Check for
Updates

Toward In-the-Field Canine Manifold Learning: Data Fusion for
Evaluation of Potential Guide Dogs

Devon Martin
North Carolina State University
Raleigh, NC, USA
dmarti22@ncsu.edu

ABSTRACT

We seek to better classify canine behavior for guide dog training
predictions. Dog temperament is a major factor in success rates and
current training also has a blind spot when the puppies are with
puppy raisers, who are lesser trained volunteers who socialize pup-
pies up to 15 months old. We have used a custom designed smart
collar to collect environmental and behavioral data from each puppy
individually going through various parts of the guide dog training.
We investigate long short-term memory networks (LSTMs), au-
toencoders (AE), and kernel principal component analysis (KPCA)
as methods to identify canine behavior and use multi-sensor data
fusion to find the best subset of sensors with the best at classifying
temperament. Standard manifold learning experiments take place
in controlled environments and translate poorly to real-world appli-
cations. This research aims to bridge this gap using guide dog In For
Training (IFT) data, which is from a lesser controlled environment
and use it to develop a broader data-pattern-to-behavior dictionary
for future real-world canine studies.
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1 MOTIVATION

As of 2016, there were over 7.5 million non-institutionalized visually
disabled people in the United States alone [1]. Guide dogs are used
to help these people in everyday life, but not every dog is suitable
for this mission critical role.
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The cost to train a single guide dog for a visually impaired person
is tens of thousands of dollars [6, 10]. This is exacerbated by the
high dropout rate of guide dogs during training. Less than half
of dogs in training will successfully become working guide dogs
[11]. Even after graduation, there is a smaller but still impactful
dropout rate until the dogs are retired after approximately 8.5 years
[5]. Previous attempts to reduce dropout rate have been shown
to be successful. For instance, approximately 30% of guide dogs
were disqualified due to poor hip quality, but this was reduced to
near-zero thanks to successful breeding programs by the late 1990s
[21]. Secondly, The Seeing Eye passes back dogs that originally
failed to undergo additional training [14]. Of the 40% of dogs that
were passed back, 53% later graduated, upping the total graduation
rate.

Nowadays, the biggest impediment to dog graduation is in the
potential guide dog’s temperament. Temperament is defined as
behavioral tendencies that vary between individuals but are stable
within a given individual. According to The Seeing Eye, behavioral
reasons accounted for 21% of dogs being passed back, and the main
behavioral reason to reject a guide dog is fearfulness, followed by
easily distractedness and aggressiveness [14]. Rejection for behav-
ioral reasons is also the worst reason for rejection, as these dogs
are least likely to pass training upon further testing. Fear is a sig-
nificant and reliable predictor of training failure in guide dogs [10].
Early traumatic events for puppies, like being attacked by other
dogs or strangers, appear to have long-lasting effects that result in
disqualification.

Dollion et al [10] investigated a serious blind spot in the dog
raising process: volunteer raisers with variable environments.
While breeds, genetics, and biological aspects can be well con-
trolled with breeding programs and systematic medical evalua-
tions, early developmental environments are not. Various behav-
ioral differences were observed when dogs were returned, including
owner/stranger/dog-related aggression or fear, non-social fear, and
touch sensitivity. Some of the causes of these behavioral effects in-
clude owner experience, presence of teenagers, and whether other
dogs were present in the household. Again, a miniature monitoring
device would be useful for tracking these early events, especially
since this development period falls outside facility auspices.

Previous wearable devices have been used in several applica-
tions of dog behavior monitoring [16, 17, 22-24], including sleep
monitoring, temperament evaluations, and heart and breath rate
monitoring. We presented a smart collar [8, 12, 19] as one of such a
sensor system that collects various data continuously while being
small and easy to implement. It records subject-of-interest informa-
tion like accelerometry for movement and audio for barking as well
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as immediate surrounding environmental information like temper-
ature, humidity, and light levels. These devices are applicable for
daily use and can help in both general behavioral monitoring as
well as help bridge the uncertainty gap of volunteer raisers’ various
environments. In this paper, we focus on applying data collected
from these devices during the In For Training (IFT) Evaluation
protocol used by Guiding Eyes for the Blind for determining dog
fitness before entering their official training program.

