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NONCONVEX ANCIENT SOLUTIONS
TO CURVE SHORTENING FLOW

YONGZHE ZHANG, CONNOR OLSON, ILYAS KHAN, AND SIGURD ANGENENT

ABSTRACT. We construct an ancient solution to planar curve shortening. The so-
lution is at all times compact and embedded. For ¢ < 0 it is approximated by the
rotating Yin-Yang soliton, truncated at a finite angle a(¢) = —¢, and closed off by a
small copy of the Grim Reaper translating soliton.

1. INTRODUCTION

In [5] Daskalopoulos, Hamilton, and Sesum showed that any compact, convex, and
embedded ancient solution to Curve Shortening in the plane is either a shrinking
circle or the ancient paperclip solution. Qian You et.al.[10, 3] showed that there
exist many other ancient solutions that are either embedded and not compact, or
otherwise compact, convex, but not embedded. Here we construct an ancient solution
to Plane Curve Shortening that is embedded, compact at all times, but not convex.
We note that an ancient solution satisfying these properties was also constructed
independently in [4]. We present a brief comparison of the two different approaches
at the end of this introduction.

Our construction begins with the Yin—Yang soliton, i.e. the rotating soliton that
is invariant with respect to reflection in the origin—see Figure 1 (left). This spiral
shaped curve divides the plane into two congruent parts, and under Curve Shorten-
ing evolves by rotating with unit speed in the counterclockwise direction. Each of
the two branches of the Yin—Yang spiral is a graph in polar coordinates, given by

r=20+1), r=%0-1)

respectively. The Yin-Yang spiral is asymptotic to a Fermat spiral [9] which in polar
coordinates is given by r = av/6. The Yin-Yang curve satisfies

(1.1) RO =VIT+60),  RO) = —— +60?) @— o).
V26
We review the properties and derive expansions for £ in appendix A.
The Yin—Yang soliton is itself an example of an embedded ancient (and in fact
eternal) solution. It is however not compact. Our goal in this paper is to construct
a compact embedded ancient solution which, for ¢ — —co converges to the rotating
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Yin—Yang solution. In section 2 of this paper we construct an approximate solution to
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Figure 1. Left: The Yin Yang soliton in polar coordinates. Right: The Truncated Yin Yang
soliton at time ¢ «< 0. The bulk of the curve consists of an initial segment of the Yin—Yang
curve rotated counterclockwise by an angle ¢, which has two ends. These ends are connected
by a small cap in the shape of a translating soliton (the so-called “Grim Reaper”) located at
polar angle 6 = —¢.

CSF, by truncating the Yin—Yang solution at polar angle a(¢), and connecting the two
ends with a small cap whose shape is approximately that of a rotated and rescaled
copy of the Grim Reaper soliton. See Figure 1 (right).

To determine how to choose the angle a(¢) we estimate the speed V of the cap at
time ¢. Since the cap is approximately a Grim Reaper, its speed is related to its width
w by V = n/w. The width w is approximated by

w=Rat)-t+5) - Rad) -t - )= Z'(alt)-t)7,
so that the cap moves with speed

T 1
VRS -,

On the other hand, far away from the center, the arms of the Yin-Yang spiral are
close to circular. The cap, which moves with angular velocity —a'(t) along a near
circle with radius Z(a(t) — t), therefore has velocity V ~ —a/(£)Z(a(t) — t). It follows
that a/(t) = —1/(Z%'). Since the asymptotics (1.1) imply Z%' ~ 1, we end up with

(1.2) ad@®)=-1+0(1),  alt)=-t+o().
For any ¢ < 0 we let Q(¢) < R? be the region given in Polar Coordinates by
(13 QW={(rcosd,rsin0) |t <0<t RO-t-H<r<BO-t+3)}

We will call the boundary curve 0Q(¢t) the truncated Yin-Yang curve. It consists of
a segment of the rotating Yin-Yang curve and a straight line segment that connects
the two ends at 6 = —¢.

Main Theorem. There exists a compact ancient solution {C(¢) | # < 0} to Curve
Shortening which for ¢ — —oo is uniformly close to the truncated Yin-Yang curve in
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the sense that if A(¢) is the bounded region enclosed by C(¢) then®
Area(AAQW) ST (t— —00)

for every 6 > 0.

The construction follows a pattern similar to the construction of ancient solutions
in [3, 10], namely, construct a sequence of “really old solutions” {6,(¢) | —n < t < ¢¢} of
Curve Shortening and extract a convergent subsequence whose limit is the desired
ancient solution. In section 2 we first construct an ancient approximate solution
{6« (t) | —oo < t < 0} of Curve Shortening, i.e. a family of curves for which

to
(1.4) gd:“‘ff f IV — x| dsdt < oco.
—00 JE(t)

Then we consider a sequence of solutions {6, () | —n < ¢ < to} of Curve Shortening
whose initial curves %,(—n) are chosen increasingly close to the approximate solu-
tion €. (—n) at time —n, in the sense that the area between 6.(—n) and 6, (—n) tends
to zero as n — oco. Arguing as in [3, 10] we observe that the area between the solu-
tions %,(¢) and the approximate solution %,(¢) is bounded in terms of the “error” &
and the area between the initial curves 6.(—n) and 6,(—n). Since the curves we
deal with in this paper are not graphical the area estimate is a bit more complicated
than in [3, 10]. In section 3 we present a more general estimate that generalizes the
Altschuler-Grayson [2] area bounds for Space Curve Shortening. Finally, in section 4
we show how this bound allows us to extract a convergent subsequence of the very
old solutions %6,(¢), and provides enough control to conclude that the resulting limit
satisfies the description in the Main Theorem.

In appendix A we recall the derivation of the Yin-Yang soliton, and obtain its
asymptotic expansion at infinity.

Comparison with the construction in [4]. The idea to construct ancient solu-
tions as a limit of a sequence of very old solutions is natural. In [4] the same strategy
is also followed, but the core of the proof where one controls the sequence of old solu-
tions is quite different. While the approach in our paper follows the method of area
comparison established in [3], the arguments in [4] proceed by carefully controlling
a sequence of old solutions via an exponential barrier for the bulk of the solution.
Thereafter stability of the tip is established in [4] using a blow-up argument, com-
bined with the uniqueness of the Grim Reaper as possible limit.

2. CONSTRUCTION OF THE CAP

2.1. Parametrized curves and the Curve Shortening deficit. An evolving fam-
ily of curves is a map X : (¢, 1) x R — R? for which X,(¢,p) #0 for all (¢, p). For such
a family we define

_ 1 d
ds 1X,¢,pldp’

The normal velocity and curvature of the family X are

X, JX, >
IXpl2" 1 Xp

ds =X, pldp,

V= (XX, k= (Xse,JXs) = <

LFor two sets A and B we denote their symmetric difference by AAB=(A\B)U(B\A).



4 ZHANG, OLSON, KHAN, AND ANGENENT

¢=+1/2

¢=-11/2

G=-n/2  pminl2

outer region

~cap

cap with
correction

-t x,

p
N

Figure 2. Left: The (u,v) coordinates. Right: The Yin Yang foliation at time ¢#=0.

where J = ((1) _01) represents counterclockwise rotation by 5. By definition, the pa-
rameterized family of curves X satisfies Curve Shortening if V = «. If it does not,
then we measure the “discrepancy with curve shortening” in terms of the form

b's
2.1) |V—K|ds=’<Xt—i JIX,)|dp

I1X 112

The error & is obtained by integrating this form over the curve and in time.
We write e1 =(1,0), es = (0,1) for the standard basis for R2. In this basis counter-
clockwise rotation by 6 is given by

07 — cosf —sinf
" \sinf@ cosf |-

We will use the rotated frame {E1(0), E2(0)} = {7 e1, e €5}, which satisfy
E{'(0)=E0), E5'(0)=—-E1(0).

2.2. Z or (u,v)-coordinates. We expect the tip of the ancient solution to be located
near the point R(¢)E1(~t), and to have width ~R~!, where

R =R %(-21).

