
NONCONVEX ANCIENT SOLUTIONS
TO CURVE SHORTENING FLOW

YONGZHE ZHANG, CONNOR OLSON, ILYAS KHAN, AND SIGURD ANGENENT

ABSTRACT. We construct an ancient solution to planar curve shortening. The so-
lution is at all times compact and embedded. For t ¿ 0 it is approximated by the
rotating Yin-Yang soliton, truncated at a finite angle α(t) = −t, and closed off by a
small copy of the Grim Reaper translating soliton.

1. INTRODUCTION

In [5] Daskalopoulos, Hamilton, and Sesum showed that any compact, convex, and
embedded ancient solution to Curve Shortening in the plane is either a shrinking
circle or the ancient paperclip solution. Qian You et.al.[10, 3] showed that there
exist many other ancient solutions that are either embedded and not compact, or
otherwise compact, convex, but not embedded. Here we construct an ancient solution
to Plane Curve Shortening that is embedded, compact at all times, but not convex.
We note that an ancient solution satisfying these properties was also constructed
independently in [4]. We present a brief comparison of the two different approaches
at the end of this introduction.

Our construction begins with the Yin–Yang soliton, i.e. the rotating soliton that
is invariant with respect to reflection in the origin—see Figure 1 (left). This spiral
shaped curve divides the plane into two congruent parts, and under Curve Shorten-
ing evolves by rotating with unit speed in the counterclockwise direction. Each of
the two branches of the Yin–Yang spiral is a graph in polar coordinates, given by

r =R(θ+ π
2 ), r =R(θ− π

2 )

respectively. The Yin-Yang spiral is asymptotic to a Fermat spiral [9] which in polar
coordinates is given by r = a

p
θ. The Yin-Yang curve satisfies

(1.1) R(θ)=
p

2θ+O (θ−3/2), R′(θ)= 1p
2θ

+O (θ−5/2) (θ→∞).

We review the properties and derive expansions for R in appendix A.
The Yin–Yang soliton is itself an example of an embedded ancient (and in fact

eternal) solution. It is however not compact. Our goal in this paper is to construct
a compact embedded ancient solution which, for t → −∞ converges to the rotating
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2 ZHANG, OLSON, KHAN, AND ANGENENT

Yin–Yang solution. In section 2 of this paper we construct an approximate solution to

GR~cap

Figure 1. Left: The Yin Yang soliton in polar coordinates. Right: The Truncated Yin Yang
soliton at time t ¿ 0. The bulk of the curve consists of an initial segment of the Yin–Yang
curve rotated counterclockwise by an angle t, which has two ends. These ends are connected
by a small cap in the shape of a translating soliton (the so-called “Grim Reaper”) located at
polar angle θ =−t.

CSF, by truncating the Yin–Yang solution at polar angle α(t), and connecting the two
ends with a small cap whose shape is approximately that of a rotated and rescaled
copy of the Grim Reaper soliton. See Figure 1 (right).

To determine how to choose the angle α(t) we estimate the speed V of the cap at
time t. Since the cap is approximately a Grim Reaper, its speed is related to its width
w by V =π/w. The width w is approximated by

w ≈R(α(t)− t+ π
2 )−R(α(t)− t− π

2 )≈R′(α(t)− t)π,

so that the cap moves with speed

V ≈ π

w
≈ 1

R′(α(t)− t).

On the other hand, far away from the center, the arms of the Yin-Yang spiral are
close to circular. The cap, which moves with angular velocity −α′(t) along a near
circle with radius R(α(t)− t), therefore has velocity V ≈−α′(t)R(α(t)− t). It follows
that α′(t)≈−1/(RR′). Since the asymptotics (1.1) imply RR′ ≈ 1, we end up with

(1.2) α′(t)=−1+ o(1), α(t)=−t+ o(t).

For any t < 0 we let Ω(t)⊂R2 be the region given in Polar Coordinates by

(1.3) Ω(t)=
{
(r cosθ, rsinθ)

∣∣ t É θ É−t, R(θ− t− π
2 )É r ÉR(θ− t+ π

2 )
}

We will call the boundary curve ∂Ω(t) the truncated Yin-Yang curve. It consists of
a segment of the rotating Yin-Yang curve and a straight line segment that connects
the two ends at θ =−t.

Main Theorem. There exists a compact ancient solution {C(t) | t < 0} to Curve
Shortening which for t →−∞ is uniformly close to the truncated Yin-Yang curve in
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the sense that if Λ(t) is the bounded region enclosed by C(t) then1

Area(Λ(t)4Ω(t)). |t|−1+δ (t →−∞)

for every δ> 0.

The construction follows a pattern similar to the construction of ancient solutions
in [3, 10], namely, construct a sequence of “really old solutions” {Cn(t) | −n É t É t0} of
Curve Shortening and extract a convergent subsequence whose limit is the desired
ancient solution. In section 2 we first construct an ancient approximate solution
{C∗(t) | −∞< t < 0} of Curve Shortening, i.e. a family of curves for which

(1.4) E
def=

∫t0

−∞

∫
C∗(t)

|V −κ| ds dt <∞.

Then we consider a sequence of solutions {Cn(t) | −n É t < t0} of Curve Shortening
whose initial curves Cn(−n) are chosen increasingly close to the approximate solu-
tion C∗(−n) at time −n, in the sense that the area between C∗(−n) and Cn(−n) tends
to zero as n →∞. Arguing as in [3, 10] we observe that the area between the solu-
tions Cn(t) and the approximate solution C∗(t) is bounded in terms of the “error” E

and the area between the initial curves C∗(−n) and Cn(−n). Since the curves we
deal with in this paper are not graphical the area estimate is a bit more complicated
than in [3, 10]. In section 3 we present a more general estimate that generalizes the
Altschuler-Grayson [2] area bounds for Space Curve Shortening. Finally, in section 4
we show how this bound allows us to extract a convergent subsequence of the very
old solutions Cn(t), and provides enough control to conclude that the resulting limit
satisfies the description in the Main Theorem.

In appendix A we recall the derivation of the Yin-Yang soliton, and obtain its
asymptotic expansion at infinity.

Comparison with the construction in [4]. The idea to construct ancient solu-
tions as a limit of a sequence of very old solutions is natural. In [4] the same strategy
is also followed, but the core of the proof where one controls the sequence of old solu-
tions is quite different. While the approach in our paper follows the method of area
comparison established in [3], the arguments in [4] proceed by carefully controlling
a sequence of old solutions via an exponential barrier for the bulk of the solution.
Thereafter stability of the tip is established in [4] using a blow-up argument, com-
bined with the uniqueness of the Grim Reaper as possible limit.

2. CONSTRUCTION OF THE CAP

2.1. Parametrized curves and the Curve Shortening deficit. An evolving fam-
ily of curves is a map X : (t0, t1)×R→R2 for which X p(t, p) 6= 0 for all (t, p). For such
a family we define

ds = ‖X p(t, p)‖dp,
d
ds

= 1
‖X p(t, p)‖

d
dp

.

The normal velocity and curvature of the family X are

V = 〈X t, JXs〉 , κ= 〈Xss, JXs〉 =
〈 X pp

‖X p‖2 ,
JX p

‖X p‖
〉

1For two sets A and B we denote their symmetric difference by A4B = (A \ B)∪ (B \ A).
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Figure 2. Left: The (u,v) coordinates. Right: The Yin Yang foliation at time t = 0.

where J = (0 −1
1 0

)
represents counterclockwise rotation by π

2 . By definition, the pa-
rameterized family of curves X satisfies Curve Shortening if V = κ. If it does not,
then we measure the “discrepancy with curve shortening” in terms of the form

(2.1) |V −κ|ds =
∣∣∣∣〈X t −

X pp

‖X p‖2 , JX p

〉∣∣∣∣ dp

The error E is obtained by integrating this form over the curve and in time.
We write e1 = (1,0), e2 = (0,1) for the standard basis for R2. In this basis counter-

clockwise rotation by θ is given by

eθJ =
(
cosθ −sinθ

sinθ cosθ

)
.

We will use the rotated frame {E1(θ),E2(θ)}= {eθJ e1, eθJ e2}, which satisfy

E1
′(θ)= E2(θ), E2

′(θ)=−E1(θ).

2.2. Z or (u,v)-coordinates. We expect the tip of the ancient solution to be located
near the point R(t)E1(−t), and to have width ∼ R−1, where

R = R(t)def=R(−2t).

Thus we introduce new, time dependent, coordinates Z = ue1 + ve2 related to the
cartesian coordinates X = (x1, x2) via

(2.2) X = e−tJ {Re1 +R−1Z}, i.e. Z = R
{
etJ X −Re1

}
.

2.3. The inner and outer Yin-Yang arms. The region on one side of the Yin-Yang
curve is foliated by rotated copies of the curve. At time t ∈R the leaves of this foliation
are parametrized by

(2.3) Y (θ, t, y)=R(θ− t+ y)E1(θ)

where y ∈ [−π/2,π/2] determines the leaf, and θ ∈ (t− y,∞) is the polar angle on
the leaf. The inner and outer arms of the region that contains our ancient solution
correspond to y=±π/2. See Figure 2.
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2.4. Lemma. For any M > 0 there is a tM < 0 such that if t É tM , then the segments
of the Yin-Yang leaves Y (θ, t, y) with |θ+t| É Mτ−1 lnτ are graphs in (u,v) coordinates
of the form u =Uy(t,v), at least if t É tM . Moreover, the functions Uy(t,v) satisfy

(2.4) Uy(t,v)= y− y2 +v2 −2v
2τ

+O (τ−2+δ)

for all δ> 0, where τ=−4t.

