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Abstract. What are the unavoidable induced subgraphs of graphs with large treewidth? It is
well-known that the answer must include a complete graph, a complete bipartite graph, all subdi-
visions of a wall and line graphs of all subdivisions of a wall (we refer to these graphs as the “basic
treewidth obstructions”). So it is natural to ask whether graphs excluding the basic treewidth
obstructions as induced subgraphs have bounded treewidth. Sintiari and Trotignon answered
this question in the negative. Their counterexamples, the so-called “layered wheels,” contain
wheels, where a wheel consists of a hole (i.e., an induced cycle of length at least four) along with
a vertex with at least three neighbors in the hole. This leads one to ask whether graphs exclud-
ing wheels and the basic treewidth obstructions as induced subgraphs have bounded treewidth.
This also turns out to be false due to Davies’ recent example of graphs with large treewidth, no
wheels and no basic treewidth obstructions as induced subgraphs. However, in Davies’ example
there exist holes and vertices (outside of the hole) with two neighbors in them. Here we prove
that a hole with a vertex with at least two neighbors in it is inevitable in graphs with large
treewidth and no basic obstruction. Our main result is that graphs in which every vertex has
at most one neighbor in every hole (that does not contain it) and with the basic treewidth
obstructions excluded as induced subgraphs have bounded treewidth.

1. Introduction

All graphs in this paper are finite and simple. Let H and G be graphs. We say G contains
H if G has an induced subgraph isomorphic to H (unless stated otherwise). We say that G
is H-free if G does not contain H. For a family of graphs H, we say that G is H-free if G
is H-free for every H ∈ H. A tree decomposition (T, χ) of G consists of a tree T and a map
χ : V (T )→ 2V (G) such that the following hold:
(i) For every vertex v ∈ V (G), there exists t ∈ V (T ) such that v ∈ χ(t).
(ii) For every edge v1v2 ∈ E(G), there exists t ∈ V (T ) such that v1, v2 ∈ χ(t).
(iii) For every v ∈ V (G), the subgraph of T induced by {t ∈ V (T ) | v ∈ χ(t)} is connected.
If (T, χ) is a tree decomposition of G and V (T ) = {t1, . . . , tn}, the sets χ(t1), . . . , χ(tn) are

called the bags of (T, χ). The width of a tree decomposition (T, χ) is maxt∈V (T ) |χ(t)| − 1. The
treewidth of G, denoted tw(G), is the minimum width of a tree decomposition of G.
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2 INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS V.

Treewidth is an extensively-studied graph parameter, mostly due to the fact that graphs of
bounded treewidth exhibit interesting structural [16] and algorithmic [9] properties. It is thus
of interest to understand the unavoidable substructures emerging in graphs of large treewidth
(these are often referred to as “obstructions to bounded treewidth”). For instance, for each k,
the (k × k)-wall, denoted by Wk×k, is a planar graph with maximum degree three and with
treewidth k (see Figure 1; a precise definition can be found in [3]). Every subdivision of Wk×k
is also a graph of treewidth k. The unavoidable subgraphs of graphs with large treewidth are
fully characterized by the Grid Theorem of Robertson and Seymour, the following.

Theorem 1.1 ([15]). There is a function f : N→ N such that every graph of treewidth at least
f(k) contains a subdivision of Wk×k as a subgraph.

Figure 1. W5×5

Following the same line of thought, our motivation in this series is to study induced subgraph
obstructions to bounded treewidth. In addition to subdivided walls mentioned above, complete
graphs and complete bipartite graphs are easily observed to have arbitrarily large treewidth:
the complete graph Kt+1 and the complete bipartite graph Kt,t both have treewidth t. Line
graphs of subdivided walls form another family of graphs with unbounded treewidth, where the
line graph L(F ) of a graph F is the graph with vertex set E(F ), such that two vertices of L(F )
are adjacent if the corresponding edges of G share an end.

We call a family H of graphs useful if there exists an integer c(H) such that every H-free
graph has treewidth at most c(H). The discussion above can be summarized as follows:

Theorem 1.2. If H is a useful family of graphs, then there exists an integer t such that H
contains Kt,Kt,t, an induced subgraph of each subdivision of Wt×t and an induced subgraph of
the line graph of each subdivision of Wt×t.

The following was conjectured in [1] and proved in [13]:

Theorem 1.3. [13] For all k,∆ > 0, there exists c = c(k,∆) such that every graph with
maximum degree at most ∆ and treewidth at least c contains a subdivision of Wk×k or the line
graph of a subdivision of Wk×k as an induced subgraph.

The bounded-degree condition of Theorem 1.3 implies that K∆+2 andK∆+1,∆+1 are excluded.
However, Theorem 1.3 does not hold if “bounded degree” is replaced by excluding K∆+2 and
K∆+1,∆+1, as is evidenced by the constructions of [11, 17] and [18]. Thus a natural question
arises: what can replace this condition? Let us call a family F of graphs helpful if the following
holds: for all t > 0, there exists c = c(t) such that every F -free graph with treewidth more than
c contains Kt, Kt,t, a subdivision of Wt×t or the line graph of a subdivision of Wt×t.

