2. Effect of systemic arterial compliance on exercise tolerance

During the first procedure for single ventricle patients with certain
physiologies, e.g. hypoplastic left heart syndrome, the surgeon is tasked
with reconstructing the aorta and attaching it to the functioning ventri-
cle [32]. This operation tends to decrease the compliance of the aorta
[6]. In turn, aortic reconstruction has a significant impact on the down-
stream compliance felt by the single ventricle over the lifespan of the
patient. The combined aortic and downstream vascular compliance is
specified in our model by the systemic arterial compliance parameter,
denoted Cg,. It should be noted that the compliance of the aorta likely
accounts for a substantial fraction of the total arterial compliance. For
example, in a popular model for the systemic arterial circulation, the
aortic compliance accounts for 30-45% of the total compliance, depend-
ing on the inclusion of the thoracic aorta into this calculation [39]. We
vary the at-rest value, denoted Cg, o, in our simulations to study its ef-
fect on hemodynamics at rest and in exercise. The parameter C, in our
model is then calculated as a function of the heart rate via equation (9).
The saturation-consumption curve is constructed for each value of the
systemic arterial compliance. In the baseline model, we take the at-rest
value of Cy, to be 7.33x 107* L - mmHg~!. Then, we run simulations
with Cy,  values in the range [0.91625,14.66] x 1074 L - mmHg™!. The
saturation-consumption curves are constructed as done in section 3.1
and are shown in Fig. 4a. The V' O,-max values are shown in Fig. 4b. In
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correspond to Sats, less than and greater than 31%
respectively.

Fig. 4. Effect of the systemic arterial compliance C,, on exercise tolerance.

addition to computing V' O,-max corresponding to Saty, = 31%, as dis-
cussed in section 2.4, we consider a range of saturation values greater
and less than 31% to visualize how the predicted VOz—max depends on
the choice of threshold saturation value. These results are plotted as
grey dashed lines in Fig. 4b.

The model predicts that a very compliant systemic arterial com-
partment results in a marginally lower exercise tolerance. Further, a
stiffer systemic arterial compartment provides only a mild increase in
V 0,-max, if at all. In fact, for the lower dashed lines corresponding to
V 0,-max predicted from Saty, > 31%, there are decreases in ¥ O,-max
for smaller compliance values, indicating the curve is non-monotone. In
other words, for these cases, the exercise tolerance decreases as the sys-
temic arterial compartment becomes stiffer. This trend has been noted
experimentally. Harteveld et al. measured the aortic pulse wave veloc-
ity, an indicator of vessel stiffness, and observed a decrease in V02 -max
as the aortic stiffness increased [18,25]. The apparent detrimental effect
of arterial stiffness on exercise tolerance has led some to suggest inves-
tigation of aortic reconstruction design, such as the choice of materials
that could lead to a more compliant aorta [3]. Our results somewhat
corroborate this suggestion; although, as seen in Fig. 4b, the reduction
in exercise tolerance is not linear as the increase in exercise tolerance
plateaus at low values of the systemic arterial compliance.

3.3. Effect of the total cavopulmonary connection on exercise tolerance

The Fontan circulation is established by a surgical connection be-
tween the vena cavae and main pulmonary arteries [10,9]. This con-
nection, called the total cavopulmonary connection (TCPC), allows for
passive flow of deoxygenated blood from the systemic veins directly
to the lungs. The geometry of the TCPC has a significant effect on the
fluid mechanics of the blood entering the lungs. There has been in-
tense research devoted to TCPC design and its impact on flow through
the pulmonary arteries. Furthermore, flow resistance due to the TCPC
geometry has been observed to affect exercise tolerance [42]. Recent
clinical evidence for this includes the analysis of TCPC hemodynamics
using 4D flow cardiovascular magnetic resonance imaging [36]. We use
our model to systematically investigate the effect of the TCPC design on
exercise tolerance. The TCPC geometry is described by the resistance
parameter Rycpc, Which represents the fluid-mechanical resistance of
this surgical connection. We vary Rrycpc and construct the correspond-
ing saturation-consumption curves. In the baseline model, Rycpc is set
to 10! mmHg - min - L~!. We consider a range of Rycpc values from
0.25x 10~" mmHg - min - L~! to 4 x 10~! mmHg - min - L™!, which is

comparable to values seen in the literature [41,35,44]. The saturation-
consumption curves are constructed as done in section 3.1 and are
shown in Fig. 5a. The corresponding ¥ O,-max values are shown in
Fig. 5b.