Proof. We begin with the defining equations

(2.5) R(θ− t+ y)E1(θ)= e−tJ{
Re1 +R−1Z

}= e−tJ{
(R+u/R)e1 +v/R e2

}
.

Multiply with etJ on both sides:

R(θ− t+ y)E1(θ+ t)= Re1 +R−1Z = (R+u/R)e1 +v/R e2.

Here the left hand side is the polar form of the right hand side. Under our assump-
tions R2 ∼ τ and |u|¿ τ, so 1+u/R2 > 0, and hence we have

(2.6) R(θ− t+ y)2 = R2 +2u+ u2 +v2

R2 , θ+ t = arctan
v/R2

1+u/R2 .

Since α 7→R(α)2 is a monotone function, the first equation in (2.6) can be solved for
y. Using the asymptotic expansion in appendix A.3 we get

(2.7) 2(θ− t+ y)=R2 +2R−2 +O (R−4),

where R =R(θ− t+ y). Replace R2 by the expression in (2.6), to get

2(θ− t+ y)= R2 +2u+ u2 +v2 +2
R2 +O

(
v2R−4)

.

To eliminate θ we expand the second equation in (2.6),

θ+ t = v
R2 +O

(
v2R−4)

.

Hence

2y= 2(θ− t+ y)−2(θ+ t)+4t (−4t = τ)(2.8)

= R2 −τ+2u+ u2 +v2 −2v+2
R2 +O

(
v2R−4)

.

Expand R = R(t)=R(−2t) in powers of τ=−4t using (A.7):

R2 =R(−2t)2 = τ
(
1−2τ−2 +O (τ−3)

)
and substitute this in (2.8) to get

2y= 2u+ u2 +v2 −2v
τ

+O (v2R−4).

By assumption we have |v|. lnτ and R ∼p
τ, so v2R−4 =O (τ−2+δ) for any δ> 0.

If τ is sufficiently large then the above equation has a unique solution u =Uy(t,v)
with

u = y− u2 +v2 −2v
2τ

+O (τ−2+δ)= y− y2 +v2 −2v
2τ

+O (τ−2+δ). �
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2.5. General ansatz for the cap. We now construct the cap by assuming that it is
given by

(2.9) X (t, p)= e−tJ{
Re1 +εZ(t, p)

}
, with R(t)def=R(−2t), ε(t)= 1

R(t)
,

and by computing its deviation from Curve Shortening (2.1)

(V −κ)ds = 〈X t − Xss, JXs〉ds =
〈

X t −
X pp

‖X p‖2 , JX p

〉
dpdef=W dp

In the following computations it will be convenient to abbreviate

Rθ(t)=R′(−2t),

so that R′(t)=−2Rθ(t).
The space derivatives of X are

X p = e−tJεZp X pp = e−tJεZpp.

The time derivative has a few more terms:

X t = e−tJ {−2Rθe1 −Re2 +ε′Z−εJZ+εZt
}

Express W = 〈X t − X pp/‖X p‖2, JX p〉 in terms of Z, keeping in mind that ε= R−1,

(2.10) W =
〈
ε2Zt −

Zpp

‖Zp‖2 , JZp

〉
−〈e1, Zp〉

+2εRθ〈e2, Zp〉+εε′〈Z, JZp〉−ε2〈Z, Zp〉.
We look for a cap in the form of a normal perturbation of the Grim Reaper curve,
i.e. we assume

(2.11) Z(t, p)=G(p)+ f (t, p)JGp(p)

where
G(p)=−arcsin(tanh p)e1 − ln(cosh p)e2

is the arclength parametrization of the Grim Reaper.
Since G is an arclength parametrization Gp, JGp are unit tangent and normal to

the Grim Reaper. Specifically,

Gp =− 1
cosh p

e1 − tanh pe2.

The parametrization G(p) traces the Grim Reaper out from right to left. Further-
more, the curvature vector of the Grim Reaper is

Gpp(p)= κ(p)JGp, where κ(p)= 1
cosh p

.

2.6. Detailed computation of W on the cap. We have

Zt = f t JGp

Zp =Gp + fp JGp + f JGpp = (1−κ f )Gp + fp JGp

JZp =− fpGp + (1−κ f )JGp

‖Zp‖2 = (1−κ f )2 + f 2
p = 1−2κ f +κ2 f 2 + f 2

p

Zpp =−(κp f +2κ fp)Gp +
(
fpp +κ−κ2 f

)
JGp
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Substituting in (2.10), and using κ= 1/cosh p, we get〈
ε2Zt, JZp

〉= ε2(1−κ f ) f t〈 Zpp

‖Zp‖2 , JZp

〉
=

(1−κ f )( fpp +κ(1−κ f ))+κp f fp +2κ f 2
p

1−2κ f +κ2 f 2 + f 2
p

〈e1, Zp〉 =−κ(1−κ f )+ fp tanh p.

Thus after substituting and expanding we find

W = ε2(1−κ f ) f t −
κ+ fpp −2κ2 f −κ f fpp +κp f fp +κ3 f 2 +2κ f 2

p

1−2κ f +κ2 f 2 + f 2
p

+κ(1−κ f )(2.12)

− fp tanh p−ε2〈Z, Zp〉+2εRθ〈e2, Zp〉+εε′〈Z, JZp〉.
We will choose f (t, p) so as to make W integrable in space and time. To find f we
linearize the expression for W and solve the resulting first order equation for f . It
turns out that one solution is of the form f (t, p) = τ−1F(p) for a function F that is of
polynomial growth for |p|→∞. We restrict our attention to the region

(2.13) |p| É 2K lnτ, τÀ 1,

where K = 100 is a fixed, largish, constant. We will assume that f and its derivatives
are bounded by

(2.14) | f |+ | fp|+ | fpp|+τ| f t|. τ−1+δ for |p| É 2K lnτ.

Here, and in what follows, when we write estimates for remainder terms of the form
O (τ−m+δ), the estimate is implicitly meant to hold “for all δ> 0.”

The bound (2.14) will certainly hold if f (t, p)= τ−1F(p) for some function F(p) for
which F(p), F ′(p), and F ′′(p) grow polynomially as p →±∞.

We now consider the many terms in (2.12) that add up to W . To begin, we have
for |p| É 2K lnτ,

ε2(1−κ f ) f t =O (τ−2+δ),

and also
−κ f fpp +κp f fp +κ3 f 2 +2κ f 2

p

1−2κ f +κ2 f 2 + f 2
p

=O (τ−2+δ) for any δ> 0.

It follows from Z =G+ f JGp that

Z =G+O
(
τ−1+δ

)
, Zp =Gp +O

(
τ−1+δ

)
.

Hence, for |p| É 2K lnτ,

‖G(p)‖. lnτ ε2〈Z, Zp〉 = τ−1〈G,Gp〉+O
(
τ−2+δ

)
εRθ〈e2, Zp〉 = τ−1〈e2,Gp〉+O

(
τ−2+δ

)
εε′〈Z, JZp〉 =O

(
τ−2+δ

)
.

In this computation we have used the expansions ε = R(t)−1 = R(−2t)−1 = τ−1/2 +
O (τ−3/2) and Rθ = R′(−2t) = τ−1/2 +O (τ−3/2) that follow from the expansions of R(θ)
and R′(θ) in appendix A.

So far we have

W =O
(
τ−2+δ

)− κ+ fpp −2κ2 f
1−2κ f +κ2 f 2 + f 2

p
+κ(1−κ f )− fp tanh p

+τ−1〈2e2 −G,Gp〉
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We can simplify the fraction (for |p| É 2K lnτ) by using

1
1−2κ f +κ2 f 2 + f 2

p
= 1+2κ f −κ2 f 2 − f 2

p +
(−2κ f +κ2 f 2 + f 2

p )2

1−2κ f +κ2 f 2 + f 2
p

= 1+2κ f +O
(
τ−2+δ

)
which implies

κ+ fpp −2κ2 f
1−2κ f +κ2 f 2 + f 2

p
= κ+2κ2 f + fpp −2κ2 f +O

(
τ−2+δ

)= κ+ fpp +O
(
τ−2+δ

)
,

and hence

W =− fpp − tanh(p) fp −κ2 f + 1
τ
〈2e2 −G,Gp〉+O (τ−2+δ).

2.7. Computation of the correction term. We look to perturb the Grim Reaper
with a term of the form

f (t, p)= F(p)
τ

,

where F is a solution of

L Fdef= Fpp + tanh(p)Fp +κ2F = 〈2e2 −G,Gp〉.
The linear operator can be factored

L = d2

dp2 + tanh(p)
d

dp
+ 1

cosh2(p)
= d

dp
◦ 1

cosh p
◦ d

dp
◦cosh(p)

while we also have

〈2e2 −G,Gp〉 = d
dp

〈
2e2 − 1

2G,G
〉
,

all of which allows us to solve the equation for F:

(2.15) F(p)= A
cosh p

+B tanh p+
∫p

0

cosh r
cosh p

〈
2e2 − 1

2G(r),G(r)
〉

dr.