A hole in a graph is an induced cycle of length at least four. The length of a hole is the
number of vertices in it. A wheel is a graph consisting of a hole C and a vertex v with at least
three neighbors in C (in the literature, sometimes further restrictions are placed on the location
of the neighbors of v in C). In view of the prevalence of wheels in the construction of [18], one
might ask if the family of all wheels is helpful. The answer to this question is negative, because
of the construction of [11, 17] (see Figure 2 for an example; we omit the precise definition). This
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Figure 2. A wheel-free graph with large treewidth [11, 17]

paper is motivated by the following question: what wheel-like families may be helpful (where by
“wheel-like” we mean graphs consisting of a hole and a vertex with certain neighbors in it)? In
view of the existence of the faimly depicted in Figure 2, a helpful wheel-like family must contain
a graph consistng of a hole and a vertex with at most two neighbors in it. Let T1 be the family
of all graphs consisting of a hole C and a vertex outside of C with at least two neighbors in
C. The class of T1-free graphs was studied in [2]; in Section 6 we strengthen their results. A
crucial difference between Theorem 6.3 and [2] is that in [2] only the existence of certain cutsets
is shown, while we are able to guarantee that every heavy seagull is broken by a cutset of the
required type (see Section 6 for details).

Our main result in this paper is the following:
Theorem 1.4. The family T1 is helpful.

In fact, we prove something stronger. In the following, the length of a path is its number of
edges. A pyramid is a graph consisting of a vertex a, a triangle {b1, b2, b3}, and three paths Pi
from a to bi for 1 ≤ i ≤ 3 of length at least one, such that for i 6= j the only edge between
Pi \ {a} and Pj \ {a} is bibj , and at most one of P1, P2, P3 has length exactly one.

A prism is a graph consisting of two triangles {a1, a2, a3} and {b1, b2, b3}, and three paths Pi
from ai to bi for 1 ≤ i ≤ 3, all of length at least one, and such that for i 6= j the only edges
between Pi and Pj are aiaj and bibj .

Let T2 be the family of all graphs consisting of a hole C and a vertex outside of C with at
least two non-adjacent neighbors in C, together with all prisms and all pyramids. Note that
each graph in T2 contains a graph in T1 (so the class of T1-free graphs is properly contained in
the class of T2-free graphs). We prove:
Theorem 1.5. The family T2 is helpful.

Let us next restate Theorem 1.5 more explicitly. Let r be an integer. A graph G is r-sparse if
for every hole H of G and vertex v 6∈ H, there is an r-edge path P of H such that N(v)∩H ⊆ P .
A graph is sparse if it is 1-sparse, that is for every hole H of G and vertex v 6∈ H, there is an edge
ab of H such that N(v) ∩H ⊆ {a, b}. A graph is very sparse if it is sparse and also (pyramid,
prism)-free (thus a graph is very sparse if and only if it is T2-free). It follows that if G is sparse,
then G does not contain K3,3, and if G is very sparse then G does not contain the line graph of
a subdivision of W3×3. Let F be the family of all very sparse graphs, and let Ft be the family
of all very sparse graphs with no clique of size at least t+ 1.

We prove:
Theorem 1.6. For all t > 0, there exists c = c(t) such that every graph in Ft with treewidth
more than c contains a subdivision of Wt×t (as an induced subgraph).

Analyzing the graph in Figure 2 suggests that Theorem 1.6 may be strengthened further by
addressing sparse graphs, instead of very sparse graphs. We conjecture:
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Conjecture 1.7. For all t > 0, there exists c = c(t) such that every sparse graph with no clique
of size t and with treewidth more than c contains a subdivision of Wt×t or the line graph of a
subdivision of Wt×t (as an induced subgraph).

We also ask if the analogue of Conjecture 1.7 is true for r-sparse graphs in general (where c
depends on t and r).

The rough outline of the proof of Theorem 1.6 is as follows. Our first step is to show that if
a graph in Ft contains a triangle, then it admits a clique cutset. Thus it is enough to prove the
result for graphs in F2. Now let G ∈ F2. A heavy seagull in G is an induced three-vertex path
both of whose ends have degree at least three in G. First we prove that every heavy seagull of
G is “broken” by a two-clique-separation (this means that for every heavy seagull H of G, there
exist two cliques K1,K2 ∈ G such that no component of G \ (K1 ∪K2) contains H). Now the
idea is to use the central bag method, developed in earlier papers in this series [3, 5, 6, 7], to
identify an induced subgraph β of G that contains no heavy seagull, and such that the treewidth
of G is not much larger than the treewidth of β. The key difference between our situation here
and those in the earlier papers is that the cutsets we use to break the heavy seagulls are not
connected, a property that was crucial in the earlier proofs. To deal with this difficulty, we
change the definition of a central bag, including in it a path between the two cliques of the
cutset whose interior is in G \ β (this is in the spirit of, but different from, “marker paths” for
2-joins). We then modify the previously known central bag tools to work in this new setting.
By “breaking” heavy seagulls, we arrange that in β, vertices of degree at least three appear in
components of bounded size. This in turn allows us to bound the treewidth of β, and theorem
follows.