The IFT evaluation is conducted on 15-18 month old dogs follow-
ing volunteer puppy raising. During these tests, temperament and
adaptability to strangers, dogs, and new environments is evaluated.
Only self-confident and composed dogs are deemed suitable for
further training [2]. Over the last year (2022 and onward), IFT tests
have been conducted with the smart collar [19]. The accompanying
custom i0S app additionally allowed trainers to record the timing of
controlled stimuli used as test events. This creates a time-accurate
label that can be associated with the collar’s data collection. The
exploration of dog behavior captured in the data can help deter-
mine proper or improper reactions, adding objectivity to the test
evaluations which helps qualify or disqualify a given dog earlier in
the training process.

Because the smart collar system collects data from various sen-
sors, we can employ data fusion to attain higher accuracy than
using single sensors. There are many possible data fusion archi-
tectures, and optimal performance tends to be problem-specific
[3,7,9, 15, 20, 25]. Therefore, one major goal of this paper is to find
an optimal architecture to monitor canine behavior. Additionally,
because data is collected as a time series, we expect temporal depen-
dencies. While many time series models are possible such as ARIMA,
they lack any fusion abilities. We instead use long short-term mem-
ory networks (LSTMs), which has shown strong predictability with
sequential data [18].

Another goal of this study is to make future dog behavioral eval-
uations easier. We hypothesize that the categories of the Guiding
Eyes for the Blind’s IFT evaluation will not be truly representa-
tive of generic dog behavior. For instance, a dog may jump at any
time during the evaluation; while this behavior is not categorized
in the IFT, generic jumping behavior is a quantifiable and easily
recognizable event that could be identified in other studies. For
this reason, we want to include an unsupervised learning approach
to categorize these dog-specific tendencies. Here we will be per-
forming manifold learning, which is the categorization of common
patterns of the sensor data [26]. Other approaches that could be
used with these time series data include LSTMs and wavelet or
matching pursuit-based classifications [28].

The specific goals we have include:

Better canine behavior understanding

Accounting for individual effects like personality on behavior
Apply multi-sensor data fusion to canine understanding
Begin setting a lexicon for in-field behavior interpretation

2 METHODOLOGY

We describe our approach to supervised and unsupervised manifold
learning using LSTMs, AEs, and KPCA.
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2.1 Manifold Learning

Manifold learning seeks to find a lower dimensional space from
data [13, 26]. Even though a given datapoint when we account for
all sensors has dimension at most eight, since we are incorporating
sequences for pattern recognition, with n being sequence length,
we actually have a much higher dimensionality of 8”. This makes
manifold learning more appropriate in this context.

2.2 Dataset Description

IFT sessions are conducted roughly monthly at GEB headquarters
in New York. Typically, between 15 and 30 dogs are tested during
each session, and each session lasts about ten minutes. During the
session, a dog is presented with various stimuli that include a vet
examination and a vacuum cleaner. The timing of these events are
recorded by an on-site trainer in an iOS app custom developed for
this task [19].

The smart collar system collects canine-specific data, accelera-
tion and audio, and environmental conditions, consisting of ambient
light, temperature, humidity, and pressure. Because of the various
sensations occur over different time frames, the sensors have dif-
ferent sampling rates. In general, the IMU, audio, and light sensors
are sampled at a much higher rate in the range of kilohertz than
temperature, humidity, and pressure, which are on the order of a
few hertz.

For preprocessing, we interpolated the data to account for differ-
ences in sensor sampling frequencies. Afterwards, we Z-normalized
all the data.

2.3 Supervised Approches
For supervised learning, we use LSTMs, AEs, and KPCA.

2.3.1 LSTMs. LSTMs have shown tremendous performance in se-
quential data for their ability to track long-term data patterns. For
this reason, we investigate the use of LSTMs for temperament classi-
fication. Previous hyperparameter searches for LSTMs [18] showed
that the most important features of an LSTM are the learning rates
followed by the hidden layer size. Other attributes account for a
vast minority of performance in the general case. So we focus our
attention on learning rate and hidden layer size when tuning our
LSTM.