It appears that the first term is of no use, so we set A = 0. The resulting function
F(p) is an odd function of p. We use the asymptotic behavior of 〈2e2 − 1

2G,G〉 for
large p to find an expansion for the integral as p →+∞.

Consider

Idef=
∫p

0

cosh r
cosh p

〈
2e2 − 1

2G(r),G(r)
〉

dr.

The explicit expression for G implies

〈e2,G(r)〉 =− lncosh r

‖G(r)‖2 = (
lncosh r

)2 + (
arcsintanh r

)2 = (
lncosh r

)2 + π2

4
+O (e−r) (r →∞).

To compute I we substitute λ= lncosh p, µ= lncosh r, which leads to

I =−
∫λ

0
eµ−λ

{
2µ+ 1

2µ2 + π2

8 +O (e−µ)
} dµp

1− e−2µ

The integrand is singular but integrable at µ= 0. To deal with this singularity split

(1− e−2µ)−1/2 = 1+ [
(1− e−2µ)−1/2 −1

]
, with 0É (1− e−2µ)−1/2 −1.

1p
µ

e−2µ.



NONCONVEX ANCIENT SOLUTIONS 9

Replacing (1− e−2µ)−1/2 by 1 therefore introduces an extra term that is bounded by
O (e−λ). Hence we have

I =O (e−λ)−
∫λ

0
eµ−λ

{
2µ+ 1

2µ2 + π2

8 +O (e−µ)
}

dµ

=O (λ3e−λ)−
∫λ

0
eµ−λ

{
2µ+ 1

2µ2 + π2

8
}

dµ

=O (λ3e−λ)−{
2λ+ 1

2λ2 + π2

8
}+{

2+λ
}− {1}

=− 1
2λ2 −λ− π2

8 +1+O (λ3e−λ)

Thus, for large p we get

F(p)= B− 1
2 (lncosh p)2 − lncosh p− π2

8 +1+O
(|p|3e−|p|

)
(p →+∞).

Since F(p) is an odd function we also have

F(p)=−
{
B− 1

2 (lncosh p)2 − lncosh p− π2

8 +1
}
+O

(|p|3e−|p|
)

(p →−∞).

Applying this to Z =G+τ−1F(p)JGp we get for the two components u and v of Z
as p →±∞:

u(t, p)=−arcsintanh p+ 1
τ

F(p)tanh p =∓π

2
+ 1

τ
F(p)tanh p+O (e−|p|)

v(t, p)=− lncosh p− 1
τ

F(p)
cosh p

=− lncosh p+O (|p|3e−|p|)

We can again eliminate p when p is large by using

lncosh p =−v+O (p2e−|p|), (p →±∞)

which leads to

(2.16) u(t, p) = ∓π

2
− v2 −2v+π2/4+2(1+B)

2τ
+ O (|p|3e−|p|) (p → ±∞)

We now determine B by matching (2.16) with the representation of the Yin-Yang
arms in (u,v) coordinates that we found in (2.4). Setting y=∓π/2 in (2.4) we find for
the outer and inner Yin-Yang arms

(2.17) u =∓π

2
− π2/4+v2 −2v

2τ
+O (τ−2+δ)

If |p| Ê K
2 lnτ then |p|3e−|p| =O (τ−K /2+δ)= o(τ−2+δ), and therefore the two expansions

(2.16),(2.17) match if

(2.18) B =−1.

To summarize, we choose the cap to be given by

(2.19) X (t, p)= e−tJ{
R(t)e1 + 1

R(t)
Z(t, p)

}
with

(2.20) Z(t, p)=G(p)+ F(p)
τ

JGp(p)

and, from (2.15),

(2.21) F(p)= −tanh p+
∫p

0

cosh r
cosh p

〈
2e2 − 1

2G(r),G(r)
〉

dr
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2.8. Definition of the smooth interpolation of cap and arms. In the (u,v) co-
ordinates, according to (2.4), the Yin-Yang arms are given by

u =U±(t,v) for |v| É 3K lnτ

where we abbreviate U±(t,v) =U±π/2(t,v). In the same (u,v) coordinates the ends of
the cap are given by (2.16) with, B =−1, i.e.

u = h±(t,v) for 1
2 K lnτÉ−v É 2K lnτ.

We constructed the cap so that both U± and h± have the same asymptotic behavior,
namely,

(2.22) U±(t,v),h±(t,v)=±π

2
− 1

τ

{
1
2 v2 −v+π2/8

}
+O (τ−2+δ).

Choose a smooth nondecreasing function η : R → R with η(u) = 0 for u É 1
2 and

η(u)= 1 for u Ê 2, and define

k±(t,v)= η
( −v
lnτ

)
U±(t,v)+

{
1−η

( −v
lnτ

)}
h±(t,v)

=U±(t,v)+η
( −v
lnτ

)(
U±(t,v)−h±(t,v)

)
.(2.23)

The graphs of these two functions are Z-coordinate representations of curve seg-
ments that smoothly interpolate between the two ends of the cap and the two Yin-
Yang arms. The two segments are parametrized by

X±(t,v)= e−tJ{
Re1 +R−1Z±(t,v)

}
with Z±(t,v)= k±(t,v)e1 +ve2.

It follows from (2.10) that the Curve Shortening Deficit for such curves is given by
(κ−V )ds =Wvdv with

(2.24) Wv[k]=−R−2kt + kvv

1+k2
v
−kv +2

Rθ

R
+2

Rθ

R3 (vkv −k)−R−2(v+kkv).

2.9. Derivative bounds for U±, h±, k±. Careful scrutiny of the construction of
U±(t,v) and h±(t,v) shows that the remainder terms O (τ−2+δ) in (2.22) may be dif-
ferentiated. This implies that the functions U± and h± satisfy

(2.25) |kvv|+ |kv|+ |kt|. lnτ

τ
. τ−1+δ

for 1
2 lnτÉ−v É 2K lnτ, and large enough τ.

The derivatives of the gluing function η(v/ lnτ) are

ηv =−η′(−v/ lnτ)
lnτ

, ηvv = η′′(−v/ lnτ)
(lnτ)2

, ηt =−4vη′(−v/ lnτ)
(lnτ)2

,

so they are bounded by

|ηv|+ |ηvv|+ |ηt|.
(
lnτ

)−1

for 1
2 lnτÉ−v É 2K lnτ, and large enough τ.

It follows that the interpolating functions k± = ηU±+ (1−η)h± also satisfy (2.25).
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2.10. Estimating Wv[k±]. We show that

(2.26)
∣∣Wv[k±]

∣∣. τ−2+δ

holds in the region 1
2 K lnτÉ−v É 2K lnτ, for sufficiently large τ.

If k is any of the functions U±,h±,k± then we have

|k2
vkvv|

1+k2
v

É |k2
vkvv|. τ−3+δ, R−2|kkv|. τ−3+δ, and −R−2|kt|. τ−2+δ.

Furthermore |k|. 1, |vkv|. τ−1+δ, and Rθ ∼ R−1. τ−1/2 lead to
Rθ

R3 |vkv −k|. τ−2.

Hence

Wv[k]= kvv −kv +2
Rθ

R
−vR−2 +O (τ−2+δ)

holds for all six functions k ∈ {U±,h±,k±}.
To simplify our notation we drop the ± subscript for now and expand the deriva-

tives of k = ηU + (1−η)h (with U =U± and h = h±),

kv = ηUv + (1−η)hv +ηv(U −h),

kvv = ηUvv + (1−η)hvv +2ηv(U −h)v +ηvv(U −h).

Since we have matched the two cap ends with the Yin-Yang arms, it follows from
(2.22) that the difference U −h and its derivatives are bounded by

|U −h|+ |(U −h)v|+ |(U −h)vv|. τ−2+δ.

Together these inequalities give us the desired estimate for Wv[k±], namely

Wv[k]=Wv[ηU + (1−η)h]

= (
ηU + (1−η)h

)
vv −

(
ηU + (1−η)h

)
v +2

Rθ

R
−vR−2 +O (τ−2+δ)

= ηWv[U]+ (1−η)Wv[h]+O (τ−2+δ)

=O (τ−2+δ).(2.27)

Definition 2.1 (The Approximate Solution). Let C∗(t) : (−∞,−T)×R→ R2 for some
sufficiently large T > 0 be the family of smooth curves formed by the concatenation
of the Yin-Yang leaves Y (θ, t,−π

2 ), Y (θ, t,+π
2 ) cut off in a neighborhood of R(t)E1(−t)

and glued to the cap X (t, p) defined by the ansatzes (2.9) and (2.11), with f (t, p) =
τ−1F(p) and F(p) given by (2.15) with A = 0 and B = −1. The gluing between the
arms of the cap and the two Yin-Yang segments is given by the interpolation k±(t,v)
in (2.23), which is done in a neighborhood of R(t)E1(−t).

Lemma 2.1. The error

E (T)=
∫−T

−∞

∫
C∗(t)

|V −κ| ds dt <∞

is finite on the approximate solution C∗(t) : (−∞,−T)×R → R2 given by Definition
2.1.

Proof. It suffices to show that the Curve Shortening Deficit |V−κ|ds is L1-integrable
in space and time on three regions: the cap, the transition region discussed in §2.8,
and the unmodified Yin-Yang curve. Since the Yin-Yang curve is a solution to Curve
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Shortening Flow, the deficit |V −κ|ds = 0, which leaves only cap and the transition
region as contributing to the error.