1.1. Definitions and notation. Let G be a graph. For X ⊆ V (G), we denote by G[X] the
induced subgraph of G with vertex set X, and G \ X denotes G[V (G) \ X]. In this paper
we use the set X and the subgraph G[X] of G interchangeably. If F is a graph and G[X] is
isomorphic to F , we say that X is an F in G. Let v ∈ V (G). The open neighborhood of v,
denoted N(v), is the set of all vertices in V (G) adjacent to v. We denote the degree of v in G by
degG(v) = |N(v)|. The closed neighborhood of v, denoted N [v], is N(v) ∪ {v}. Let X ⊆ V (G).
The open neighborhood of X, denoted N(X), is the set of all vertices in V (G)\X with a neighbor
in X. The closed neighborhood of X, denoted N [X], is N(X)∪X. If H is an induced subgraph
of G and X ⊆ V (G), then NH(X) = N(X) ∩H. Let Y ⊆ V (G) be disjoint from X. Then, X
is complete to Y if every vertex of X is adjacent to every vertex of Y , and X is anticomplete to
Y if there are no edges between X and Y . We use X ∪ v to mean X ∪ {v}, and X \ v to mean
X \ {v}.

Given a graph G, a path in G is an induced subgraph of G that is a path. If P is a path in G,
we write P = p1- . . . -pk to mean that pi is adjacent to pj if and only if |i− j| = 1. We call the
vertices p1 and pk the ends of P , and say that P is from p1 to pk. The interior of P , denoted
by P ∗, is the set P \ {p1, pk}. The length of a path P is the number of edges in P .

A theta is a graph T containing two vertices a, b and three paths P1, P2, P3 from a to b of length
at least two, such that P1 \ {a, b}, P2 \ {a, b}, P3 \ {a, b} are pairwise disjoint and anticomplete
to each other. We call a, b the ends of T .

1.2. Organization of the paper. This paper is organized as follows. In Section 2, we give
general background and definitions related to separations in graphs; we also discuss connections
between different kinds of separations in the special case of sparse graphs. In Section 3, we
reduce Theorem 1.6 to the case of triangle-free sparse graphs. In Section 4, we discuss balanced
separators in graphs, and develop our main tool, Theorem 4.5, which allows us to use the central
bag method. In Section 5, we prove results about two-clique-separations, which are the cutsets
that will be used to form the central bag. In Section 6, we prove structural results that allow
us to break every heavy seagull in a triangle-free sparse graph and produce a central bag that
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contains no heavy seagulls. In Section 7, we use the tools of Section 4 to prove our main result
for graphs in F2. Finally, in Section 8, we prove Theorem 1.6. We remark that some theorems in
the paper are proved in greater generality than what is needed here. That is because we expect
these more general statements to be used in later papers in the series.

2. Separations

A separation of a graph G is a triple (A,C,B), where A,B,C ⊆ V (G), A∪C ∪B = V (G), A,
B, and C are pairwise disjoint, and A is anticomplete to B. If S = (A,C,B) is a separation, we
let A(S) = A, B(S) = B, and C(S) = C. We say that C ⊆ V (G) is a cutset of G if there exists
a separation (A,C,B) of G with A 6= ∅ and B 6= ∅. A clique in a graph is a (possibly empty)
set of pairwise adjacent vertices. We say that G admits a clique cutset if there is a cutset of G
that is a clique (in particular every disconnected graph admits a clique cutset). A separation
(A,C,B) is a star separation if there exists v ∈ C such that C ⊆ N [v] (we say that v is a center
of C). A star separation (A,C,B) is proper if A 6= ∅ and B 6= ∅. We say that G admits a star
cutset if there is a proper star separation in G.

First we observe:

Lemma 2.1. Let G be a sparse graph and (A,C,B) be a separation of G with A 6= ∅ and B 6= ∅.
Suppose that there exist v1, . . . , vk ∈ C such that C ⊆

⋃k
i=1N [vi]. Let D1 be a component of A

and let D2 be a component of B. Then there exist cliques X1, . . . , Xk ⊆ C of G such that every
path from a vertex of D1 to a vertex of D2 meets

⋃k
i=1Xi. In particular, if G admits a star

cutset, then G admits a clique cutset.

Proof. Let N1 = N(D1) ⊆ C, and let D′2 be the component of G \ (N1 ∪ {v1, . . . , vk}) such that
D2 ⊆ D′2. Let X = N(D′2) ∪ {v1, . . . , vk}. Then X ⊆ N1 ∪ {v1, . . . , vk} ⊆ C, and every path
from a vertex of D1 to a vertex of D′2 in G meets X. We claim that for every i ∈ {1, . . . , k} the
set X ∩N [vi] is a clique. Suppose not, and let x, y ∈ X ∩N [v1] (say) be non-adjacent (and so
in particular, x, y 6= v1). It follows that x, y ∈ N(D1) ∩ N(D′2). Let P1 be a path from x to y
with P ∗1 ⊆ D1 and let P2 be a path from x to y with P ∗2 ⊆ D′2. Then H = x-P1-y-P2-x is a hole
and v1 6∈ H since v1 ∈ X. But now v1 has two non-adjacent neighbors in H, contrary to the
fact that G is sparse. �

Lemma 7 from [8] shows that clique cutsets do not affect treewidth. Now, by Lemma 2.1, it
follows that in order to prove Theorem 1.6 it is enough to prove the following:

Theorem 2.2. For all t > 0, there exists c = c(t) such that every graph in Ft with treewidth
more than c and with no star cutset contains a subdivision of Wt×t as an induced subgraph.

