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ABSTRACT
Canine Assisted Interactions (CAI) are widely used to provide ther-
apeutic benefits to human participants in various contexts (e.g.
cancer-related fatigue, post-traumatic stress disorder treatment,
child reading facilitation, etc.). Despite its widespread adoption and
use, questions remain about the outcomes for humans and animals
involved in these interactions. Previous attempts to address these
questions have suffered from core methodological weaknesses, in-
cluding insufficiently objective approaches and lack of focus on
the canine perspective. Using a novel integrated system composed
of custom-designed and commercially available wearable devices,
we present a first of its kind study to collect simultaneous and
continuous physiological data from both of the CAI interactants.
Our repeated measures pilot study also combined this with a novel
dyadic behavioral coding system and short-, and long-term sur-
veys. We evaluate these multimodal data streams independently,
and further correlate these psychological, physiological, and be-
havioral metrics to better elucidate the outcomes and dynamics of
CAIs. Altogether, this work takes a significant step forward on a
promising path to our better understanding of how CAIs improve
well-being, and how interspecies psychophysiological states can be
appropriately measured.
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1 INTRODUCTION
Canine Assisted Interactions (CAIs) are a class of widely adopted
complementary and alternative medicines that utilize interactions
with trained dogs. Like all Animal Assisted Interactions (AAIs), it
aims to improve quality of life or to affect specific clinical endpoints
(e.g., blood pressure, cortisol, etc.) for human participants. While
some studies show no or neutral effects, CAIs have also been shown
to have certain benefits for humans, [38]. Many of these positive
effects are attributed to bonding between the interactants or second
order effects of the interactions (e.g. exercise, external focus, etc),
among other things [38] In trying to better understand the nature
and source of the observed benefits, CAI researchers have recently
beenmoving towards objective and quantitative evaluativemethods
and away from more qualitative, subjective approaches. However,
both the tools for and targets of this quantification are lacking.

While the use-case of dogs interacting with humans is the most
common pet therapy, many studies focus only on quantifying the
human element, generally neglecting the dog’s perspective and
limiting the depth of interspecies interaction investigation possi-
ble [61], [56], [24], [45]. This not only has ethical implications—in
the event that the selected therapy negatively impacts the dog—but
also affects the quality of the human’s therapy which is highly de-
pendent on thewell-being of the therapy animal [38], [48]. Similarly,
CAIs tend to focus on general assessments of quality of life, but the
high variability in the measures used and the outcomes observed in
these assessments can partially be attributed to the vagueness of the
typical quality of life concept. To address these first two concerns,
we propose switching to a dyadic psychophysiological perspective.
Psychophysiology (PP) generally refers to the idea that mental and
emotional processes have detectable physiological correlates, and
provides a more solid theoretical framework for objective interpre-
tation of quantitative CAI data [19], [26], [95], [53]. Additionally, by

https://orcid.org/
https://orcid.org/0000-0002-4248-4096
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3637882.3637886
https://doi.org/10.1145/3637882.3637886
https://doi.org/10.1145/3637882.3637886
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3637882.3637886&domain=pdf&date_stamp=2024-02-19


ACI ’23, December 04–08, 2023, Raleigh, NC, USA Holder and Nichols, et al.

focusing on both members of the interacting dyad, this perspective
allows for direct or comparative measurements that the general
quality of life approach does not–like those from human or ani-
mal subjects with limited communication or non-existent survey
response capabilities [90].

When considering quantitative data collection, some CAI re-
searchers incorporate biochemical assays (e.g. measuring oxytocin,
vasopressin, or cortisol) and electronic monitoring devices (e.g.
measuring heart rate or blood pressure) into their studies, repre-
senting a major step in the right direction. As CAIs can range in
duration from 10 minutes to 16 hours and in activity from quiet
stroking to vigorous physical movement, many of the current tools
confine measurement to pre-intervention and post-intervention
data collection and further limit these collections to clinical or re-
search settings [38]. Common psychophysiological measurements
using the available biochemical and electronic monitoring technolo-
gies can be very physically invasive and also tend to significantly
impact or obstruct CAI activities. To address these concerns, we
deploy a study design that eliminates the need for biochemical
analyte collections, and utilizes wireless wearable electronic moni-
toring systems developed by our research group for the continuous,
free-range, and non-invasive measurement of human and canine
physiology [92], [62], [23], [18], [3]. In this paper, we present a pi-
lot study using the aforementioned wearable tools for quantitative
psychophysiological analysis of interspecies CAI dyads. Though
nascent, this work contributes to field efforts aiming to better in-
clude and quantify the canine perspective in CAI research, and
to improve animal-centered emotion recognition technologies for
real world deployment [37], [76], [15]. The tools, methods, and
results in this paper may eventually enable researchers to better
and more consistently connect CAI inputs to outcomes, to identify
relevant psychophysiological states in dyad members, to conduct
studies validating CAIs as viable complementary therapies, and
to increase the benefits of CAIs for humans and animals alike as
they interact in various contexts. The products of this work may
also significantly bolster studies in other human-animal interaction
scenarios by laying the foundational principles for free-range hu-
man and animal data collection beyond the research environment.
Altogether and regarding its contribution to the ACI community,
this article presents a unique study deploying multiple wearable
systems on two interactants in a typical CAI while synchronously
collecting multimodal psychophysiological data and analyzing it in
comparison to simultaneous survey and behavior coding ground
truths.