The cap, given by the expressions (2.19), (2.20), and (2.21), is defined on the region
|p| ≤ 2K lnτ, where p is the arc-length coordinate p for the grim reaper G(p). In §2.6-
§2.7, the Curve Shortening Deficit |V −κ|ds is written in terms of p as Wdp, and it
is shown to be W =O (τ−2+δ) for δ> 0. Integrating over the cap, we have∫

cap
|V −κ|ds ≤

∫2K lnτ

−2K lnτ
Wdp ≤ 4K lnτO (τ−2+δ)=O (τ−2+δ).

This quantity is integrable in time, and thus the contribution to the error E on the
cap is bounded.

In §2.8, the Curve Shortening Deficit on the transition region is written in terms
of the parameter v as Wv[k]dv on the interval 1

2 ≤ −v ≤ 2K lnτ. Furthermore, in
(2.27) it is shown that Wv[k] = O (τ−2+δ). Integrating over both curves in the transi-
tion region, we have∫

trns. reg.
|V −κ|ds = 2

∫2K lnτ

1
2 K lnτ

Wv[k]dv ≤ 3K lnτO (τ−2+δ)=O (τ−2+δ).

As before, this is integrable in time and thus the contribution to the error is bounded.
Therefore, the sum of the integrals of the deficit over each region is O (τ−2+δ). This
completes the proof of the lemma. �

3. AREA DECREASING PROPERTY OF SPACE CURVE SHORTENING

In 1991 Altschuler and Grayson [2] observed that for two solutions of space curve
shortening the area of the minimal surface spanning them is non increasing. Here
we elaborate on this and prove a similar result without using the existence of the
minimal surface.

3.1. Moving space curves. For an immersed curve X : R→ Rn one defines the arc
length one-form ds and the arc length derivative ∂s of any quantity f : R→R by

ds = ‖X p‖dp, and
∂ f
∂s

= 1
‖X p‖

∂ f
∂p

.

The unit tangent and curvature of the curve are Xs = X p
‖X p‖ and Xss.

A moving family of space curves is a map X : (t0, t1)×R→ Rn. The family evolves
by Curve Shortening if it satisfies X⊥

t = Xss, i.e., if for some smooth function λ(t, p)
one has

(3.1) X t = Xss +λXs = 1
‖X p‖

∂

∂p

( X p

‖X p‖
)
+λ

X p

‖X p‖
Since Xs ⊥ Xss, one can always find λ from λ= 〈X t, Xs〉.
3.2. Evolution of arc length and the commutator [∂t,∂s]. The following are
commonly used relations. We record them here for completeness, and also because
we allow the velocity X t of the parametrizations to have a nonvanishing tangential
component. Assuming that X t = Xss +λXs one has

(3.2) ∂t‖X p‖ = (λs −κ2)‖X p‖,
∂

∂t
ds = (λs −κ2)ds = dλ−κ2ds,

and

(3.3) [∂t,∂s]= (−λs +κ2)∂s.
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Proof. We have

∂

∂t
‖X p‖ =

〈 X p

‖X p‖
, X tp

〉
= 〈Xs, X tp〉 = 〈Xs, X ts〉‖X p‖,

and hence
∂

∂t
ds = ∂

∂t
(‖X p‖dp

)= 〈Xs, X tp〉dp = 〈
Xs, X ts

〉
ds.

The evolution equation X t = Xss +λXs then implies〈
Xs, X ts

〉= 〈Xs, X t〉s −
〈
Xss, X t

〉=λs −
〈
Xss, Xss +λXs

〉=λs −‖Xss‖2 =λs −κ2,

which directly implies (3.2). Using (3.2) we get

[∂t,∂s]=
[
∂t,‖X p‖−1∂p

]=−∂t‖X p‖
‖X p‖2 ∂p =−(λs −κ2)∂s. �

3.3. Dependence on a parameter. Let [ε0,ε1] ⊂ R be some parameter interval,
and let X : [ε0,ε1]× (t0, t1)×R→ Rn be a family of moving curves that depends on a
parameter ε ∈ [ε0,ε1]. We compute the evolution of the first variation

Xε = ∂εX (ε, t, p).

Throughout the computation we will assume that the parametrization X is such that

(3.4) Xε ⊥ X p(ε, t, p) for all (ε, t, p)

For any given parametrization X̃ one can find a reparametrization ϕ(ε, t, p) so that
X (ε, t, p)= X̃ (ε, t,ϕ(ε, t, p)) satisfies (3.4).

If X : [ε0,ε1]× [0,1]→Rn is injective with Xε ⊥ X p, then the double integral∫ε1

ε0

∫1

p=0
‖Xε‖ds dε (where ds = ‖X p‖dp)

is the area (2-dim Hausdorff measure) of the image X ([ε0,ε1]× [0,1]). If X merely
satisfies Xε ⊥ X p, without necessarily being injective, then the area formula implies
that the double integral is bounded from below, by

(3.5) `(X )def=
∫ε1

ε0

∫1

p=0
‖Xε‖ds dεÊH 2(X ([ε0,ε1]× [0,1]))

We will call the integral `(X ) the length of the homotopy X , and we will show that
Curve Shortening decreases the length of homotopies.

The following improvement of the inequality ‖Xε‖s É ‖Xεs‖ (which follows from
the Cauchy-Schwarz inequality) will be useful.

3.4. Lemma. Assuming (3.4) we have(‖Xε‖s
)2 É ‖Xεs‖2 −〈Xss, Xε〉2.

Proof. Split Xεs into tangential and orthogonal components:

Xεs = P +〈Xεs, Xs〉Xs

Since Xε ⊥ Xs we have 〈Xεs, Xs〉 = ∂s〈Xε, Xs〉−〈Xε, Xss〉 =−〈Xε, Xss〉. Therefore

Xεs = P −〈Xε, Xss〉Xs,

and thus
‖Xεs‖2 = ‖P‖2 +〈Xε, Xss〉2.
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On the other hand

‖Xε‖s =
〈 Xε

‖Xε‖
, Xεs

〉
=

〈 Xε

‖Xε‖
,P

〉
É ‖P‖,

where we have again used that Xs ⊥ Xε. Combining these observations we arrive at(‖Xε‖s
)2 −‖Xεs‖2 É ‖P‖2 −‖Xεs‖2 =−〈Xε, Xss〉2,

as claimed. �

3.5. The commutator [∂ε,∂s]. Assuming (3.4) one has

[∂ε,∂s]= 〈Xss, Xε〉∂s and [∂ε,∂2
s ]= 2〈Xss, Xε〉∂2

s +〈Xss, Xε〉s∂s

Proof. The computation follows the same pattern as the derivation of (3.3). Here we
have no equation for Xε, but we do know that Xε ⊥ Xs. Thus

∂ε‖X p‖ =
〈 X p

‖X p‖
, X pε

〉
= 〈Xs, Xεp〉 = 〈Xs, Xεs〉‖X p‖ =−〈Xss, Xε〉‖X p‖.

Apply this to ∂s = ‖X p‖−1∂p to get the commutator [∂ε,∂s]. The other commutator
follows from expanding [∂ε,∂2

s ]= [∂ε,∂s]∂s +∂s[∂ε,∂s]. �

3.6. Lemma. The length of the first variation Xε satisfies the differential inequality

∂t‖Xε‖−λ∂s‖Xε‖ É ∂2
s‖Xε‖+κ2‖Xε‖.

Proof. Differentiating the evolution equation (3.1) for X we get

∂t Xε = ∂εX t = ∂ε (Xss +λXs)
= Xεss +2〈Xss, Xε〉Xss +〈Xss, Xε〉s Xs +λεXs +λ∂εXs.

Hence

∂t Xε−λ∂s Xε = Xεss +2〈Xss, Xε〉Xss +〈Xss, Xε〉s Xs +λεXs +λ[∂ε,∂s]X
= Xεss +2〈Xss, Xε〉Xss + {〈Xss, Xε〉s +λε+λ〈Xss, Xε〉} Xs

We next compute the evolution of ‖Xε‖2, keeping in mind that Xε ⊥ Xs:

(∂t −λ∂s)‖Xε‖2 = 2〈Xε,∂t Xε−λ∂s Xε〉
= 2〈Xε, Xεss〉+4〈Xss, Xε〉2

= (‖Xε‖2)
ss −2‖Xεs‖2 +4〈Xss, Xε〉2

= 2‖Xε‖‖Xε‖ss +2
(‖Xε‖s

)2 −2‖Xεs‖2 +4〈Xss, Xε〉2.

At this point we use Lemma 3.4, to get

(∂t −λ∂s)‖Xε‖2 É 2‖Xε‖‖Xε‖ss +2〈Xss, Xε〉2.

Since (∂t −λ∂s)‖Xε‖2 = 2‖Xε‖(∂t −λ∂s)‖Xε‖, we have

∂t‖Xε‖−λ∂s‖Xε‖ É ‖Xε‖ss +
〈

Xss,
Xε

‖Xε‖
〉2‖Xε‖ É ‖Xε‖ss +κ2‖Xε‖. �
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3.7. Contractive property of Curve Shortening. If X0, X1 : [t0, t1]× [0,1] → Rn

are two solutions of Curve Shortening (3.1), then a homotopy {X ε : 0 É ε É 1} of
solutions to Curve Shortening connecting them is, by definition, a map X : [0,1]×
[t0, t1]× [0,1]→Rn such that (t, p) 7→ X (ε, t, p) is a solution of Curve Shortening with
X ε(t, p)= X (ε, t, p) for ε ∈ {0,1}.

