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ABSTRACT: The selective reduction and deoxygenation of lignin-
derived organic compounds are of interest for modeling a key
reaction in the utilization of biomass. Toward this goal, vanillyl
alcohol is used as a lignin monomer surrogate herein, and we study its
reduction to form creosol in an aqueous solution. Four water-soluble
iridium catalysts of the type [Cp*Ir(OH2)(bpyR2)](OTf)2 (2R, where
Cp* = η5-pentamethylcyclopentadienyl anion and bpyR2 = n,n′-R2-
2,2′-bipyridine with n = 4 or 6) with different R substituents (R = H,
OH, Me) in different positions on the bipyridine ligands were studied
for this hydrodeoxygenation (HDO) reaction on vanillyl alcohol.
Modification of the bipyridine ligands demonstrated that a more
electron-rich bpy-derived ligand (R = OH) gives a more efficient
HDO reaction. The addition of base serves to further enhance the
HDO reaction by deprotonating the protic OH groups (OH groups on n,n′-dihydroxybipyridine where n = 4 in 24OH or 6 in 26OH)
resulting in a more electron-rich catalyst. Proximal OH groups in 26OH produce our most active catalyst, and we can suggest that a
metal−ligand bifunctional mechanism of H2 activation and/or transfer to the substrate may be responsible for the greater efficiency
of 26OH vs 24OH. The catalyst loading could be reduced to 5 × 10−5 mol % of 26OH with 0.5 mol % Na2CO3 and 997,000 turnovers
(TON) could be achieved in 20 h at 100 °C. Furthermore, the same catalyst at 1 × 10−4 mol % produces 836,000 TON under
similar but base-free conditions. Such catalytic efficiency in a dilute aqueous solution is noteworthy for potential applications.

■ INTRODUCTION
With increasing worldwide energy demand, renewable fuels are
predicted to be the fastest growing energy source.1 Lignin is
the second most abundant biopolymer on the earth,2 and
around 50 million tons of lignin is produced every year.3 For
such a large quantity available, 98−99% industrial lignin is used
to generate steam and energy.3 Due to its high oxygen content,
lignin has low heating values.4 There have been advances in
isolating lignin from biomass and performing depolymerization
to monomer and dimer units such as vanillyl alcohol.5−10

Hydrodeoxygenation (HDO) methods (e.g., Scheme 1) can be
then applied to the small molecules to increase their energy
density11 and generate important aromatic chemicals.12 HDO
is a specific example of a hydrogenolysis process. Heteroge-
neous hydrogenolysis of benzylic alcohols is well established
and often uses Pd on C catalysts.13,14 For example,
heterogeneous Pd nanoparticle catalysts can achieve >99%
conversion of vanillyl alcohol to creosol, but often these
reactions require high catalyst loadings and higher temper-
atures.15−17 Molecular catalysts can address these issues, and
over-reduction products are typically avoided due to the lack of
a metallic surface that can lead to aromatic ring hydrogenation
products.18 Molecular palladium catalysts in homogeneous
solution19 and attached to a surface20 have demonstrated the

exclusive formation of the HDO product without ring
hydrogenation on benzylic alcohol substrates.
Vanillyl alcohol, which can be derived from lignin

depolymerization, was previously converted to creosol via
HDO with several Ru catalysts shown in Scheme 1.21 Based on
the results, the electron donor strength of the ligands has a
strong influence on the catalytic activity. In the absence of the
base, the catalysts of type 1R (Chart 1) can produce the desired
HDO product creosol (Schemes 1 and 2) with an order of
increasing yield with R = H < Me < NMe2 < OMe < OH. The
trend revealed that a strong π-donor group on the pyridine ring
is necessary to produce the HDO product in good yield. The
evidence for partial π bonding (C�N or C�O) with NMe2
and OMe/OH substituents included IR data, 1H NMR data
and single crystal X-ray crystallography.21 With OH as a
substituent, this π bonding interaction was enhanced by
deprotonation with base. However, in the absence of a base
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with catalysts 1R, a competing methylation reaction at the
benzylic OH group yields methyl vanillyl ether as a side
product (Scheme 2). Using Na2CO3 as a base, the selectivity
for the desired hydro-deoxygenation product improved
significantly. Our most active catalyst (1OH at 0.01 mol %)
in the presence of Na2CO3 yielded a 10,000 turnover number
(TON) over 3 days (Scheme 1) with >99% selectivity for
creosol. Three key roles are suggested for the base. (1) It can
deprotonate the OH in catalyst 1OH leading to a more
electron-rich pyridinolate pincer ligand which should facilitate
the generation of a free site on Ru for catalysis. (2) The base
can accelerate hydrogen activation by deprotonating the
Ru(η2−H2) complex formed in situ. (3) Base can improve
the selectivity for creosol even with aprotic catalysts 1R (R =
OMe etc.) by removing H+ which is involved in the