2 METHODS

Figure 1: Pilot Test Protocol Flow Chart Notes: INT1 =
Interaction Session 1 ; INT2 = Interaction Session 2 ; NEU =
Neutral Session

2.1 Theoretical Frameworks
Our approach is motivated by the core psychophysiological frame-
work that suggests mental and emotional states (such as stress,
bonding, flow, etc.) have physiological correlates in animals that
are context- and stimulant-dependent [71], [3], [18]. Affective
states are multifaceted events that recruit bodily systems from
the neural to the endocrine and are best approximated by fus-
ing and correlating multimodal data streams from several related
sources [71], [3], [20], [66]. As posited by several CAI mechanis-
tic hypotheses, we assert that positive human-animal interactions
can lead to dyadic relationships which can then encourage human-
animal bonds via mutually beneficial quality time and positive
contact [41], [39]. Finally, we see potential in behavioral and phys-
iological synchrony as a burgeoning metric of bonding between
species [70], [74] and also see potential in heart rate, heart rate
variability, and physical activation as relevant indices of human
and canine well-being [70], [34], [89], [20].

2.2 Study procedure
Our pilot study included a convenience sample of 8 adoles-
cent/young adult humans (female = 62.5%) and 4 canines (female =
25%; Breeds = Shih-Tzu & Maltese mix, Pitbull & Lab mix, Pitbull,
and Yorkshire Terrier.) The subject in/exclusion criteria were as fol-
lows: [1] At least one of the human participants must have owned
the participating dog for 6 or more months; [2] The dog must toler-
ate both collars and harnesses well; [3] The human must be willing
and able to wear devices on both wrists and on the chest for roughly
an hour [68]; [4] The human subject must be able and willing to
complete both written/online surveys; and [5] Both members of the
dyad must have been able and willing to come to a dedicated NC
State University research lab space for data collection on at least
two different days. Altogether, the recruited human and canine
subjects, variously paired, completed 22 experimental day sessions
total.

The pilot test interactions are unstructured and largely human-
seated/non-ambulatory interactions with the dog (e.g. talking to,
touching, grooming, toy play, treat giving, commands, etc.) without
the researcher in the room. It was left to the subject to determine
whether to keep the dog leashed during the interaction and most,
not all, opted for this setup [82]. As described later, survey instru-
ments were administered before and throughout the experimental
sub-sessions. The 10 minute interaction sessions are couched, be-
fore and after, in neutral sessions for the human where he sits
quietly alone and relaxes (e.g. reads a book, meditates, listens to
music, etc.,) and removal from the research space for the dog by
the researcher [Figure 1]. These 5-10 minute neutral sessions serve
to both reset the human’s experience and to provide multiple same
day comparative baselines as features of emotions are relatively
non-stationary [45], [72], [69]. While some canine subjects rested
during the human neutral sub-sessions, the official baseline for the
dog occurs during a separate set of 5-10 minute periods where they
wear the physiological equipment and come to a natural rest state
(i.e. relaxed crouching with head down or otherwise lying down
fully) in the presence of their human owner and the researcher.
In keeping with the field best practices, the evaluation methods
are mixed, including physiological data collection, human subject
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surveys, and behavior coding [77], [26], [36], [86], [57], [14], [43].
All test procedures were approved by the NC State University Insti-
tutional Review Board and the school’s IACUC committees.

As previously discussed, we are interested in both human and
canine subjects’ responses to the interaction so both wore physio-
logical data collection equipment in this pilot study. The systems
used included the [1] HET chest patch, HET wrist watch, and Em-
patica E4 for humans, along with the [2] GEB smart collar and
GEB harness for dogs [77]. Each device has been introduced by our
research group previously or is commercially available for scientific
research [92], [62],
[23]. These devices were selected for the biological signals acquired,
their high sampling rates, their stability during movement, their
positive ergonomic profiles, and their relative ease of use. Together,
they make up the first synchronized system for interspecies in-
teraction measurement. As part of this human-canine interaction
research setup and for post-hoc behavioral coding, two or more
smartphone video cameras were used to capture all angles of the
research space during the interaction and neutral sub-sessions.

2.3 Analysis design
2.3.1 Epoch Selection. Interested in the internal dynamics of a CAI
session, we first selected a repeatable time period upon which to
focus our analysis. We used the information from Cowley et al.
2016, Cacioppo et al.’s Handbook of Psychophysiology, and other
relevant reviews to determine the time intervals of interest for each
collected signal, and to select the most appropriate epoch length
to track the desired changes in physical phenomena across sig-
nals [86], [1], [46]. These papers showcase that, for several relevant
affective measures, phenomena changes could be reasonably mea-
sured on the 5 second to 30 second to 1 minute time scales and,
several papers in the canine literature had 5 second to 15 second
to 5 minute sliced timeframes [44], [35], [97], [86], [64]. As such,
we selected 10 second epochs to capture the fastest changes (e.g.
arousal via inertial measurement units,) though we recognize (a)
that significant changes in heart rate were likely to occur some-
what slower than movement activity fluctuations and (b) that other
metrics like skin temperature were likely even slower. However,
this standardization across metrics was necessary for our proposed
analytical approach, not uncommon in the scientific literature, and
still reflected appropriate changes across each metric.