Given any homotopy X ε between solutions X0, X1 of Curve Shortening, one can
always find a reparametrization X̃ ε(t, p)= X ε(t,ϕ(ε, t, p)) for which ∂ε X̃ ε ⊥ ∂s X̃ ε holds
pointwise. We will call such a homotopy a normal homotopy.

Our main observation in this section is the following: if X ε is a normal homotopy
between solutions X0, X1 of Curve Shortening, then one has for each ε ∈ [0,1] and
t ∈ (t0, t1)

(3.6)
d
dt

∫1

p=0
‖∂εX (ε, t, p)‖ds É 0

and

(3.7)
∫1

ε=0

∫1

p=0
‖∂εX (ε, t1, p)‖ds dεÉ

∫1

ε=0

∫1

p=0
‖∂εX (ε, t0, p)‖ds dε

Proof. We use (3.2) and Lemma 3.6 to differentiate under the integral:

d
dt

∫1

p=0
‖Xε‖ds É

∫{‖Xε‖ss +κ2‖Xε‖+λ‖Xε‖s + (λs −κ2)‖Xε‖
}

ds

=
∫{‖Xε‖s +λ‖Xε‖

}
s ds = 0.

This implies (3.6). Integration in ε and in time then leads to (3.7). �

3.8. Deviation from an approximate solution. We now consider the case of two
moving curves X0, X1 : [t0, t1]× [0,1] → Rn with the same initial value, i.e. with
X0(t0, p) = X1(t0, p) for all p ∈ [0,1]. We assume that X1 is a solution of Curve
Shortening but allow X0 to be a general moving curve. We measure its deviation
from Curve Shortening in terms of

(3.8) ∆
def=

∫t1

t0

∫1

p=0

∥∥(∂t X0)⊥−∂2
s X0∥∥ds dt.

In the case of plane curves X : [t0, t1]× [0,1] → R2, we have ∂t(X0)⊥ = V JX0
s , where

V is the normal velocity of the curve X0. Therefore the integrand in (3.8) is∥∥(∂t X0)⊥−∂2
s X0∥∥ds = |V −κ|ds.

The quantity ∆ therefore coincides with the “error” E defined in (1.4).
Assume that for each ε ∈ [t0, t1] there is a smooth solution (t, p) 7→ X (ε, t, p) of

Curve Shortening that is defined for t ∈ [ε, t1], and that has initial value X (ε,ε, p) =
X0(ε, p). After reparametrizing we may assume that Xε ⊥ X p holds point-wise. Then
the final values of these solutions, i.e. the curves p 7→ X (ε, t1, p) form a normal homo-
topy from X0(t1, ·) to X1(t1, ·). We will now show that

(3.9)
∫t1

ε=t0

∫1

p=0
‖∂εX (ε, t1, p)‖ds dεÉ∆.

Proof. Our argument is a nonlinear version of the Variation of Constants Formula,
or of Duhamel’s principle.
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For ε ∈ [t0, t1] we consider

E(ε)def=
∫ε

ε̄=t0

∫1

0
‖∂εX (ε̄, t1, p)‖ds dε̄.

Then

E′(ε)=
∫1

0
‖∂εX (ε, t1, p)‖ds

The contraction property (3.6) implies∫1

0
‖∂εX (ε, t1, p)‖ds É

∫1

0
‖∂εX (ε,ε, p)‖ds.

We compute Xε(ε,ε, p) by differentiating the relation X (ε,ε, p)= X0(ε, p) with respect
to ε: (

∂t X0)
(ε, p)= ∂X0(ε, p)

∂ε
= ∂X (ε,ε, p)

∂ε
= Xε(ε,ε, p)+ X t(ε,ε, p).

Since (t, p) 7→ X (ε, t, p) evolves by Curve Shortening, we have X t(ε,ε, p)= Xss(ε,ε, p)+
λXs. By definition of X we have X (ε,ε, p)= X0(ε, p), so Xss(ε,ε, p)= X0

ss(ε, p).
We have parameterized the homotopy X (ε, t, p) so that Xε ⊥ X p, and therefore

∂εX (ε,ε, p)= (
∂t X0(ε, p)

)⊥− X0
ss(ε, p).

Hence

E′(ε)É
∫1

0
‖∂εX (ε,ε, p)‖ds =

∫1

0

∥∥∥(
∂t X0(ε, p)

)⊥− X0
ss(ε, p)

∥∥∥ ds

Integrate over ε ∈ [t0, t1] to recover (3.9). �

3.9. Application to plane Curve Shortening. Let X0, X1 : [t0, t1]× [0,1] → R2 be
two moving curves that are embedded at all time. Assume X1 evolves by Curve
Shortening, and assume that initially X1 lies in the closed region enclosed by X0,
i.e. for all p ∈ [0,1] the point X1(t0, p) lies in the region enclosed by the simple curve
p 7→ X0(t0, p).

Assume furthermore that at each time t∗ ∈ [t0, t1] the area enclosed by p 7→
X0(t∗, p) is at least 2π(t1 − t∗). By the Gage-Hamilton-Grayson theorem this guar-
antees that the solution to Curve Shortening starting at X0(t∗, ·) exists until time
t1.

We now consider two homotopies A and B of evolving curves. The first is the
homotopy defined in the proof in the previous section 3.8, i.e. for each ε ∈ [t0, t1]
we consider the solution (t, p) 7→ X (ε, t, p) to Curve Shortening defined for t ∈ [ε, t1]
and starting from X (ε,ε, p) = X0(ε, p). Our first homotopy is then the family of final
curves A(ε, p)= X (ε, t1, p) of these solutions. In section 3.8 we showed that the length
of the homotopy A is bounded from above by

`(A)=
∫t1

t0

∫1

0
‖Aε(ε, p)‖ds dεÉ

∫t1

t0

∫1

0

∥∥(∂t X0)⊥− X0
ss

∥∥ ds dt.

The second homotopy is constructed by evolving a homotopy between the two ini-
tial curves p 7→ X j(t0, p) ( j = 0,1). Since X1 initially lies inside X0 we can choose
the homotopy (ε, p) 7→ X̄ (ε, t0, p) so that its length is exactly the area of the region be-
tween the two initial curves, and so that the curve p 7→ X̄ (ε, t0, p) lies inside the curve
p 7→ X̄ (ε′, t0, p) if 0É εÉ ε′ É 1. Given this initial homotopy let (t, p) 7→ X̄ (ε, t, p) be the
solution to Curve Shortening starting at X̄ (ε, t0, p). Since all initial curves enclose
X1(t0, p) the corresponding solutions exist for t ∈ [t0, t1], and possibly longer. Our
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second homotopy is now B(ε, p) = X̄ (ε, t1, p). As explained in section 3.7, the length
of the homotopy B is bounded by the length of the initial homotopy (ε, p) 7→ X̄ (ε, t0, p).
We had chosen this initial homotopy so that its length is exactly the area between
the two curves p 7→ X0(t0, p) and p 7→ X1(t0, p).

By concatenating the two homotopies A and B we obtain a combined homotopy
A#B between p 7→ X0(t1, p) and p 7→ X1(t1, p). The length of this homotopy is
bounded by

`(A#B)= `(A)+`(B)ÉArea between X0(t0, ·) and X1(t0, ·)

+
∫t1

t0

∫1

0

∥∥(∂t X0)⊥− X0
ss

∥∥ ds dt

If Ω0(t) and Ω1(t) are the regions enclosed by X0(t, ·) and X1(t, ·), then the homotopy
A#B between the two curves at time t1 must pass through each point in the interior
of the symmetric difference Ω0(t1)4Ω1(t1), as one sees by considering the winding
numbers of the curves in the homotopy around any point in Ω0(t1)4Ω1(t1). It follows
that the area of Ω0(t1)4Ω1(t1) is a lower bound for the length of the homotopy A#B,
and thus we conclude that

(3.10) Area of Ω0(t1)4Ω1(t1)É

Area between X0(t0, ·) and X1(t0, ·)+
∫t1

t0

∫1

0

∥∥(∂t X0)⊥− X0
ss

∥∥ ds dt.

4. CONVERGENCE

In this section, we obtain uniform curvature bounds on a sequence of “really
old solutions” {C j(t)} and extract a subsequence of solutions that converges locally
smoothly to an ancient solution of curve shortening flow (CSF).

Theorem 4.1. There exists a T such that for any T∗ > T, the curvatures |κ j| of
the “really old solutions” {C j(t)} j are bounded independently of j on the interval
[−T∗−1/4,−T∗].

The strategy to obtain these bounds is as follows: a) decompose an element C j(t)
of this sequence into the union of several graph representations, b) use the L1 bound
on the error to obtain L∞ estimates for these graphs, and c) apply the standard
estimates for divergence-form quasilinear parabolic equations to establish a uniform
curvature bound.