Thus we introduce new, time dependent, coordinates Z = ue; + veg related to the
cartesian coordinates X = (x1,x9) via

(2.2) X=e"'"’{Re;+R71Z},ie. Z=R{e'’X —~Re;}.

2.3. The inner and outer Yin-Yang arms. The region on one side of the Yin-Yang
curve is foliated by rotated copies of the curve. At time ¢ € R the leaves of this foliation
are parametrized by

2.3) Y(0,t,y)= RO -t +y)E1(0)

where y € [-7/2,71/2] determines the leaf, and 0 € (¢ — y,00) is the polar angle on
the leaf. The inner and outer arms of the region that contains our ancient solution
correspond to y = +7/2. See Figure 2.
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2.4. Lemma. For any M > 0 there is a 37 <0 such that if ¢ < ¢j7, then the segments
of the Yin-Yang leaves Y (6,¢,y) with |0+ < M7~ !In7 are graphs in (u,v) coordinates
of the form u = U, (t,v), at least if £ < £j;. Moreover, the functions U, (t,v) satisfy

y2+v2 -2

+0 -246
27 (z )

2.4) Uyt,0) =y -
for all 6 >0, where 7 = —4¢.

Proof. We begin with the defining equations
25)  RO-t+yE10)=e!{Re1 +R1Z} =e " {(R +u/R)es +v/R e3}.
Multiply with e’ on both sides:

RO-t+y)E1(0+t)=Re; +R71Z =(R+u/R)e1 +v/R es.

Here the left hand side is the polar form of the right hand side. Under our assump-
tions R2 ~ 7 and |u| < 7, so 1+ u/R2 > 0, and hence we have

2 2 2
2 2 u“+v _ /R
(26) %(9—t+y) =R +2u+T, 9+t—arctanm.

Since @ — Z(a)? is a monotone function, the first equation in (2.6) can be solved for
y. Using the asymptotic expansion in appendix A.3 we get

2.7 20-t+y)=R>+2R 2 +0(R ™),

where 2 = (0 —t + y). Replace %2 by the expression in (2.6), to get
u?+v2+2
R2

To eliminate 6 we expand the second equation in (2.6),

20-t+y)=R%+2u+ +0(v?*R™).

O+t= 1% +0(v2R™Y).

Hence
(2.8)  2y=20-t+y)—20+1)+4t (~4t=1)
2102 -20+2
—R2_7+2u+ % +O(v2R™).

Expand R = R(t) = Z(—2t) in powers of T = —4¢ using (A.7):
R*=%(-20° =1(1-2172+0(17?))
and substitute this in (2.8) to get

2 2
+o2-2
oy=2u+ 2 Y T2 L 6w2R™).
T

By assumption we have [v| <In7 and R ~ /7, so v2R ™ = G(172%9) for any & > 0.
If 7 is sufficiently large then the above equation has a unique solution u = U, (t,v)
with
2. .2 2, .2
u“+v*-2v +v°—-2v
U=y—-———— 40 20 =y- y rv -4v

+0(1729). O
2T 2T
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2.5. General ansatz for the cap. We now construct the cap by assuming that it is
given by

1
2.9) X(t,p)=e " {Rey +eZ(t,p)}, with R()E'R(-2¢), e(t) = T
and by computing its deviation from Curve Shortening (2.1)
X
(V —1)ds = (X; — X5, Xs)ds = <Xt - ﬁ,ﬂ@ dp®wdp
p

In the following computations it will be convenient to abbreviate

so that R'(t) = —2Rg(2).
The space derivatives of X are

X,=e ez, X,,=e ez,

The time derivative has a few more terms:

X;=e "' {-2Rgpe; ~Rea+&'Z —eJZ +eZ;}
Express W = (X; - X, ,/II X, ||2,JXp) in terms of Z, keeping in mind that ¢ =R_1,

2 Zpp

(210) W=(¢eZi———,JZy )—(e1,Zp)

1Zp |l

+2¢Rp(es, Zp) +e€'(Z,JZy) — €2(Z, Zp).

We look for a cap in the form of a normal perturbation of the Grim Reaper curve,
i.e. we assume

(2.11) Z(t,p)=G(p)+f(t,p)JGp(p)

where
G(p) = —arcsin(tanh p)e; — In(cosh p)es
is the arclength parametrization of the Grim Reaper.
Since G is an arclength parametrization G,,JG,, are unit tangent and normal to
the Grim Reaper. Specifically,

G,=- ei;—tanhpes.
P coshp ! pez

The parametrization G(p) traces the Grim Reaper out from right to left. Further-
more, the curvature vector of the Grim Reaper is

Gpp(p) =x(p)JGp, where x(p) = coshp’

2.6. Detailed computation of W on the cap. We have
Zi=f1dGp
Zpy=Gp+[pdGp+fJGpp=1-xf)Gp+[pJGp

JZ,=—fpGp+1-xf)JGp
1Zpl% =@ —xf)? +fo=1-2f +:> 2+ f2
Zpp=—pf +2kfp)Gp + (fop +k —x2F)IGp
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Substituting in (2.10), and using « = 1/cosh p, we get
(221, Zp) = X1~ xf)f:
< Zpp 7 >:(l—Kf)(fpp+K(1—Kf))+Kpffp+2Kf§
1Zp12" "7 1-2«f +x2f2+ f2
(e1,Zp) = —x(1-xf)+ fptanhp.

Thus after substituting and expanding we find
K+ fop —21(2f—1<ffpp +xpffp +x3f2 +21<f§
1-2xf +Kk2f2 + f2
~fptanhp —e%(Z,Z,) +2¢Rg(es, Zp) + e€'(Z, I Z,).

2.12) W=e2A-xf)f, -

+x(1-xf)

We will choose f(¢,p) so as to make W integrable in space and time. To find f we
linearize the expression for W and solve the resulting first order equation for f. It
turns out that one solution is of the form f(¢, p) = v 1F(p) for a function F that is of
polynomial growth for |[p| — co. We restrict our attention to the region

(2.13) |pl<2KInT, T>1,

where K = 100 is a fixed, largish, constant. We will assume that f and its derivatives
are bounded by

(2.14) 1+ 1ol + 1 fppl +TIfel Sr_“‘s for |p| <2KInT.

Here, and in what follows, when we write estimates for remainder terms of the form
G(17*%), the estimate is implicitly meant to hold “for all § > 0.”

The bound (2.14) will certainly hold if (¢, p) = 1~ F(p) for some function F(p) for
which F(p), F'(p), and F"(p) grow polynomially as p — +oo.

We now consider the many terms in (2.12) that add up to W. To begin, we have
for |p| <2KInrt,

e (1-xf)f; =0 "),
and also
~Xffop +xpffp +1<3f2 +21<f§
1-2kf +x2f2+f5

It follows from Z = G + fJG, that

Z=G+o(x '), Z,=G,+0(r'").

=0t 20) for any 6 > 0.

Hence, for |p| <2KInT,
IG(p)I SInt 52<Z’Zp> — T71<G,Gp) +@(T—2+6)
ERH(eZ,Zp> = T_1<e2’Gp> +@(T—2+5) EE,<Z,JZP> — @(T—Q-Hs).

In this computation we have used the expansions ¢ = R(¢)™! = &(-2t) 1 = t712 4
6(17%2) and Rg = #'(-2t) = 1-V2 + 6(~%?) that follow from the expansions of Z(0)
and %'(0) in appendix A.