3. Reducing to the triangle-free case

In this section we show how to deduce Theorem 1.6 from the special case of triangle-free
graphs. A diamond is the graph obtained from K4 by removing an edge.

Lemma 3.1. Let G be a sparse graph and assume that G does not admit a star cutset. Then
G is diamond-free.

Proof. Suppose first {a, b, c, d} is a diamond in G. We may assume that the pair ac is non-
adjacent. Since b is not the center of a star cutset in G, it follows that there exists is a path
from a to c with no neighbor of b in its interior. Let P be such a path. Then d is not a vertex
of P , since d is adjacent to b. Moreover, a-P -c-b-a is a hole, and d has three neighbors in it,
namely a, b and c, a contradiction. This proves that G is diamond-free. �

We also need the following folklore result that appeared in [4]:
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Lemma 3.2. Let x1, x2, x3 be three distinct vertices of a graph G. Assume that H is a connected
induced subgraph of G\{x1, x2, x3} such that V (H) contains at least one neighbor of each of x1,
x2, x3, and that V (H) is minimal subject to inclusion. Then, one of the following holds:

(i) For some distinct i, j, k ∈ {1, 2, 3}, there exists P that is either a path from xi to xj or a
hole containing the edge xixj such that
• V (H) = V (P ) \ {xi, xj}, and
• either xk has two non-adjacent neighbors in H or xk has exactly two neighbors in H

and its neighbors in H are adjacent.
(ii) There exists a vertex a ∈ V (H) and three paths P1, P2, P3, where Pi is from a to xi, such

that
• V (H) = (V (P1) ∪ V (P2) ∪ V (P3)) \ {x1, x2, x3}, and
• the sets V (P1) \ {a}, V (P2) \ {a} and V (P3) \ {a} are pairwise disjoint, and
• for distinct i, j ∈ {1, 2, 3}, there are no edges between V (Pi) \ {a} and V (Pj) \ {a},

except possibly xixj.
(iii) There exists a triangle a1a2a3 in H and three paths P1, P2, P3, where Pi is from ai to xi,

such that
• V (H) = (V (P1) ∪ V (P2) ∪ V (P3)) \ {x1, x2, x3}, and
• the sets V (P1), V (P2) and V (P3) are pairwise disjoint, and
• for distinct i, j ∈ {1, 2, 3}, there are no edges between V (Pi) and V (Pj), except aiaj

and possibly xixj.

Lemma 3.3. Let G ∈ F . Then either G ∈ F2, G is a complete graph, or G admits a star
cutset.

Proof. We may assume that G does not admit a star cutset and G is not a complete graph. Let
K be an inclusion-wise maximal clique of G with |K| > 2, and let D = G \K. Since G does not
admit a clique cutset and is not a complete graph, it follows that D is connected, non-empty,
and every vertex of K has a neighbor in D. By Lemma 3.1, it follows that G does not contain
a diamond.

(1) Let v ∈ D. Then v has at most one neighbor in K.

Assume that v has at least two neighbors in K, say k1 and k2. Since K is a maximal clique,
there exists k3 ∈ K non-adjacent to v. But now {v, k1, k2, k3} is a diamond, a contradiction.
This proves (1).

Now let x1, x2, x3 ∈ K. Apply Lemma 3.2 to {x1, x2, x3} and a minimal connected subgraph H
of D containing at least one neighbor of each of x1, x2, x3. By (1), we have that |V (H)| ≥ 3.
Now the first outcome of Lemma 3.2 gives a hole and a vertex with two non-adjacent neighbors
in it, the second outcome gives a pyramid, and the third gives a prism. In all cases we get a
contradiction to the fact that G ∈ F . �

Now, by Lemma 3.3, in order to prove Theorem 2.2 it is enough to prove:

Theorem 3.4. For all k, there exists c = c(k) such that every graph in F2 with no star cutset
and with treewidth more than c contains a subdivision of Wk×k as an induced subgraph.

4. Balanced separators and central bags

Let G be a graph, and let w : V (G)→ [0, 1]. For X ⊆ V (G), we write w(X) for
∑
x∈X w(x).

We call w a weight function on G if w(G) = 1. Now let c ∈ [1
2 , 1). A set X ⊆ V (G) is a

(w, c)-balanced separator if w(D) ≤ c for every component D of G \X. The next two lemmas
show how (w, c)-balanced separators relate to treewidth. The first result was originally proved
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in [14], and tightened by Harvey and Wood in [12]. It was then restated and proved in the
language of (w, c)-balanced separators in [3].
Lemma 4.1 ([3, 12, 14]). Let G be a graph, let c ∈ [1

2 , 1), and let k be a positive integer. If
G has a (w, c)-balanced separator of size at most k for every weight function w on G, then
tw(G) ≤ 1

1−ck.