Let T∗ > 0 be a large positive number, which may be increased as necessary
throughout this section. The obvious candidates for the sequence of “really old solu-
tions” are the CSF solutions defined on [− j,−T∗] starting at C∗(− j) at time − j — call
these Γ j(t). At any time t ∈ [− j,−T∗], the unsigned area enclosed by the curves C∗(t)
and Γ j(t) is bounded by the quantity∫t

− j

∫
C∗(τ)

|V −κ|ds dτ.

By Lemma 2.1, this quantity is in L1 and given ε> 0, we can find T∗ > 0 such that

E (T∗)=
∫−T∗

−∞

∫
C∗(τ)

|V −κ|ds dτ< ε.
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By (3.10), this estimate gives a uniform bound on the unsigned area between Γ j(t)
and C∗(t) for any sufficiently large j and t <−T∗, whenever defined.

For simplicity of calculation, we consider an alternative sequence of “really old so-
lutions” {C j(t)}, called “square-profile approximations”, which do not satisfy the ini-
tial condition C j(− j) = C∗(− j). They are constructed as follows: Let [ϑ−∗ (t),ϑ+∗ (t)] be
the interval of polar angles that contain the approximate solution at a given time t.
Let r =R(θ) be the central branch of the Yin-Yang foliation, so the Yin-Yang solution
is given by the two branches r =R(θ+π/2− t) and r =R(θ−π/2− t). We define C j(t)
to be the solution of curve shortening which at time t =− j is given by

• Two arms of the Yin-Yang soliton r = R(θ−π/2− t) = R(θ−π/2+ j), and r =
R(θ+π/2− t)=R(θ+π/2+ j) truncated at θ =ϑ+∗ (− j);

• a straight line segment connecting the two arms of the Yin-Yang soliton. This
segment is part of the ray θ =ϑ+∗ (− j).

Notice that at each time t along the flow, the square-profile approximations C j(t)
enclose the curves Γ j(t), the CSF solutions starting from C∗(− j), and that the area
bounded by these two solutions stays constant along the flow, for all t ∈ [− j,−T∗].
The area A j between C j(− j) and C∗(− j) is small and goes to zero as j →∞. Thus,
the area between the old solution C j(t) with the “square initial data” and the ap-
proximate solution C∗(t) is bounded by

Area(C j(t),C∗(t))É A j +
∫t

− j

∫
C∗(τ)

|V −κ|ds dτ.

In order to improve these area bounds to L∞ bounds, we will use the geome-
try of the C j(t) and several properties of CSF. In particular, we often appeal to the
maximum principle and the following Sturmian property for intersections of curve
shortening flows.

Theorem 4.2. Consider two CSF solutions γ0,γ1 : [T1,T2)× [0,1]→R2, for which

∂γ0(t)∩γ1(t)= ∂γ1(t)∩γ0(t)=∅

holds for any t ∈ [T1,T2). Then the number of intersections of γ0(t) and γ1(t) is a
finite and non-increasing function of t ∈ (T1,T2). It decreases whenever γ0 and γ1
have a tangency.

There is a useful related theorem for inflections points.

Theorem 4.3. Let γ : [T1,T2)× S1 → R2 be a solution of CSF. Then, for any t ∈
(T1,T2), γ(t) has at most a finite number of inflection points, and this number does
not increase with time. In fact, it drops whenever the curvature κ has a multiple
zero.

While the curves C j(t) are not convex, we do have a one sided curvature bound.

Theorem 4.4. If κ is the curvature of a counterclockwise oriented parametrization
X of the curves C j(t), then

κ−〈X , Xs〉 > 0.

Proof. Assuming that the parametrization X is normal (X t ⊥ Xs), the curvature
evolves by

κt = κss +κ3.
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A short computation using X t = Xss and ‖Xs‖ = 1 shows that(
∂t −∂2

s
)‖X‖2 = 2〈X t, X 〉−2〈Xss, X 〉−2‖Xs‖2 =−2.

Differentiating with respect to arclength, using the commutator [∂t,∂s] = κ2∂s, and
also ∂s‖X‖2 = 2〈X , Xs〉 we get

∂t〈X , Xs〉 = ∂2
s〈X , Xs〉+κ2〈X , Xs〉.

Hence κ and 〈X , Xs〉 satisfy the same linear equation. Therefore σ= κ−〈X , Xs〉 also
satisfies

σt =σss +κ2σ.
The quantity σ vanishes on the rotating soliton (see the appendix).

The square-profile initial curves C j(− j) consist of two arcs. One is the Yin-Yang
soliton, so on this arc we have σ = 0. The other arc is the radial line segment on
the ray θ = ϑ+∗ (− j). On this segment we clearly have κ = 0. Since we orient C j
counterclockwise, X and Xs are parallel with opposite directions; i.e. −〈X , Xs〉 > 0.
Hence σ > 0 on the line segment. Finally, the initial curve C j(− j) is not smooth,
having two corners where the line segment and Yin-Yang arms meet. If one rounds
these corners off by replacing them with small circle arcs with radius ρ ¿ 1, then
the curvature of these arcs will be κ = ρ−1 À 1, so that σ > 0 on the circular arcs,
provided ρ is sufficiently small. The resulting curve has σ= 0 on the Yin-Yang arms,
and σ > 0 on the line segment, as well as the small circular arcs. The solution to
CS starting from the modified initial curve therefore has σ > 0. Letting ρ ↘ 0 we
conclude that σ> 0 also holds on C j(t). �

With Theorem 4.2, we can decompose the solutions C j(t) into exactly two graphs
over the polar angle parameter.

Lemma 4.5. For any t ∈ (− j,−T∗], there is an interval [ϑ−
j (t),ϑ+

j (t)] such that the
curve C j(t) can be written as the union of two graphs of polar functions, R−

j (θ, t) and
R+

j (θ, t) defined for θ ∈ [ϑ−
j (t),ϑ+

j (t)]. The functions t 7→ϑ−
j (t) and t 7→ϑ+

j (t) are strictly
increasing and decreasing, respectively.

Proof. By the maximum principle, the “really old solutions” C j(t) will be contained
inside of the Yin-Yang curve. The Sturmian property, Theorem 4.2, tells us that the
number of intersections of C j(t) and the rays θ = θ0 ∈ R is non-increasing, and only
decreases when there is a tangency. This implies that the desired graph decomposi-
tion exists. These two graphs are bounded above and below by the branches of the
Yin-Yang soliton on their polar interval of definition, [ϑ−

j (t),ϑ+
j (t)]. �

Similarly, we can always write each C j(t) as a union of two graphs taking values
in θ, the polar angle. Recall that the images of R(θ− t) for t ∈ [−π,π) foliate the
punctured plane R2 \{0}. See Figure 2.

Lemma 4.6. For all t, C j(t) can be decomposed into two graphs of two functions
which take leaves of the foliation as inputs and have their range in the set of polar
angles. More specifically, for T ¿ 0 there exist yj,1, yj,2 : (−∞,T] → (− π

2 , π
2
)

and
functions

Θ±
j : {(t, y) : t < T, yj,1(t)< y< yj,2(t)}→R

such that the very old solution C j(t) is the union of the two curves

Y (Θ±
j (t, y), t, y)=R

(
Θ±

j (t, y)− t+ y
)
E1(θ),
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where Y is given by (2.3).

Proof. The initial square-profile curve C j(− j) is tangent to the graphs of R(θ±π/2+ j)
and intersects the graphs of R(θ+ y+ j), y ∈ (−π/2,π/2) twice: once at the origin and
once on the line segment connecting the two branches of C j(− j). Then, by the Stur-
mian theorem, for all subsequent t > − j, C j(t) can be split into two graphs corre-
sponding to the “upper” and “lower” intersection points with the leaves of the Yin-
Yang foliation. At each time t, these graphs split at two unique leaves of the fo-
liation, marked by values yj,1(t), yj,2(t) ∈ (−π/2,π/2), so that C j(t) is tangent to the
curves {r = R(θ+ yj,1(t)− t)} and {r = R(θ+ yj,2(t)− t)}. We know that these two
points are unique since a greater number of tangencies would introduce more than
two intersection points for other curves {r =R(θ+ y− t)}. We call the coordinate sys-
tem (y,θ) ∈ (−π,π)×(0,∞) the “Yin-Yang polar coordinate system” and denote the two
functions giving the upper and lower graphs comprising C j(t) by Θ−

j (y, t) and Θ+
j (y, t)

respectively, defined on the interval (yj,1(t), yj,2(t))⊂ (−π/2,π/2). �

Lemma 4.7. There exist T < 0 and C > 0 such that ϑ+
j (t)Éϑ+∗ (t)+C for all j ∈N and

all t ∈ [− j,−T].

