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Abstract 20 

Sea level rise is leading to the rapid migration of marshes into coastal forests and other terrestrial 21 

ecosystems. Although complex biophysical interactions likely govern these ecosystem 22 

transitions, projections of sea level driven land conversion commonly rely on a simplified 23 

‘threshold elevation’ that represents the elevation of the marsh-upland boundary based on tidal 24 

datums alone. To determine the influence of biophysical drivers on threshold elevations, and 25 

their implication for land conversion, we examined almost 100,000 high-resolution marsh-forest 26 

boundary elevation points, determined independently from tidal datums, alongside hydrologic, 27 

ecologic, and geomorphic data in the Chesapeake Bay, the largest estuary in the U.S. located 28 

along the mid-Atlantic coast. We find five-fold variations in threshold elevation across the entire 29 

estuary, driven not only by tidal range, but also salinity and slope. However, more than half of 30 

the variability is unexplained by these variables, which we attribute largely to uncaptured local 31 

factors including groundwater discharge, microtopography, and anthropogenic impacts. In the 32 

Chesapeake Bay, observed threshold elevations deviate from predicted elevations used to 33 

determine sea level driven land conversion by as much as the amount of projected regional sea 34 

level rise by 2050. These results suggest that local drivers strongly mediate coastal ecosystem 35 

transitions, and that predictions based on elevation and tidal datums alone may misrepresent 36 

future land conversion. 37 

Plain Language Summary 38 

 As sea level rise (SLR) drives saltwater further inland, terrestrial ecosystems change to tidally-39 

controlled ecosystems. A common ecosystem transition is coastal forest conversion to marsh, 40 

which forms ghost forests, characterized as dead trees surrounded by marsh. Most projections of 41 

(SLR) assume that the boundary between forest and marsh can be defined simply by the furthest 42 



manuscript submitted to JGR: Biogeosciences 

 

landward extent of the tide. However, forest to marsh conversion can be influenced by other 43 

physical processes and vegetation interactions. Here we analyze the location of the marsh-forest 44 

boundary across the entire Chesapeake Bay, defined using 100,000 elevation points, alongside 45 

environmental variable datasets to determine drivers of coastal forest retreat. As the largest 46 

estuary in the U.S., the Chesapeake Bay provides a study area where the elevation of transition 47 

from forest to marsh varies substantially. We find this variation in elevation to be driven by not 48 

only tidal range, but also soil salinity and slope of the land, yet these variables explain <50% of 49 

the variability in elevation. This suggests that local factors unaccounted for in this study also 50 

strongly influence the retreat of coastal forests, even at regional scales. Therefore, projections of 51 

SLR that rely solely on tidal extents may misrepresent future land conversion.   52 

1 Introduction 53 

Sea level rise is leading to rapid transformation of coastal ecosystems, where barrier 54 

islands, marshes, and coastal forests are all migrating inland to higher elevations (E. E. White et 55 

al., 2021; Zinnert et al., 2019). These ecosystems are arranged in patterns largely set by elevation 56 

relative to position within the tidal frame (Brinson et al., 1995; Oertel, 1985). However, the 57 

elevation of transition from marsh to coastal forest, or threshold elevation, deviates from what is 58 

expected based on tidal datums due to complex interactions between other physical and biotic 59 

variables (Boon et al., 1977). Climate change adds a global-scale driver of threshold elevation as 60 

accelerating rates of global sea level rise (SLR) shift the marsh-forest boundary landward, but it 61 

remains unclear how local variables will interact to mediate the degree of change (Poulter et al., 62 

2009; Robichaud & Begin, 1997). 63 

Untangling the interactions between global drivers and local factors is central to 64 

understanding the process of upland conversion to marsh. Increased tidal flooding from SLR is 65 
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well established as a dominant global-change mechanism controlling marsh migration into 66 

retreating coastal forests (Wasson et al., 2013; Williams et al., 1999). Saturated soils create 67 

hypoxic conditions which can result in reduced root conductance and eventually mortality of the 68 

roots (McDowell et al., 2022). Root mortality reduces water uptake by the tree, leading to loss of 69 

the tree crown and carbon starvation (McDowell et al., 2022). Saltwater intrusion, which can 70 

accompany SLR, has similar effects on tree mortality (McDowell et al., 2022). The osmotic 71 

potential of saline pore water is higher than the root water potential of most woody coastal taxa, 72 

which can reduce or eliminate the flow of water into roots (McDowell et al., 2022). Most 73 

seedlings and saplings are unable to tolerate even brief inundation by saline water, preventing 74 

forest regeneration years before mature trees die (Brinson et al., 1995; Williams et al., 1999). 75 

Salt spray during storms can further limit trees to elevations higher than those regularly 76 

inundated from tides (Boon et al., 1977; Robichaud & Begin, 1997). Saturated soils and salt-77 

stress increase forest vulnerability to disturbance events, such as storms, which are responsible 78 

for large-scale forest dieback events (Ury et al., 2021).  79 

Global-change drivers of tree mortality are mediated by local conditions at the marsh-80 

forest boundary, and its position within the larger coastal landscape. On a landscape-scale, the 81 

marsh-forest ecotone is assumed to migrate inland faster in gently sloping areas (Brinson et al., 82 

1995; Fagherazzi et al., 2019; Kirwan et al., 2016). Marsh-forest ecotones within low slope 83 

environments are more regularly inundated and generally have smaller watershed drainage areas, 84 

limiting freshwater inputs that would otherwise reduce salt accumulation (Hussein, 2009; 85 

Hussein & Rabenhorst, 2001). High slope environments facilitate better drainage of the marsh-86 

forest ecotone (Brinson et al., 1995). The distance from the treeline to water could also 87 

potentially influence retreat of the coastal forest. Both flood extent inland and subsurface 88 
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salinization decrease with increasing distance from open water to uplands (Guimond & Michael, 89 

2021), as wider marshes reduce exposure of the marsh-forest ecotone to storm surge and mitigate 90 

saltwater intrusion. Less permeable systems, such as those with clay-rich soils, reduce drainage 91 

after inundation events, and thus increase root exposure to saline and/or hypoxic conditions 92 

(Nordio et al., 2023). Shallow groundwater tables support saturated soil conditions and reduced 93 

seaward groundwater flow with SLR (Guimond et al., 2020), which can extend the time it takes 94 

saltwater pulses from storms to dissipate, increasing the likelihood of tree mortality. Terrestrial 95 

vegetation is primarily limited by abiotic factors (Veldkornet et al., 2015), but species-specific 96 

interactions mediate the responses to macro-scale drivers. Biotic factors such as shading, 97 

recovery from disturbance, and tree-specific adaptations such as symmetric root distribution all 98 

likely influence the conversion of uplands to marsh (Field et al., 2016; Messerschmidt et al., 99 

2021; Poulter et al., 2009; Veldkornet et al., 2015). Therefore, the response of the forest-marsh 100 

ecotone is controlled by the interplay between global change and local variables.  101 

Maintenance of tidal marsh ecosystems, and the habitat provision, carbon sequestration, 102 

and water quality services they provide (Brittain & Craft, 2012; Craft et al., 2009; A. J. Smith & 103 

Kirwan, 2021), will rely upon upland conversion to marsh at a global scale (Schuerch et al., 104 

2018). However, most marsh migration projections assume that the marsh-forest boundary 105 

occurs at an elevation that can be approximated by a tidal datum (e.g. mean higher high water) 106 

(Buchanan et al., 2022; Doyle et al., 2010; Holmquist et al., 2021; Mitchell et al., 2020; Osland 107 

et al., 2022; Warnell et al., 2022), despite the understanding that the lower limit of coastal forests 108 

is driven by a range of biophysical factors beyond tides. Here, we examine the elevation of 109 

independently delineated, high-resolution marsh-forest boundary points in the Chesapeake Bay, 110 

located along the U.S. mid-Atlantic coast, alongside biological and physical datasets to assess 111 
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key drivers of coastal treeline elevation at the watershed scale. We interpret these ‘threshold 112 

elevations’ as reflecting the cumulative influence of drivers that affect the survival of coastal 113 

forests, allowing us to demonstrate that local factors strongly mediate global change driven 114 

patterns of ecosystem migration. 115 

2 Materials and Methods 116 

2.1 Study area 117 

We investigated the biophysical controls of marsh-forest boundary by examining 118 

threshold elevations in the Chesapeake Bay region, a hotspot for sea level driven forest retreat 119 

(Schieder & Kirwan, 2019). Approximately 400 km2 of uplands have converted to marsh since 120 

the late 19th century (Schieder et al., 2018), with rates of retreat that are accelerating in parallel 121 

with rates of sea level rise (Schieder & Kirwan, 2019). The average rate of relative sea level rise 122 

has increased from 2.45 mm yr-1 (1953 to 1983) to 4.7-6.2 mm yr-1 (1975 to 2021) (Ezer, 2023; 123 

Ezer & Atkinson, 2015). Concurrent with accelerating sea level rise rates, coastal forests 124 

migrated upslope and horizontal forest retreat rates accelerated from 3.1 m yr-1 (1985–2000) to 125 

4.7 m yr-1 (2001–2020) in a portion of the Chesapeake Bay (Chen & Kirwan, 2022a). By 2100, 126 

1050-3748 km2 of uplands are projected to convert to marsh, largely at the expense of terrestrial 127 

forests and freshwater forested wetlands (Molino et al., 2022).  128 

Low elevation terrestrial forests adjacent to marshes in this region typically include 129 

loblolly pine (Pinus taeda) and Eastern red cedar (Juniperus virginiana) (Perry et al., 2001), with 130 

forested wetlands commonly comprised of swamp tupelo (Nyssa biflora) and red maple (Acer 131 

rubrum) (Noe et al., 2021). High marsh is usually composed of saltmeadow cordgrass (Spartina 132 

patens), saltgrass (Distichlis spicata), and black needlerush (Juncus romerianus) (Perry et al., 133 
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2001; U.S. Fish and Wildlife Service, 2018). The invasive common reed, Phragmites australis, 134 

is commonly found at the marsh-forest boundary as a sign of disturbance and ecosystem 135 

conversion (Jobe IV & Gedan, 2021; Langston et al., 2021; Shaw et al., 2022; J. A. M. Smith, 136 

2013).  137 

Marshes in this region are highly vulnerable to sea level rise as a result of reduced 138 

sediment supply and limited tidal influence (Noe et al., 2020; Xiong & Berger, 2010). Almost 139 