methylation pathway to form the methyl vanillyl ether side
product.
Given the role of OH groups on the catalyst for the

acceleration of the HDO reaction, it was logical to explore
other OH-bearing protic ligands (e.g., dihydroxybipyridine)
and metal complexes thereof. We have also replaced
ruthenium(II) with iridium(III) and the coligands now include
Cp* and aqua in this study (Chart 1). Iridium(III) complexes
including 26OH were superior to Ru(II) complexes of 6,6′-dhbp
for CO2 hydrogenation and the reverse reaction, formic acid
dehydrogenation.22 Furthermore, iridium(III) complexes have
been used frequently for (de) hydrogenation reactions
involving alcohol substrates in aqueous solution.23,24 There-
fore, it seemed logical for us to start with Ir(III) complexes of
type 2R in this study.
Catalysts with OH groups near the metal center (e.g., in

6,6′-dihydroxy-2,2′-bipyridine = 6,6′-dhbp in 26OH, Chart 1)
can serve as metal−ligand bifunctional catalysts in substrate
hydrogenation reactions by hydride transfer from the metal
combined with H+ transfer from the ligand.22,25−29 Examples
of metal−ligand bifunctional catalysts bearing protic OH/NH
groups proximate to the metal center have included work by
Noyori,30,31 Shvo,32−34 and Himeda35−38 and others.39−44

Furthermore, metal complexes of 6,6′-dhbp undergo changes
in electronic properties as a function of pH (Scheme 3).22,25−

29 For example, [Cp*IrOH2(6,6′-dhbp)](OTf)2 (26OH) under-
goes double deprotonation with an apparent pKa value of 4.1.

37

Deprotonation of the 6,6′-dhbp ligand results in a more
electron rich metal center that can serve to accelerate
hydrogenation reactions yielding more a more active metal
catalyst.22 With this information in hand, catalyst 26OH was
tested and found to have a high catalytic activity for HDO of a
lignin monomer surrogate in aqueous solvent.

■ RESULTS
Using vanillyl alcohol (Scheme 2) as a surrogate for a
monomer that can be derived from lignin depolymerization,45−
51 we began a systematic study of the HDO reaction using
iridium catalysts, 2R. Several catalysts of type 2R were used,
including 26OH with proximate OH groups, 24OH with distal
OH groups, 2Me with distal methyl groups, and 2 lacking bpy
substituents (Chart 1). The use of proximate and distal OH
groups can distinguish between rate acceleration due to ligand
deprotonation with base resulting in a more electronically rich
ligand vs rate acceleration due to a cooperative metal−ligand
bifunctional mechanism. Furthermore, methyl groups provide
a more electron-rich ligand without protonation/deprotona-
tion events.
The HDO reactions were studied in aqueous solution in a

Parr reactor pressurized with H2 gas and containing catalyst 2R

Scheme 1. HDO of Vanillyl Alcohol by Ruthenium (1R) and
Iridium (2R) Catalysts in Previous and Current Work,
Respectively

Chart 1. Ruthenium (1R) and iridium (2R) catalysts used
herein and previously.