Proof. Assume that ε<π/16.
For any t ∈ [− j,T] at which ϑ+

j (t) > ϑ+∗ (t) we consider the area A j(t) of the “really
old solution” C j(t) inside the polar interval [ϑ+∗ (t),ϑ+

j (t)], where ϑ+∗ (t) and ϑ+
j (t) are

the endpoints of the intervals of definition of the approximate solution C∗(t) and
C j(t) respectively. This area measures the “tail” of the C j(t) that may form between
the tip of C j(t) and the tip of C∗(t). Note that the area A j(t) is bounded above by the
error

A j(t)É A j +E (T∗)= A j +
∫−T∗

−∞

∫
C∗(τ)

|V −κ|ds dτ< ε

To calculate this area, first consider the function Θt, j(y) := max{Θ+
j (y, t)−ϑ+∗ (t),0}

over the interval (yj,1(t), yj,2(t)). Then in the (θ, y) “Yin-Yang coordinates,” we can
integrate to find the area:

A j(t)=
∫yj,2(t)

yj,1(t)

∫Θt, j(y)+ϑ+∗

ϑ+∗
R(θ+ y− t)det(DT )dθd y,

where T : (0,∞)× (−π/2,π/2)→ (0,∞)× (0,∞) is the coordinate transformation given
by T (θ, y)= (θ,R(θ+ y− t)). Clearly, detT =R′(θ+ y− t), so

A j(t)=
∫yj,2(t)

yj,1(t)

∫Θt, j(y)+ϑ+∗

ϑ+∗
R(θ+ y− t)R′(θ+ y− t)dθd y≈

∫yj,2(t)

yj,1(t)
Θt, j(y)d y,

by the asymptotic expansions in (1.1).
We argue that given a small δ > 0, it is possible to pick an angle θ0 independent

of j such that the measure |{y :Θt, j(y)> θ0}| < δ. Indeed, it follows from

θ0
∣∣{y :Θt, j(y)> θ0}

∣∣É∫yj,2(t)

yj,1(t)
Θt, j(y)d y< ε

that if θ0 < ε
δ

, then |{y :Θt, j(y)> θ0}| < δ holds for all t, j.

The two points intersection of C j(t) with the ray θ =ϑ+∗ (t)+θ0 are

P±(t)= R±
j (ϑ∗(t)+θ0, t).
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Let γ(t) be the arc on C j(t) on which θ ≥ ϑ+∗ (t)+θ0, and whose endpoints therefore
are P±(t). Consider the area A(t) of the region enclosed by γ(t) and the line segment
connecting P±(t). This area changes because the arc γ(t) moves, and also because
the line segment P−P+ moves. The rate of change is therefore the sum of −∫

γ(t) κds
and the rate at which the segment P−P+ sweeps out area.

Figure 3. Left: The arc γ(t). Right: the angles β±

If φ : γ(t) → R is the tangent angle along the arc (i.e. Xs = E1(φ)), then the curva-
ture integral is ∫

γ(t)
κds =φP−(t) −φP+(t).

The line segment P+P− moves with angular velocity d
dtϑ

+∗ (t) and therefore adds area
to the region enclosed by γ(t) at the rate

1
2

{(
R+

j
)2 − (

R−
j
)2

} dϑ+∗ (t)
dt

in which R±
j are evaluated at θ =ϑ+∗ (t)+θ0. Our construction of the cap implies that

ϑ+∗ (t)=−t+ o(1), and that this relation may be differentiated: d
dtϑ

+∗ (t)=−1+ o(t).
The radii R±

j (ϑ+∗ (t)+θ0, t) are given in terms of their Yin-Yang coordinates y±(t)
via

R±
j (ϑ+

∗ (t)+θ0, t)=R(ϑ+
∗ (t)+θ0 − t+ y±).

It follows that at ϑ+∗ (t)+θ0

1
2

{(
R+

j
)2 − (

R−
j
)2

}
= 1

2
{
R(ϑ+

∗ (t)+θ0 − t+ y+)2 −R(ϑ+
∗ (t)+θ0 − t+ y−)2

}
=RR′ (y+− y−)

in which R,R′ are evaluated at ϑ∗(t)+θ0+ ỹ for some ỹ ∈ [y−, y+] that is provided by
the mean value theorem. The asymptotics of R imply that RR′ = 1+ o(1) < 2. Our
choice of θ0 was such that 0< y+− y− É δ. Hence∣∣∣∣1

2

{(
R+

j
)2 − (

R−
j
)2

} dϑ+∗ (t)
dt

∣∣∣∣É 2δ.

In total, the rate at which the area A(t) enclosed by the arc γ(t) grows is bounded by
dA
dt

É−(
φP−(t) −φP+(t)

)+2δ.
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We estimate the change in tangent angle across the arc γ(t). Let β+ be the coun-
terclockwise angle from the ray θ = ϑ+∗ (t)+ θ0 to the tangent Xs to γ at P+, and
similarly, let β− be the counterclockwise angle from the same ray to the tangent to γ

at P− (see Figure 3). We have 0<β+ <π<β− and φP− −φP+ =β−−β+.
Recall that κ−〈X , Xs〉 > 0 along C j(t). Since κ = φs and 〈X , Xs〉 = 1

2
d
ds r2, where

r = ‖X‖, it follows that φ− 1
2 r2 increases as one traverses γ from P+ to P−. Thus, at

any point with polar coordinates (θ, r) on γ one has

φ>φP+ + 1
2

(r2 − r2
P+ )

The lowest value r has on γ occurs at the point P−, and we have just shown that
r2

P+ − r2
P− É 2δ. Hence φ>φP+ −2δ on the entire arc γ.

It follows that if β+ > 3
4π, then the angle between the tangent to γ and the ray

OP+ (O is the origin) will always be at least 3
4π−2δ, i.e. more than 5

8π, provided we
choose δ< π

16 .
Consider the line ` through P+ whose angle with OP+ is 5

8π. The euclidean dis-
tance between P− and P+ is rP+ − rP− É 2δ/(rP− + rP+ ) É Cδ|t|−1/2, since rP+ > rP− &
|t|1/2.

At this scale the Yin-Yang leaves will be almost straight lines near P±, so that
the line ` then intersects the Yin-Yang leaf with y = y−(t) at a point Q−(t), also at a
distance d(P−,Q−). δ|t|−1/2.

ϑ+
j (t)−ϑ+

∗ (t)−θ0 ∼ d(P−,Q−)
rP−

. δ|t|−1 ¿ θ0.

Hence the largest polar angle on γ will be at most

ϑ+
j (t)Éϑ+

∗ (t)+θ0 +δ|t|−1 Éϑ+
∗ (t)+2θ0.

Thus we find that if |t| is sufficiently large, then either ϑ j(t)< ϑ∗(t), or else β+ < 5
8π.

In the latter case the area enclosed by γ(t) decreases faster than

dA
dt

É−β−+β++2δÉ−π+ 5
8
π+2δ=−3

8
π+2δ<−π

4
,

again assuming that δ<π/16.
We now finally prove that ϑ+

j (t)−ϑ+∗ (t) is uniformly bounded for all t ∈ [− j,T]
and j.

At t =− j we have ϑ+
j (t)<ϑ+∗ (t)+θ0, by definition of the initial curve C j(− j). Hence,

if at any time t1 < T one has ϑ+
j (t) > ϑ+∗ (t)+ 2θ0, then there is a largest interval

(t2, t3) 3 t1 on which ϑ+
j (t)>ϑ+∗ (t)+2θ0. In particular, at t = t2 one has ϑ+

j (t)=ϑ+∗ (t)+
2θ0.

Define the arc γ(t) as above. Its enclosed area is at most ε, where we may assume
that ε< π/4. During the time interval (t2, t3) the area decreases at a rate of at least
π/4, and therefore the length t3− t2 of the time interval cannot exceed ε/(π/4)< 1. At
time t = t2 we had ϑ+

j (t)= ϑ+∗ (t)+2θ0. Since ϑ+
j (t),ϑ+∗ (t) are nonincreasing functions,
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we have throughout (t2, t3)

ϑ+
j (t)− (ϑ+

∗ (t)+2θ0)Éϑ+
j (t2)− (ϑ+

∗ (t)+2θ0)

=ϑ+
∗ (t2)+2θ0 − (ϑ+

∗ (t)+2θ0)

Éϑ+
∗ (t2)+2θ0 − (ϑ+

∗ (t3)+2θ0)

Éϑ+
∗ (t2)−ϑ+

∗ (t3).

Since d
dtϑ

+∗ (t)= 1+ o(1) we find that

ϑ+
j (t)− (ϑ+

∗ (t)+2θ0)É 1+ o(1)< 2

for all t ∈ (t2, t3). �

To summarize, we can now decompose every very-old solution C j(t), for t ∈ [−T∗−
1/2,−T∗] into four graphs in two different coordinate systems, R±

j (θ, t) in polar coor-
dinates, and Θ±

j (y, t) in Yin-Yang polar coordinates.

Lemma 4.8 (Curvature bounds). There exist T < 0 such that for any T ′ < T the
lengths L j(t) and curvatures of C j(t) are uniformly bounded for all j and all t ∈
[T ′,T −2].

Proof. The length bounds follow from the fact that in (y,θ) coordinates each C j(t)
is contained in a uniformly bounded rectangle |y| É π/2, −t É θ É ϑ+∗ (t)+2θ0 +2, and
the fact that C j(t) decomposes into four segments on each of which both y and θ are
monotone.

Consider a given value T ′ < T. Assume that our Lemma fails, and that along some
subsequence j the maximal curvature of C j(t) with t ∈ [T ′,T−2] becomes unbounded.

For t ∈ [T ′−2,T] the lengths L j(t) of C j(t) are uniformly bounded by some L > 0.
It follows that ∫T ′−1

T ′−2

∫
C j(t)

κ2 ds dt = [−L j(t)
]T ′−1

T ′−2 < L.