So far we have

K+fpp—21<2f

_ -2+6) _
W=olr )1—21<f+1<2f2+fg

+x(1-xf)—fptanhp

+7 2e2 - G,G)p)
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We can simplify the fraction (for |p| < 2K 1n7) by using
(—2«f + K22+ f2)?
1—21<f+1<2f2+fg

1
1-2kf +K2f2+ f2

=1+2kf—x>f2-f2+ =1+2«f +0(172)

which implies

K+ [pp —-2K2f
1—21<f+1<2f2+fg

=K+2K2f+fpp _2K2f+@(T_2+§) =x+fpp +@’(1_2+5),

and hence

W = ~fpp ~tanh(p)f, —°f + %<2e2 ~G,Gp) +0(172),

2.7. Computation of the correction term. We look to perturb the Grim Reaper
with a term of the form
f@,p)= He)
where F is a solution of
LFYF,, +tanh(p)F, + K2F = (25— G,G ).
The linear operator can be factored

d? d 1 d 1 d
$=—— +tanh(p)— + ———— = — o0 o — ocosh(p)
dp? p dp  cosh?(p) dp coshp dp p

while we also have

d
(2e2 - G,Gp) = 5<2€2 - %G,G),

all of which allows us to solve the equation for F':

P coshr

(2.15) F(p)= +Btanhp+f

-1
0 COShp<2e sG(),G(m)dr.

coshp
It appears that the first term is of no use, so we set A = 0. The resulting function
F(p) is an odd function of p. We use the asymptotic behavior of (2e2 — %G,G) for
large p to find an expansion for the integral as p — +oo.
Consider

def [P coshr 1
I= 2e9—5G(r),G(r))dr.

fo coshp< €2~ 360, () dr
The explicit expression for G implies

(e9,G(r)) = —Incoshr
2
||G(r)||2 = (lncoshr)2 + (arcsintanhr)2 = (lncoshr)2 + nz +0(™") (r — 00).

To compute I we substitute 1 =Incosh p, yu =Incoshr, which leads to
du
The integrand is singular but integrable at = 0. To deal with this singularity split

A
I= —f e Mop+ L2+ Z 1o}
0

1
(1-e 2 V214 [(1-e 22 1], with0O<s(1-e 29 V2 1< —e724,

Vi
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Replacing (1 — e 2#)~2 by 1 therefore introduces an extra term that is bounded by
G(e~™). Hence we have

)
I= @(e_’l)—f0 eF Moy + P+ %2 +0(e Mdu

= @(/13e_’1)—f; e”_’l{2p+ %“2 + %}du
=0 e M- 24+ 12+ 2} 4 {242} - (1)
=12 A-Z 140%™
Thus, for large p we get
F(p)=B- %(lncoshp)2 —Incoshp — %2 +1 +@’(|pl3e"p') (p — +00).
Since F(p) is an odd function we also have
F(p)=-{B-(ncoshp)?~Incoshp - % + 1} +0(Ip*e™*)  (p — —c0).

Applying this to Z =G + 1 1F(p)JG p we get for the two components u and v of Z
as p — too:

1 1
u(t, p) = —arcsintanh p + ~F(p)tanhp = % + ZF(p)tanhp + G(eP)
T T

1F
v(t,p)=—Incoshp — = COS(ﬁ;) =—Incoshp +G(|plPe P!

We can again eliminate p when p is large by using
Incoshp = —v +O(p2e'?)), (p — +00)
which leads to

2 2
/2 —-2v+7°/4+2(1+B
(216) ult,p) = F5 - ——— B L Gple?y  p — oo
T

We now determine B by matching (2.16) with the representation of the Yin-Yang
arms in (u,v) coordinates that we found in (2.4). Setting y = ¥7/2 in (2.4) we find for
the outer and inner Yin-Yang arms

n w4+ v%-2v

_ =2 _ —2+0
(2.17) u= +2 B a— +0(t )

If |p| = %{ Int then |p|3e_‘p‘ =O(rK2+0) = o(r‘2+5), and therefore the two expansions
(2.16),(2.17) match if

(2.18) B=-1.
To summarize, we choose the cap to be given by
1
2.1 X = —tJ —7
(2.19) (t,p)=e"""{R(t)e; + RO (¢,p)}
with
F(p)
(2.20) Z(t,p) = G(p)+ == G,(p)
and, from (2.15),
P cosh
2.21) F(p)= —tanhp + f D82 (9es - 1G(),G(r)dr
o coshp
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2.8. Definition of the smooth interpolation of cap and arms. In the (u,v) co-
ordinates, according to (2.4), the Yin-Yang arms are given by

u=Us(t,v) for [v| <3KInt

where we abbreviate U.(t,v) = Uyyo(t,v). In the same (u,v) coordinates the ends of
the cap are given by (2.16) with, B=-1, i.e.

u=h.(t,v) for %Klnr <-v<2KlInrt.

We constructed the cap so that both U, and A, have the same asymptotic behavior,
namely,

1
(2.22) U (t,0), hs(t,v) = J_rg - ;{%vz —v +n2/8} +OG 20,

Choose a smooth nondecreasing function 1 : R — R with n(z) = 0 for u < % and
n(u) =1 for u = 2, and define

Bo(t,v) = n(%)Ui(t,v) +{1 —n(%)}hi(t,v)

-v
(2.23) = Ust,0)+ 1= ) (U+(t,0) = hs(t,0).

Int
The graphs of these two functions are Z-coordinate representations of curve seg-
ments that smoothly interpolate between the two ends of the cap and the two Yin-
Yang arms. The two segments are parametrized by

X.(t,v)=e "' {Re1 + R™1Z.(t,v)} with Z.(¢,0) = ks (t,0)e1 +ves.

It follows from (2.10) that the Curve Shortening Deficit for such curves is given by
(x —V)ds = W,dv with

B k Re R _
(2.24) W,lk]l=-R th+r"zg—kv+zf" +2R—g(vkv—k)—R 20 + kky).

2.9. Derivative bounds for U, h., ki. Careful scrutiny of the construction of
U.(¢,v) and A (¢,v) shows that the remainder terms @(r2*?%) in (2.22) may be dif-
ferentiated. This implies that the functions U, and A, satisfy

1
(2.25) euol + eyl + 1oy S = S 77140
T
for %lnr < -v <2KlInrt, and large enough 1.

The derivatives of the gluing function n(v/Int) are

__n'(-v/In7) _ n"(-v/In7) __4vn'(-v/In7)
- A (n72

so they are bounded by
ol + 1100 + 17 < (In7) ™!

for %lnr < -v <2KlInrt, and large enough 7.
It follows that the interpolating functions k. =nU. + (1 —n)h. also satisfy (2.25).
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2.10. Estimating W,[k.]. We show that
(2.26) |W, k]| S 77270

holds in the region %K Int < —v < 2K nT, for sufficiently large 7.
If & is any of the functions U, h+, k. then we have

k2kyy | _ - _ - _
L < kShul ST, R72|RE, ST, and — Rk ST
1+Fk;
Furthermore |k| <1, [vk,| S 77149 and Ry ~R7! < 772 1ead to
RH -2
I?ka —k| ST .

Hence R
W, k1= kyy —Fy + 259 —vR 240G 20)

holds for all six functions £ € {U4,h4,k+}.
To simplify our notation we drop the + subscript for now and expand the deriva-
tivesof k=nU+(Q-nh (withU=U, and h=h.),

ky=nUy + (1 —n)hy +1,(U —h),
kyy = 77va +(1 _T])hvv +2TIU(U —h)y +T)UU(U —h).

Since we have matched the two cap ends with the Yin-Yang arms, it follows from
(2.22) that the difference U — h and its derivatives are bounded by

U =R +|(U = k)| + (U = R)yy| S 77270,
Together these inequalities give us the desired estimate for W,[£.], namely
Wylkl=W,[nU + (1 -nh]
R

= (nU +(@=mh),, - (U + (1 —mh), + 259 ~vR2+0(17%*)

=W, [U1+ (1 - )W, [h]+ G (~2*?)
(2.27) =02,
Definition 2.1 (The Approximate Solution). Let %€.(¢): (—oo,—T) x R — R? for some
sufficiently large T > 0 be the family of smooth curves formed by the concatenation
of the Yin-Yang leaves Y (6,¢,—3), Y(0,t,+3) cut off in a neighborhood of R(:)E1(~?)
and glued to the cap X(¢,p) defined by the ansatzes (2.9) and (2.11), with f(¢,p) =
771F(p) and F(p) given by (2.15) with A =0 and B = —1. The gluing between the

arms of the cap and the two Yin-Yang segments is given by the interpolation k. (¢,v)
in (2.23), which is done in a neighborhood of R(¢)E(—t).

Lemma 2.1. The error
-T
<§’(T)=[ f |V —x|dsdt <oo
—00 (1)

is finite on the approximate solution %, (t): (—oo,—T) x R — R? given by Definition
2.1.