We are interested in understanding the relationship between
different data subsets and preprocessing types; secondarily, we seek
to optimize the hyperparameters for higher accuracy. With a total
of three data types (IMU, audio, environmental sensors), there are
eight possibilities. There are also two more states for bidirectionality.
With four learning rates, three amounts of node sizes, and two
numbers of layers, there are a total of 24 hyperparameter states.
This produces 384 possible structures. To reduce the search size, we
instead consider a sequential search strategy. For the search space
search, we find an architecture, then the learning rate is optimized,
and lastly, the relevant data fusion setups (only five) are optimized.
This produces a simplified overall search schematic of 21 states.

2.3.2 Autoencoders. The quintessential unsupervised learning
method that has attained excellent results in terms of dimensional
reduction is the autoencoder (AE). These neural net architectures
have a set of encoding layers that get subsequently smaller until
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a small feature space, or latent representation, of only few traits
is reached. Then, a set of decoding layers that get subsequently
larger carries the latent space information back to the original size
of the dataset. Loss is determined by the difference between the
original data and the reconstructed data. In this way, only the most
important characteristics of the data are learned.

However, vanilla AEs are not designed to handle sequential
data. For this reason, we consider LSTM-AEs, where encoding and
decoding layers are constructed out of layers of LSTM units. Since
this setup uses LSTMs which were used with supervised learning
with the IFT classifications, there is a potential bridge between the
supervised and unsupervised algorithms.

2.3.3 Kernel PCA. Principle component analysis (PCA) is a com-
monly used method in multivariate analysis for identifying the
most important linear combinations that describe a dataset. Kernel
PCA expands upon this using the kernel trick, a method that maps
all data into a higher-dimensional space where it is easier to cluster
the data, while retaining computability with the use of a kernel
matrix [26, 27]. In this case, we used a radial basis function as the
kernel followed by a linear classifier, in this case Ridge Regression,
to group the data. Unlike LSTMs or AEs, KPCA does not have a dif-
ficult setup process requiring extensive training; it is a more static
method, with only one parameter, y. This is a major advantage.

2.4 Unsupervised Methods

Previous methods have been designed with a known label from the
IFT evaluations, but we would like to have these methods applicable
for in-the-field testing in less controlled environments. Traditional
pattern learning takes place in well-controlled environments with
well-practiced actions, limiting real-world effects like personality
differences, mistakes and corrections, and large signal noise. Despite
this, certain prominent actions should be distinguishable.

We will be attempting several multivariate unsupervised learn-
ing methods to label certain consistent and repetitive behaviors
observable within the data from the smart collars. Instead, we are
interested in identifying patterns within sequential time segments
of the data. For this purpose, we intend on modifying the LSTM,
AE, and KPCA methods.

2.5 Unsupervised Interpretation and the
Pre-Image Problem

The unsupervised learning methods are expected to discover a
smaller, simpler dimensional variable space while maintaining dis-
crimination between the classes. We are interested in input patterns
because knowing these will add a great deal of interpretability to
our findings. For interpretability of the latent space clusters, we are
interested in the inverse problem, known as the pre-image problem
[4, 29].

Let ¢(x) be the mapping provided by an LSTM-AE, Kernel PCA,
or other function estimation methods with y € RM, and latent
variable, ® € RN with M >> N. With this setup, our objective is
to first select a ¢* € @ that represents a high density latent region,
and second, find the x whose mapping ¢ (x) gets as close as possible
to ¢*. This comes to solving the inverse optimization problem:
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x* = argmin ||¢(x) — ¢*||2
xex

3 EARLY RESULTS

We conducted a rudimentary experiment to ascertain the manifold
learning process and present early LSTM and KPCA results.

3.1 Manifold Learning Experiments

We performed a simple preliminary test to look for real-world
manifolds using the smart collar. A user carried the device while
performing exercises, including walking and jogging around a short
route. Figure 1 shows two distinctly different manifolds collected
from the IMU data space for both walking and jogging cycles. Lines
are displayed to highlight the sequences of the datapoints, indi-
cating rising patterns. Noticeably, the walking manifold is much
smaller than the jogging manifold. These manifolds are dependent
on collar orientation too, which adds to complexity.