Lemma 4.2 ([10, 14]). Let G be a graph and let k be a positive integer. If tw(G) ≤ k, then G
has a (w, c)-balanced separator of size at most k + 1 for every c ∈ [1

2 , 1) and for every weight
function w on G.

A pair (G,w) is d-unbalanced if w is a weight function on G, and G has no (w, 1
2)-balanced

separator of size at most d (if there is a (w, 1
2)-balanced separator of size at most d, we say that

(G,w) is d-balanced).
Let M be an integer, let G be a graph and let K1,K2 be two cliques of G, each of size at

most M . Let (G,w) be a 2K-unbalanced pair. Following [7], we define the canonical two-
clique-separation for {K1,K2}, as follows. Let B(K1,K2) be a component of G \ (K1 ∪ K2)
with w(B(K1,K2)) maximum. Since (G,w) is 2K-unbalanced, it follows that K1 ∪ K2 is not
a (w, 1

2)-balanced separator; consequently w(B(K1,K2)) > 1
2 , and so the choice of B(K1,K2)

is unique. Let A(K1,K2) = G \ (B(K1,K2) ∪ K1 ∪ K2) and C(K1,K2) = K1 ∪ K2. Now
S(K1,K2) = (A(K1,K2), C(K1,K2), B(K1,K2)) is the canonical two-clique-separation corre-
sponding to {K1,K2}.

For the remainder of this section, let M be an integer, and let (G,w) be a 2K-unbalanced
pair. Let K1

1 ,K
1
2 ,K

2
1 ,K

2
2 be cliques in G. For i ∈ {1, 2}, let Si = (Ai, Ci, Bi) be the canonical

two-clique-separation for {Ki
1,K

i
2}. We say that (A1, C1, B1) and (A2, C2, B2) are non-crossing

if A1 ∪C1 ⊆ B2 ∪C2 and A2 ∪C2 ⊆ B1 ∪C1, and that (A1, C1, B1) and (A2, C2, B2) are loosely
non-crossing if A1 ∩ C2 = A2 ∩ C1 = ∅. Clearly, if S1 and S2 are non-crossing, then they are
loosely non-crossing. (Note that here we break the symmetry between Ai and Bi, and so our
definition is slightly different from the classical definition of [15].)

The following observation follows immediately from the definition of a canonical two-clique-
separation.
Lemma 4.3. Assume that G does not admit a star cutset. Let K1,K2 be cliques of size at most
M in G such that A(K1,K2) 6= ∅. Then the following hold.

(1) K1 ∩K2 = ∅.
(2) Let D be a component of G \ (K1 ∪K2). Then N(D) ∩Ki 6= ∅ for all i ∈ {1, 2}, and so

there is a path from a vertex of K1 to a vertex of K2 with non-empty interior in D.
Throughout this section, let S be a set of sets {K1,K2} where each of K1,K2 is a clique of

size at most M of G, and let T be the set of canonical two-clique-separations corresponding to
members of S. Moreover, we will assume each pair of separations in T is loosely non-crossing.

We would now like to define a central bag for S. Roughly speaking, this central bag is the
intersection of the heavy blocks B(S) ∪C(S) of the separations, together with some paths that
capture the important w-related information about the light blocks. In order to define it, we
start by considering the connected components of the union

⋃
S∈T A(S) of the light sides of the

separations. We first note that, given such a component D and an S0 ∈ T , we either have
D ⊆ A(S0) or D ∩ A(S0) = ∅. Indeed, N(A(S0)) ⊆ C(S0), and so if D simultaneously contains
vertices in A(S0) and vertices not in A(S0), then D \ A(S0) must contain vertices in C(S0);
but D \ A(S0) ⊆

⋃
S∈T :S 6=S0 A(S), which has empty intersection with C(S0) by the loosely

non-crossing property – a contradiction.
We now want to “reorganize” the A(S) by assigning each component of

⋃
S∈T A(S) to a

unique A(K1,K2) in a consistent way. To that end, we fix a total order π on S, and group the
components according to the π-minimal {K1,K2} to whose A(S) they belong. Specifically, for
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{K1,K2} ∈ S, we let A∗(K1,K2) be the union of all components D of A(K1,K2) such that for
all {K ′1,K ′2} ∈ S with D ⊆ A(K ′1,K ′2), π(A(K1,K2)) ≤ π(A(K ′1,K ′2)).

Now, by Lemma 4.3, for every {K1,K2} with A∗(K1,K2) 6= ∅, there exists a path P ∗K1K2
in A∗(K1,K2) whose two (possibly coinciding) endpoints have a neighbor in K1 and in K2
respectively. Let S ′ = {{K1,K2} ∈ S | A∗(K1,K2) 6= ∅}, and write

β =
⋂

{K1,K2}∈S′
(B(K1,K2) ∪K1 ∪K2) ∪

⋃
{K1,K2}∈S′

P ∗K1K2 .

We call β a central bag for S. We write β∗ =
⋂
{K1,K2}∈S′(B(K1,K2) ∪K1 ∪K2). Note that

the choice of β is not unique since the choice of the paths P ∗K1K2
is not unique. Observe that

β∗ = V (G) \
⋃
S∈T A(S).