Proof It suffices to show that the Curve Shortening Deficit |V —«|ds is L!-integrable
in space and time on three regions: the cap, the transition region discussed in §2.8,
and the unmodified Yin-Yang curve. Since the Yin-Yang curve is a solution to Curve
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Shortening Flow, the deficit |V —«|ds = 0, which leaves only cap and the transition
region as contributing to the error.

The cap, given by the expressions (2.19), (2.20), and (2.21), is defined on the region
|pl < 2K 1InT1, where p is the arc-length coordinate p for the grim reaper G(p). In §2.6-
§2.7, the Curve Shortening Deficit |V —«|ds is written in terms of p as Wdp, and it
is shown to be W = G(1~2%9) for 6 > 0. Integrating over the cap, we have

2KInt
f [V —klds < f Wdp <4KInt0(r 2%) = 6(r729).
cap

—2K1Int
This quantity is integrable in time, and thus the contribution to the error & on the
cap is bounded.

In §2.8, the Curve Shortening Deficit on the transition region is written in terms
of the parameter v as W,[k]dv on the interval % < —v < 2K1Int. Furthermore, in
(2.27) it is shown that W,[k] = @(r~2*%). Integrating over both curves in the transi-
tion region, we have

2KInt
f IV —xlds =2f1 W,[kldv < 3K Int0(172%%) = 6(172%9).
trns. reg. 5 Klnt

As before, this is integrable in time and thus the contribution to the error is bounded.
Therefore, the sum of the integrals of the deficit over each region is G(r~2%9). This
completes the proof of the lemma. ([l

3. AREA DECREASING PROPERTY OF SPACE CURVE SHORTENING

In 1991 Altschuler and Grayson [2] observed that for two solutions of space curve
shortening the area of the minimal surface spanning them is non increasing. Here
we elaborate on this and prove a similar result without using the existence of the
minimal surface.

3.1. Moving space curves. For an immersed curve X : R — R” one defines the arc
length one-form ds and the arc length derivative d; of any quantity f : R — R by

of 1 of
ds=|X,|dp, and — = —_
pIEP s X, dp

The unit tangent and curvature of the curve are X = ”;ﬁ and Xg;.

A moving family of space curves is a map X : (£g,£1) x R — R". The family evolves
by Curve Shortening if it satisfies X tL = X5, 1.e., if for some smooth function A(z, p)
one has

3.1) X=X+ AX =

1 o ( X, ) X,
1Xpll dp I X, X,
Since X | X, one can always find A from A = (X;, X;).

3.2. Evolution of arc length and the commutator [d;,0;]. The following are
commonly used relations. We record them here for completeness, and also because
we allow the velocity X; of the parametrizations to have a nonvanishing tangential
component. Assuming that X; = X;; + AX; one has

0
(3.2) Ol Xpll = As =xDNXpl,  —ds=As—x*)ds=dA-r"ds,
and

(3.3) [0,05] = (=g +k2)ds.
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Proof. We have

G X,
51 %pl = (5 Xep) = Ko Xup) = X5, Xi) 1 X
p

and hence
%ds = %(nxp ldp) = (X5, Xip)dp = (X5, Xss5)ds.
The evolution equation X; = X s + AX; then implies
(X Xis) = (X, X)s = (Koo, X1 ) = Mg = (Koo, Xos + AX) = As = 1 X5 I” = A5 — 1%,
which directly implies (3.2). Using (3.2) we get

X, \
0, = —(Ag —x“)0s. O
1%, 2 07 = (e K0

[0¢,051 = [04, 1Xp 110, = —

3.3. Dependence on a parameter. Let [eg,e1] = R be some parameter interval,
and let X :[eg,€1] x (29,21) x R — R” be a family of moving curves that depends on a
parameter € € [€g,€1]. We compute the evolution of the first variation

X =0X(e,t,p).
Throughout the computation we will assume that the parametrization X is such that
(3.4) Xe L Xp(e,t,p) for all (e,t, p)

For any given parametrization X one can find a reparametrization ¢(e,t,p) so that
X(e,t,p)=X(e,t,p(e,t, p)) satisfies (3.4).
If X :[eg,e11 x [0,1] — R" is injective with X, 1 X, then the double integral

€1 prl
/ f I Xl dsde (where ds = | X, lldp)
eg Jp=0

is the area (2-dim Hausdorff measure) of the image X ([eg,€e1] x [0,1]). If X merely
satisfies X, 1 X, without necessarily being injective, then the area formula implies
that the double integral is bounded from below, by

def

€ 1
(3.5) f(X)=f lf IXell dsde = #2(X ([eo,€1] x [0,11))
€0 =0

We will call the integral ¢(X) the length of the homotopy X, and we will show that
Curve Shortening decreases the length of homotopies.

The following improvement of the inequality || X¢|ls < [|X¢sll (which follows from
the Cauchy-Schwarz inequality) will be useful.

3.4. Lemma. Assuming (3.4) we have
(1Xelle)? < 1Xes)? — (X5, X o).
Proof. Split X into tangential and orthogonal components:
Xes =P+ (Xes, X5) X5
Since X, 1 X; we have (X, Xs) = 0s(X ¢, Xs) — (X, Xss) = —(X¢,Xss). Therefore
Xes =P — (X, X55) X5,

and thus
1Xesl? = 1P+ (Xe, X2
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On the other hand

1Xells = <%X> =( éj” P)<|PI,

where we have again used that X; | X.. Combining these observations we arrive at
2
(IXells)® = 1 Xes 1% < IP 12 = 1 Xes 1% = —(Xe, X552,

as claimed. O

3.5. The commutator [0.,0s]. Assuming (3.4) one has

[0e, 051 = (X5, Xe)0s and [0e,0%] = 2(X g5, X )02 + (X5, X )05

Proof. The computation follows the same pattern as the derivation of (3.3). Here we
have no equation for X, but we do know that X, 1 X,. Thus

X
0cl Xl = <m,xpe> = (X5, Xep) = X, Xe) 1 Xp Il = — (X5, X1 X .
D

Apply this to d; = | X, ||_16p to get the commutator [d.,0;]. The other commutator
follows from expanding [65,03] =[0¢, 05105 + 05[0¢,05]. U

3.6. Lemma. The length of the first variation X, satisfies the differential inequality

011 Xell = Ads I Xell < A2 N Xe |l + %1 Xl

Proof. Differentiating the evolution equation (3.1) for X we get

0; X =0.X; =0, (Xss + A'Xs)
= Xess +2(X 55, Xe) Xgs + (X5, Xe) s Xs + Ae X + 10 X 5.

Hence
0: X —A0sXe = Xegs + 2(X 55, XY Xgs + (X5, Xe)s X + Ae X5 + A0, 051X
= Xess + 2(X 55, Xe) Xs + {{X 55, Xe)s + Ae + M X5, X)) X5
We next compute the evolution of || X,|2, keeping in mind that X, | X,:
(0; — A05)1 XclI? = 2(Xc, 00 X — 105 X )

= 2(X e, Xess) +4(X s, Xe)”

= (IXell?) 45 — 20 Xes 1? + 4(X 55, Xe)?

= 2|1 Xl 1 Xellss +2(||Xe”s)2 — 2 Xes 1% + 4(X 55, Xe)?.
At this point we use Lemma 3.4, to get

(0 = 105) 1 X 1 < 20 Xell 1 Xellss +2(X s, Xe) .

Since (0; — A0s)IIXcI1? = 211 X 11(0; — Ads)II X ]I, we have

X \2
01 Xl = A05I1Xel < IXellss + (Koo 75 ) IXell < 1 Xelss +1° Xl O
€
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3.7. Contractive property of Curve Shortening. If X° X! :[to,¢,]1x[0,1] — R®
are two solutions of Curve Shortening (3.1), then a homotopy {X: 0 < e < 1} of
solutions to Curve Shortening connecting them is, by definition, a map X :[0,1] x
[to,t1]1x[0,1] — R™ such that (¢, p) — X (&,¢, p) is a solution of Curve Shortening with
Xe(t,p)=X(e,t,p) for € € {0,1}.