Scheme 2. Possible Products from Vanillyl Alcohol HDO in
Methanol

Scheme 3. Deprotonation of the 6,6′-dhbp Ligand in 26OH

Produces a More Electron Rich Amide Type Ligand and a
Neutral Product
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(1.3 × 10−5 M) and vanillyl alcohol (0.52 M). These
conditions were chosen based on our prior work and some
initial optimization.21 Following reaction completion, the
reaction mixture was diluted with methanol and analyzed by
gas chromatography (GC) to obtain TON (where TON =
moles of product/moles of catalyst). Reactions were analyzed
after 1 h (for all catalysts) and 20 h (for the more active
catalysts) to measure higher TON values.
Optimizing the Base. The amount of base added to the

reaction mixture was tested to find the optimal identity and
quantity of base for HDO catalysis (Table 1). In our past work

with catalyst 1R, a catalyst-to-base ratio of 1:50 was optimal for
this series of Ru catalysts,21 which is the same as in entry 2.
However, in this work, the yield of creosol increased (up to
91%) with increasing quantities of base (entries 1−5, Table 1).
Several other bases were tested to study the identity of the base
at 2.5 mol %. However, comparing Na2CO3, NaHCO3, K2CO3,
and NaOH (entries 3, 6, 7, and 8, respectively) showed that
Na2CO3 appears to be the optimal base.
Catalyst and base were both present in substoichiometric

amounts relative to the substrate. In order to test the impact of
the catalyst and base, several control experiments were
performed. Without catalyst and base (entry 9, Table 1), a
low yield (1.7%) of creosol is obtained. By the addition of base
only (entry 10, Table 1), slightly more product (5.5%) was
formed. However, the catalyst alone without base (entry 11,
Table 1) produced a 65% yield of creosol. These data also
show that a catalyst is necessary for the efficient conversion of
vanillyl alcohol to its HDO product, giving a reasonable yield
of product which can be further enhanced by the addition of
base.
Substituent Effects on the Catalyst. We set out to

determine the impact of the catalyst (2R) identity in terms of
bpy substituents and their relative reactivity in the HDO
reaction (Chart 1 and Table 2). These catalysts were tested
using an intermediate concentration of Na2CO3 base (2.5 mol
%) and in the absence of base (0 mol %). This quantity of base
was chosen because it resulted in good yields while avoiding
high concentrations of the base, which may lead to side
reactions for base-sensitive substrates. Entries 1 and 2 (Table
2) with 26OH are repeated from Table 1 for the purpose of

comparison. Catalyst 26OH is water soluble and water stable,
which allows us to avoid the use of methanol as the solvent,
and this also prevents the formation of methylation byproducts
as shown in Scheme 2. Thus, creosol is formed as the sole
product in this reaction. Entries 3 and 4 show that 24OH is also
an effective catalyst (61% yield), which is enhanced by the
presence of a base (72% yield). It is clear from entries 1−4 that
the protic ligands lead to more effective catalysts (26OH and
24OH) which are enhanced by base vs their aprotic analogs in
entries 5−8. The aprotic catalysts 2 and 2Me show low activity
(3−4% yield without base, entries 5 and 7) and there is no
enhancement in the presence of base (2−3% yield with base,
entries 6 and 8). The activities of these catalysts are similar to
the no catalyst control (1.7 and 5.5% yield without and with
base, entries 9 and 10, Table 1). Thus, our most active catalyst,
which was chosen for further optimization, is 26OH in the
presence of base (entry 2).

Low Catalyst Loading Experiments with 26OH.With the
information accumulated from previous experiments, attempts
were made to reduce the catalyst loading to achieve higher
TONs. Frequently, reduced catalyst concentration leads to
higher TON values due to reduced decomposition events
involving catalyst−catalyst interactions.52,53 Reactions were
run both with and without base to get the highest TON for the
best catalyst, namely 26OH. With 5 × 10−5 mol % of 26OH and
0.5 mol % Na2CO3, nearly a 997,000 TON was achieved for
the HDO reaction on vanillyl alcohol in 20 h. For certain
substrates, base-free conditions are desirable, and this reaction
can be run base free with 1 × 10−4 mol % of 26OH yielding
836,000 TON in 20 h. Thus, high TON values can be achieved
under base-free conditions, but typically, a higher catalyst
loading is required.