200 km2 of marsh has been lost across the Chesapeake and Delaware Bays over the past 40 years 140 

(Chen & Kirwan, 2022b). Marsh fragmentation and drowning continues to be a concern for 141 

Chesapeake Bay marshes given their limited vertical accretion potential (Duran Vinent et al., 142 

2021; M. S. Kearney et al., 2002). Marsh migration into upland forests has historically 143 

compensated for erosion of marshes in the region (Chen & Kirwan, 2022b; Schieder et al., 144 

2018). Therefore, understanding drivers of coastal forest retreat is critical to improving 145 

projections of future marsh area.  146 

2.2 Input variables 147 

The high-resolution (30 m) threshold elevation dataset was comprised of >95,000 points 148 

aggregated into median threshold elevations for 81 watersheds within Chesapeake Bay and 149 

adjacent coastal lagoons (Figure 1, Supporting Information Figure S1) (Molino et al., 2022), 150 

which allows for comparison with watershed-scale environmental variables. Marsh-forest 151 

boundary location was determined using a spatially explicit approach, independent of tidal 152 

datums (Molino, Defne, et al., 2021), in contrast to other approaches (ex. Holmquist et al., 2021; 153 

Warnell et al., 2022). Threshold elevation values were extracted at each elevation point from 154 

U.S. Geological Survey (USGS) Coastal National Elevation Database (CoNED) 155 

Topobathymetric Digital Elevation Model (Danielson & Tyler, 2016), a high-resolution (1 m) 156 
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aggregate of elevation datasets published between 2004 and 2016. Preparation of additional 157 

spatially-explicit environmental datasets for this study was completed in geographic information 158 

software (ArcGIS Desktop 10.7) (Table 1).  159 

We analyzed 14 environmental factors that were predicted to control rates of coastal 160 

forest dieback alongside previously determined marsh-forest boundary elevations (Table 1) 161 

(Molino et al., 2023). Hydrologic, topographic, climactic, and disturbance input variables were 162 

identified based on previously documented relationships with threshold elevation, marsh 163 

migration likelihood, or coastal forest retreat (Table 1). Values for predictor environmental 164 

variables were extracted at the original threshold elevation points and then aggregated into 165 

median values by watershed (Figure 2; Supporting Information Figures S2-13). The spatial 166 

extent of some datasets did not cover all threshold elevation points so in those cases a subset of 167 

points was used to calculate the median value for the watershed. Median values for datasets with 168 

low resolution (temperature, precipitation, growing degree days) or for datasets which did not 169 

extend to the marsh-forest boundary (salinity, tidal range) were determined from the 170 

environmental variable data points which fell within each watershed. 171 

We incorporated tidal range, salinity, surface water occurrence, change in surface water 172 

occurrence, and normalized difference water index (NDWI) data to analyze the influence of 173 

hydrology on forest retreat. Tidal range was calculated as the difference between Mean High 174 

Water and Mean Low Water, provided for the entire U.S. coastline at 400 m resolution by the 175 

National Oceanic and Atmospheric Administration’s (NOAA) vertical datum transformation tool 176 

(VDatum). Surface salinity data were modeled by St-Laurent et al., (2020) for the Chesapeake 177 

Bay and Atlantic coastal lagoons. Surface water occurrence is the percentage of water detections 178 

from March 1984 to December 2020 and change in surface water occurrence is the percent 179 
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difference in water occurrence between 1984-1999 and 2000-2020 (Pekel et al., 2016). Mean 180 

NDWI was computed from near infrared (NIR) and shortwave-infrared (SWIR1) bands available 181 

from Landsat-8 imagery acquired from USGS Earth Explorer from June through August 2016-182 

2020 using the formula NDWI = (NIR – SWIR1)/(NIR + SWIR1) (Chen & Kirwan, 2022b). 183 

Unique NDWI values were extracted at each marsh-forest boundary point.  184 

To determine the influence of topography on tree mortality, we quantified slope, 185 

topographic position index (TPI), watershed area, and distance to open water (Table 1) for each 186 

marsh-forest boundary point. Slope and TPI were derived from the USGS CoNED Topobathy 187 

(Danielson & Tyler, 2016). Slope was calculated as the average slope within 10 m on either of 188 

the marsh-forest boundary (Molino et al., 2020). TPI, which examines if a single cell is higher or 189 

lower than its surroundings (i.e. a hill vs gulley), was calculated using TPIi = ym-yi where ym is 190 

the mean elevation of a 3x3 cell grid and yi is the elevation of the central raster cell in the grid. 191 

Watershed area was determined by the area of the Hydrologic Unit (HUC) 10 watershed 192 

delineated by the USGS (USGS, 2020) and distance to open water was calculated as the 193 

Euclidean distance from the marsh-forest boundary point to water as delineated by the 194 

Chesapeake Conservancy Land Use (using the Near tool in ArcMap) (Chesapeake Conservancy, 195 

2018).   196 

Climate variables, including annual temperature, precipitation, and growing degree days 197 

were obtained from the PRISM Climate Group 4-km resolution datasets (Table 1) (PRISM 198 

Climate Group, Oregon State University, 2019). Annual growing degree days were derived from 199 

the temperature dataset as the number of days when the average temperature is greater than or 200 

equal to 10°C (Chen & Kirwan, 2022b). Each of these variables is calculated as the long-term 201 

mean from 1984 to 2020 and is incorporated in the model to examine how regional variation in 202 
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climate mediates forest response to sea level rise. To assess the influence of a hurricane on forest 203 

retreat, we extracted maximum inundation height (m) and inundation duration (hours) during 204 

Hurricane Isabel at each marsh-forest boundary point from the Advanced Circulation (ADCIRC) 205 

Prediction System (Molino, Defne, et al., 2021). Hurricane Isabel, which made landfall in 206 

September 2003, was selected as the most significant storm to affect the Chesapeake Bay since at 207 

least 1954 (Beven & Cobb, 2004). We therefore would expect this disturbance event to have the 208 

highest likelihood of promoting coastal forest retreat inland, such as resulted from a comparable 209 

storm in North Carolina (Ury et al., 2021).  210 

2.3 Analytical approach 211 

We used a linear model to assess the importance of biological and physical variables in 212 

controlling coastal treeline elevations (run in Python 3 using the statsmodels package). Due to 213 

data resolution limits, the linear model was run on the aggregated values of threshold elevation 214 

and predictor variables for each watershed. The areal overlap of all the datasets formed the extent 215 

of the analyses as all variables needed to be present in a watershed for it to be included in the 216 

model. We fit a linear regression model to explain the median threshold elevation for 68 217 

watersheds within the Chesapeake Bay (Figure 2). The model started with 14 variables which we 218 

assessed for multicollinearity using a pairwise correlation matrix and variance inflation factors 219 

(VIF) (calculated in Python) (Zuur et al., 2009). Highly correlated variables (Pearson’s r greater 220 

> 0.5) and those with a VIF above 5 were removed. The remaining variables were run in the 221 

model, followed with a backward stepwise selection whereby we eliminated insignificant 222 

variables until only significant variables remained. We calculated percent error for each 223 

watershed to validate the results of the model.  224 
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2.4 Comparison to tidally determined threshold elevations 225 

We quantified how three different methods of determining the marsh-forest boundary 226 

alter threshold elevations as well as predictions of future marsh migration area: a single value for 227 

the region (Mitchell et al., 2020), a tidal datum (NOAA Office for Coastal Management, 2019), 228 

and our spatially explicit marsh-forest boundary delineations (Molino et al., 2022). To calculate 229 

the difference in threshold elevation between a single, tidally-derived value and the spatially 230 

explicit methods, we compared a single value for threshold elevation for Virginia approximated 231 

from highest astronomical tide (HAT) (Mitchell et al., 2020), to unique threshold elevations for 232 

each watershed determined by our marsh-forest boundary delineations (Molino et al., 2022). 233 

Similarly, we extracted the value of mean higher high water spring (MHHWS) (Holmquist et al., 234 

2019) at each marsh-forest boundary point and compared the value to threshold elevations 235 

created independently from current marsh and forest extents (Molino et al., 2022). To quantify 236 

the predicted marsh migration area determined by the tidal datum method, we summed the total 237 

upland area between the current marsh-upland boundary and the predicted Mean Higher High 238 

Water (MHHW) level for the entire study area under two SLR scenarios (0.45 and 1.22 m by 239 

2100). This tidal datum corresponds to the predicted landward extent of brackish/transition 240 

marsh in NOAA’s Office of Coastal Management Sea Level Rise Viewer (NOAA Office for 241 

Coastal Management, 2019). We then compared the upland area predicted to convert based on 242 

MHHW with the area predicted to convert to salt marsh under comparable SLR scenarios but 243 

using both the single threshold value method (Mitchell et al., 2020) as well as independently 244 

determined threshold elevations (Molino et al. 2022). 245 
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3 Results 246 

The median of the 95,286 threshold elevation points in Chesapeake Bay is 0.54 m. 247 

Median threshold elevation for each watershed varies from 0.2 m North American Vertical 248 

Datum of 1988 (NAVD88) in the southernmost watersheds to 1.05 m NAVD88 in the Virginia 249 

Atlantic coastal lagoons (Figure 1). Simple linear regression revealed that tidal range and salinity 250 

had the best simple linear model fits with threshold elevation at the point and watershed scales 251 

(Figure 3). Threshold elevation increased significantly with tidal range, on the scale of individual 252 

points (p<0.00001) and watersheds (p<0.0001) (Figure 3). Threshold elevation similarly 253 

increased with salinity at point (p<0.00001) and watershed (p<0.01) scales (Figure 3). These 254 

relationships are consistent with probability distribution functions in paired representative 255 

watersheds, where two of the three variables (tidal range, salinity, slope) were held constant 256 

(Figure 4). For example, probability distribution functions of threshold elevations within 257 

watersheds with high tidal range (Metompkin) and low tidal range (Upper Chincoteague) display 258 

a positive skew of threshold elevation in the watershed with the higher tidal range (Figure 4b). 259 