Given any homotopy X¢ between solutions X° X! of Curve Shortening, one can
always find a reparametrization X¢(¢, p) = X°(¢, ¢(e, t, p)) for which 0:X€ L 9,X€ holds
pointwise. We will call such a homotopy a normal homotopy.

Our main observation in this section is the following: if X¢ is a normal homotopy
between solutions X°, X' of Curve Shortening, then one has for each ¢ € [0,1] and
te(to,t1)

d 1
(3.6) —f 10X (e, t,p)llds <0
dt p=0
and
1 1 1 1
3.7) f 0 f 10:X (e, t1, p)l ds de < f O f 10X (e, to, p)ll ds de
€= = €= =

Proof. We use (3.2) and Lemma 3.6 to differentiate under the integral:
d [t 2 2
af o 1Xellds < f {IXcllss + K1 Xl + A Xells + (As — k)1 Xell} ds
p:

= f{”Xe”s + M X} ds=0.
This implies (3.6). Integration in € and in time then leads to (3.7). O

3.8. Deviation from an approximate solution. We now consider the case of two
moving curves X% X1 : [¢g,t1] x[0,1] — R"® with the same initial value, i.e. with
X0, p) = XY(tg,p) for all p € [0,1]. We assume that X! is a solution of Curve
Shortening but allow X° to be a general moving curve. We measure its deviation
from Curve Shortening in terms of

def (11 [1 Oyl 4250
(3.8) A= [0 x%" -02x°| dsdt.
to Jp=0

In the case of plane curves X :[¢g,¢1] x[0,1] — R2, we have 0,(X%)* = VJXE, where
V is the normal velocity of the curve X°. Therefore the integrand in (3.8) is

[@: X" -02X°| ds = |V —«|ds.

The quantity A therefore coincides with the “error” & defined in (1.4).

Assume that for each € € [tg,¢1] there is a smooth solution (¢,p) — X(e,¢,p) of
Curve Shortening that is defined for ¢ € [¢,¢1], and that has initial value X(e,e,p) =
XOe, p). After reparametrizing we may assume that X, 1 X p holds point-wise. Then
the final values of these solutions, i.e. the curves p — X(¢,¢1, p) form a normal homo-
topy from X°(¢1,-) to X1(1,-). We will now show that

t1 1
3.9 f f 10X (e, t1,p)lldsde < A.
e=tg Jp=0

Proof. Our argument is a nonlinear version of the Variation of Constants Formula,
or of Duhamel’s principle.
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For e € [tg,t1] we consider

def € [T ) }
E(e)= 10X (E,t1,p)ldsde.
€=tg JO

Then
1
Ee)= fo 10:X (e, t1, ) ds

The contraction property (3.6) implies

1 1
fo 10:X (e, 11, p)l ds < fo 10:X (e,e, p)l ds.

We compute X,(e,e, p) by differentiating the relation X(e,e, p) = X°(e, p) with respect
to e:
0X%e,p) 0X(e,e,p)
6 XO — ) — IAg)
(0:X7)(e.p) O¢ O¢
Since (¢, p) — X (e,t, p) evolves by Curve Shortening, we have X;(¢,¢, p) = X¢5(€,€,p) +
AX,. By definition of X we have X(e,e, p) = X%, p), so Xss(e,€,p) = ng(e,p).
We have parameterized the homotopy X (e, ¢, p) so that X, 1 X, and therefore

=Xc(e,e,p) + X;(e,€,p).

0:X (e,e,p) = (0: X%, p)) " = X2 (e, p).
Hence ) )
E'(e) < fo 13:X (e, e, p)ll ds = fo ” (3:X%, )" — X, p)“ ds
Integrate over € € [£g, 1] to recover (3.9). O

3.9. Application to plane Curve Shortening. Let X% X1 :[¢,¢1]x[0,1] — R? be
two moving curves that are embedded at all time. Assume X! evolves by Curve
Shortening, and assume that initially X' lies in the closed region enclosed by X?°,
i.e. for all p €[0,1] the point X (o, p) lies in the region enclosed by the simple curve
p— X¢to,p).

Assume furthermore that at each time ¢, € [tg,%1] the area enclosed by p —
XO(t,,p) is at least 27(¢1 — ¢,). By the Gage-Hamilton-Grayson theorem this guar-
antees that the solution to Curve Shortening starting at X°(¢,,-) exists until time
t1.

We now consider two homotopies A and B of evolving curves. The first is the
homotopy defined in the proof in the previous section 3.8, i.e. for each € € [¢¢,%1]
we consider the solution (¢,p) — X(e,¢,p) to Curve Shortening defined for ¢ € [€,%1]
and starting from X (e, e, p) = X(¢, p). Our first homotopy is then the family of final
curves A(e, p) = X(e,t1, p) of these solutions. In section 3.8 we showed that the length
of the homotopy A is bounded from above by

t1 p1 t1 prl
0A) = f f IAc(e, p)ll dsde < f f [@:x%*" - X0 dsdt.
to JO to JO

The second homotopy is constructed by evolving a homotopy between the two ini-
tial curves p — X/(¢9,p) (j = 0,1). Since X! initially lies inside X° we can choose
the homotopy (e, p) — X (e, to, p) so that its length is exactly the area of the region be-
tween the two initial curves, and so that the curve p — X(e, tg, p) lies inside the curve
p— X(€,tg,p)if 0 <e <€’ < 1. Given this initial homotopy let (¢, p) — X(e, ¢, p) be the
solution to Curve Shortening starting at X (e, tg, p). Since all initial curves enclose
X1(to,p) the corresponding solutions exist for ¢ € [¢9,¢1], and possibly longer. Our
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second homotopy is now Bl(e, p) = X(e,¢1,p). As explained in section 3.7, the length
of the homotopy B is bounded by the length of the initial homotopy (¢, p) — X(e, to, ).
We had chosen this initial homotopy so that its length is exactly the area between
the two curves p — X%#o, p) and p — X (9, p).

By concatenating the two homotopies A and B we obtain a combined homotopy
A#B between p — X%(t1,p) and p — X(¢1,p). The length of this homotopy is
bounded by

V(A#B) = ((A) + ¢(B) < Area between X’ (t9,-) and X (¢o,-)
t1 rl
+f f [@: X" - X0 | dsdt
to J0O

If QO(t) and Q1(¢) are the regions enclosed by X°(¢,-) and X1(¢,-), then the homotopy
A#B between the two curves at time #1 must pass through each point in the interior
of the symmetric difference Q%(¢1)AQ!(¢1), as one sees by considering the winding
numbers of the curves in the homotopy around any point in Q%(¢1)AQ(#1). It follows
that the area of Q%(¢;)AQ(¢1) is a lower bound for the length of the homotopy A#B,
and thus we conclude that

(3.10) Area of Q°(#1)AQN(#1) <

t1 1
Area between X(to,-) and X' (to,") + f / [@: X" - X0 || dsdt.
to J0

4. CONVERGENCE

In this section, we obtain uniform curvature bounds on a sequence of “really
old solutions” {€;(¢)} and extract a subsequence of solutions that converges locally
smoothly to an ancient solution of curve shortening flow (CSF).

Theorem 4.1. There exists a T such that for any T* > T, the curvatures |x;| of
the “really old solutions” {€(¢)}; are bounded independently of j on the interval
[-T*-1/4,-T*].

The strategy to obtain these bounds is as follows: a) decompose an element €;(t)
of this sequence into the union of several graph representations, b) use the L! bound
on the error to obtain L™ estimates for these graphs, and c¢) apply the standard
estimates for divergence-form quasilinear parabolic equations to establish a uniform
curvature bound.

Let T* > 0 be a large positive number, which may be increased as necessary
throughout this section. The obvious candidates for the sequence of “really old solu-
tions” are the CSF solutions defined on [—j,—T*] starting at €. (—/) at time —j — call
these I';(). At any time ¢ € [-j,—T"], the unsigned area enclosed by the curves 6.(t)
and I';(¢) is bounded by the quantity

¢
f f |V —x|dsdT.
—j J€: (1)

By Lemma 2.1, this quantity is in L' and given ¢ > 0, we can find T* > 0 such that

g(T*)zf f |V —x|dsdTt <e.
—00 +(T)
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By (3.10), this estimate gives a uniform bound on the unsigned area between I';()
and €. (t) for any sufficiently large j and ¢ < —T"*, whenever defined.