Let wβ be the function on β defined as follows. For v ∈ β∗, we set wβ(v) = w(v). Next
let {K1,K2} ∈ S ′, and let aK1,K2 be the endpoint of P ∗K1K2

adjacent to a vertex of K1; set
wβ(aK1,K2) = w(A∗(K1,K2)). Let wβ(v) = 0 for every v ∈ β where wβ has not been defined
yet. We call wβ the weight function inherited from w.

Lemma 4.4. The function wβ is a weight function, that is, wβ(β) = 1.

Proof. We note that, for any S0 ⊆ S, the pair of sets
⋂
{K1,K2}∈S0(B(K1,K2) ∪C(K1,K2)) and⋃

{K1,K2}∈S0 A(K1,K2) partition V (G). In particular,

w(G) = w

 ⋂
{K1,K2}∈S′

B(K1,K2) ∪ C(K1,K2)

 + w

 ⋃
{K1,K2}∈S′

A(K1,K2)

 .

Moreover, by construction, (A∗(K1,K2)){K1,K2}∈S′ is a partition of
⋃
{K1,K2}∈S′ A(K1,K2),

so that

w(G) = w

 ⋂
{K1,K2}∈S′

B(K1,K2) ∪ C(K1,K2)

 +
∑

{K1,K2}∈S′
w(A∗(K1,K2)).

Since each A∗(K1,K2) with {K1,K2} ∈ S ′ contains exactly one of the vertices aK1,K2 , we
have ∑

{K1,K2}∈S′
w(A∗(K1,K2)) =

∑
{K1,K2}∈S′

wβ(aK1,K2).

Putting everything together, we obtain:

wβ(β) = wβ

 ⋂
{K1,K2}∈S′

B(K1,K2) ∪ C(K1,K2)

 +
∑

{K1,K2}∈S′
wβ(aK1,K2)

= w

 ⋂
{K1,K2}∈S′

B(K1,K2) ∪ C(K1,K2)

 +
∑

{K1,K2}∈S′
w(A∗(K1,K2))

= w(G) = 1.
�

For v ∈ V (G), let

δS(v) =
⋃

K: v∈K and there exists L such that {K,L}∈S
K.

Theorem 4.5. Let d,∆ be integers. Assume that |δS(v)| ≤ ∆ for every v ∈ G. Assume also
that (β,wβ) is d-balanced. Then (G,w) is max(2Kd,∆d)-balanced.
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Proof. Suppose that X is a (wβ , 1
2)-balanced separator in β with |X| ≤ d. We now construct a

(w, 1
2)-balanced separator Y of G with |Y | ≤ max(2Kd,∆d).

Let

Y1 = X ∩

 ⋂
{K1,K2}∈S′

(B(K1,K2) ∪K1 ∪K2)

 .

For x ∈ Y1, let Y (x) = δS(x). Now let x ∈ X\Y1. It follows from the definition of A∗(K1,K2) and
P ∗K1K2

that x ∈ P ∗K1K2
for exactly one {K1,K2} ∈ S ′; let Y (x) = K1∪K2. Let Y =

⋃
x∈X Y (x).

Then |Y | ≤ ∆|Y1| + 2K(d − |Y1|) ≤ max(∆d, 2Kd), as required. Next we prove that Y is a
(w, 1

2)-balanced separator of G.

(2) Let F be a component of G \ β. Then, there exists {K1,K2} ∈ S such that F ⊆ A∗(K1,K2).

By construction of β, it holds that G \ β ⊆
⋃
{K1,K2}∈S A(K1,K2); consequently there exists

{K1,K2} ∈ S such that F ⊆ A∗(K1,K2). This proves (2).

From now on, let D be a component of G \ Y . We will show that w(D) ≤ 1
2 . Since (G,w)

is 2K-unbalanced, it follows that w(A(K1,K2)) < 1
2 for all {K1,K2} ∈ S, and so if D is a

component of G\β, then by (2), it follows that w(D) ≤ 1
2 . Thus we may assume that D∩β 6= ∅.

Suppose first that D ∩ A(K1,K2) 6= ∅ for some {K1,K2} ∈ S such that K1 ∪ K2 ⊆ Y .
Since N(A(K1,K2)) ⊆ K1 ∪ K2 and K1 ∪ K2 ⊆ Y , it follows that D ⊆ A(K1,K2), and so
w(D) < 1

2 . Therefore, we may assume that D ∩ A(K1,K2) = ∅ for all {K1,K2} ∈ S such that
K1 ∪K2 ⊆ Y . Next, suppose D ∩ A(K1,K2) 6= ∅ for {K1,K2} ∈ S ′ such that P ∗K1K2

∩X 6= ∅.
Let x ∈ P ∗K1K2

∩X. Now, x ∈ X \ Y1, and so Y (x) = K1 ∪K2 ⊆ Y , a contradiction. Therefore,
we may assume that for all {K1,K2} ∈ S ′ such that D ∩A(K1,K2) 6= ∅, it holds that P ∗K1K2

is
disjoint from X, and thus P ∗K1K2

is contained in a component of β \X. Let Q1, . . . , Qm be the
components of β \X.