As seen in Fig. 5b, the model predicts worse exercise tolerance for
large Rycpc values. These results suggest that reducing the resistance of
the TCPC connection is beneficial. Since the parameter Rycpc describes
the geometry dependent resistance of the surgical connection, our re-
sults are consistent with prior research that seeks to construct optimal
TCPC geometries that minimize flow impedance and energy loss [42].

3.4. Effect of fenestration size on exercise tolerance

Data on the effects of a fenestration on exercise tolerance are incon-
clusive. Meadows et al. investigated V' 0,-max in Fontan patients with
a fenestration and again half a year after they had their fenestration
closed. Although a small drop in V O,-max was detected, it was not
significant. Loomba et al. investigated exercise tolerance in Fontan pa-
tients with and without a fenestration [26]. Although the fenestrated
group had a lower V 0,-max, the authors found no significant differ-
ences when considering V' O,-max normalized by body mass [26]. In
our framework, the fenestration is described by the nonlinear resistance
parameter Ry, which is calculated from equation (3). We investigate
the effects of the fenestration by considering the case of no fenestra-
tion as well as a range of values for Ry,,. Although Ry, is a function
of the fenestration cross-sectional area A, for clarity we visualize re-
sults as a function of the fenestration diameter d,,. Simulations are
run for fenestration diameters varying from 2 mm to 10 mm, and we
also include the closed fenestration case corresponding to d¢,, =0 mm.
Saturation-consumption curves are shown in Fig. 6a and the corre-
sponding V O,-max values are shown in Fig. 6b.

Fig. 6b demonstrates that the presence of a fenestration decreases
V 0,-max. However, the decrease in exercise tolerance relative to a
closed fenestration is not very significant for small fenestration di-
ameters. Meadows et al. noted they initially expected depressed ex-
ercise tolerance in the fenestrated case, however, they did not detect
any statistically significant changes and postulated that factors such as
sample size could have contributed to their insignificant results [29].
When considering the diameter range suggested by Bridges et al. [5]
of 4 — 6 mm, we observe a reduction in V0,-max relative to an unfen-
estrated case of 6.8 — 17.1%. In comparison, Meadows et al. reported
a 4.4% increase in V' O,-max after fenestration occlusion. Furthermore,
our model predicts that increasing the fenestration diameter beyond
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Fig. 5. Effect of the total cavopulmonary connection resistance Rycpc on exercise tolerance.
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uration as a function of the oxygen consumption rate
for different values of the fenestration diameter dfen.
The dashed line at Sats, = 31% intersects the solid
lines at consumption rates corresponding to 75% of the
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(b) Predicted peak oxygen consumption rates
(VOs-max) for different values of the fenestration
diameter dfen. The grey dashed lines indicate the
sensitivity of the predicted VOs-max to changes in
the Sats, threshold, i.e. the upper and lower lines
correspond to Sats, less than and greater than 31%

respectively.

Fig. 6. Effect of the fenestration size on exercise tolerance.

this range of values contributes to a more significant impairment of ex-
ercise tolerance, since Fig. 6b indicates a negative second derivative of
V 0,-max with respect to the fenestration diameter.

3.5. Sensitivity analysis

In this section, we quantify the relative sensitivities of ¥ 0,-max
with respect to several of the model parameters, including the power
law exponents in the exercise model. The relative sensitivity of
V 0,-max with respect to a parameter X, evaluated at a nominal value
X, is defined as:

Xo
V 0,-max(X,)

dVOz—max(X )
X

13

Xo
The partial derivative in equation (13) is approximated with a centered
finite difference:

aV 0,-max(X)
0X

V 0y-max(X,) — V Oy-max(Xg o) (14)

X, XO,up - XO,low

The values X, X 10w are upper and lower bounds around the nom-
inal value X,. For our analysis, we take X, = 1.1 X and X4 =
0.9 X,.

First, sensitivities are computed with respect to the three surgically
determined parameters that are the focus of this paper: the arterial
compliance Cg,, the resistance of the total cavopulmonary connection
Rrcpe, and the fenestration diameter dy, . Sensitivities for the systemic
arterial compliance and the TCPC resistance are evaluated at the val-
ues used in the baseline exercise model, discussed in section 2.3. The
sensitivity for the fenestration diameter is evaluated at sizes bounded
away from zero: dg,, =4 mm and 8 mm. Sensitivity results are shown
in Table 3. VO,-max appears to be least sensitive to Cy,, but the sen-
sitivities for Rycpc and the 4 mm fenestration are similar. The larger 8
mm fenestration has a sensitivity five times as large as the smaller fen-
estration, which seems to be consistent with the variation of ¥ 0,-max
with respect to fenestration size as seen in Fig. 6b.