For simplicity of calculation, we consider an alternative sequence of “really old so-
lutions” {%€;(¢)}, called “square-profile approximations”, which do not satisfy the ini-
tial condition €;(—j) = €x(—j). They are constructed as follows: Let [9; (¢), 97 (¢)] be
the interval of polar angles that contain the approximate solution at a given time ¢.
Let r = Z(0) be the central branch of the Yin-Yang foliation, so the Yin-Yang solution
is given by the two branches r = Z2(0 + /2 - t) and r = Z(0 — n/2 - t). We define €;(t)
to be the solution of curve shortening which at time ¢ = —j is given by

e Two arms of the Yin-Yang soliton r = Z(0 — /2 —t) = R0 — /2 + j), and r =
RO +7/2—t)= RO + /2 + j) truncated at 0 = 9} (—);
e astraight line segment connecting the two arms of the Yin-Yang soliton. This
segment is part of the ray 0 = 97 (—).
Notice that at each time ¢ along the flow, the square-profile approximations 6;(t)
enclose the curves I';(#), the CSF solutions starting from 6.(—j), and that the area
bounded by these two solutions stays constant along the flow, for all ¢ € [—j,-T*].
The area A; between €;(—j) and €.(—j) is small and goes to zero as j — co. Thus,
the area between the old solution €6;(¢) with the “square initial data” and the ap-
proximate solution %, (¢) is bounded by

t
Area(%j(t),%*(t))<Aj+f f |V —«x|dsdrT.
—jJE: (1)

In order to improve these area bounds to L*° bounds, we will use the geome-
try of the €;(#) and several properties of CSF. In particular, we often appeal to the
maximum principle and the following Sturmian property for intersections of curve
shortening flows.

Theorem 4.2. Consider two CSF solutions yo,y1:[T1,T2) x[0,1] — R2, for which
Oyo(t)Ny1(t) =0y1(&)nyot) =2

holds for any ¢ € [T1,T2). Then the number of intersections of yo(¢) and y;1(¢) is a
finite and non-increasing function of ¢ € (T'1,T2). It decreases whenever yo and y;
have a tangency.

There is a useful related theorem for inflections points.

Theorem 4.3. Let v : [T1,T2) x S — R2 be a solution of CSF. Then, for any ¢ €
(T1,T9), y(t) has at most a finite number of inflection points, and this number does
not increase with time. In fact, it drops whenever the curvature x has a multiple
Zero.

While the curves €;(¢) are not convex, we do have a one sided curvature bound.

Theorem 4.4. If x is the curvature of a counterclockwise oriented parametrization
X of the curves €;(t), then

K —«(X,X;)>0.

Proof. Assuming that the parametrization X is normal (X; L X;), the curvature
evolves by

Kt =Kss +K°.
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A short computation using X; = X and || X;|| = 1 shows that
(0: - 02)1X 1% = 2(X;, X) — 2(X 55, X) — 21 X 11? = —2.

Differentiating with respect to arclength, using the commutator [d;,d5] = k295, and
also 051X 1|12 = 2(X, X,) we get

0:(X, Xs) = 02X, X) + k%X, X).

Hence x and (X, X;) satisfy the same linear equation. Therefore o = x — (X, X;) also
satisfies

04 =05 +K20.
The quantity o vanishes on the rotating soliton (see the appendix).

The square-profile initial curves 6;(—j) consist of two arcs. One is the Yin-Yang
soliton, so on this arc we have 0 = 0. The other arc is the radial line segment on
the ray 6 = 97(—j). On this segment we clearly have x = 0. Since we orient %;
counterclockwise, X and X; are parallel with opposite directions; i.e. —(X,X;) > 0.
Hence o > 0 on the line segment. Finally, the initial curve 6;(-j) is not smooth,
having two corners where the line segment and Yin-Yang arms meet. If one rounds
these corners off by replacing them with small circle arcs with radius p < 1, then
the curvature of these arcs will be x = p‘1 > 1, so that 0 > 0 on the circular arcs,
provided p is sufficiently small. The resulting curve has o = 0 on the Yin-Yang arms,
and o > 0 on the line segment, as well as the small circular arcs. The solution to
CS starting from the modified initial curve therefore has o > 0. Letting p \, 0 we
conclude that o > 0 also holds on 6(¢). ([l

With Theorem 4.2, we can decompose the solutions €(¢) into exactly two graphs
over the polar angle parameter.

Lemma 4.5. For any ¢ € (—j,—T"], there is an interval [ﬁ;(t),ﬁ;(t)] such that the
curve €;(t) can be written as the union of two graphs of polar functions, RJT(B, t) and
R;T(Q, t) defined for 0 € [ﬁ;(t), ﬁ;(t)]. The functions ¢ — ﬂ;(t) and t — f);.’(t) are strictly
increasing and decreasing, respectively.

Proof. By the maximum principle, the “really old solutions” €;(#) will be contained
inside of the Yin-Yang curve. The Sturmian property, Theorem 4.2, tells us that the
number of intersections of €;(¢) and the rays 6 = 6y € R is non-increasing, and only
decreases when there is a tangency. This implies that the desired graph decomposi-
tion exists. These two graphs are bounded above and below by the branches of the
Yin-Yang soliton on their polar interval of definition, [ﬁ;(t),f)}r(t)]. ([l

Similarly, we can always write each €;(¢) as a union of two graphs taking values
in 0, the polar angle. Recall that the images of 22(0 —¢) for ¢ € [-m,7) foliate the
punctured plane R? \ {0}. See Figure 2.

Lemma 4.6. For all ¢, €;(¢) can be decomposed into two graphs of two functions
which take leaves of the foliation as inputs and have their range in the set of polar
angles. More specifically, for T' < 0 there exist y; 1,52 : (00,71 — (- %,%) and
functions

@;—7 @&,y :t<T,yj 1)<y <yj2t) —R

such that the very old solution €6;(¢) is the union of the two curves

Y(07(4,9),t,5) = (0 (t,y) — t +y)E1(6),
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where Y is given by (2.3).

Proof. The initial square-profile curve €;(—j) is tangent to the graphs of 2(0+n/2+ ;)
and intersects the graphs of Z(0 +y + j), y € (—n/2,71/2) twice: once at the origin and
once on the line segment connecting the two branches of €;(—j). Then, by the Stur-
mian theorem, for all subsequent ¢ > —j, 6;(¢) can be split into two graphs corre-
sponding to the “upper” and “lower” intersection points with the leaves of the Yin-
Yang foliation. At each time ¢, these graphs split at two unique leaves of the fo-
liation, marked by values y; 1(¢),y;2(¢) € (-n/2,7/2), so that €;(¢) is tangent to the
curves {r = Z(0 + y;1(t) - t)} and {r = Z(0 + y;2(¢) —1)}. We know that these two
points are unique since a greater number of tangencies would introduce more than
two intersection points for other curves {r = Z(0 + y — t)}. We call the coordinate sys-
tem (y,0) € (—m, 1) x(0,00) the “Yin-Yang polar coordinate system” and denote the two
functions giving the upper and lower graphs comprising €;(¢) by @J_.( y,t) and @}’( y,t)
respectively, defined on the interval (y; 1(2),y;2(t)) c (=n/2,7/2). ([l

Lemma 4.7. There exist T'< 0 and C > 0 such that ﬁ;f(t) <9t@#)+C for all jeN and
all te[-j,-T1I.

Proof. Assume that ¢ < n1/16.