2.3.2 Behavioral Coding Approach. For human-animal interactions,
one of the best, validated behavior coding
paradigms is the Observation of Human-Animal Interaction for Re-
search (OHAIRE) which provides a more objective rubric for dyadic
assessment [34]. Using one-zero interval sampling, this schema
tracks facial, verbal, and other physical indicators from each inter-
actant and from the interaction as a whole before applying standard
comparative statistics. Even with this tool especially created and
often used for evaluating HAIs, there exists incredible variability in
the behavior coding tools used and there is little consensus onwhich
coding schema is most appropriate for assessing psychophysiologi-
cal states in CAIs [82], [21], [32], [54]. Other approaches include
behavior counting, which begins with determining time point and
emotional state behaviors of interest as well as how they will be an-
alytically interpreted [91]. These behaviors–and the time points or

time ranges at which they occur–are then demarcated in software
tools like BORIS or ELAN, spreadsheets like Excel, and/or hand
written notes, before general analysis [29], [28]. Another approach–
referred to as Qualitative Behavioral Analysis–has strong support
in the social sciences and involves integration of a human’s holis-
tic perception of a subject to produce descriptors like "relaxed" or
"frustrated" [91], [5], [7]. In other words, if behavior counting can
be understood as a quasi-objective observational approach, Quali-
tative Behavioral Analysis is well described as a quasi-subjective
perceptive approach.

Our behavior coding approach–herein referred to as psychophys-
iological state assignment (PPSA)–is a quasi-subjective approach
similar to Qualitative Behavioral Analysis, and borrows several
elements from the OHAIRE approach as well. It is informed by ex-
tensive evaluation of the CAI literature’s coding schema to isolate
reliable indicative behaviors of affective and affiliative states for
each species involved. PPSA then involves perceptive coding of
each interactant into positive, neutral, or negative psychophysi-
ological states for successive, non-overlapping 10 second epochs
throughout the session. To minimize bias and maximize consis-
tency, this coding was done by three raters, two of whom were
previously fully trained in the OHAIRE system [12], [83], [32], [63].
Using Cohen’s Kappa value as a measure of inter-rater reliability in
post-hoc video coding, the three raters were above the common 80%
agreement standard in human-animal interaction studies, scoring
89.9% and 95.7% for humans and for canines, respectively [89], [34].
PPSA preserves the temporal benefits of Qualitative Behavioral
Analysis and allows raters to use any composition of descriptors
to inform assignment to one of the three possible psychophysio-
logical states. These assignments, in turn, can be represented as
computer manipulatable, numerical variables: -1 for negative states,
0 for neutral states, and 1 for positive states. It is important to
note that these state labels are meant to represent clear regions
along a spectrum from negative to positive psychophysiological
state, whereas normal Qualitative Behavioral Analysis labels are
not necessarily similarly interrelated. It is also important to note
that our and other researchers’ interpretation of behavior is lim-
ited, and that disambiguating between subjects’ true states and
consensus views on what observed behaviors indicate is beyond
the scope of this study. Speaking to affective state, psychological
surveys are our gold standard ground truth before and after sub-
sessions, while this PPSA behavior coding approach serves as a
good, semi-continuous ground truth for the duration of interac-
tions and for non-conversant canine subjects. Subsequent analysis
of the behavior coding data utilized basic statistical averages and
simple percentages with appropriate exclusion of indeterminate
epochs.

2.3.3 Survey Selection & Analysis. Having done extensive reviews
of the literature, there were several options for relevant survey
instruments considered (for an exhaustive list, see Appendix 1 in
Wilson et al. 2012) [93]. Six surveys were used in this study for
primary comparison and as ground truth options for certain physio-
logical data collected: i) Canine Behavioral Assessment & Research
Questionnaire (C-BARQ); ii) Monash Dog Owner Relationship Scale
(MDORS); iii) Self-Assessment Mannikin (SAM); iv) Positive and
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Figure 2: PPSA Behavior Coding Rules

Negative Affect Schedule-Short Form (PANAS-SF); v) Human Er-
gonomics; and vi) Canine Ergonomics. The non-Ergonomic short-
term surveys, SAM and PANAS, were completed by hand before,
between and after experimental day sub-sessions and are capable of
measuring short term fluctuations in valence, arousal, positive af-
fect, and negative affect or anxiety [55], [78]. These four parameters
from these two instruments were the closest to and best measures
of our desired conceptualization of psychophysiological state that
i) were also available as relatively brief psychological surveys, ii)
complemented the affective inferences to be made from our physi-
ological data, and [68], iii) were robustly validated in the literature
for our and other use cases [10], [65], [26], [50], [22], [11]. The hu-
man and canine surveys for ergonomics were internally developed
and were completed at the very end of the experimental day by the
interacting human subject. The C-BARQ and MDORS long-term
surveys were completed at the human subject’s leisure outside of
experimental days. These targeted both, in MDORS, a commonmea-
sure of human-canine relationships and, in C-BARQ, a standard
evaluation of the dog’s general behavior [73], [25], [79]. It is impor-
tant to note that all human subjects were required to complete the
MDORS, but only the dog’s primary owner completed the C-BARQ.
In addition to following the survey instrument developers’ recom-
mendations, the survey data analysis used basic average statistics as
well as the Wilcoxon signed rank test for general data comparisons
and repeated measures data. We considered a 2-sided p-value of
<0.05 to be statistically significant. The ergonomics surveys and the
C-BARQ behavioral survey results are not included in this paper’s
analysis and will be discussed elsewhere.