These watersheds are located in a similar geographic area (Supporting Information Figure S1) 260 

and have similar median salinities (32.1 vs 32.2 ppt) and slopes (2.51 vs 2.62 %), suggesting that 261 

tidal range alone is responsible for the variation in threshold elevation.  262 

 The multiple linear regression explained 44% of the variability in threshold elevations at 263 

the watershed scale. The significant variables determined by the regression confirmed the 264 

relationship between threshold elevation and tidal range and salinity, with tidal range as the most 265 

important variable in determining threshold elevation at the watershed scale. However, the linear 266 

model also found that slope across the marsh-forest boundary is a significant variable (Table 1). 267 

Despite only having a significant relationship at the point (p<0.00001), not watershed (p=0.14) 268 
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scale, slope has a higher coefficient than salinity (Table 1). No other input variables had a 269 

significant relationship with threshold elevation. 270 

Marsh-forest boundary threshold elevations obtained using a single value from a tidal 271 

datum (e.g. highest astronomical tide), under- or over-estimated spatially explicit threshold 272 

elevations by 0.29-0.44 m (Table 2). The most pronounced difference between the two methods 273 

is in the high tidal range Atlantic coastal lagoons (Figure 2a; Supporting Information Figure 274 

S13). Using the single value method for upland conversion, projections can result in similar mis-275 

representations of future marsh area on the order of 10s of square kilometers (Figure 5a,b). 276 

Predictions of land conversion in the Chesapeake Bay region based on tidal datum (mean high 277 

water) alone suggest that 276 km2 of uplands will convert to estuarine wetlands with 0.45 m of 278 

SLR and 968 km2 of uplands will convert with 1.22 m of SLR (NOAA Office for Coastal 279 

Management, 2019). If brackish/transitional marsh is included (up to mean high water spring), 280 

the area increases to 778 km2 and 1482 km2 with 0.45 m and 1.22 m, respectively (NOAA Office 281 

for Coastal Management, 2019). These predictions do not allow currently developed or 282 

agricultural land to convert to marsh under any sea level rise scenario. Predictions which rely on 283 

threshold elevations determined independently of a tidal datum suggest that 962 and 1658 km2 of 284 

uplands will convert with 0.45 m and 1.22 m of SLR (Molino et al., 2022), with impervious 285 

surfaces and agricultural land cover types removed (Chesapeake Conservancy, 2018). Deviations 286 

in predicted land conversion area within individual watersheds in some locations are in the 287 

opposite direction of regional predictions. For example, in North Landing River, one of the 288 

southernmost watersheds (HUC1 in Supporting Information Figure S1), 74 and 93 km2 of 289 

uplands are predicted to convert to marsh under Low and Intermediate SLR scenarios by 290 

methods which rely on tidal datums (MHWS) (Figure 5, Table 2), while only 61 and 84 km2 are 291 
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predicted to convert under similar SLR scenarios using spatially explicit threshold elevations 292 

(Figure 5, Table 2). 293 

4 Discussion 294 

 4.1 Macro-scale drivers of threshold elevation 295 

Strong gradients in tide range (0-1.21 m), salinity (<1-33 ppt), and other identified drivers 296 

of coastal treeline elevation make the Chesapeake Bay a dynamic system in which to apply the 297 

multiple linear regression model to understand macro-scale drivers of forest retreat (Figure 2). 298 

Our finding that threshold elevations increase with tidal range (Figure 3a) and that tidal range is 299 

the strongest predictor of threshold elevation in the multiple linear regression model (Table 1) 300 

supports the conceptual framework that tidal inundation is the dominant control on the lower 301 

bounds of the coastal treeline (Wasson et al., 2013; Williams et al., 1999). A similar relationship 302 

has been suggested for marshes across the coast of Mississippi in the Gulf of Mexico (Anderson 303 

et al., 2022). However, Mean High Water (MHW) only differs by 3.4 cm between tide gauges 304 

along the Mississippi coastline due to the regional geomorphic planform and hydrodynamics 305 

(Passeri et al., 2015), limiting the ability to test the effect of tidal range on threshold elevation 306 

across a broader range of conditions. Chesapeake Bay, as a large drowned river valley estuary, 307 

has greater variability in tide range and MHW along its coastal fringe and up tributaries, which 308 

facilitates assessment of this relationship. Indeed, machine learning applications have identified 309 

tidal variables as a key predictor of marsh migration area for all estuary types, including drowned 310 

river valleys, river estuaries, coastal bays, barrier estuaries, and intermittently closed and open 311 

lakes and lagoons (Hughes et al., 2022). The relationship between astronomical tidal range and 312 

threshold elevation is likely weakened by meteorological influences on tidal range. In microtidal 313 
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settings such as the Chesapeake Bay, wind has a significant impact on tides (Xiong & Berger, 314 

2010), potentially increasing flooding frequency along marsh-forest boundaries in the lower tidal 315 

range portions of the region. As flood frequency can limit tree survival (Williams et al., 1999), 316 

we would expect this to influence the lower limit of coastal forests and weaken tide range as a 317 

variable.  318 

 Salinization of freshwater ecosystems is shifting species composition and limiting the 319 

extent of freshwater and terrestrial forests (Ensign & Noe, 2018; Noe et al., 2021; Taillie et al., 320 

2019; Tully et al., 2019; E. White & Kaplan, 2017). Increases in salinity to coastal ecosystems 321 

commonly accompany increases in inundation from sea level rise (Williams et al., 1999), 322 

although salinization of tidal freshwater forests can independently affect tree mortality (Noe et 323 

al., 2021). Consistent with this conceptual framework, we find that threshold elevations increase 324 

with salinity (Figure 3b), and that salinity is a key driver of threshold in the multiple linear 325 

regression model (Table 1). Within the Atlantic coastal lagoon watersheds, which have the 326 

highest salinities in our study region (Figure 2a), exposure to highly saline waters from salt spray 327 

during storms measurably deviated the elevation of the coastal treeline from that expected by 328 

tidal range alone (Boon et al., 1977). In low salinity and low slope environments, representative 329 

of watersheds interspersed throughout our study region (Figure 2a,b), shading from plants has 330 

been shown to reduce evapotranspiration and facilitate forest regeneration, extending the lower 331 

limit of terrestrial forest, irrespective of increases in sea level rise and tidal inundation (Poulter et 332 

al., 2009; Veldkornet et al., 2015).   333 

 Regional slope has long been assumed to drive variability in lateral forest retreat rates, 334 

such that sea level rise inundates large areas and forest retreat rates are rapid in gently sloping 335 

regions (Brinson et al., 1995; Field et al., 2016; J. A. M. Smith, 2013). However, field evidence 336 
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supporting this relationship in Chesapeake Bay has been weak (Schieder et al., 2018) and in 337 

some cases it has been suggested that vertical migration rates are actually faster in high slope 338 

environments (Fagherazzi et al., 2019). Our finding that higher threshold elevations are found in 339 

higher slope environments therefore complicates the general assumption that forest retreat is 340 

fastest in low slope environments (Figure 4d, Table 1). There are several possible explanations 341 

for this finding. Steep slope environments are potentially more vulnerable to inundation because 342 

they have narrower transition zones from salt marsh to terrestrial forest, so that pulses of 343 

saltwater have a shorter distance to travel to reach freshwater ecosystems (Brinson et al., 1995; 344 

Fagherazzi et al., 2019). However, our model found no significant relationship between threshold 345 

elevation and distance to open water (Table 1). Higher slope environments are likely to have a 346 

greater outflow of fresh groundwater at the slope break, which occurs near the marsh-forest 347 

boundary (Brinson et al., 1995). While freshwater inputs would tend to reduce salinities and 348 

therefore potentially allow terrestrial vegetation to survive lower elevations (e.g. Figure 3b), 349 

regular saturation, even by freshwater, can stress terrestrial vegetation and deteriorate the soil 350 

organic matter (McDowell et al., 2022). Nevertheless, the unexpected positive relationship 351 

between threshold elevation and slope would benefit from further field investigations into the 352 

causal mechanisms at play.  353 

Despite tidal range, salinity, and slope all having significant relationships with threshold 354 

elevation, the strength of these relationships was generally weak. It is possible that mild 355 

correlation between tidal range and salinity (R2 = 0.13, p < 0.01) and average slope and salinity 356 

(R2 = 0.11, p < 0.01) could be responsible. Tidal range and salinity tend to vary spatially with 357 

each other across the Chesapeake Bay region, where both salinity and tidal range are maximized 358 

at the mouth of the Bay and in the Atlantic coastal lagoons (Figure 2). Similarly, average slope 359 
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and salinity vary inversely with each other, despite differing reasons for these spatial trends 360 

(geomorphology vs proximity with the Atlantic Ocean) (Figure 2). Data resolution and quality 361 

also likely play a role in the weak model fit. For example, tidal range and salinity are both model 362 

outputs with low resolution (400-600 m; Table 1). Data for these variables do not exist at the 363 

marsh-forest boundary so the values used in the model are the median modeled values for each 364 

watershed.    365 

Several previously established relationships between macro-scale environmental 366 

variables and forest mortality were found to be insignificant drivers of threshold elevation in our 367 

analysis. For example, storms act as a pulse disturbance that potentially results in rapid forest 368 

retreat (Fagherazzi et al., 2019; Miller et al., 2021; Ury et al., 2021). Hurricane Isabel, the largest 369 

named storm to affect the region since 1954, had storm surge reaching 2.4 m above highest 370 

astronomical tide in some areas of Chesapeake Bay and inundation which lasted for several days 371 

(Beven & Cobb, 2004). Hurricane Isabel likely resulted in a pulse of coastal forest retreat, at 372 

least in portions of the Chesapeake Bay near the Blackwater River, Maryland (Schieder & 373 

Kirwan, 2019). However, neither maximum depth of inundation nor inundation duration at the 374 

marsh-forest boundary was significantly correlated with threshold elevation in our analysis 375 

(Table 1). It remains unclear whether the storm impacts were short-lived and/or too localized to 376 

be relevant to the large spatial scales considered in our analysis, or whether the coarse resolution 377 

of the storm dataset (100-300 m) obscured trends. Further work is needed to quantify how 378 

flooding from repeated storm events might influence coastal forest retreat.  379 

Our model also did not reveal a relationship between climate and threshold elevation, 380 

despite a variation of 3.6°C and 496 mm of rainfall throughout the Chesapeake region (Table 1). 381 