Alternative Substrates. Lignin depolymerization readily
leads to other monomers that would require the HDO reaction
prior to being used as fuels. These monomers include benzyl
alcohol (3), benzaldehyde (4), guaiacol (5), and 3-
methoxyphenyl anisole (6) (Scheme 4).13,54 Given the high
efficiency of catalyst 26OH in the HDO reaction on vanillyl
alcohol, we wanted to broaden our study by testing these
additional substrates in the HDO reaction with 40 bar of H2, 5
mol % Na2CO3 base, and 0.1 mol % catalyst as shown in
Scheme 4 (see the Supporting Information for further details).
Benzyl alcohol (3) and 3-methoxyphenyl anisole (6) were
unreactive, and no products were detected by GC analysis.
Benzaldehyde (4) underwent hydrogenation to form benzyl

Table 1. HDO of Vanillyl Alcohol Using Catalyst 26OH with
Different Bases and Control Experimentsa

entry base base (mol %) creosol (% yield)b

1 Na2CO3 0.0625 69.9 (4)
2 Na2CO3 0.125 71.0 (3)
3 Na2CO3 2.5 85.2 (2)
4 Na2CO3 3.75 86.6 (1)
5 Na2CO3 6.25 91.0 (7)
6 NaHCO3 2.5 74.2 (1)
7 K2CO3 2.5 72.6 (7)
8 NaOH 2.5 81 (1)
9 nonec 0 1.7 (1)
10 Na2CO3

c 2.5 5.5 (5)
11 none 0 65 (1)

aAll experiments were done in triplicate and were analyzed by GC.
Conditions: 2.59 mmol vanillyl alcohol in 5 mL H2O, 0.0025 mol %
of catalyst (unless otherwise indicated), 40 bar of H2, 100 °C for 1 h.
See the Supporting Information for further details. bYield is calculated
from the GC data. cNo catalyst was added.

Table 2. Evaluation of 2R Catalysts for HDO of Vanillyl
Alcohol in the Presence and Absence of Basea Entries 1 and
2 are Repeated from Table 1 for Comparison

entry cat Na2CO3 (mol %) creosol (% yield)b

1 26OH 0 65 (1)
2 26OH 2.5 85.2 (2)
3 24OH 0 61 (2)
4 24OH 2.5 72 (1)
5 2 0 3.1 (2)
6 2 2.5 2.1 (2)
7 2Me 0 3.9 (3)
8 2Me 2.5 3.1 (2)

aAll experiments were done in triplicate and were analyzed by GC.
Conditions: 2.59 mmol vanillyl alcohol in 5 mL H2O, 0.0025 mol %
of catalyst, 40 bar of H2, 100 °C for 1 h. See the Supporting
Information for further details. bYield is calculated from the GC data.
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alcohol (3) in quantitative yield, which is a well-known
transformation for iridium catalysts,55 but no HDO products
involving oxygen loss were observed. Only substrate 5
produced HDO products with phenol [1.7 (2)%] and benzene
[15.8 (9)%] being produced and detected by GC. Although
the yields here are low, this reaction is not yet optimized and
shows the potential for catalyst 26OH to fully deoxygenate
guaiacol in water to form benzene. Overall, we note that the
differences in reactivity between vanillyl alcohol and the
substrates used here suggest that reactivity is enhanced by the
additional OH and OMe groups present in vanillyl alcohol
relative to benzyl alcohol, which likely includes electronic
effects and improved water solubility.

■ DISCUSSION
As previously observed for iridium complexes with dihydrox-
ybipyridine ligands, the hydroxy groups can be deprotonated
under basic conditions as shown in Scheme 3.26,37,56 The
quantities of base (2.5 mol % Na2CO3 relative to vanillyl
alcohol) typically used lead to a pH of 9.357 for which 26OH

will be doubly deprotonated (pKa value of 4.1 for both OH
groups).37 Thus, the increased TON values with base (for
26OH and 24OH, Tables 1 and 2) likely relate to increasing
quantities of the deprotonated catalyst and the multiple roles
that base can play in this reaction, as shown in Scheme 5.
Carbonate base can potentially deprotonate the vanillyl alcohol
substrate or assist in key steps in Scheme 5 (e.g., deprotonation
of an iridium η2−H2 complex). The deprotonated form of
catalyst 26OH or 24OH has a more electron-rich iridium center
to enhance the HDO reaction as described further below. Even
without a base present (pH ∼ 6.8 based upon the acidic nature
of the protic catalysts, 26OH and 24OH), a majority of
deprotonated catalysts (e.g., 99.8% doubly deprotonated for
26OH at pH 6.8)58,59 is expected to be present.55 Thus, our

mechanistic proposal drawn in Scheme 5 is proposed to go
through this doubly deprotonated species which is expected to
be both more active and more prevalent vs the OH-bearing
catalysts.22