(3) Let {K1,K2} ∈ S ′, and suppose that P ∗K1K2
⊆ Qk. Then K1 ∪K2 ⊆ Qk ∪ Y .

Since N(P ∗K1K2
)∩Ki 6= ∅ for each i ∈ {1, 2}, it follows that each of K1,K2 either is contained

in Qk or has a vertex in X. Since every two separations in T are loosely non-crossing, it follows
that each of K1,K2 is either contained in Qk or has a vertex in Y1. Since δS(x) ⊆ Y for every
x ∈ Y1, it follows that for i ∈ {1, 2}, if Ki ∩ Y1 6= ∅, then Ki ⊆ Y . This proves (3).

(4) Let {K1,K2} ∈ S ′, and suppose that N(A(K1,K2)) ∩ Qk 6= ∅. Then either K1 ∪K2 ⊆ Y ,
or P ∗K1K2

⊆ Qk. In particular, if K1 ∪K2 6⊆ Y , then there is at most one k ∈ {1, . . . ,m} with
N(A(K1,K2)) ∩Qk 6= ∅.

If P ∗K1K2
∩X 6= ∅, then K1 ∪K2 ⊆ Y , and (4) holds; so we may assume that P ∗K1K2

∩X = ∅,
and since P ∗K1K2

is connected, it follows that P ∗K1K2
⊆ Qk′ for some k′ ∈ {1, . . . ,m}. If k = k′,

then (4) holds, so we may assume that k 6= k′. It follows from (3) that K1 ∪ K2 ⊆ Qk′ ∪ Y
and thatK1∪K2 ⊆ Qk′ 6= ∅, and thus N(A(K1,K2)) ⊆ Qk′∪Y , a contradiction. This proves (4).

Since D ∩ β 6= ∅, it follows that for each {K1,K2} ∈ S ′ with D ∩ A(K1,K2) 6= ∅, we have
D∩N(A(K1,K2)) 6= ∅, and in particular (K1∪K2)∩D 6= ∅, soK1∪K2 6⊆ Y . Moreover, from (4),
it follows that P ∗K1K2

⊆ Qk for some k ∈ {1, . . . ,m}, and N(A(K1,K2))∩Qk′ = ∅ for all k′ 6= k.
Since D is connected, it follows that there is a k ∈ {1, . . . ,m} such that for every {K1,K2} ∈ S ′
with D ∩ A(K1,K2) 6= ∅, we have N(A(K1,K2)) ⊆ Qk ∪ Y , and P ∗K1K2

⊆ Qk. It follows that
D ∩ β ⊆ Qk, and aK1,K2 ∈ Qk for all such {K1,K2} ∈ S ′, and therefore w(D) ≤ wβ(Qk) ≤ 1

2 .
This concludes the proof. �
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Let K1,K2 be cliques of size at most M in G. We say that S(K1,K2) is proper (or that the
pair {K1,K2} is proper) if

• some component D of A(K1,K2) satisfies K1 ∪K2 ⊆ N(D), and
• if |K1| = |K2| = 1, then A(K1,K2)∪K1 ∪K2 is not a path from the vertex of K1 to the
vertex of K2.

We observe:

Lemma 4.6. Let K1,K2 be cliques of size at most M in G and assume that S(K1,K2) is a
proper canonical two-clique-separation in G. Then either some vertex of A(K1,K2) has at least
three neighbors in A(K1,K2) ∪K1 ∪K2, or some vertex of K1 ∪K2 has at least two neighbors
in A(K1,K2).

Proof. Let D be a component of A(K1,K2) such that K1 ∪ K2 ⊆ N(D). Then N [D] has a
spanning tree T such that every vertex of K1∪K2 is a leaf of T . If |K1| > 1, then T has at least
three leaves, and therefore some vertex of D has degree at least three in N [D] as required. Thus
we may assume that |K1| = |K2| = 1. If N [D] is not a path from the vertex of K1 to the vertex
of K2, then some vertex of D has at least three neighbors in N [D], and again theorem holds.
Thus we may assume that N [D] is a path from the vertex of K1 to the vertex of K2. Since
S(K1,K2) is proper, A(K1,K2) 6= D. Let D′ be a component of A(K1,K2)\D. By Lemma 4.3,
we have that K1 ⊆ N(D′). But then the vertex of K1 has at least two neighbors in A(K1,K2)
as required. �

We say that S(K1,K2) is active (or that the pair {K1,K2} is active) if it is proper and
for every pair of cliques K ′1,K ′2 of size at most M in G such that S(K ′1,K ′2) is proper and
K1 ∪K2 6= K ′1 ∪K ′2, it holds that

• B(K ′1,K ′2) ∪K ′1 ∪K ′2 is not a proper subset of B(K1,K2) ∪K1 ∪K2; and
• if B(K ′1,K ′2) ∪K ′1 ∪K ′2 = B(K1,K2) ∪K1 ∪K2, then B(K ′1,K ′2) ⊂ B(K1,K2).