Temperature and precipitation are known to influence the growth rate of individual trees subject 382 
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to coastal flooding, and therefore their resilience to climate change and sea level rise (Desantis et 383 

al., 2007; Haaf et al., 2021; Kirwan et al., 2007). More work is needed to determine whether the 384 

insensitivity of threshold elevations to climatic in our analysis is real, or due to coarse data 385 

resolution.  386 

4.2 Micro-scale drivers of threshold elevation 387 

Interactions between local biotic and abiotic factors and global drivers can alter 388 

landscape-scale patterns in ecosystem transitions (Suding et al., 2015; Yando et al., 2018). 389 

Despite macro-scale drivers of threshold elevation (Figure 4, Table 1), the limited explanatory 390 

power of our linear model (44%) suggests that local drivers may additionally influence threshold 391 

elevation in ways that are not sufficiently captured in our large-scale analysis of the Chesapeake 392 

Bay region. Field observations suggest that tree species, hydrology, microtopography, and land 393 

use alter the expected threshold elevation from our model predictions (Figure 6).  394 

Individual tree species response to local shifts in groundwater salinity and depth can alter 395 

coastal forest retreat irrespective of estuary-wide salinity trends (Gardner et al., 2002; Sacatelli et 396 

al., 2023; Thibodeau et al., 1998; Williams et al., 2007). The coastal forest in the Chesapeake 397 

Bay varies in composition from freshwater forested wetlands to loblolly pine forests to 398 

heterogeneous mixtures of pines and deciduous trees. Freshwater forested wetland species 399 

common to the southeastern U.S., such as bald cypress (Taxodium distichum), tend to be more 400 

tolerant to saturated soil conditions then terrestrial forests comprised of less flood tolerant 401 

species, such as red maple (Acer rubrum) (Kozlowski, 2002). Coastal tree species exist along a 402 

similar salinity gradient with coniferous trees, such as American holly (Ilex opaca) and eastern 403 

red cedar (Juniperus virginiana), considered to be more salt tolerant than deciduous trees (USDA 404 

NRCS Plant Materials Program, 2002b, 2002a). Younger age classes of both deciduous and 405 
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coniferous tree species are particularly susceptible to stress from salt and saturated soils. Red 406 

maple (Acer rubrum) seedlings experience reduced growth with saltwater flooding (Conner & 407 

Askew, 1993), while loblolly pine (Pinus taeda) experiences limited seedling recruitment in 408 

saturated soils (Kirwan et al., 2007). The ecological response of individual species based on 409 

unique flood and salt tolerances has the potential to hinder or accelerate the rate of coastal forest 410 

retreat across the estuary. 411 

As sea level rises, the depth to groundwater and thickness of the unsaturated zone are 412 

predicted to decrease (Flemming et al., 2021), which may alter soil saturation and porewater 413 

salinity of the coastal zone. While high-resolution groundwater data does not yet exist on the 414 

scale of the Chesapeake Bay, we have observed indicator wetland species such as narrowleaf 415 

cattail (Typha angustifolia), commonly a sign of freshwater seepage (Silberhorn, 1999), along 416 

the marsh-forest boundary in one of our saltiest watersheds in the Atlantic coastal lagoons 417 

(Figure 2b), which illustrates a complex local hydrology (Figure 6b). Additional research is 418 

needed to scale up the relationship between individual tree species and groundwater dynamics to 419 

better capture the ecological response of coastal forests to sea level rise.   420 

 Microtopographic highs along the marsh-forest boundary can result in the presence of 421 

trees in areas that are below where terrestrial forests are predicted to occur. Trees in retreating 422 

coastal forests are commonly found on microtopographic highs such as the stumps or snags of 423 

dead trees (W. S. Kearney et al., 2019; Williams et al., 2007). These hummocks are high enough 424 

above regular inundation that seedlings of terrestrial tree species can germinate and grow (Figure 425 

6c) and freshwater input from rainfall maintains healthier root zones compared to the anoxic 426 

soils of hollows (Krauss et al., 2023). Digital elevation models, even at high resolutions of 1 m 427 

(Danielson & Tyler, 2016), are likely not able to capture these local topographic highs, resulting 428 
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in the threshold elevations that more closely reflect the lower elevation areas where marsh 429 

vegetation is present.  430 

Roads, ditches, and levees constructed in the coastal plain can artificially alter the 431 

apparent elevation of transition between marsh and upland ecosystems. In the Chesapeake Bay, 432 

small earthen levees at the boundary between marsh and upland reduce tidal inundation of 433 

agricultural and private lands (Hall et al., 2022; Putalik & Davis, 2022). These earthen levees can 434 

have large trees growing on them (Figure 6a) making it difficult to discern between a natural 435 

marsh-forest boundary and a forested levee with anomalously high threshold elevations. No 436 

dataset of privately-owned levees exists for the Chesapeake region, making it difficult to identify 437 

threshold elevation points which fall on these features. Together, these local drivers make it 438 

difficult to quantify threshold elevations, and limit our ability to predict future marsh migration 439 

into retreating terrestrial ecosystems.  440 

4.3 Implications for projections of future marsh migration area 441 

Quantifying the drivers of shifting ecotones is a critical step for predicting the impacts of 442 

sea level rise on future land use change. For example, most projections of future marsh area rely 443 

on selecting a tidal datum that defines the current landward boundary of marsh extent (Holmquist 444 

et al., 2021; Mitchell et al., 2020), or selecting a tidal datum as the future boundary of marsh 445 

extent (Buchanan et al., 2022; Osland et al., 2022; Warnell et al., 2022). However, our results 446 

demonstrate that the elevation of transition (i.e., threshold elevation in m NAVD88) between 447 

marsh and forest varies substantially with salinity, slope, and local drivers. Where a single value, 448 

such as HAT, or MHHWS are used to dictate the current landward extent of salt marshes 449 

(Holmquist et al., 2021; Mitchell et al., 2020), the resulting threshold elevations can differ from 450 

our measured threshold elevations by 0.29-0.44 m (Table 2). This difference is similar to or 451 
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exceeds the magnitude of projected sea level rise in Chesapeake Bay by 2050 (Sweet et al., 452 

2017) and suggests that projections which use tidal datums as a proxy for threshold elevations 453 

miss the majority of variability. As a result, future marsh area projections made using a single 454 

value for threshold elevation across watersheds with different topographies and salinities can 455 

vary widely from projections made using spatially explicit delineations of the marsh-forest 456 

boundary (Figure 5a,b). For example, in watersheds with low salinities and corresponding low 457 

threshold elevations, projected marsh migration areas can be underestimated by 200-400% when 458 

a single threshold elevation is applied regionally (Table 2).  459 

Our results also differ from studies which rely solely on tidal datums, where future salt 460 

marsh extent is dictated by the location and elevation of future Mean High Water (MHW) and 461 

the limit of brackish/transitional marsh is dictated by future mean high water spring (MHWS) 462 

(NOAA Office for Coastal Management, 2019). As discussed previously, actual threshold 463 

elevations are highly variable in Chesapeake Bay and cannot be described solely through tidal 464 

datums. Projections of future marsh migration area under the Low SLR Scenario (0.45 m) made 465 

using our spatially explicit approach (962 km2; Molino et al. 2022) are similar to those using 466 

future MHWS as the landward extent of marsh (778 km2; NOAA Office of Coastal Management 467 

2019). We attribute differences in marsh migration area estimates between methods at a 468 

watershed-scale largely to variation in macro-scale drivers. In high salinity watersheds, such as 469 

the Virginia Atlantic coastal lagoons, projections based on tidal datums alone tend to 470 

underestimate marsh migration area (Table 2). In low salinity watersheds, such as North Landing 471 

River, Virginia, projections based on tidal datums alone tend to overestimate marsh migration 472 

area (Figure 5b,c). Nevertheless, differences in projected marsh migration area under alternative 473 

methods lessen under higher SLR scenarios (Table 2). Rates of relative sea level rise and 474 
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planning timelines for decision-making are essential considerations when selecting a projection 475 

method (Gesch, 2012), with the spatially explicit approach providing additional insight on 476 

shorter timespans and lower SLR scenarios. 477 

The physical and climatic drivers which are used to predict ecosystem change also have 478 

uncertain future trends. Global climate models predict increases and decreases in future annual 479 

precipitation which will have a strong influence on estuarine salinity gradients. Similarly, tidal 480 

range may vary in the future based on changes in mean sea level and shoreline hardening (Blyth 481 

Lee et al., 2017; Cai et al., 2022), which is further complicated by shifts in storminess that cause 482 

barrier islands to form and breach, limiting or increasing tidal flushing (Yellen et al., 2023). Our 483 

work demonstrates a path forward to incorporating these complex and dynamic changes into 484 

future predictions of land use change by utilizing independently established ecosystem 485 

boundaries rather than static tidal datums. This approach is particularly important along spatially 486 

variable coastlines such as the North American Atlantic seaboard where limited resources are 487 

being split between flood adaptation and defense measures. With global marshes predicted to 488 

struggle to keep pace with SLR in the vertical dimension (Saintilan et al., 2022), lateral 489 

migration is becoming a dominant large-scale conservation option. Conservation efforts may be 490 

implemented at regional or local levels (Coastal Protection and Restoration Authority of 491 

Louisiana, 2017; Millard et al., 2013). Therefore, local-regional predictions based on higher 492 

resolution input datasets (Van Coppenolle & Temmerman, 2020; Enwright et al., 2016) are 493 

needed to inform management of coastal ecosystems and ensure maintenance of global marsh 494 

area into the coming decades. 495 
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5 Conclusions 496 

Global processes, such as sea level rise, are responsible for landscape-scale shifts in 497 

coastal ecosystems extent (Hein & Kirwan, In press; A. J. Smith & Goetz, 2021; E. White & 498 

Kaplan, 2017). We found that within the Chesapeake Bay, tidal range, salinity, and slope are 499 

macro-scale drivers of coastal forest conversion to marsh. The importance of tidal inundation and 500 

salinity as abiotic controls on the lower limit of coastal forest is well supported (J. A. M. Smith, 501 

2013; Veldkornet et al., 2015; Williams et al., 1999), while the positive relationship between 502 

slope and threshold elevation suggests more complex underlying dynamics at play. However, the 503 

combined influence of these macro-scale drivers explains less than half of the regional variability 504 

in threshold elevation. This unexplained variability suggests that micro-scale drivers, such as 505 

hydrology, microtopography, and infrastructure, are also strong controls on the location of the 506 

marsh-forest boundary. Thus, our work finds that conventional methods that rely on tidal datums 507 

to predict the marsh-forest boundary may produce projections that over- or under-estimate future 508 

marsh migration areas.  509 

 510 

Acknowledgments 511 

This work was funded by the U.S. Geological Survey Climate Research and Development and 512 

the U.S. Geological Survey Coastal and Marine Hazards and Resources Program. Additional 513 

funding was provided from the National Science Foundation CAREER, LTER, and CZN 514 

programs (EAR-1654374, DEB-1832221, and EAR-2012670). We would like to thank Marjy 515 