Given the uncertainty and variability in the empirical data that was
used to calibrate the exercise model, as described in section 2.3, we
calculate sensitivities of ¥’ O2-max with respect to the power law ex-
ponents that determine this model. Table 4 contains these sensitivities,
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Table 3
Sensitivities of ¥ 0,-max to
the surgically determined

parameters.
Variable Sensitivity
Rcpe -11.97%
a -9.73%
diey =4 mm  -10.60%
diy =8 mm  -54.45%

Table 4
Sensitivities of ¥ O,-max to the power
law exponent y in the exercise model.

Exponent y for Variable Sensitivity
C, 2.02%

R, 7.40%
Vasv 22.17%
Cyys 14.38%
Ciias 9.05%

which in general are relatively small. The exponent for the dead vol-
ume in the systemic veins has the largest sensitivity. This result seems
consistent with the notion that hemodynamics are generally sensitive to
changes in blood volume, and variations in the exponent for V, , affect
mobilization of additional blood volume in exercise.

4. Conclusions

In this paper, we constructed a model for the Fontan circulation that
includes a fenestration. The model predicts pressures, flows, and oxy-
gen concentrations in the major compartments of the circulation. An
approach for describing exercise within this framework was presented,
which modulates parameters as functions of the exercise intensity, de-
termined by the systemic oxygen consumption. We derived a heuristic,
based on clinical data from Fontan patients, for estimating V O,-max
from the model predicted variables. V O,-max was then used to study
Fontan exercise tolerance within this framework.

We first verified that the model was able to reasonably predict
Fontan hemodynamics at rest and in exercise, when compared against
results of clinical studies. The hemodynamic parameters in the baseline
at-rest model were based on experimental data and previously reported
values [1,41]. Independently, the power law exponents for Cg,, R, and
Cyys in the exercise model were determined from empirical data. We
were unable to find data in order to approximate the power law expo-
nent for the dead volume Vj ¢, so this was based on the value used by
Han et al. [17]. Finally, the power law exponent for Cy;,; was calibrated
based on clinical estimates of ¥ 0,-max [23,26].

The framework was then applied to study the effect of surgical in-
terventions on exercise tolerance, as quantified by the model predicted
V 0,-max. We found that larger systemic arterial compliance values
tend to decrease exercise tolerance, which extends the current clini-
cal understanding that a more compliant reconstructed aorta may not
always be strictly beneficial. The resistance of the TCPC junction was
found to negatively impact exercise tolerance. This corroborates efforts
to use high-fidelity models to compute optimal TCPC geometries that
minimize energy loss. Lastly, an increasing fenestration size was found
to decrease exercise tolerance. However, for a range of typical fenestra-
tion sizes, this drop was relatively small, which may explain why it is
challenging to observe significant differences in exercise tolerance be-
tween fenestrated and unfenestrated patients. Sensitivity analysis sug-
gested that exercise tolerance is similarly sensitive to the resistance of
the total cavopulmonary connection, small fenestrations, and the sys-
temic arterial compliance. Sensitivity of exercise tolerance to a larger
fenestration was substantially higher than the sensitivities to the other
parameters.
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Appendix A
A.1. Governing equations

The volume of compartment i is defined to be the sum of the dead
volume V, ; and the product of the compliance C; and the pressure P;:
Vi=Vq;+CP.

Conservation of volume in each compartment leads to a system of non-
linear ODE:s for the pressures:

d(Cy P 1 1

i Cpvve R_av(va S Svc,saR—ao(P\,c -P,)
Tata) Sucsr g R~ Pu) = (P P)
% - R%(PS"‘ ~ P fm(ﬂv — R - foe (Py = Py)
@ - RTICPC (P — P — Rip(Ppa —P)
dCpvFp) .

1 5fen
= R_p(Ppa P+ E(PSV = Pp) = Spre = P = P

av

dt

The subscripts label the compliance chambers in the model, i.e. vc =
ventricular chamber, sa = systemic arteries, sv = systemic veins, pa
= pulmonary arteries, pv = pulmonary veins, TCPC = total cavopul-
monary connection, and fen = fenestration. The parameter &;,, is set to
1 when the fenestration is open and 0 when the fenestration is closed.
Recall that Ry, is a function of the term | Py, — P, |. The term S;; rep-
resents the path’s flow state. This term can be written in terms of the
pressure as .S;; = logical(P, > P;), i.e. S;; is set to 1 if P, > P; and to
0 otherwise. The term S;; is used to describe the valves upstream and
downstream from the ventricular chamber compartment. For the other
paths, flow in both directions is allowed in the model.