2.3.4 Physiological Data Analysis.

Signal Selection & Calculation. All physiological signal metrics
were selected upon extensive review of human and canine psy-
chophysiology to be responsive to interaction and indicative of
affective states. Using the selected epoch time frames and the
classic psychophysiological theoretical framework, we took the
raw physiological devices’ data and completed a preprocessing
step which included an initial data check and removal of outliers.
We then filtered each signal using bandpass Butterworth filters,
completed a normalization step, and achieved temporal synchro-
nization across the multimodal device signals as well as with the
behavior coding output [75]. The second core analytical step in-
cludes two forms of metric extraction: average metric by epoch

(ME) and rolling window average by epoch (RE). From the ac-
celerometer signal (also referred to as the activity signal or in-
ertial measurement unit or IMU,) we directly calculate the average,
minimum, and maximum acceleration by epoch along each spa-
tial axis, before calculating the mean amplitude deviation (MAD)
by axis and the integral modulus of acceleration (IMA) across di-
mensions [94], [6], [52], [88] [87], [30], [2], [9], [13]. Similar IMU
metrics to those described above were also supported for analysis of
canine activity [4], [31], [81]. From the electrocardiography (ECG)
signal, we used ECG waveform R peaks to extract the interbeat
interval (IBI) using the “Pyphysio” toolbox in Python 3.7 via Google
Colaboratory Jupyter notebooks [8]. With IBI serving as the basis
for all other ECG metrics, we then determined heart rate (HR), and
three additional heart rate variability (HRV) metrics in the time
domain. These included the standard deviation of the IBI of normal
sinus beats (SDNN), the root mean square of successive differences
between normal heartbeats (RMSSD), and the quotient of SDNN
and RMSSD [44], [42]. Briefly, RMSSD estimates "vagally medi-
ated changes" in HR while SDNN tracks both parasympathetic and
sympathetic nervous system activity contributions to the recorded
HR [80]. As noted, IBI and HR extraction is standard for ECG analy-
sis, and the three HRV metrics were well supported for both human
and canine evaluation of valence, stress, and other psychophysiolog-
ical constituent states [44], [51], [35], [97], [66], [3], [42], [64], [73],
[80]. From the skin temperature (ST) signal collected by the
Empatica E4, we simply determined the average ST value by
epoch [40], [14]. From the electrodermal activity (EDA) signal, we
extracted the average and maximum EDA values to characterize the
combined galvanic skin response. We also ran this signal through
the developer’s EDAExplorer online platform to remove artifacts, to
detect the phasic skin conductance response (SCR) peaks for short
term stimuli, and to differentiate the tonic skin conductance level
(SCL) long-term baseline [4], [67], [84]. The EDA analysis in this
paper focuses only on the SCR short term stimuli responses. RE–
the rolling window metric extraction–calculates the same metrics
from the same preprocessed signals as the ME approach but, rather
than a sequential averaging by 10 second epoch, it uses a centered,
60 second, rolling window to produce a 10 Hz output signal, (e.g.
from a 200 Hz chest HET ECG signal, RE produces a 10 Hz average
heart rate signal). Though we extracted a 10 Hz RE signal for all
of our metrics across all 5 devices, the RE output is expressly used
herein for correlational analyses of synchrony only. The selected
output frequency of 10 Hz was based on the human and canine
torso signals held in common (i.e. chest ECG and chest IMU on
both subjects.) While all signals or metrics were used and investi-
gated throughout the analysis, for spatial economy, we present a
meaningful subsample of signals in this paper.

ME signals are processed as appropriate to produce summary
tables and heatmaps displayed throughout. For each experimental
session, we also calculated the difference between epochs by metric,
and marked the increase or decrease of each metric over the entire
session. Then, referring to our literature review, we assign a direct
or inverse relationship from that metric to the expected effect on
psychophysiological state, and code epochs throughout the session
for their positive or negative contributions to said state. All metris
are also associated with and grouped according to valence (herein
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also called stress) or arousal. Afterwards, these heatmaps were
inspected visually for vertical and horizontal patterning.

Overall Methods and Interpretation. Again, the products of the
aforementioned metric extraction or ME step contain the biometrics
averaged over each epoch. We read all of these ME results from the
various devices (e.g. HET, Harness, Empatica E4, etc.) and synthesize
them by performing 6 epoch averages at the beginning, the middle,
and end of each subsession, representing key minutes from the
dyad’s interaction. For overall reporting of physiological data by
signal, we used average test statistics and the Wilcoxon signed rank
test to compare between session types, and the Pearson correlation
test statistic for comparisons between multimodal data averages
across interaction subsessions [18], [3], [44].

Given the large number of physiological signals collected from
each dyad, there is some nuance to their individual and joint in-
terpretation. Many/most reported sources find that increases in
heart rate, electrodermal activity (e.g. skin conductance responses),
and skin temperature are generally understood to indicate elevated
arousal in humans [18] , [77] , [60] , [59]. Additionally, increases
in HRV time domain metrics (specifically, SDNN and RMSSD in-
creases) indicate a decrease in stress and potentially more positive
states/emotions [33] , [42] , [18] , [3] , [47]. For interpretation of
canine physiological signals, increased HR often indicates higher
arousal and increased HRV also indicates more positive canine
states [20] , [64] , [97] , [35] , [44] , [51]. For both species, we as-
sume that sustained increases in average movement in 3 dimensions
over a given epoch of time indicate more arousal and, thus, less calm
states for that subject. We follow these broad field guidelines for
interpretation of our results but note that further independent vali-
dation of these directionalities for each species is beyond the scope
of this work as there is no "one-to-one relationship between emo-
tional changes and autonomic activation" [49] . Additionally, the
debate surrounding a complete psychophysiological theory of emo-
tional states and their interpretation for humans, not to mention
animals, is ongoing [27], [18] , [71] , [60] Lastly, we acknowledge
that psychological surveys and our behavior coding approach, by
design, produce state based outcomes while the physiological ap-
proaches can only produce directional outcomes in comparison to
previous time periods’ signals.