Friedrichs and Pierre St-Laurent for providing the salinity model output, Yaping Chen for 516 

curating the climate datasets, and Alfredo Aretxabaleta for navigating the ADCIRC Prediction 517 

System to provide the Hurricane Isabel product used in this study. Any use of trade, firm, or 518 



manuscript submitted to JGR: Biogeosciences 

 

product names is for descriptive purposes only and does not imply endorsement by the U.S. 519 

Government. 520 

  521 

Open Research 522 

Data Availability Statement 523 

Threshold elevation data is available in the Environmental Data Initiative repository (Molino, 524 

Carr, et al., 2021). Watershed-scale dataset containing all 14 variables used in the linear model 525 

can be found in Table 1 in Supporting Information and in the Environmental Data Initiative 526 

repository (Molino et al., 2023). Python script used to run the linear model is published in the 527 

Environmental Data Initiative repository (Molino et al., 2023). Original dataset sources and link 528 

to the data are compiled in Table 1 and cited in-text (Methods 2.2 Input variables). Marsh 529 

migration projections are available through the NOAA Sea Level Rise Viewer [dataset] 530 

(https://coast.noaa.gov/slr/). Linear model was run using open source software (Python 3 531 

[software], https://www.python.org/) and statistical modeling package (statsmodel 0.14.0 532 

[software], https://www.statsmodels.org/stable/index.html).  533 

  534 

References 535 

Anderson, C. P., Carter, G. A., & Waldron, M. C. B. (2022). Precise Elevation Thresholds 536 

Associated with Salt Marsh–Upland Ecotones along the Mississippi Gulf Coast. Annals of 537 

the American Association of Geographers. https://doi.org/10.1080/24694452.2022.2047593 538 

Beven, J., & Cobb, H. (2004). Tropical Cyclone Report: Hurricane Isabel. Retrieved from 539 

https://www.nhc.noaa.gov/data/tcr/AL132003_Isabel.pdf 540 

Blyth Lee, S., Li, M., & Zhang, F. (2017). Impact of sea level rise on tidal range in Chesapeake 541 

https://coast.noaa.gov/slr/
https://www.python.org/
https://www.statsmodels.org/stable/index.html


manuscript submitted to JGR: Biogeosciences 

 

and Delaware Bays. Journal of Geophyscial Research: Oceans, 122, 3917–3938. 542 

https://doi.org/10.1002/2016JC012597 543 

Boon, J. D., Boule, M. E., & Silberhorn, G. M. (1977). Delineation of Tidal Boundaries in Lower 544 

Chesapeake Bay and its Tributaries. Special Reports in Applied Marine Science and Ocean 545 

Engineering (SRAMSOE), (No. 140). https://doi.org/10.21220/V50160 546 

Brinson, M. M., Christian, R. R., & Blum, L. K. (1995). Multiple States in the Sea-Level 547 

Induced Transition from Terrestrial Forest to Estuary. Estuaries, 18(4), 648–659. Retrieved 548 

from https://www.jstor.org/stable/1352383 549 

Brittain, R. A., & Craft, C. B. (2012). Effects of sea-level rise and anthropogenic development 550 

on priority bird species habitats in coastal Georgia, USA. Environmental Management, 49, 551 

473–482. https://doi.org/10.1007/s00267-011-9761-x 552 

Buchanan, M. K., Kulp, S., & Strauss, B. (2022). Resilience of U.S. coastal wetlands to 553 

accelerating sea level rise. Environmental Research Communications, 4. 554 

https://doi.org/10.1088/2515-7620/ac6eef 555 

Cai, X., Qin, Q., Shen, J., & Zhang, Y. J. (2022). Bifurcate responses of tidal range to sea-level 556 

rise in estuaries with marsh evolution. Limnology and Oceanography Letters, 7(3), 210–557 

217. https://doi.org/10.1002/lol2.10256 558 

Chen, Y., & Kirwan, M. L. (2022a). A phenology- and trend-based approach for accurate 559 

mapping of sea-level driven coastal forest retreat. Remote Sensing of the Environment, 560 

281(113229). https://doi.org/10.1016/j.rse.2022.113229 561 

Chen, Y., & Kirwan, M. L. (2022b). Climate-driven decoupling of wetland and upland biomass 562 

trends on the mid-Atlantic coast. Nature Geoscience, 15(11), 913–918. 563 

https://doi.org/10.1038/s41561-022-01041-x 564 



manuscript submitted to JGR: Biogeosciences 

 

Chesapeake Conservancy. (2018). Land Use Data Project 2013/2014. [dataset]. Retrieved 565 

September 6, 2019, from https://chesapeakeconservancy.org/conservation-innovation-566 

center/high-resolution-data/land-use-data-project/ 567 

Coastal Protection and Restoration Authority of Louisiana. (2017). Louisiana’s Comprehensive 568 

Master Plan for a Sustainable Coast. Baton Rouge. Retrieved from http://coastal.la.gov/wp-569 

content/uploads/2017/04/2017-Coastal-Master-Plan_Web-Book_CFinal-with-Effective-570 

Date-06092017.pdf 571 

Conner, W. H., & Askew, G. R. (1993). Impact of Saltwater Flooding on Red Maple, Redbay, 572 

and Chinese Tallow Seedlings. Southern Appalachian Botanical Society, 58(3), 214–219. 573 

https://doi.org/https://www.jstor.org/stable/4033645 574 

Van Coppenolle, R., & Temmerman, S. (2020). Identifying Ecosystem Surface Areas Available 575 

for Nature-Based Flood Risk Mitigation in Coastal Cities Around the World. Estuaries and 576 

Coasts, 43, 1335–1344. https://doi.org/10.1007/s12237-020-00718-z 577 

Craft, C., Clough, J., Ehman, J., Jove, S., Park, R., Pennings, S., et al. (2009). Forecasting the 578 

effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology 579 

and the Environment, 7(2), 73–78. https://doi.org/10.1890/070219 580 

Danielson, J., & Tyler, D. (2016). Topobathymetric Model for Chesapeake Bay Region - District 581 

of Columbia, States of Delaware, Maryland, Pennsylvania, and Virginia, 1859 to 2015. 582 

[dataset]. Retrieved January 29, 2020, from 583 

https://topotools.cr.usgs.gov/topobathy_viewer/dwndata.htm 584 

Desantis, L. R. G., Bhotika, S., Williams, K., & Putz, F. E. (2007). Sea-level rise and drought 585 

interactions accelerate forest decline on the Gulf Coast of Florida, USA. Global Change 586 

Biology, 13(11), 2349–2360. https://doi.org/10.1111/j.1365-2486.2007.01440.x 587 



manuscript submitted to JGR: Biogeosciences 

 

Doyle, T. W., Krauss, K. W., Conner, W. H., & From, A. S. (2010). Predicting the retreat and 588 

migration of tidal forests along the northern Gulf of Mexico under sea-level rise. Forest 589 

Ecology and Management, 259(4), 770–777. https://doi.org/10.1016/j.foreco.2009.10.023 590 

Duran Vinent, O., Herbert, E. R., Coleman, D. J., Himmelstein, J. D., & Kirwan, M. L. (2021). 591 

Onset of runaway fragmentation of salt marshes. One Earth, 4, 506–516. 592 

https://doi.org/10.1016/j.oneear.2021.02.013 593 

Ensign, S. H., & Noe, G. B. (2018). Tidal extension and sea-level rise: recommendations for a 594 

research agenda. Frontiers in Ecology and the Environment, 16(1), 37–43. 595 

https://doi.org/10.1002/fee.1745 596 

Enwright, N. M., Griffith, K. T., & Osland, M. J. (2016). Barriers to and opportunities for 597 

landward migration of coastal wetlands with sea-level rise. Frontiers in Ecology and the 598 

Environment, 14(6), 307–316. https://doi.org/10.1002/fee.1282 599 

Ezer, T. (2023). Sea level acceleration and variability in the Chesapeake Bay: past trends, future 600 

projections, and spatial variations within the Bay. Ocean Dynamics, 73(1), 23–34. 601 

https://doi.org/10.1007/s10236-022-01536-6 602 

Ezer, T., & Atkinson, L. P. (2015). Sea Level Rise in Virginia – Causes, Effects and Response. 603 

Virginia Journal of Science, 66(3). https://doi.org/10.25778/8w61-qe76 604 

Fagherazzi, S., Anisfeld, S. C., Blum, L. K., Long, E. V., Feagin, R. A., Fernandes, A., et al. 605 

(2019). Sea level rise and the dynamics of the marsh-upland boundary. Frontiers in 606 

Environmental Science, 7(25). https://doi.org/10.3389/fenvs.2019.00025 607 

Field, C. R., Gjerdrum, C., & Elphick, C. S. (2016). Forest resistance to sea-level rise prevents 608 

landward migration of tidal marsh. Biological Conservation, 201, 363–369. 609 

https://doi.org/10.1016/j.biocon.2016.07.035 610 



manuscript submitted to JGR: Biogeosciences 

 

Flemming, B. J., Raffensperger, J., Goodling, P. J., & Masterson, J. P. (2021). Simulated Effects 611 

of Sea-Level Rise on the Shallow, Fresh Groundwater System of Assateague Island, 612 

Maryland and Virginia: U.S. Geological Survey Scientific Investigations Report 2020–613 

5104. Reston, Virginia. https://doi.org/10.3133/sir20205104. 614 

Gardner, L. R., Reeves, H. W., & Thibodeau, P. M. (2002). Groundwater dynamics along forest-615 

marsh transects in a southeastern salt marsh, USA: Description, interpretation and 616 

challenges for numerical modeling. Wetlands Ecology and Management, 10, 145–159. 617 

Gesch, D. B. (2012). Elevation Uncertainty in Coastal Inundation Hazard Assessments. In S. 618 

Cheval (Ed.), Natural Disasters (pp. 121–140). InTech. https://doi.org/10.5772/31972 619 