Conservation of oxygen volume in each compartment leads to the
following system of ODEs:

d 1 1
Z(I/VC o-vc) :Spv,vc R_uv(PpV - Pvc)apv - Svc,saR_ao(Pvc - Psa)o-vc
d 1
—Va0sa) =Sycsa— (Poc — Pia) 0
dr . safsa ve,sa R, ve sa’ Ove
1
- K(Psa - Psv) (Ssa,svasa + Ssv.saasv)
s
d 1
E(qu O-sv) :F(Psa - Psv) (Ssa,svgsa + Ssv,saasa)
s
1
- E(Psv - Ppa) (Ssv,pao-sv + Spa,svgpa)

5 .
- = (Psv - va) (Ssv,pvgsv + Spv,svo-pv) - VOZ

fen
d - &, ,-r
E(Vpa Gpa) _m( sv pa) (Ssv,pagsv + Spa,svapa)
1
- R_p(Ppa = Poy) (Spapv@pa + SpypaCpy)

d 1 —
E(va o'pv) =R_p(Ppa - va) (Spa,pvo- + Spv,pao-pv)
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-S !

pvve p
av

(va - Pvc) Opy

+ Dten (P = Poy) (Ssupv0sy + Spusvpy)
fen
The source term ¢ is the volumetric concentration corresponding to
full saturation, assumed to be Satpv =95% [26]. Note that the sink term
—V 0, assumes the systemic venous compartment is in steady-state with
the tissues. As a result, the oxygen uptake in the bloodstream is equal
to the oxygen consumption of the tissues.

A.2. Parameters

Parameters needed for the time-dependent ventricular compliance
as well as the additional compliance values are:

Cliaso=1/79.52 L mmHg™!, C

S

ys0=1/5232 L- mmHg™",
7,=02600T, 7,=0452T, m =132, my=274
Cy,=0.099 L-mmHg™', C,,=0.00412 L -mmHg™",
Cpy =001 L-mmHg™" C,(=0.000733 L - mmHg™'

The compliances Cg,, Cyy,, and Cy;,, are determined from (9), (11), and

(12) respectively. Resistance values are:

R,, =0.01 mmHg - min - L, R,, =0.2 mmHg - min - L
Rycpc =0.1 mmHg - min-L™", R, =0.5517 mmHg - min- L',
R, =20.78 mmHg - min-L™".

Note that Ry, is calculated as a nonlinear function of the pressures and
depends on the viscous resistance, density, and fenestration size. The
resistance R, is determined by (8). The compartment dead volumes are:

Vawe=0.028L, V,,=07051L, V,,,=0093L,
Vd,pv =0.1475L, Vd,sv,O =2.869 L.

Note that V , is given by (10). Finally, the parameter

0 =0.191,

to ensure that the blood in the pulmonary veins corresponds to a satu-
ration of 95%.

A.3. Discretized system and algorithm

We apply the model to the network representing the Fontan physiol-
ogy in Fig. 1. Furthermore, we discretize the differential equations with
the backward Euler method using timestep 7 > 0. Let the subscripts re-
fer to the compartment and the superscripts refer to the time at which
the variable state is evaluated. V,P,o,C, and R refer to the compart-
mental volume, pressure, volumetric concentration, compliance, and
resistance in vector form, respectively. The matrix S denotes the flow
state between compartments. The matrix U denotes oxygen volume
per unit time flowing between compartments. The backward Euler dis-
cretization results in the system,

A, 0] [P]" _ [
5 oal ) - =
—— " Y~
A y ¢
where:

A, = diag(C' — (sum(E))T) +E,

bl — CI—AI 10 Pf—AI

A, = At (8" 0 G)T © AP + diag(V') + At diag((S' © G © AP)T),
b, = yi-Ar 1oy N ((Ut 1oy S')TT).

The following abbreviations and notations were used:

G=1/R,
E=A«(S 0G)+ (S 0G)),
AP ;=P - P,
T . = one vector,

© : = element-wise multiplication.

Algorithm 1 below details the numerical implementation for the dis-
crete system to compute the state variable y = [P,, o;].

Algorithm 1 Numerical scheme using backward Euler discretization
and Picard iterations.

1: Given the initial vector y;,;

2: Given the number of time steps klokmax
3: Given a tolerance tol
4: Initialize compartment network
St Y < Yini
6: form=0,1,...,klokmax — 1 do
7 yey
8 A« o0
9 while A > tol do > Picard iteration loop
10: if network is fenestrated then
11: Ry, () < positive root of (3)
12: end if
13: S(J) « logical(P < PT)
14: form A(J), {() from (15) at current m > Backward Euler
discretization
15: A l5 = A\
16: y<A\¢
17: end while
18: y<y
19: end for

20: return y
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