Walking View 1

Walking View 2

Figure 1: Manifold Against Action. Top figures are walking
cycles and bottom figures are jogging cycles. Left figures show
Y-axis against X-axis and right is an alternative view.

Clearly, different gaits are distinguishable in terms of manifolds
in patterns using the smart collar device, at least in strongly con-
trolled settings. However, the data from the IFT sessions is far
less controlled and expected to be noisier. This is the challenge of
creating a manifold dictionary.

Once we have a manifold dictionary set, we can examine new
patterns of data and determine the distance from these manifolds.
We project new data patterns onto the various manifolds and the
one with the lowest reconstruction error is selected as the new
behavior. We attempt the methodology detailed in [26] to create our
own dictionary and evaluate the results using a similarity metric.

3.2 LSTM Setup and Training Results

Several LSTM models with various hyperparameters have been
created and tested. Starting with a 50-state classification defined
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from the 50 IFT-defined state, overall, these models have performed
at about 11% accuracy on the validation set after only a few epochs.
This is vastly better than the 2% attained using a random model, but
is still far from desirable. Currently, these models are built using
only the acceleration score. A higher capacity model with four
256-node hidden layers followed by two dense layers shows similar
performance.

By looking at only a smaller 12-state model focusing on the 12
most separable categorical classes, we can attain a more reasonable
35% validation accuracy (random would be 8%). The training curve
(Figure 2) shows overfitting after only a few epochs with a flatlining

validation curve, so there is room for LSTM design improvement.

The confusion matrix (Figure 3) shows a desired diagonal.

Accuracy

— Fam
oard — Validatson

Aocuracy

Epoch

[

1110 % B 7 6 5 4 3 21

[ :
1
1
9

Figure 3: LSTM 12-State Confusion Matrix

3.3 KPCA Setup and Results

Using a 70/30 train test split, we use the Kernel PCA method. After
optimizing the univariate gamma parameter to 0.004, this method
attains a 42% accuracy on the 12-state system. The confusion matrix
(Figure 4) has a desirable diagonal. The higher accuracy is surprising
because this is a well-defined method that does not require training
or much hyperparameter tuning like the LSTM. Being easier to
setup and tune, and having higher accuracy, this method is clearly
superior at the moment. We show the top two KPCA components
in Figure 5, where we can see that the different states (represented
by color) appear to be differentiated radially in elliptical curves.

Comparing KPCA to traditional PCA, we found that traditional
PCA provided 20% accuracy on the 12-state system, suggesting that
using kernels was indeed an important component.
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Figure 5: KPCA Components

4 FUTURE STEPS

We proposed three methods for supervised and unsupervised man-
ifold learning. We have reached a good starting place for the LSTM
and KPCA methods, but we still need to design the AE. Further
hyperparameter tuning will be needed for the AE and LSTM. We
suspect that convolutional layers will produce better results for the
LSTM. And lastly, we will be adding the data from the other sensors
to select the most useful subset for behavioral prediction.

5 CONCLUSION

I have presented several methodologies with which to evaluate
a multi-sensor data fusion analysis approach for canine behavior
determination. LSTMs and AEs are promising for manifold learn-
ing, and KPCA has shown surprisingly good accuracy despite its
simplicity. We hope 1) to attain better accuracy with these other
sensors and 2) that one methodology will prove superior to the oth-
ers. As we apply these methods toward unsupervised approaches,
our methods will help with in-the-field data interpretation.

ACKNOWLEDGMENTS

A special thanks to Guiding Eyes for the Blind staff for collecting the
IFT data, in particular: Jane Russenberger, Madeline Zimmermann,
Tyler Jacobs, Gerald Brenninkmeyer and Helen West. We thank IBM
for their support and especially Lorraine Trapani. We also thank
financial support from NSF through multiple grants (CCSS-1554367,
11S-2037328 and ECC-1160483) and IBM Faculty Awards.