Guimond, J. A., & Michael, H. A. (2021). Effects of Marsh Migration on Flooding, Saltwater 620 

Intrusion, and Crop Yield in Coastal Agricultural Land Subject to Storm Surge Inundation. 621 

Water Resources Research, 57. https://doi.org/10.1029/2020WR028326 622 

Guimond, J. A., Yu, X., Seyfferth, A. L., & Michael, H. A. (2020). Using Hydrological-623 

Biogeochemical Linkages to Elucidate Carbon Dynamics in Coastal Marshes Subject to 624 

Relative Sea Level Rise. Water Resources Research, 56. 625 

https://doi.org/10.1029/2019WR026302 626 

Haaf, L., Dymond, S. F., & Kreeger, D. A. (2021). Principal Factors Influencing Tree Growth in 627 

Low-Lying Mid Atlantic Coastal Forests. Forests, 12(10), 1351. 628 

https://doi.org/10.3390/f12101351 629 

Hall, E. A., Molino, G. D., Messerschmidt, T., & Kirwan, M. L. (2022). Hidden levees: Small-630 

scale flood defense on rural coasts. Anthropocene, 40(100350). 631 

https://doi.org/10.1016/j.ancene.2022.100350 632 

Hein, C. J., & Kirwan, M. L. (2024). Marine Transgression in Modern Times. Annual Review of 633 



manuscript submitted to JGR: Biogeosciences 

 

Marine Science, 16. https://doi.org/10.1146/annurev-marine-022123-103802 634 

Holmquist, J. R., Windham-Myers, L., Bernal, B., Byrd, K., Crooks, S., Gonneea, M., et al. 635 

(2019). Coastal Wetland Elevation and Carbon Flux Inventory with Uncertainty, USA, 636 

2006-2011. Oak Ridge, Tennessee, USA. [dataset]. 637 

https://doi.org/10.3334/ORNLDAAC/1650 638 

Holmquist, J. R., Brown, L. N., & MacDonald, G. M. (2021). Localized Scenarios and 639 

Latitudinal Patterns of Vertical and Lateral Resilience of Tidal Marshes to Sea‐Level Rise 640 

in the Contiguous United States. Earth’s Future, 9(6). 641 

https://doi.org/10.1029/2020ef001804 642 

Hughes, M. G., Glasby, T. M., Hanslow, D. J., West, G. J., & Wen, L. (2022). Random Forest 643 

Classification Method for Predicting Intertidal Wetland Migration Under Sea Level Rise. 644 

Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.749950 645 

Hussein, A. H. (2009). Modeling of Sea-Level Rise and Deforestation in Submerging Coastal 646 

Ultisols of Chesapeake Bay. Soil Science Society of America Journal, 73(1), 185–196. 647 

https://doi.org/10.2136/sssaj2006.0436 648 

Hussein, A. H., & Rabenhorst, M. C. (2001). Tidal Inundation of Transgressive Coastal Areas. 649 

Soil Science Society of America Journal, 65, 536–544. 650 

https://doi.org/10.2136/sssaj2001.652536x 651 

Jobe IV, J. G. D., & Gedan, K. (2021). Species-specific responses of a marsh-forest ecotone 652 

plant community responding to climate change. Ecology, 102(4). 653 

https://doi.org/10.1002/ecy.3296 654 

Kearney, M. S., Rogers, A. S., Townshend, J. R. G., Rizzo, E., Stutzer, D., Stevenson, J. C., & 655 

Sundborg, K. (2002). Landsat Imagery Shows Decline of Coastal Marshes in Chesapeake 656 



manuscript submitted to JGR: Biogeosciences 

 

and Delaware Bays. Eos, 83(16), 173–184. https://doi.org/10.1029/2002EO000112 657 

Kearney, W. S., Fernandes, A., & Fagherazzi, S. (2019). Sea-level rise and storm surges 658 

structure coastal forests into persistence and regeneration niches. PLoS ONE, 14(5). 659 

https://doi.org/10.1371/journal.pone.0215977 660 

Kirwan, M. L., Kirwan, J. L., & Copenheaver, C. A. (2007). Dynamics of an Estuarine Forest 661 

and its Response to Rising Sea Level. Journal of Coastal Research, 23(2), 457–463. 662 

https://doi.org/10.2112/04-0211.1 663 

Kirwan, M. L., Walters, D. C., Reay, W. G., & Carr, J. A. (2016). Sea level driven marsh 664 

expansion in a coupled model of marsh erosion and migration. Geophysical Research 665 

Letters, 43(9), 4366–4373. https://doi.org/10.1002/2016GL068507 666 

Kozlowski, T. T. (2002). Physiological-ecological impacts of flooding on riparian forest 667 

ecosystems. Wetlands, 22(3), 550–561. https://doi.org/10.1672/0277-668 

5212(2002)022[0550:PEIOFO]2.0.CO;2 669 

Krauss, K. W., Noe, G. B., Duberstein, J. A., Cormier, N., From, A. S., Doody, T. R., et al. 670 

(2023). Presence of Hummock and Hollow Microtopography Reflects Shifting Balances of 671 

Shallow Subsidence and Root Zone Expansion Along Forested Wetland River Gradients. 672 

Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01227-5 673 

Langston, A. K., Coleman, D. J., Jung, N. W., Shawler, J. L., Smith, A. J., Williams, B. L., et al. 674 

(2021). The Effect of Marsh Age on Ecosystem Function in a Rapidly Transgressing Marsh. 675 

Ecosystems. https://doi.org/10.1007/s10021-021-00652-6 676 

McDowell, N. G., Ball, M., Bond-Lamberty, B., Kirwan, M. L., Krauss, K. W., Megonigal, J. P., 677 

et al. (2022). Processes and mechanisms of coastal woody-plant mortality. Global Change 678 

Biology, 28(20), 5881–5900. https://doi.org/10.1111/gcb.16297 679 



manuscript submitted to JGR: Biogeosciences 

 

Messerschmidt, T. C., Langston, A. K., & Kirwan, M. L. (2021). Asymmetric root distributions 680 

reveal press–pulse responses in retreating coastal forests. Ecology, 102(10), 1–7. 681 

https://doi.org/10.1002/ecy.3468 682 

Millard, K., Redden, A. M., Webster, T., & Stewart, H. (2013). Use of GIS and high resolution 683 

LiDAR in salt marsh restoration site suitability assessments in the upper Bay of Fundy, 684 

Canada. Wetlands Ecology and Management, 21, 243–262. https://doi.org/10.1007/s11273-685 

013-9303-9 686 

Miller, C. B., Rodriguez, A. B., & Bost, M. C. (2021). Sea-level rise, localized subsidence, and 687 

increased storminess promote saltmarsh transgression across low-gradient upland areas. 688 

Quaternary Science Reviews, 265. https://doi.org/10.1016/j.quascirev.2021.107000 689 

Mitchell, M., Herman, J., & Hershner, C. (2020). Evolution of Tidal Marsh Distribution under 690 

Accelerating Sea Level Rise. Wetlands, 40(6), 1789–1800. https://doi.org/10.1007/s13157-691 

020-01387-1 692 

Molino, G. D., Defne, Z., Ganju, N. K., Carr, J. A., Gutenspergen, G. R., & Walters, D. C. 693 

(2020). Slope Values Across Marsh-Forest Boundary in Chesapeake Bay Region, USA. 694 

[dataset]. https://doi.org/10.5066/P9EJ6PGT 695 

Molino, G. D., Carr, J. A., Ganju, N. K., & Kirwan, M. L. (2021). Data Repository for Spatial 696 

Variability in Marsh Vulnerability and Coastal Forest Loss in Chesapeake Bay ver. 2. 697 

Environmental Data Initiative. [dataset]. 698 

https://doi.org/10.6073/pasta/d57c49f666bd8b7ad692a5230573e020 699 

Molino, G. D., Defne, Z., Aretxabaleta, A. L., Ganju, N. K., & Carr, J. A. (2021). Quantifying 700 

Slopes as a Driver of Forest to Marsh Conversion Using Geospatial Techniques: 701 

Application to Chesapeake Bay Coastal-Plain, United States. Frontiers in Environmental 702 



manuscript submitted to JGR: Biogeosciences 

 

Science, 9. https://doi.org/10.3389/fenvs.2021.616319 703 

Molino, G. D., Carr, J. A., Ganju, N. K., & Kirwan, M. L. (2022). Variability in marsh migration 704 

potential determined by topographic rather than anthropogenic constraints in the 705 

Chesapeake Bay region. Limnology and Oceanography Letters, 7(4). 706 

https://doi.org/10.1002/lol2.10262 707 

Molino, G. D., Carr, J. A., Ganju, N. K., & Kirwan, M. L. (2023). Characteristics of the Marsh-708 

Forest Boundary within Chesapeake Bay Region Coastal Watersheds. [dataset]. 709 

https://doi.org/10.6073/pasta/9866ba31b6ee10ade8de22a54a305b6d 710 

NOAA Office for Coastal Management. (2019). Marsh Migration. Charleston, SC: InPort. 711 

[dataset]. Retrieved from https://www.fisheries.noaa.gov/inport/item/55958 712 

Noe, G. B., Cashman, M. J., Skalak, K., Gellis, A., Hopkins, K. G., Moyer, D., et al. (2020). 713 

Sediment dynamics and implications for management: State of the science from long-term 714 

research in the Chesapeake Bay watershed, USA. WIREs Water, 7:e1454. 715 

https://doi.org/10.1002/wat2.1454 716 

Noe, G. B., Bourg, N. A., Krauss, K. W., Duberstein, J. A., & Hupp, C. R. (2021). Watershed 717 

and Estuarine Controls Both Influence Plant Community and Tree Growth Changes in Tidal 718 

Freshwater Forested Wetlands along Two U.S. Mid-Atlantic Rivers. Forests, 12(9). 719 

https://doi.org/10.3390/f12091182 720 

Nordio, G., Frederiks, R., Hingst, M., Carr, J., Kirwan, M., Gedan, K., et al. (2023). Frequent 721 

Storm Surges Affect the Groundwater of Coastal Ecosystems. Geophysical Research 722 

Letters, 50. https://doi.org/10.1029/2022GL100191 723 

Oertel, G. F. (1985). The barrier island system. Marine Geology, 63(1–4), 1–18. 724 

https://doi.org/10.1016/0025-3227(85)90077-5 725 



manuscript submitted to JGR: Biogeosciences 

 