For any t € [-j, T] at which ﬁ;f(t) > 97 (¢) we consider the area <Z;(¢) of the “really
old solution” €;(¢) inside the polar interval [ﬁI(t),f);T(t)], where 9} (¢) and 1‘);.(1,‘) are
the endpoints of the intervals of definition of the approximate solution ¥.(#) and
€(t) respectively. This area measures the “tail” of the €;(¢) that may form between
the tip of €(¢) and the tip of €. (¢). Note that the area «/;(¢) is bounded above by the
error )

dj(t)sAJ-+é"(T*):AJ-+[ f |V -xldsdt <e
—00 4 (T)
To calculate this area, first consider the function 0, ;(y) := max{@}r(y,t) -9t (),0}
over the interval (y;1(¢),y;2(¢)). Then in the (8,y) “Yin-Yang coordinates,” we can
integrate to find the area:

¥j2@®) O ;()+9L
Ai(t) = f f RO +y—t)det(DI)dOdy,
yia@) Jof
where I :(0,00) x (—71/2,7/2) — (0,00) x (0,00) is the coordinate transformation given
by I(0,y) =(0,%(0 +y—1)). Clearly, detT = Z'(0 +y—1t), so
Yj2®) O+ vj2(®)
oj(t) = f %(0+y—t)%'(9+y—t)d9dy:f 0Oy ;(y)dy,
i@ Jot vyt

by the asymptotic expansions in (1.1).

We argue that given a small § > 0, it is possible to pick an angle 8y independent
of j such that the measure [{y : ©; ;(y) > 0o}| < 5. Indeed, it follows from

¥j2@®)
90|{y:®t,j(y)>90}| sf ® Oy j(y)dy <e

i1
that if 09 < &, then [{y : ©; j(y) > 0o} < 6 holds for all ¢, ;.
The two points intersection of €;(¢) with the ray 6 = 9} (t) + 6 are

PE@) :Rf(ﬁ*(t)+00,t).
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Let y(¢) be the arc on €;(¢) on which 6 = 97(¢) + 6y, and whose endpoints therefore
are P*(¢). Consider the area A(¢) of the region enclosed by y(¢) and the line segment
connecting P*(¢). This area changes because the arc y(t) moves, and also because
the line segment P~ P* moves. The rate of change is therefore the sum of — fy(t) xds
and the rate at which the segment P~ P* sweeps out area.

\ \ \ \
\ L _—
RO} A0}

\ \
y (@ y (@

/3\\ 95 (®)+ 0
N

Figure 3. Left: The arc y(¢). Right: the angles g*

If ¢ : y(¢) — R is the tangent angle along the arc (i.e. X; = E1(¢p)), then the curva-
ture integral is

f xds = pp-1) — Pp+(1)-
()

The line segment P* P~ moves with angular velocity %ﬁj(t) and therefore adds area
to the region enclosed by y(¢) at the rate

+

SE) -}

in which R;Tr are evaluated at 0 = 9} (¢) + 6. Our construction of the cap implies that

9% (t) = —t + 0(1), and that this relation may be differentiated: %ﬁ:(t) =—1+o(t).
The radii R;T'(ﬁj:(t) +6g,t) are given in terms of their Yin-Yang coordinates y*(¢)

via

Rf(f):f(t) +00,t) = RO () + 60—t + y*).

It follows that at 97 (¢) + 6,
1 2 2 1 2 -\2
5{(R;) - (B} = S{ROLWD+00—1+y" = RO1D+ 00—t +y )}

=RR (" ~y7)

in which %, %' are evaluated at 9.(¢)+ 0y + ¥ for some y € [y, y*1that is provided by
the mean value theorem. The asymptotics of Z imply that Z%’ =1+ 0(1) < 2. Our

choice of Oy was such that 0 < y* —y~ <§. Hence

1 "2 ) dﬁ:(f)
’5{(121.) - (B;)?} ~ | <2.
In total, the rate at which the area A(¢) enclosed by the arc y(¢) grows is bounded by
dA

FT —(Pp-y — PP+ +26.
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We estimate the change in tangent angle across the arc y(¢). Let f* be the coun-
terclockwise angle from the ray 6 = 9f(¢) + 6y to the tangent X; to y at P*, and
similarly, let f~ be the counterclockwise angle from the same ray to the tangent to y
at P~ (see Figure 3). We have 0 < " <7 <~ and ¢pp- —pp+ = f~ — B+.

Recall that x — (X, X;) > 0 along €6;(¢). Since x = ¢ and (X, X;) = %%rz, where
r =|IX]|, it follows that ¢ — %rQ increases as one traverses y from P* to P~. Thus, at
any point with polar coordinates (6,r) on y one has

1
> gps+ 507 1)

The lowest value r has on y occurs at the point P_, and we have just shown that

r?m - r%i <26. Hence ¢ > ¢pp+ —26 on the entire arc y.

It follows that if g+ > %n, then the angle between the tangent to y and the ray
OP* (O is the origin) will always be at least %n — 20, i.e. more than %ﬂ, provided we
choose 6 < {%.

Consider the line ¢ through P* whose angle with OP" is gn. The euclidean dis-
tan/ce between P~ and P* is rp+ —rp- <28/(rp- +rp+) < C6|t|"V2, since rp+ > rp- >
I£V2,

At this scale the Yin-Yang leaves will be almost straight lines near P*, so that
the line ¢ then intersects the Yin-Yang leaf with y = y_(¢) at a point @ " (¢), also at a
distance d(P~,Q ) < 8l¢|712.

ﬁ;(t) - 9500 ~

M S6|t|_1 < 00_
rp-

Hence the largest polar angle on y will be at most
97(1) < OL()+ 00 + 81t < 9L (£) +20,.

Thus we find that if |¢| is sufficiently large, then either 0;() < 9.(¢), or else Bt < gn.
In the latter case the area enclosed by y(¢) decreases faster than

aa <S-B +pr+20<-m+ §7r+26= —§n+26< I
dt 8 8 4
again assuming that § < 7/16.

We now finally prove that ﬁ;f(t) — 91 (¢) is uniformly bounded for all ¢ € [-7,T]
and j.

At ¢t = —j we have 19;.’(t) < 95 (t)+0o, by definition of the initial curve €;(—). Hence,
if at any time #; < T one has ﬁ;f(t) > 9% (t) + 209, then there is a largest interval
(t9,t3) 3 t1 on which 19;?(t) > 0f(t)+20¢. In particular, at ¢ = t3 one has 19;?(1,‘) =0t(t)+
2600.

Define the arc y(t) as above. Its enclosed area is at most ¢, where we may assume
that € < /4. During the time interval (¢9,%3) the area decreases at a rate of at least
7/4, and therefore the length ¢35 —t9 of the time interval cannot exceed /(n/4) < 1. At
time ¢ = ¢t9 we had 19;7(1,‘) = 9% (t)+260. Since {);T(t),{);f(t) are nonincreasing functions,
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we have throughout (¢9,¢3)
1)~ (97 (1) +260) < 97 (¢2) — (97 (¢) +260)
=95 (te)+200 — (9% () +260)
< 95 (t2) + 200 — (9] (t3) +200)
< 07 (t2) = 91 (¢3).
Since %ﬁi(t) =1+o0(1) we find that
ﬁ;(t) - (07 () +200) <1+0(1)<2
for all t € (¢9,t3). O

To summarize, we can now decompose every very-old solution €;(¢), for t € [-T™ —
1/2,—T*] into four graphs in two different coordinate systems, R;T“(Q, t) in polar coor-

dinates, and @;—.’( y,t) in Yin-Yang polar coordinates.

Lemma 4.8 (Curvature bounds). There exist T < 0 such that for any 7' < T the
lengths L;(¢) and curvatures of 6;(t) are uniformly bounded for all j and all ¢ €
[T',T -21.

Proof. The length bounds follow from the fact that in (y,8) coordinates each €;(¢)
is contained in a uniformly bounded rectangle |y| < 7/2, —t <0 < 91 (¢) + 209 + 2, and
the fact that 6;(¢) decomposes into four segments on each of which both y and 0 are
monotone.

Consider a given value T’ < T'. Assume that our Lemma fails, and that along some
subsequence j the maximal curvature of €;(¢) with ¢ € [T’, T—2] becomes unbounded.