Synchrony Methods. The wearable systems were located on both
human wrists and on the human chest as well as on the canine’s
torso and neck. As such, we only consider the torso systems–
representing the signals shared between species–for synchrony
investigations of bonding. While of potential interest for explor-
ing previously unknown interrelations and for identifying relevant
movements like dog petting, for example, the data from the other
subsystems either has no direct correlate in the opposite dyadic
counterpart’s subsystems or would necessarily result in spurious
data (i.e. it is likely not valid to correlate human hand motion
to dog neck motion.) Additionally, psychophysiological measures
closer to the center of mass are generally understood to be less
prone to movement artifacts [18], [6]. Using an 18 epoch (i.e. 3
minute) RE slice taken from the middle of each interaction sub-
session, we use two approaches to determine interactional syn-
chrony as a proxy for bonding. First, the overall Pearson’s correla-
tion for our three key ECG metrics (e.g. HR, SDNN, & RMSSD)

and one key activity metric (e.g. IMA) is calculated [58], [96].
We further test the metrics’ interspecies interaction via the dy-
namic time warping methodology, to track these key time series’
data alignment in general and when assuming temporal asyn-
chrony [96], [16].

3 RESULTS
Given the aims of this study, we were successfully able to deploy
wearable physiological measurement systems on both human and
canine subjects simultaneously and continuously as they interacted.
We were also able to analyze this data to begin answering some
questions of interest to the field.

Though the GEB smart collar device is integral to the synchro-
nized system for CAI explored herein, we excluded its data from
these analyses for two reasons. First, for small and large dogs, the
placement of the smart collar was not found to give meaningfully
different results than the torso-located harness IMU. The smart col-
lar did tend towards more noise and exogenous movement as it was
attached to loose-fitting collars. Lastly, beyond physical activity,
the smart collar largely collects ambient environmental measures,
which shall be the focus of future analysis work, but is beyond the
scope of this paper.

3.1 General Survey Responses
For survey responses, we investigated the time and type dependen-
cies of the valence and arousal outputs from SAM and the positive
and negative affect outputs from PANAS. The four survey scales
were taken during interstitial experimental periods, meaning there
was no survey before the baseline session. For positive or negative
affect (i.e. "PA" & "NA," respectively), larger numbers indicate more
positive or more negative affect [Figure 3]. For the SAM-valence
and -arousal scores (i.e. "V" & "A," respectively), larger values in-
dicate more unhappiness and more calmness, respectively. Where
appropriate (i.e. excluding surveys from two participants for miss-
ing, incomplete, incorrectly filled out, or otherwise spoiled survey
data,) we ran the non-parametric Wilcoxon signed-rank test using
the self-same function from the SciPy library to compare outcomes
for neutral-type to interaction-type sessions [44], [17] , [44]. For
individual subsessions, some clear patterns emerge. SAM Arousal
consistently increased after an interaction session on average com-
pared to neutral sessions. A similar pattern can be seen in PANAS
Positive Affect which reliably increased on average with interaction
sessions. SAM Valence results by subsession are more variable, but
PANAS Negative Affect indicates a reliable decrease after interac-
tion sessions. For all neutral vs. interaction session types, we see a
significant difference in SAM arousal (p = 0.043) and SAM valence
(p = 0.0002). Looking at the PANAS dimensions, the full group of
subjects saw a significant difference in positive affect (p = 0.0003)
with no major difference in negative affect observable in this study.
Overall, our study group saw significant self-reported state changes
indicating more arousal, more positive valence, and more positive
affect. Though decreases in negative affect were common, no sig-
nificant change occurred across subjects with canine interaction.
While these survey results are preliminary, they are promising and
make intuitive sense for CAIs.
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Figure 3: Neutral session to Interaction session summary
statistics and comparisons for the SAM and PANAS surveys.
Notes: SAM-V = valence; SAM-A = arousal; PANAS-PA =
positive affect; PANAS-NA = negative affect; sd = standard
deviation ; INT1 = Interaction Session 1 ; INT2 = Interaction
Session 2 ; NEU = Neutral Session ; BASE = Baseline session ;
POST = postline session ; ALL NEU = all neutral sessions ;
ALL INT = all interaction sessions ; significant values noted
in bold.

3.2 General Behavioral Coding Outcomes
For behavior coding, we focused on the percentages of each
interaction-type session spent in each psychophysiological state
by animal-human pairing, excluding periods where either subject
is off screen as indeterminate. This was done as dogs were not
necessarily resting during the neutral-type sessions (i.e. outside
of the interaction space pacing, watching, and otherwise waiting,)
and the neutral session human psychophysiological state codes by
epoch were unvarying (as these subjects were instructed to sit and
listen to music, read, etc.) Of course, this eliminates any meaning-
ful comparison of behavior coding scores between session-types,
though it does lend some credence to the significant differences
seen between session-types for the survey results. More simply, the
interaction sessions were characterized by all three psychophysio-
logical states, for both participants, whereas neutral session results
were completely neutral, for the human, by design. Beyond these
observations, the first notable overall outcome is the high number
of neutral ratings by interaction session (i.e. typically over 60% of
on-screen time). This indicates that neither interactant is visibly
or audibly in a positive state for most of the CAI sessions within
our study [Figure 4.]. As expected, negative ratings accounted for
a vanishingly small percentage of the canine and human behav-
ior codes. Characterizing the majority of positively coded epochs,
dogs generally displayed more affiliative and affective behaviors in
goal-oriented interactions (i.e. in order to solicit attention or treats.)