Following catalyst deprotonation in Scheme 5, the loss of
the water ligand on Ir can generate a free site for H2 binding.
H2 coordination is proposed to generate a transient η2-H2
complex (with computational evidence in past studies)22,60

that can then be heterolytically cleaved to generate an iridium
hydride with H+ added to the oxyanion of the ligand. Water
(and base if present) is proposed to assist in the internal
proton transfer to the pendant base, as has been demonstrated
in other computationally studied mechanisms for CO2
hydrogenation with 26OH.38,60 The Ir−H formation step was
proposed to be rate limiting for the CO2 hydrogenation
reaction.37,38 Once the iridium hydride is formed, it is
proposed to transfer hydride to vanillyl alcohol, and OH can
serve as a leaving group via either an outer sphere mechanism
or with a weak interaction between the OH group and iridium.
Hydride transfer involving alcohols is well precedented and is a
key step in the dehydrogenation of alcohols to form ketones or
aldehydes.41,55,61,62 However, OH serving as a leaving group
and OH transfer to the metal are proposed here without
extensive precedence. Kinetic studies for Pd/C catalyzed
hydrogenolysis of benzyl alcohol derivatives showed an SN2
mechanism for primary alcohols.63 In one example, metal
hydride attack on benzyl alcohol resulted in an HDO reaction
as implied by kinetic studies.20 We note that this vanillyl
alcohol OH group is not acidic enough to protonate the
iridium hydride under these conditions to form H2, as
hydrogen evolution from the closely related [Cp*IrH(bpy)]+
catalyst required light energy, reducing conditions, and strong
acids.64,65 Following this step (hydride attack and OH loss),
the creosol product is then released and intramolecular proton
transfer can occur to restore the catalyst resting state with an
aqua ligand on Ir and a deprotonated 6,6′-dhbp ligand.
This mechanism shows several advantages for protic ligands

over their aprotic analogs. The deprotonated dhbp ligands in
2nOH (using n = 4 or 6) are much more electron rich vs 2 and
2Me. In fact, 2nOH complexes are neutral once doubly
deprotonated, whereas 2 and 2Me are dications. This facilitates
several key steps in the mechanism: loss of the aqua ligand and
activation of the η2−H2 complex by putting the electron
density into the σ* orbital on H2. Furthermore, a nearby
pendant base can help deprotonate bound H2 as shown in
Scheme 5. These factors allow for the metal−ligand bifunc-
tional mechanism27,35−38 to be operative for 26OH as shown in
Scheme 5 and can explain the improvements in the yield of
creosol for 26OH vs 24OH.

■ CONCLUSIONS
Compared to our previous best catalyst using a central
pyridinol ring within the Ru-bound CNC ligand (1OH with
10,000 TON with base), the iridium catalyst 26OH led to a
greatly increased TONs for the HDO reaction on vanillyl
alcohol both without and with base (836,000 and 997,000,
respectively) even considering the shortened reaction time (20
h with 26OH vs 3 days with 1OH). The reaction solvent has also
changed from MeOH to the more environmentally friendly
solvent of H2O which also serves to avoid the formation of
methylation side products.21 Furthermore, high TONs even
without a base can allow for the HDO of base-sensitive
substrates. However, further studies are needed to optimize the

Scheme 4. Further Alternative Substrates 3, 4, 5, and 6 Were
Tested for the HDO Reaction with 0.1 mol % of 26OH

Catalyst
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HDO reaction on other lignin monomer surrogates (e.g., 3−6)
with 26OH in aqueous solution.
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