Toward In-the-Field Canine Manifold Learning: Data Fusion for Evaluation of Potential Guide Dogs

REFERENCES

(1]

[2

—

3

[9

=

[10]

[11

[12]

[13]

[14]

[15]

2016. National Federation of the Blind. (2016). https://www.nfb.org/resources/
blindness-statistics

2023. (2023). https://www.guidingeyes.org/journey-of-a-guide-dog/in-for-
training/

R. Antony. 2009. Data Management Support to Tactical Data Fusion. In Handbook
of Multisensor Data Fusion Theory and Practice, M. Liggins, D. Hall, and J. Llinas
(Eds.). CRC Press, 619-653.

O. Arif, P. Vela, and W. Daley. 2010. Pre-image Problem in Manifold Learning
and Dimensional Reduction Methods. Ninth International Conference on Machine
Learning and Applications (2010).

L. Asher, N. Harvey, M. Green, and G. England. 2017. Application of Survival
Analysis and Multistate Modeling to Understand Animal Behavior: Examples
from Guide Dogs. frontiers in Veterinary Science (2017).

G. Berns, A. Brooks, M. Spivak, and K. Levy. 2017. Functional MRI in Awake
Dogs Predicts Suitability for Assistance Work. Sci Rep 7, 43704 (2017).

Eva Borras, Joan Ferré, Ricard Boqué, Montserrat Mestres, Laura Acefia, and Olga
Busto. 2015. Data fusion methodologies for food and beverage authentication
and quality assessment — A review. Analytica Chimica Acta 891 (2015), 1-14.
https://doi.org/10.1016/j.aca.2015.04.042

Z. Cleghern, E. Williams, S. Mealin, M. Foster, T. Holder, A. Bozkurt, and D.
Roberts. 2019. An IoT and Analytics Platform for Characterizing Adolescent
Dogs’ Suitability for Guide Work. Proceedings of the Sixth International Conference
on Animal-Computer Interaction 1 (2019), 1-6.

B.V. Dasarathy. 1997. Sensor fusion potential exploitation-innovative architec-
tures and illustrative applications. Proceedings of the IEEE 85.1 (1997), 24-38.
https://doi.org/10.1109/5.554206

N. Dollion, A. Paulus, N. Champagne, N. St-Pierre, E. St-Pierre, M. Trudel, and P.
Plusquellec. 2019. Fear/Reactivity in working dogs: An analysis of 37 years of
behavioral data from the Mira Foundation’s future service dogs. Applied Animal
Behavior Science 221 (2019).

D. Duffy and J. Serpell. 2012. Predictive validity of a method for evaluating
temperament in young guide and service dogs. Applied Animal Behaviour Science
138 (2012), 99-109

M. Foster T. Holder D. Roberts A. Bozkurt E. Williams, Z. Cleghern. 2020. A
Smart Collar for Assessment of Activity Levels and Environmental Conditions for
Guide Dogs. IEEE 42nd Annual International Conference EMBC (2020), 4628-4631.
https://doi.org/10.1109/EMBC44109.2020.9175814

A. Elgammal and C. Lee. 2011. Human Motion Analysis Applications of Manifold
Learning. In Manifold Learning Theory and Applications. Taylor & Francis Group,
Chapter 11, 277-321.

I. Ennik, A. Liinamo, E. Leighton, and J. Arendonk. 2006. Suitability for field
service in 4 breeds of guide dogs. Journal of Veterinary Behavior 1 (2006), 67-74.

J. Esteban, A. Starr, R. Willetts, P. Hannah, and P. Bryanston-Cross. 2005. A
Review of data fusion models and architectures: towards engineering guidelines.
Neural Comput & Applic 14 (2005), 273-281.

[16]

(17

(18]

[20]

[21

[22

(28]

[29]

ACI 23, December 04-08, 2023, Raleigh, NC, USA

M. Foster, J. Wang, E. Williams, D. Roberts, and A. Bozkurt. 2020. Inertial Mea-
surement Based Heart and Respiration Rate Estimation of Dogs During Sleep
for Welfare Monitoring. Proceedings of the Seventh International Conference on
Animal-Computer Interaction (2020), 1-6.

M. Foster, J. Wang, E. Williams, D. Roberts, and A. Bozkurt. 2021. ECG and
Respiration Signal Reconstruction from an IMU at Various Orientations during
Rest or Sleep for Dog Welfare Monitoring. Proceedings of the Eight International
Conference on Animal-Computer Interaction 7 (2021), 1-9.