Osland, M. J., Chivoiu, B., Enwright, N. M., Thorne, K. M., Guntenspergen, G. R., Grace, J. B., 726 

et al. (2022). Migration and transformation of coastal wetlands in response to rising seas. 727 

Science Advances, 8(26). https://doi.org/10.1126/sciadv.abo5174 728 

Passeri, D. L., Hagen, S. C., Medeiros, S. C., & Bilskie, M. V. (2015). Impacts of historic 729 

morphology and sea level rise on tidal hydrodynamics in a microtidal estuary (Grand Bay, 730 

Mississippi). Continental Shelf Research, 111, 150–158. 731 

https://doi.org/10.1016/j.csr.2015.08.001 732 

Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of 733 

global surface water and its long-term changes. Nature, 540, 418–422. 734 

https://doi.org/10.1038/nature20584 735 

Perry, J. E., Barnard, T. A., Bradshaw, J. G., Friedrichs, C. T., Havens, K. J., Mason, P. A., et al. 736 

(2001). Creating Tidal Salt Marshes in the Chesapeake Bay. Journal of Coastal Research, 737 

(27), 170–191. Retrieved from https://www.jstor.org/stable/25736172 738 

Poulter, B., Qian, S. S., & Christensen, N. L. (2009). Determinants of coastal treeline and the 739 

role of abiotic and biotic interactions. Plant Ecology, 202, 55–66. 740 

https://doi.org/10.1007/s11258-008-9465-3 741 

PRISM Climate Group Oregon State University. (2019). PRISM Gridded Climate Data. 742 

[dataset]. Retrieved July 7, 2021, from https://prism.oregonstate.edu 743 

Putalik, E., & Davis, B. (2022). Bay Migrations. Retrieved October 25, 2022, from 744 

https://placesjournal.org/article/climate-and-migration-in-the-chesapeake-marsh/?cn-745 

reloaded=1&cn-reloaded=1#0 746 

Robichaud, A., & Begin, Y. (1997). The Effects of Storms and Sea-Level Rise on a Coastal 747 

Forest Margin in New Brunswick, Eastern Canada. Journal of Coastal Research, 13(2), 748 



manuscript submitted to JGR: Biogeosciences 

 

429–439. Retrieved from https://www.jstor.org/stable/4298638 749 

Sacatelli, R., Kaplan, M., Carleton, G., & Lathrop, R. G. (2023). Coastal Forest Dieback in the 750 

Northeast USA: Potential Mechanisms and Management Responses. Sustainability, 751 

15(6346). https://doi.org/10.3390/su15086346 752 

Saintilan, N., Kovalenko, K. E., Guntenspergen, G., Rogers, K., Lynch, J. C., Cahoon, D. R., et 753 

al. (2022). Constraints on the adjustment of tidal marshes to accelerating sea level rise. 754 

Science, 377(6605), 523–527. https://doi.org/10.1126/science.abo7872 755 

Schieder, N. W., & Kirwan, M. L. (2019). Sea-level driven acceleration in coastal forest retreat. 756 

Geology, 47(12), 1151–1155. https://doi.org/10.1130/G46607.1 757 

Schieder, N. W., Walters, D. C., & Kirwan, M. L. (2018). Massive Upland to Wetland 758 

Conversion Compensated for Historical Marsh Loss in Chesapeake Bay, USA. Estuaries 759 

and Coasts, 41, 940–951. https://doi.org/10.1007/s12237-017-0336-9 760 

Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke, D., et al. (2018). 761 

Future response of global coastal wetlands to sea-level rise. Nature, 561(7722), 231–234. 762 

https://doi.org/10.1038/s41586-018-0476-5 763 

Shaw, P., Jobe, J., & Gedan, K. B. (2022). Environmental Limits on the Spread of Invasive 764 

Phragmites australis into Upland Forests with Marine Transgression. Estuaries and Coasts, 765 

45(2), 539–550. https://doi.org/10.1007/s12237-021-00980-9 766 

Silberhorn, G. M. (1999). Common Plants of the Mid-Atlantic Coast: A Field Guide (Revised). 767 

Baltimore: The Johns Hopkins University Press. 768 

Smith, A. J., & Goetz, E. M. (2021). Climate change drives increased directional movement of 769 

landscape ecotones. Landscape Ecology. https://doi.org/10.1007/s10980-021-01314-7 770 

Smith, A. J., & Kirwan, M. L. (2021). Sea Level-Driven Marsh Migration Results in Rapid Net 771 



manuscript submitted to JGR: Biogeosciences 

 

Loss of Carbon. Geophysical Research Letters, 48. https://doi.org/10.1029/2021GL092420 772 

Smith, J. A. M. (2013). The Role of Phragmites australis in Mediating Inland Salt Marsh 773 

Migration in a Mid-Atlantic Estuary. PLoS ONE, 8(5). 774 

https://doi.org/10.1371/journal.pone.0065091 775 

Suding, K. N., Farrer, E. C., King, A. J., Kueppers, L., & Spasojevic, M. J. (2015). Vegetation 776 

change at high elevation: scale dependence and interactive effects on Niwot Ridge. Plant 777 

Ecology and Diversity, 8(5–6), 713–725. https://doi.org/10.1080/17550874.2015.1010189 778 

Sweet, W. V., Kopp, R. E., Weaver, C. P., Obeysekera, J., Horton, R. M., Thieler, E. R., & 779 

Zervas, C. (2017). Global and Regional Sea Level Rise Scenarios for the United States. 780 

NOAA Technical Report NOS CO-OP 83. [dataset]. Retrieved from 781 

https://tidesandcurrents.noaa.gov/publications/techrpt83_Global_and_Regional_SLR_Scena782 

rios_for_the_US_final.pdf 783 

Taillie, P. J., Moorman, C. E., Poulter, B., Ardón, M., & Emanuel, R. E. (2019). Decadal-Scale 784 

Vegetation Change Driven by Salinity at Leading Edge of Rising Sea Level. Ecosystems, 785 

22(8), 1918–1930. https://doi.org/10.1007/s10021-019-00382-w 786 

Thibodeau, P. M., Gardner, L. R., & Reeves, H. W. (1998). The role of groundwater flow in 787 

controlling the spatial distribution of soil salinity and rooted macrophytes in a southeastern 788 

salt marsh, USA. Mangroves and Salt Marshes, 2, 1–13. 789 

https://doi.org/10.1023/A:1009910712539 790 

Tully, K., Gedan, K., Epanchin-Niell, R., Strong, A., Bernhardt, E. S., Bendor, T., et al. (2019). 791 

The Invisible Flood: The Chemistry, Ecology, and Social Implications of Coastal Saltwater 792 

Intrusion. BioScience, 69(5), 368–378. https://doi.org/10.1093/biosci/biz027 793 

U.S. Fish and Wildlife Service. (2018). National Wetlands Inventory: Wetlands Mapper. U.S. 794 



manuscript submitted to JGR: Biogeosciences 

 

Department of the Interior, Fish and Wildlife Service, Washington, D.C. [dataset]. 795 

Retrieved from https://www.fws.gov/wetlands/ 796 

Ury, E. A., Yang, X., Wright, J. P., & Bernhardt, E. S. (2021). Rapid deforestation of a coastal 797 

landscape driven by sea‐level rise and extreme events. Ecological Applications, 31(5). 798 

https://doi.org/10.1002/eap.2339 799 

USDA NRCS Plant Materials Program. (2002a). Plant Fact Sheet: American Holly. Retrieved 800 

July 18, 2023, from https://plants.usda.gov/DocumentLibrary/factsheet/pdf/fs_ilop.pdf 801 

USDA NRCS Plant Materials Program. (2002b). Plant Fact Sheet: Eastern Red Cedar. Retrieved 802 

July 18, 2023, from https://plants.usda.gov/DocumentLibrary/factsheet/pdf/fs_juvi.pdf 803 

USGS. (2020). USGS Watershed Boundary Dataset (WBD) for 2-digit Hydrologic Unit - 02 804 

(published 20201203). ScienceBase. U.S. Geological Survey (USGS). [dataset]. Retrieved 805 

from https://www.sciencebase.gov/catalog/item/5a1632b2e4b09fc93dd171d9 806 

Veldkornet, D. A., Adams, J. B., & Potts, A. J. (2015). Where do you draw the line? 807 

Determining the transition thresholds between estuarine salt marshes and terrestrial 808 

vegetation. South African Journal of Botany, 101, 153–159. 809 

https://doi.org/10.1016/j.sajb.2015.05.003 810 

Warnell, K., Olander, L., & Currin, C. (2022). Sea level rise drives carbon and habitat loss in the 811 

U.S. mid-Atlantic coastal zone. PLOS Climate, 1(6). 812 

https://doi.org/10.1371/journal.pclm.0000044 813 

Wasson, K., Woolfolk, A., & Fresquez, C. (2013). Ecotones as Indicators of Changing 814 

Environmental Conditions: Rapid Migration of Salt Marsh–Upland Boundaries. Estuaries 815 

and Coasts, 36, 654–664. https://doi.org/10.1007/s12237-013-9601-8 816 

White, E., & Kaplan, D. (2017). Restore or retreat? Saltwater intrusion and water management in 817 



manuscript submitted to JGR: Biogeosciences 

 

coastal wetlands. Ecosystem Health and Sustainability, 3(1). 818 

https://doi.org/10.1002/ehs2.1258 819 

White, E. E., Ury, E. A., Bernhardt, E. S., & Yang, X. (2021). Climate Change Driving 820 

Widespread Loss of Coastal Forested Wetlands Throughout the North American Coastal 821 

Plain. Ecosystems. https://doi.org/10.1007/s10021-021-00686-w 822 

Williams, K., Ewel, K. C., Stumpf, R. P., Putz, F. E., Workman, T. W., Williams, K., et al. 823 

(1999). Sea-Level Rise and Coastal Forest Retreat on the West Coast of Florida, USA. 824 

Ecology, 80(6), 2045–2063. Retrieved from https://www.jstor.org/stable/176677 825 

Williams, K., MacDonald, M., & McPherson, K. (2007). Chapter 10 - Ecology of the Coastal 826 

Edge of Hydric Hammocks on the Gulf Coast of Florida. In W. H. Conner, T. W. Doyle, & 827 