Therefore, there is a sequence t j ∈ [T ′−2,T ′−1] such that∫
C j(t j)

κ2 ds < L.

By a Sobolev embedding theorem this implies that the curves C j(t j) are uniformly
C1,1/2, i.e. they are continuously differentiable, and their tangent angles φ j are uni-
formly Hölder continuous — in fact, for any two points at arclength coordinates s1, s2
in C j(t j) one has

|φ(s2)−φ(s1)| =
∣∣∣∣∫s2

s1

κds
∣∣∣∣Ép

s2 − s1

√∫s2

s1

κ2ds É
p

L
p

s2 − s1.

It follows that all C j(t j) are uniformly locally Lipschitz curves. Now consider the
solutions to curve shortening with C j(t j) as initial data, i.e. consider C̃ j(t) =C j(t j +
t). These solutions all exist for 0 É t É T − t j Ê T −T ′. Supposing that along some
subsequence of t j the curvatures of the C̃ j are not bounded for 1 É t É T −T ′, we
pass to a further subsequence for which the initial curves C̃ j(0) converge in C1 to
some limit curve C̃∗. The enclosed areas of the C̃ j(0) then also converge, and hence,
by Grayson’s theorem [6] the evolution by Curve Shortening C∗(t) starting from C∗
exists for 0É t É T −T ′. By continuous dependence on initial data it follows that the
solutions C̃ j(t) converge in C∞ to C∗(t) on any time interval [δ,T −T ′] with δ > 0.
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This implies that the curvatures of the C̃ j(t) are uniformly bounded for t ∈ [1,T−T ′],
which then implies that the curvatures of C j(t) are uniformly bounded after all for
t ∈ [t j +1, t j +T −T ′]⊂ [T ′,T −2]. �

APPENDIX A. THE YIN-YANG SOLITON

Hungerbühler and Smoczyk [8] proved uniqueness and existence of a rotating
soliton for curve shortening that contains the origin. See also Halldorson [7] and
Altschuler et.al. [1]. Here we derive its more detailed asymptotic behavior, which we
use in our construction of the approximate solution.

A.1. The Yin–Yang soliton in polar coordinates. For an evolving family of curves
written in polar coordinates X (t,θ)= r(t,θ)E1(θ) the Curve Shortening Deficit is

(V −κ)ds =
〈

X t − Xθθ

‖Xθ‖2 , JXθ

〉
dθ =

{
−rr t +

r(rθθ − r)−2r2
θ

r2 + r2
θ

}
dθ.

It follows that X is a solution of CSF if and only if r(θ, t) satisfies

(A.1) r
∂r
∂t

= rrθθ − r2
θ

r2 + r2
θ

−1= ∂

∂θ

(
arctan

rθ

r

)
−1.

If we look for solutions of the form r(θ, t)=R(θ− t) we get an ODE for R(θ)

(A.2) −RR′ = RR′′−R′2

R2 +R′2 −1.

Hungerbühler and Smoczyk [8] observed that this equation can be integrated once.
By suitably rotating the curve around the origin we can ensure that the resulting
integration constant vanishes, and we therefore have

(A.3)
1
2

R(θ)2 −θ+arctan
R′(θ)
R(θ)

= 0.

We consider the soliton that passes through the origin. When this happens R → 0
and R′ →∞, so that (A.3) implies θ→π/2. The function R(θ) is therefore defined for
all θ >π/2, and, as proved by Hungerbühler and Smoczyk, R′(θ)> 0 for all θ >π/2.

A.2. Asymptotic expansion of R. We now show that R(θ) has an asymptotic ex-
pansion of the form

(A.4) R(θ)= (2θ)1/2
{

1+ c1

2θ
+ c2

(2θ)2
+·· ·+ cN

(2θ)N +O (θ−N−1)
}

(θ→∞)

for any N ∈N. These expansions can be differentiated any number of times. The co-
efficients c j can be computed by substituting the expansions in (A.2) and recursively
solving for c j. In particular, one finds c1 = 0, c2 =−1, and c3 = 11

3 so that

R(θ)=
p

2θ− 1
(2θ)3/2 + 11

3
1

(2θ)5/2 +O (θ−7/2) (θ→∞)(A.5)

R′(θ)= 1p
2θ

+ 3
(2θ)5/2 − 55

3
1

(2θ)7/2 +O (θ−9/2) (θ→∞).(A.6)

This implies that the quantities R = R(t)=R(−2t), ε= 1/R, and Rθ = Rθ(t)=R′(−2t),
which we use in the construction of the cap, have expansions in powers of τ = −4t,



NONCONVEX ANCIENT SOLUTIONS 25

given by

(A.7)



R =R(−2t)=p
τ
{
1−τ−2 + 11

3 τ−3 +O (τ−4)
}

ε= 1
R

= 1p
τ

{
1+τ−2 − 11

3 τ−3 +O (τ−4)
}
.

Rθ =R′(−2t)= 1p
τ

{
1+3τ−2 − 55

3 τ−3 +O (τ−4)
}
.

Proof of (A.4) Consider the quantity u(θ) = θ− 1
2R(θ)2. Since R′(θ) > 0 for all θ it

follows from (A.3) that

(A.8) 0< u(θ)< π

2
for all θ > π

2
.

Directly differentiating u = θ− 1
2R2 and using (A.3) we find an equation for u,

(A.9) u′(θ)= 1−2(θ−u(θ))tanu(θ).

i.e.
u′+2θu = F(θ,u)def= 1+2θ(u− tanu)+2u tanu

We use induction to show that u(θ) has an expansion of the form

(A.10) u(θ)= u1

θ
+ u2

θ2 +·· ·+ uN

θN +O (θ−N−1)

for any N ∈N.
Begin with the case N = 0. We know that 0 < u < π/2 < θ, so that u < tanu, and

hence
u′(θ)= 1−2(θ−u)tanu É 1−2(θ−u)u = 1−2θu+2u2

which implies

u′+2θu É 1+2u2 É 1+ π2

2
= C0.

Multiply with eθ2
, and integrate

0< u(θ)É u(θ0)eθ2
0−θ2 +C0

∫θ

θ0

eξ2−θ2
dξ=O(θ−1) (θ→∞),

Thus the case N = 0 holds.
For the induction step we expand tanu in a Taylor series,

tanu = u+ u3

3
+·· · = u+ ∑

kÊ1
cku2k+1

and rewrite the equation for u as

F(θ,u)= 1+2u2 + ∑
kÊ1

2(θ−u)cku2k+1

Multiplying with eθ2
and integrating from some fixed θ0 >π/2 we get

(A.11) u(θ)= eθ2
0−θ2

u(θ0)+
∫θ

θ0

eξ2−θ2
F(ξ,u(ξ))dξ

Repeated integration by parts leads to

(A.12)
∫θ

θ0

eξ2−θ2
ξ−kdξ=

1
2
θ−k−1 + k+1

2
θ−k−3 +·· ·+ (k+1) · · · (k+2m−1)

2m θ−k−2m−1 +O (θ−k−2m−3)
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for all k,m ∈N. If we assume that u has an expansion up to O (θ−(N−1)), then we also
have expansions for u2 and F(θ,u) up to O (θ−(N−1)). Substitute these expansions in
the integral equation (A.11) and use (A.12) to conclude that u has an expansion up
to O (θ−N ), as claimed.

The expansion (A.10) for u, which we now have proved, implies R(θ)=p
2(θ−u(θ))

also has an asymptotic expansion in powers of θ−1.
Finally, while one cannot in general differentiate asymptotic expansions, one can

integrate them. Thus if a function f (θ) and its derivative f ′(θ) both have asymptotic
expansions in powers of θ−1, then by integrating the expansion of f ′ one should get
the expansion for f , up to a constant: this implies that the expansion of f ′ can be
found by differentiating the expansion for f . We therefore only have to show that all
derivatives of u(θ) have expansions in powers of θ−1, which will then imply that the
expansions (A.10) can be differentiated.

To find expansions for u(m), note that if u has an expansion with remainder
O (θ−N−1), then simple substitution in the differential equation (A.9) leads to an ex-
pansion for u′(θ) with remainder O (θ−N ). Going further, one can differentiate (A.9)
m−1 times and express u(m)(θ) in terms of u,u′,u′′, . . . ,u(m−1). This implies that if
one has an expansion in powers of θ−1 of the first m−1 derivatives of u, then one
also has an expansion for u(m). By induction it follows that all derivatives of u have
such expansions.

Similar arguments also apply to the expansions of R(θ).

A.3. Inversion of the expansion of R. The expansion (A.4), which expresses R

as a function of θ, implies that one can invert the function θ 7→ R(θ), and that the
inverse has an asymptotic expansion. It follows from (A.4) that

R(θ)2 = (2θ)
{

1+ c̄1

2θ
+ c̄2

(2θ)2
+·· ·+ c̄N

(2θ)N +O (θ−N−1)
}

and hence

2θ =R2
{

1+ c̄1

2θ
+ c̄2

(2θ)2
+·· ·+ c̄N

(2θ)N +O (θ−N−1)
}−1

.

Repeated substitution of this expansion in itself allows one to convert all powers of
(2θ) on the left into powers of R2, so that we have an expansion

2θ =R2
{

1+ c̃1

R2 + c̃2

R4 +·· ·+ c̃N

R2N +O (R−2N−2)
}

for certain coefficients c̃i.
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