While positive codes for either interactant seemed generally higher
for some pairings than others, no other clear patterning emerged
across all subjects.

We also applied an "exclusive nor" logic gate to the behaviorally
coded scores by epoch to investigate the synchrony between dyad
members, showing the percentage of the interaction session for
which the dyad had the same one of the three psychophysiological
state codes between the species. Epochs with either party off-screen
were excluded, and were also the impetus for this novel form of
synchrony analysis. Across the board, pairs spent much of the
session time in the same psychophysiological state. This is likely
due to the high percentage of neutral ratings for both parties in
most interactions. Looking at successive sessions, there appeared
to be no consistent synchrony patterns as the dyads had more
situational contact.

Figure 4: Average Behavioral Coded State across all
Interaction sessions and subjects Notes: h- = for human
subjects; c- = for canine subjects ; INT1 = Interaction Session
1 ; INT2 = Interaction Session 2 ; pos = positive code ; neu =
neutral code ; neg = negative code

3.3 General Physiological Data Outcomes
Figure 5 reports our average results across three time points within
interaction or neutral subsessions for target signals amongst our
wearable device system. Upon visual inspection, the human and ca-
nine heart rate and heart rate variability results do not indicate clear
patterning across subjects or session types at this scale of analysis.
For the cluster of activity data represented in the last four columns
of the table, it appears that left wrist HETmovement occurred much
less than chest or right wrist movement, which concords with the
fact of all included human subjects being right-hand dominant.
Furthermore, within subsession groupings, each IMA source seems
to remain relatively stable, though the differences between neutral
and interaction sessions were not statistically significant.

Figure 4 also reports the Wiilcoxon signed rank probability that
there is a significant difference between neutral and interaction
session types for each signal presented. Of note, the canine harness
HR signal, the human right wrist E4 temperature signal, the human
electrodermal activity mean, and the EDA max scores differ sig-
nificantly across subjects in this respect. As noted previously, the
canine subjects were removed from their experimental interactant
during neutral subsessions and escorted by a researcher during
this time. While the dogs were not expected to also engage in neu-
tral behavior and were free to do anything from interact with the
human to rest quietly during these subsessions, these comparison
results may be indicating that focused one-on-one interaction is
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meaningfully distinct from free range activity in this context for
canine heart rate. If true, this could speak positively to the idea
of at-leisure breaks being recuperative or, at minimum, positively
different for therapy dogs while at work. As the skin temperature
signals indicate, localized temperatures do appear to rise across
subjects as the experimental sessions progress when placed on
the right hand of all subjects. This is likely due to the increased
physical activity with their dog interactant. The strong difference
between neutral and interaction sessions indicated may be due
to the relatively low baseline temperatures initially observed on
average. Generally, the EDA average amplitude by epoch and the
EDA maximum amplitude by epoch–both arousal indicators–seem
to reliably and significantly increase during interaction sessions as
expected. This comports well with survey self report findings of
increased arousal after interaction sessions across subjects, previ-
ously discussed. It is worth noting here, that across our analyses
and in keeping with other studies, EDA seems to be one of the more
reliable and responsive differentiators between neutral and interac-
tion sessions for human participants throughout the experiment.
Upon further analysis, other signals may prove to be individually
predictive or also correlated with overall affective states, but EDA
metrics appear to have clear and multifaceted support between
session types.

3.4 Multimodal Composite Results
To derive composite results, we took an in depth look into some
CAI sessions to see how the patterning of metrics contributed to
the overall outcomes. As noted before, this was done by taking the
ME outputs and tracking whether they increased or decreased from
epoch to epoch. Then, using careful directional indicators from the
literature, we created heatmaps that represented the 3 minute seg-
ment directionality of the available valence and arousal dimensions
in a bonded individual, shown in Figure 6 [97], [50], [33], [71]. In this
heatmap, the blue section represents metrics correlated negatively
with stress while the red represents positive arousal metrics; canine
metrics are below the dashed line on each dimension’s chart. A solid
color indicates an increase while the absence of color (e.g. off-white
tinted red or blue) indicates a decrease in psychophysiological state
metric for that epoch. Within each section, a dotted line separates
the human signals from canine signals, as well as further "h_" and
"c_" prefix demarcations for human-sourced and canine-sourced
signals, respectively. The signal type (i.e. physiological, survey, and
behavior coding) naming conventions follow the common abbre-
viations previously indicated in this paper. For these charts, blue
blocks thus represent psychophysiological state increases along
the valence dimension and red blocks indicate psychophysiological
state increases along the arousal dimension.

Unexpectedly, we see no clear overall patterning for each sub-
session by type across subjects. We, however, do notice that the
neutral session’s human EDA mean and EDA max metrics decrease
noticeably for most subjects when compared to interaction sessions.
This reflects the significant change in surveyed arousal score and
the strength of EDA as an arousal metric. For canines, the neutral,
base-, and post-line session metrics do not reflect resting. However,
looking vertically, canine valence epochs tend to show a higher
degree of coherence across signals and metrics (i.e. all increase or all

decrease.) These representative visual examples of the patterning
within sessions juxtaposed to the survey outcomes are uniquely
made available to researchers by the continuous, multimodal wear-
able system coupled with our experimental approach, and allow
for multimodal output alignment. Taken altogether this heat-map
representation, showcased in Figure 6, indicates to researchers the
dynamics of the session or session slice across behavior coding and
physiological signals as well as the survey outcomes that bracket
the interaction. It also allows for fast visual inspection of vertical
bands for signal coherence or horizontal bands for expected macro
trends in certain signals (e.g. EDA signals consistently decreas-
ing during a neutral session, canine RMSSD indicating negative
experience, etc.) [44], [35], [84], [85].