For ¢ € [T’ -2, T1 the lengths L ;(¢) of €;(¢) are uniformly bounded by some L > 0.
It follows that

f’_lf 2dsdt=[-L;j®]5 2 <L.
T'-2 JE;t)

Therefore, there is a sequence ¢; € [T' —2,T' - 1] such that

/ xk?ds<L.
ng(tj)

By a Sobolev embedding theorem this implies that the curves €;(¢;) are uniformly
CL12 i e. they are continuously differentiable, and their tangent angles ¢ j are uni-
formly Hélder continuous — in fact, for any two points at arclength coordinates s1,s2

in 6;(t;) one has
S9 S2
f kds|<+/sg—81 f K2ds$\/Z\/82—81.
S1 S1

It follows that all €;(¢;) are uniformly locally Lipschitz curves. Now consider the
solutions to curve shortening with €;(¢;) as initial data, i.e. consider cEj(t‘) =6j(t; +
t). These solutions all exist for 0<t¢< T —¢; > T —T'. Supposing that along some
subsequence of ¢; the curvatures of the €; are not bounded for 1 < ¢ <7 -T', we
pass to a further subsequence for which the initial curves %3(0) converge in C! to

[p(s2) — d(s1)l =

some limit curve €,. The enclosed areas of the € ’7(0) then also converge, and hence,
by Grayson’s theorem [6] the evolution by Curve Shortening ¥, (t) starting from %
exists for 0 <¢< T —T'. By continuous dependence on initial data it follows that the
solutions <@Zj(t) converge in C® to €,(¢) on any time interval [§,T — T'] with & > 0.
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This implies that the curvatures of the ng(t) are uniformly bounded for ¢t € [1,T-T'],
which then implies that the curvatures of €;(¢) are uniformly bounded after all for
teltj+1,t;+T-T'1<[T',T-2]. (]

APPENDIX A. THE YIN-YANG SOLITON

Hungerbiithler and Smoczyk [8] proved uniqueness and existence of a rotating
soliton for curve shortening that contains the origin. See also Halldorson [7] and
Altschuler et.al. [1]. Here we derive its more detailed asymptotic behavior, which we
use in our construction of the approximate solution.

A.1. The Yin-Yang soliton in polar coordinates. For an evolving family of curves
written in polar coordinates X (¢,0) = r(¢,0)E1(0) the Curve Shortening Deficit is

X112

r(rop—r)—2r2
M}d@.

V—10ds = (X, - 2 JX9>d9={—rrt+ 3
0

It follows that X is a solution of CSF if and only if r(0,t) satisfies

or Treg— r% 0 ro
A.]. _ = 7 1=— __1‘
(A1) rriaian o 3 (arctan . )
If we look for solutions of the form r(0,t) = Z(0 — t) we get an ODE for %(6)
%%11 _ %12
r_
a2 B o

Hungerbiihler and Smoczyk [8] observed that this equation can be integrated once.
By suitably rotating the curve around the origin we can ensure that the resulting
integration constant vanishes, and we therefore have

Z'0) 0
R0O)
We consider the soliton that passes through the origin. When this happens Z — 0

and ' — oo, so that (A.3) implies 8 — 7/2. The function 2(0) is therefore defined for
all 0 > n/2, and, as proved by Hungerbiihler and Smoczyk, %'(8) > 0 for all 0 > n/2.

1
(A.3) 5%(9)2 — 6 + arctan

A.2. Asymptotic expansion of %Z. We now show that Z(6) has an asymptotic ex-
pansion of the form

— 1/2 €1, ¢2 | CN
(A4) 2(0) = (20) {1 + 20 + 202 4ot QO

for any N € N. These expansions can be differentiated any number of times. The co-
efficients c; can be computed by substituting the expansions in (A.2) and recursively
solving for c¢;. In particular, one finds ¢; =0, c2 = -1, and c3 = % so that

+ @(e-N-l)} (6 — 00)

_Jop_ 1 11 1 ~7/2 .
(A.5) #(0) =20 G0 T 5 g TOC) (6 — o)
1 3 55 1

(A.6) R'(0) = +007?) (6 — o).

@ + (29)5/2 - ? (26)7/2

This implies that the quantities R = R(¢) = Z(-2t), e = 1/R, and Ry = Ry(t) = Z'(-21),
which we use in the construction of the cap, have expansions in powers of 7 = —4¢,
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given by
R=2(-20)=Vi{l-1 2+ 1% 100"}
1 1
(A7) €= 5= _1{1-”_2_%7_3"'@(7_4)}.

1
Ro=%'(-2t) = ﬁ{l +3172- 273 10}

Proof of (A.4) Consider the quantity u(f) =0 — %92(6)2. Since £'(0) > 0 for all 0 it
follows from (A.3) that

(A.8) 0<u®< g for all 6 > g
Directly differentiating u =6 — %%2 and using (A.3) we find an equation for «,
(A9) u'(6) =1-2(0 — u(0)) tanu(0).
ie.
def

v +20u=F@,u)=1+20(u—tanu)+2utanu

We use induction to show that u(0) has an expansion of the form
_U1 U2 UnN -N-1
for any N e N.
Begin with the case N = 0. We know that 0 < u < 71/2 <0, so that u <tanu, and
hence
u'(0)=1-20-wtanu <1-2(60 —wu = 1 - 20u + 2u>
which implies
2
u +20u<1+2u%< 1+% - Co.

Multiply with eez, and integrate
0
0<u(@® <u@)e® " +Co| e de=00"Y) (O — o0),
0o
Thus the case N =0 holds.

For the induction step we expand tanu in a Taylor series,

3
u
tanu=u+_+...=u+zcku2k+1
3 k=1

and rewrite the equation for u as

FO,u)=1+2u®+ Y 2(0 —u)cpu?*?
k=1

Multiplying with e? and integrating from some fixed 0y > 7/2 we get

0
(A.11) 1(0) = %0 u(0) + f e F(e, w(@©)dé

0o
Repeated integration by parts leads to

0 2 2
(A.12) f et T ekge =
0o

lg—k—1+ k+16‘k‘3+...+ B+1)---(k+2m-1)
2 2 om

Q—k—Zm—l + @(B_k_2m_3)
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for all 2,m € N. If we assume that u has an expansion up to G(0~Y D), then we also
have expansions for u? and F(0,u) up to G(0~N~D). Substitute these expansions in
the integral equation (A.11) and use (A.12) to conclude that u has an expansion up
to @(0~N), as claimed.

The expansion (A.10) for u, which we now have proved, implies 22(0) = v2(0 — u(0))
also has an asymptotic expansion in powers of 671

Finally, while one cannot in general differentiate asymptotic expansions, one can
integrate them. Thus if a function f(0) and its derivative f’(0) both have asymptotic
expansions in powers of 071, then by integrating the expansion of f’ one should get
the expansion for f, up to a constant: this implies that the expansion of f’ can be
found by differentiating the expansion for f. We therefore only have to show that all
derivatives of u(0) have expansions in powers of =1, which will then imply that the
expansions (A.10) can be differentiated.

To find expansions for u), note that if u has an expansion with remainder
6(0~N-1), then simple substitution in the differential equation (A.9) leads to an ex-
pansion for u/(9) with remainder G(6~"). Going further, one can differentiate (A.9)
m —1 times and express u™(0) in terms of u,u’,u”,...,u™ V. This implies that if
one has an expansion in powers of 87! of the first m — 1 derivatives of u, then one
also has an expansion for ©™. By induction it follows that all derivatives of u have
such expansions.

Similar arguments also apply to the expansions of 22(60).

A.3. Inversion of the expansion of Z. The expansion (A.4), which expresses %
as a function of 0, implies that one can invert the function 8 — 2(0), and that the
inverse has an asymptotic expansion. It follows from (A.4) that
C1 Co CN
R(0)* = (20 {1+—+ +eeet
6" =20) 20 (20)2 (20N

+o0ON —1)}

and hence

= = = -1

20 =%2{1+ a, 2 4N +@(9*N*1)} :
20 (26)? 20)N

Repeated substitution of this expansion in itself allows one to convert all powers of

(20) on the left into powers of %2, so that we have an expansion

Y PN T W A
20=% {1+%2+%4+ +%2N+@(?/2 )}
for certain coefficients ¢;.
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