K. W. Krauss (Eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern 828 

United States (pp. 255–289). Springer. 829 

Xiong, Y., & Berger, C. R. (2010). Chesapeake Bay Tidal Characteristics. Journal of Water 830 

Resource and Protection, 2, 619–628. https://doi.org/10.4236/jwarp.2010.27071 831 

Yando, E. S., Osland, M. J., & Hester, M. W. (2018). Microspatial ecotone dynamics at a 832 

shifting range limit: plant–soil variation across salt marsh–mangrove interfaces. Oecologia, 833 

187, 319–331. https://doi.org/10.1007/s00442-018-4098-2 834 

Yellen, B., Woodruff, J. D., Baranes, H. E., Engelhart, S. E., Geywer, W. R., Randall, N., & 835 

Griswold, F. R. (2023). Salt Marsh Response to Inlet Switch‐Induced Increases in Tidal 836 

Inundation. Journal of Geophysical Research: Earth Surface, 128. 837 

https://doi.org/10.1029/2022jf006815 838 

Zinnert, J. C., Via, S. M., Nettleton, B. P., Tuley, P. A., Moore, L. J., & Stallins, J. A. (2019). 839 

Connectivity in coastal systems: Barrier island vegetation influences upland migration in a 840 



manuscript submitted to JGR: Biogeosciences 

 

Figure 4. a) Probability density estimate for all spatially explicit threshold elevation points within the study region. b-d) 
Paired-watershed analysis comparing the elevation distribution of representative watersheds, where 2 of 3 variables are 
similar. Panel b compares probability density estimates for two watersheds with high (1.08 m) and low (0.19 m) tidal ranges. 
Panel c compares probability density estimates for two watersheds with high (31.3 ppt) and low (2.1 ppt) salinities. Panel d 
compares probability density estimates for two watersheds with high (3.1%) and low (2.7 %) slope. In panels b-d, vertical 
lines represent median threshold elevation for each watershed, and are significantly different from each other. The locations 
of each watershed are shown in Supporting Information Figure S1. Tidal data obtained from the National Oceanic and 
Atmospheric Administration (NOAA) VDatum. Salinity data from St. Laurent et al., 2021. 
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Figure 1. a-b) Example of a marsh-forest boundary on a York River tributary, Virginia. a) Forest extent determined from the 
Chesapeake Conservancy High-Resolution Land Use Data Project “forest” classification (Chesapeake Conservancy, 2018). 
Salt marsh extent obtained from Maryland and Virginia National Wetlands Inventory datasets, “estuarine intertidal emergent” 
classification (U.S. Fish and Wildlife Service, 2018). b) Points were placed along the marsh-forest boundary using methods 
detailed in Molino, Defne, et al., (2021), and elevation values extracted at each point from the Chesapeake Bay Coastal 
National Elevation Database. c) Median elevation of marsh-forest boundaries for 81 Hydrologic Unit (HUC) 10; 5 additional 
units have no color as there were <100 points in that unit so a median elevation was not determined. Median elevation was 
taken from all points within each HUC. Reproduced from Molino et al. 2022. 

Figure 2. Median values for a) tidal range, b) salinity, and c) average slope within the 68 watersheds in the Chesapeake Bay 
used in the linear model. Five watersheds have no color as there were insufficient source data. Salinity and slope maps 
reproduced from Molino et al. 2022. Tidal data obtained from National Oceanic and Atmospheric Administration (NOAA) 
VDatum (vdatum.noaa.gov). Salinity values based on model output provided by St-Laurent et al. 2020. 

Figure 3. Median threshold elevation for each Hydrologic Unit (HUC) 10 watershed in Chesapeake Bay versus a) tidal 
range, b) salinity, and c) slope. In each panel, the highlighted watersheds correspond to the paired-watershed analysis 
presented in Figure 4. The locations of each watershed are shown in Supporting Information Figure S1. 

Figure 5. Comparisons of predicted marsh migration area using the single value (orange), National Oceanic and Atmospheric 
Administration (NOAA) (teal), and spatially explicit (dark purple) approaches in North Landing River, Virginia, USA (panel 
e). a) Overlay of single value and spatially explicit marsh migration projection methods with 0.45 m of sea level rise (SLR) 
and b) 1.22 m of SLR. c) Overlay of NOAA and spatially explicit marsh migration projection methods with 0.45 m of SLR 
and d) 1.22 m of SLR. NOAA marsh migration area estimates were quantified using data downloaded from NOAA Sea Level 
Rise Viewer (https://coast.noaa.gov/slrdata/). Spatially explicit marsh migration areas were obtained from Molino et al. 2022. 
Gray areas are delineated as estuarine emergent marsh by the National Wetlands Inventory (U.S. Fish and Wildlife Service, 
2018). The spatially explicit approach (purple) appears to cover a greater area in panels a-b as the projections start at the 
median threshold elevation (0.32 m) as opposed to the single value approach (orange) which starts at highest astronomical 
tide (0.61 m). See Table 2 for quantified areas for each method.  

https://coast.noaa.gov/slrdata/
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Variable p-value Coefficient Resolution Source 
Tidal range 0.001 0.2264 400 m NOAA VDatum 
Surface salinity 0.000 0.0083 600 m St-Laurent et al., (2020) 
Average slope 0.003 0.1304 30 m Molino et al., (2020) 
Topographic position 
index (TPI) 

NS NA 30 m Derived from Danielson & 
Tyler, (2016) 

Distance to open 
water 

NS NA Polygon Water extent from 
Chesapeake Conservancy, 
(2018) 

Watershed area NS NA Polygon  USGS, (2020) 
Annual temperature NS NA 4000 m PRISM Climate Group, 

(2019) 
Annual precipitation NS NA 4000 m PRISM Climate Group, 

(2019) 
Growing degree days  NS NA 4000 m PRISM Climate Group, 

(2019) 
Hurricane Isabel  
max inundation depth 

NS NA 100-300 m Molino, Defne, et al., (2021) 
(originally modeled by 
ADCIRC) 

Hurricane Isabel  
inundation duration 

NS NA 100-300 m Molino, Defne, et al., (2021) 
(originally modeled by 
ADCIRC) 

Historic surface water 
occurrence 

NS NA 25 m  Global Surface Water 
Explorer 
(Pekel et al., 2016) 

Change in surface 
water occurrence 

NS NA 25 m Global Surface Water 
Explorer 
(Pekel et al., 2016) 

Normalized difference 
water index (NDWI) 

NS NA 30 m Landsat-8 acquired from 
Earth Explorer 

Figure 6. Local drivers (land use, hydrology, microtopography) influence elevation of transition from marsh to upland; a) 
levee built at boundary between marsh and agricultural land (Atlantic lagoons, Virginia, USA); b) band of narrowleaf cattail 
(Typha langustifolia) at marsh-forest boundary indicative of freshwater seepage (Atlantic lagoons, VA, USA); c) loblolly 
pine trees (Pinus taeda) growing on mound (Atlantic lagoons, VA, USA). Atlantic lagoons located in watersheds 37-39 in 
Supporting Information Figure S1. Photo a taken by G.C. Levins and photos b-c taken by G.D. Molino.  

Table 1. Input variables for the linear model explaining forest retreat at the Hydrologic Unit (HUC) 10 watershed scale. 
Significant variables in italics. Variables with a p-value greater than 0.1 labeled NS (not significant) and the coefficient 
labeled NA (not applicable). Processed variable input values for each watershed are published in the Environmental Data 
Repository (Molino et al., 2023). Links to original raw data are included here and cited in text. Full source citations in 
References. 

https://vdatum.noaa.gov/
https://doi.org/10.5194/bg-17-3779-2020
https://www.sciencebase.gov/catalog/item/5e95cbd082ce172707f2528c
https://chs.coast.noaa.gov/htdata/raster2/elevation/Chesapeake_Coned_update_DEM_2016_8656/
https://chs.coast.noaa.gov/htdata/raster2/elevation/Chesapeake_Coned_update_DEM_2016_8656/
https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/lulc-data-project-2022/
https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/lulc-data-project-2022/
https://www.sciencebase.gov/catalog/item/5a1632b2e4b09fc93dd171d9
https://prism.oregonstate.edu/
https://prism.oregonstate.edu/
https://prism.oregonstate.edu/
https://prism.oregonstate.edu/
https://prism.oregonstate.edu/
https://prism.oregonstate.edu/
https://adcirc.org/
https://adcirc.org/
https://global-surface-water.appspot.com/
https://global-surface-water.appspot.com/
https://global-surface-water.appspot.com/
https://global-surface-water.appspot.com/
https://earthexplorer.usgs.gov/
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 867 
Virginia Atlantic Lagoons (HUC38)    
 Single value NOAA Spatially explicit 
Threshold Elevation (m) 0.61a NA 1.05b 
Migration area (km2) – Low SLR (0.45 m) 17.81 15.04 16.16 
Migration area (km2) – Intermediate SLR (1.22 m) 43.23 35.37 37.70 
North Landing River (HUC1)    
  Single value NOAA Spatially explicit 
Threshold Elevation (m) 0.61a NA 0.32b 
Migration area (km2) – Low SLR (0.45 m) 15.22 74.24 61.32 
Migration area (km2) – Intermediate SLR (1.22 m) 40.45 92.73 83.90 
 868 

Table 2. Variation in current threshold elevation and projected marsh migration as determined with three different 
approaches. In the single value approach, a single threshold elevation is determined using a regionally averaged highest 
astronomical tide (HAT) that is applied to the entire region to predict marsh migration (e.g. Mitchell et al. 2020). In the 
National Oceanic and Atmospheric Administration (NOAA) approach, marsh migration is quantified using data downloaded 
from the NOAA Sea Level Rise Viewer (https://coast.noaa.gov/slrdata/), and is based on modeled changes in tidal datum 
alone. The spatially explicit method is based on a threshold elevation calculated for each watershed (Molino et al., 2022), 
which implicitly includes spatial variability in the biophysical factors considered in the present study (i.e. salinity, tidal range, 
and slope). All elevations in m North Atlantic Vertical Datum of 1988. Sea level rise (SLR) scenarios based on Sweet et al. 
2017. Marsh migration areas within the Hydrologic Unit (HUC) 1 watershed are depicted in Figure 5. Location of both 
watersheds within the Chesapeake Bay can be found in Supporting Information Figure S1. 
aMitchell et al. (2020). bMolino et al. (2022). 
 

https://coast.noaa.gov/slrdata/
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