3.5 Physiological Data Snapshot
The Figure 7 Raw Signal plot is a glimpse at the original ECG data
for humans and canine subjects that was simultaneously produced
by our multimodal system during the experiment. The brackets are
marked with colored regions to show where metrics might deserve
inspection since the bracket entered was a time of interesting ac-
tivity. In our approach, this is useful for several reasons. First, it
highlights basic, enduring differences between species like canine
heart rate being faster than the human’s on the whole. Second,
indications from other data streams could prompt us to look at the
raw and derived signals for that time period, (e.g. during becod-
ing, a visually observed strong negative reaction in the dog vs. the
giving/receiving of a treat,) for further inspection/analysis.

3.6 Behavioral Coding Subset
Like the heatmap, a synchrony table provides an interesting multi-
modal snapshot of the experimental data from this study. Though
we couldn’t show the data from all 34 interaction sessions, the
table in Figure 8 showcases 2 interaction subsessions each from
3 humans total as they interact with the same dog. The arousal,
valence, positive affect and negative affect survey scores do not
show clear patterning based on bondedness here. However, lower
MDORS scores indicate a stronger bond and as is expected, H1–C1’s
owner–proved to be the most bonded to the dog by survey result
and H2–a friend of the dog–was less bonded while H3–a stranger
to C1–was the least bonded. These differences and ordering are
also directly reflected in the behavior coded amount of time each
pairing spends in positive states. For both interactions presented,
H1 and C1 each spent much more time in positive states than the
moderately bonded pairing of H2 and C1, or the weakly bonded
pairing of H3 and C1. This results in the MDORS survey score and
amount of time each member of the interacting dyad spent in posi-
tive states being the measures that most closely track with expected
level of bondedness. A potential counter indicator of bonding is the
presence of negatively coded epochs for the canine. While there
were relatively few negative states coded throughout the entire
pilot experiment ( 1.6%), all of them occurred in interaction ses-
sions between a dog and a non-bonded human (i.e. when the canine
was not interacting with his owner.) Surprisingly and counter to
our hypothesis, behaviorally coded epochs spent in the same state
appear to be much lower in the bonded pair when compared to
moderately and weakly bonded pairings. This unexpected result
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Figure 5: Physiological Data Summary Table Notes: NEU = neutral session ; INT = interaction session ; S+1m = session start plus
1 minute ; M = middle of session ; E-1m = session end minus 1 minute ; HET = Health and Environment Tracker (on human) ;
wHET = HET on wrist ; cHET = HET on chest ; HAR = harness (on dog chest) ; E4 = Empatica E4 (on human wrist) ; hr = heart
rate ; sdnn = standard deviation of NN intervals ; rmssd = root mean square of successive differences between heartbeats; TEMP
= skin temperature; EDA Mean = average electrodermal activity by epoch ; EDA Max = maximum electrodermal activity by
epoch ; EDA Peak Ct = number of peaks in epoch of electrodermal activity ; IMA = integral modulus of acceleration.

Figure 6: CAI Subsession Heatmap Example with Physiological, Behavioral, and Survey data Notes: P = PANAS Positive Affect ;
N = PANAS Negative Affect ; V = SAM Valence ; A = SAM Arousal ; INT1 = interaction session 1 ; h_ = human ; c_ = canine ;
Rwrist = right wrist ; becode = behavior coding ; HR = heart rate ; IBI = interbeat interval ; SDNN = standard deviation of NN
intervals ; RMSSD = root mean square of successive differences between heartbeats; SKIN TEMP = skin temperature; EDA Mean
= average electrodermal activity by epoch ; EDA Max = maximum electrodermal activity by epoch ; EDA PEAK CT = number of
peaks in epoch of electrodermal activity ; IMA = integral modulus of acceleration

actually follows from the fact that in most cases, the majority of
an interaction session was spent in neutral states, leading to a very
high same state % result in non-bonded interaction sub-sessions.
In bonded pairings, the dog and human matched in some epochs

but largely differed due to the nuances of certain interaction behav-
ior sequences. For example, in some instances, the human would
display positive affective and affiliative behaviors while the dog
consumed a treat whereas the dog displayed these behaviors as the
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Figure 7: ECG Signal CAI with Highlighted Events

Figure 8: Behavioral Coding Subset Table Notes: INT = interaction session ; H = human subject ; C = canine subject ; Physio =
physiological measures ; HR = heart rate ; SDNN = standard deviation of NN intervals ; RMSSD = root mean square of
successive differences between heartbeats ; IMA = integral modulus of acceleration ; Pcorr = Pearson’s correlation ; DTW =
dynamic time warping ; Becode = behavior coding ; h = human ; c = canine ; pos = positive code ; neg = negative code ; neu =
neutral code ; PANAS-PA = Positive Affect ; PANAS-NA = Negative Affect ; SAM-V = Valence ; SAM-A = Arousal

human was presenting the treat, leading to mismatched positively
coded epochs and potentially pointing to the pleasure cycle theory
of behavioral response in dogs [20]. Additionally, with their owners,
canines tended to exceed the number of affective displays observed
in the human while, with non-owners, displaying far fewer affec-
tively positive displays than the human. While these behavioral
indications are initially promising to measure interspecies bonding,
studies with larger sample sizes and further replication of these
results are required to confirm these findings. Turning to synchrony