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber.
2017. LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and
Learning Systems 28, 10 (2017), 2222-2232. https://doi.org/10.1109/TNNLS.2016.
2582924

T. Holder, E. Williams, D. Martin, A. Kligerman, E. Summers, Z. Cleghern, J.
Dieffenderfer, J. Russenberger, D. Roberts, and A. Bozkurt. 2021. From Ideation
to Deployment: A Narrative Case Study of Citizen Science Supported Wearables
for Raising Guide Dogs. Proceedings of the Eight International Conference on
Animal-Computer Interaction 6 (2021), 1-13.

J. Mendes Jr., M. Vieira, M. Pires, and S. Stevan Jr. 2016. Sensor Fusion and
Smart Sensor in Sports and Biomedical Applications. Sensors (Basel) (2016).
https://doi.org/10.3390/516101569

E. Leighton. 1997. Genetics of canine hip dysplasia. Journal of the American
Veterinary Medical Association 210, 10 (1997), 1474.

S. Mealin, Z. Cleghern, M. Foster, A. Bozkurt, and D. Roberts. 2019. Predicting
Guide Dog Temperament Evaluation Outcomes Using Raw ECG Signals. Proceed-
ings of the Sixth International Conference on Animal-Computer Interaction (2019),
1-12.

S. Mealin, M. Foster, Z. Cleghern, A. Bozkurt, and D. Roberts. 2020. Using
Inertial Measurement Unit Data for Objective Evaluations of Potential Guide
Dogs. Proceedings of the Seventh International Conference on Animal-Computer
Interaction 2 (2020), 1-11.

S. Mealin, M. Foster, K. Walker, S. Yushak, B. Sherman, A. Bozkurt, and D. Roberts.
2017. Creating an Evaluation System for Future Guide Dogs: A Case Study
of Designing for Both Human and Canine Needs. Proceedings of the Fourth
International Conference on Animal-Computer Interaction (2017), 1-6.

H. Mitchell. 2007. Sensors. In Multi-Sensor Data Fusion An Introduction. Springer.
C. O'Reilly, K. Moessner, and M. Nati. 2017. Univariate and Multivariate Time
Series Manifold Learning. Knowledge-Based Systems 133 (2017), 1-16.
Bernhard Scholkopf, Alexander Smola, and Klaus-Robert Miiller.
1998. Nonlinear Component Analysis as a Kernel Eigenvalue Prob-
lem. Neural Computation 10, 5 (07 1998), 1299-1319. https:
//doi.org/10.1162/089976698300017467 arXiv:https://direct.mit.edu/neco/article-
pdf/10/5/1299/813905/089976698300017467.pdf

Y. Wang. 2007. Seismic time-frequency spectral decomposition by matching
pursuit. Geophysics 72, 1 (2007).

J. Weston, B. Scholkopf, and G. Bakir. 2003. Learning to Find Pre-Images. NIPS
(2003).


https://www.nfb.org/resources/blindness-statistics
https://www.nfb.org/resources/blindness-statistics
https://www.guidingeyes.org/journey-of-a-guide-dog/in-for-training/
https://www.guidingeyes.org/journey-of-a-guide-dog/in-for-training/
https://doi.org/10.1016/j.aca.2015.04.042
https://doi.org/10.1109/5.554206
https://doi.org/10.1109/EMBC44109.2020.9175814
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.3390/s16101569
https://doi.org/10.1162/089976698300017467
https://doi.org/10.1162/089976698300017467
https://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/10/5/1299/813905/089976698300017467.pdf
https://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/10/5/1299/813905/089976698300017467.pdf

	Abstract
	1 Motivation
	2 Methodology
	2.1 Manifold Learning
	2.2 Dataset Description
	2.3 Supervised Approches
	2.4 Unsupervised Methods
	2.5 Unsupervised Interpretation and the Pre-Image Problem

	3 Early Results
	3.1 Manifold Learning Experiments
	3.2 LSTM Setup and Training Results
	3.3 KPCA Setup and Results

	4 Future Steps
	5 Conclusion
	Acknowledgments
	References