between the selected physiological signals, our Pearson correlation
results seem to indicate that the interspecies paired signals are not
significantly different from each other, but don’t show other clear
patterning by signal type or by bond level. We also used dynamic
time warping (DTW,) and minimum signal distance analyses to fur-
ther approximate the level of bond. Like the previous correlations,
the DTW results show no clear patterning across subjects other
than heart rate signal results spanning much larger path distances
than the other key signal types evaluated with this method. This
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Figure 9: Correlation Matrix for Interaction Data Notes: h_ = human ; c_ = canine ; PANAS-PA = Positive Affect ; PANAS-NA =
Negative Affect ; SAM-V = Valence ; SAM-A = Arousal ; INT1 = interaction session 1 ; Rwrist = right wrist ; Lwrist = left wrist ;
becode = behavior coding ; HR = heart rate ; SDNN = standard deviation of NN intervals ; RMSSD = root mean square of
successive differences between heartbeats ; SKIN TEMP = skin temperature; EDA Mean = average electrodermal activity by
epoch ; EDA Max = maximum electrodermal activity by epoch ; EDA PEAK CT = number of peaks in epoch of electrodermal
activity ; IMA = integral modulus of acceleration

is likely due to the significantly higher canine heart rate when
compared to humans, and may also factor in certain differences
in heart rate variabilities between the two interactants. These two
sets of correlation results strongly hint at further exploration being
needed of physiological synchronization between participants as a
measure of bonding.

3.7 Multimodal Correlation Matrix
We computed a person’s correlation matrix across all subjects and
the full multimodal data set as an exploratory analytical approach.
Focusing only on sessions where both species of subjects interact
(i.e. no neutral sessions), we took the average of the middle minute
of data for each behavior coding and physiological signal as well as
the post interaction survey scores, to populate the matrix. This re-
sulted in a comprehensive overlay of signal interactions across the
experimental sessions and subjects [Figure 9]. Of considerable note,
time series HRV indicators have strong positive associations within
species, as expected, but also across species. These are already con-
sidered to be some of the best indicators of psychophysiological

states and could serve as a reliable indicator of interspecies inter-
action or bond quality in future work. The integral modulus of
acceleration (IMA) showed some moderate correlations in a few
signal types. For the human right wrist, the IMA was associated
with skin temperature possibly indicating a heating effect of ad-
ditional human movement, likely due to stroking, brushing, and
other interaction specific activities. The canine chest IMA is also
moderately associated with human skin temperature for reasons
that are less intuitively clear. This IMA variant also associates mod-
erately with behavior coding for the canine, and with the RMSSD
heart rate variability metric. That finding may indicate that rater
perception of canine state may be somewhat influenced by the
dog’s movement and potentially reaffirms previous findings that
RMSSD is a reliable state indicator in dogs [44], [35]. Lastly, though
most other correlations between the multimodal signals from this
experiment were weak, the human self report arousal scale was
moderately associated with the positive affect self report scale.
This relationship is echoed in our other analyses and potentially
indicates that a contributing factor for overall positive affect in
humans is the level of arousal inspired by the interaction with the
dog.
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4 CONCLUSION AND FUTURE WORK
In this work, we showed that we can use integrated systems of
wearable devices to look at both human and canine interactants.
We were also able to peer into the underlying dynamics of the
continuous CAI interactions that lead to the macro pre-/post- sur-
vey results commonly reported in the field. Of particular note, we
presented three novel multimodal data representations for poten-
tial characterization of CAIs: a subsession heatmap, a synchrony
table, and a metric correlation matrix. Lastly, several of our ex-
ploratory analyses yielded interesting proof of concept results to
inspire future investigations.

Overall, this pilot study confirmed common CAI field results like
canine heart rate being significantly higher than humans during
interactions, and humans generally reporting positive to neutral
outcomes thanks to the interaction. Interrogating the physiological
data collected in this study, we found that the EDA measures were
the most meaningfully distinct between neutral and interaction
sessions across subjects. For survey data, we saw significant posi-
tive changes in subjects’ arousal, emotional valence, and positive
affect with canine interaction. Counterintuitively, most all inter-
action time periods were rated as neutral with relatively fewer
positive epochs and significantly fewer negatively coded epochs.
However, we suspect that this is partially influenced by the chosen
coding schema and epoch time period duration. This preponder-
ance of session neutrality also contributed to the moderately high
amount of interspecies synchrony observed behavioraly, though
bonded pairs seemed to have lower levels of coded synchrony than
expected. While the physiological synchrony results hint at promis-
ing associations, the results were not definitive for the four metrics
interrogated (i.e. heart rate, SDNN, RMSSD, and activity IMA.) Ca-
nine surveys were not employed, but the standardized measure
we used showed clear bond quality discriminatory power between
owner, friend, and stranger to a dog. The independent canine results
of potential interest are the associations between canine chest inte-
gral modulus of acceleration and human skin temperature, canine
behavioral coding, and the dog’s own RMSSD heart rate variability.
Though moderate, these indicate several potential areas of follow
up investigation on the canine side. Lastly, dogs only seemed to
experience negatively coded epochs with unbonded human interac-
tants as a result of a human action (e.g. sudden movement, picking
the dog up, etc.) Human negative behavioral responsivity clustered
around frustration when the dog employed repeated avoidance
behaviors.
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