Lemma 4.7. Let K1,K2 be cliques of G of size at most M . If S(K1,K2) is active, then
K1 ∪K2 ⊆ N(B(K1,K2)).

Proof. Suppose not. We may assume that there exists x ∈ K1 such x has no neighbor in
B(K1,K2). Then (A(K1,K2)∪{x}, (K1∪K2)\{x}, B(K1,K2)) is a proper two-clique-separation
of G contrary to the fact that S is active. �

5. Two-clique-separations

The main result of this section will allow us to apply Theorem 4.5 with M = 2:

Theorem 5.1. Let G ∈ F2 and let (G,w) be an 8-unbalanced pair. Let K1,K2,K
′
1,K

′
2 be cliques

of G such that the separations S = S(K1,K2) and S′ = S(K ′1,K ′2) are active in G. Assume also
that G admits no star cutset. Then S and S′ are loosely non-crossing.

Proof. Suppose that S and S′ are not loosely non-crossing. Then (C(K1,K2) ∪ C(K ′1,K ′2)) ∩
(A(K1,K2) ∪ A(K ′1,K ′2)) 6= ∅. Since w(B(K1,K2)) > 1

2 and w(B(K ′1,K ′2)) > 1
2 , it follows that

B(K1,K2) ∩B(K ′1,K ′2) 6= ∅.

(5) C(K1,K2) ∩B(K ′1,K ′2) 6= ∅.

Suppose C(K1,K2)∩B(K ′1,K ′2) = ∅. SinceB(K ′1,K ′2) is connected, it follows that A(K1,K2)∩
B(K ′1,K ′2) = ∅. Since by Lemma 4.7 every vertex of K ′1 ∪K ′2 has a neighbor in B(K ′1,K ′2) it
follows that A(K1,K2)∩C(K ′1,K ′2) = ∅. But now B(K ′1,K ′2)∪K ′1∪K ′2 ⊆ B(K1,K2)∪K1∪K2.
Since S is active, it follows that B(K ′1,K ′2) ∪K ′1 ∪K ′2 = B(K1,K2) ∪K1 ∪K2. But now one of
S, S′ is not active by the second bullet of the definition of being active, a contradiction. This
proves (5).
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(6) C(K ′1,K ′2) ∩A(K1,K2) 6= ∅.

Suppose C(K ′1,K ′2) ∩ A(K1,K2) = ∅. Then, since S and S′ are not loosely non-crossing,
C(K1,K2) ∩ A(K ′1,K ′2) 6= ∅. By (5), C(K1,K2) ∩ B(K ′1,K ′2) 6= ∅. Let D(K1,K2) be a com-
ponent of A(K1,K2) such that K1 ∪ K2 ⊆ N(D(K1,K2)). Since C(K ′1,K ′2) ∩ A(K1,K2) = ∅
it holds that either D(K1,K2) ⊆ B(K ′1,K ′2) or D(K1,K2) ⊆ A(K ′1,K ′2). In the former case
D(K1,K2) is anticomplete to C(K1,K2) ∩A(K ′1,K ′2), and in the latter case D(K1,K2) is anti-
complete to C(K1,K2) ∩B(K ′1,K ′2); in both cases a contradiction. This proves (6).

By (5), (6), and symmetry each of the four sets C(K1,K2)∩A(K ′1,K ′2), C(K1,K2)∩B(K ′1,K ′2),
C(K ′1,K ′2)∩A(K1,K2), C(K ′1,K ′2)∩B(K1,K2) is nonempty. Since each of the setsK1,K2,K

′
1,K

′
2

is a clique, we may assume that K1 ∩B(K ′1,K ′2) 6= ∅, K2 ∩A(K ′1,K ′2) 6= ∅, K ′1 ∩B(K1,K2) 6= ∅,
and K ′2 ∩A(K1,K2) 6= ∅, and therefore K1 ⊆ B(K ′1,K ′2)∪K ′1 ∪K ′2, K2 ⊆ A(K ′1,K ′2)∪K ′1 ∪K ′2,
K ′1 ⊆ B(K1,K2) ∪K1 ∪K2, and K ′2 ⊆ A(K1,K2) ∪K1 ∪K2.

(7) There is a component D of A(K1,K2) ∪A(K ′1,K ′2) such that K1 ∪K2 ∪K ′1 ∪K ′2 ⊆ N [D].

Let D(K1,K2) be a component of A(K1,K2) such that K1 ∪ K2 ⊆ N(D(K1,K2)) and let
D(K ′1,K ′2) be a component of A(K ′1,K ′2) such that K ′1∪K ′2 ⊆ N(D(K ′1,K ′2)) (such components
exist because S and S′ are active, and hence proper). Since C(K1,K2) ∩ B(K ′1,K ′2) 6= ∅ and
C(K1,K2)∩A(K ′1,K ′2) 6= ∅ it follows that D(K1,K2) 6⊆ A(K ′1,K ′2) andD(K1,K2) 6⊆ B(K ′1,K ′2),
and therefore D(K1,K2)∩C(K ′1,K ′2) 6= ∅. Similarly D(K ′1,K ′2)∩C(K1,K2) 6= ∅. Consequently
D(K1,K2)∪D(K ′1,K ′2) is connected. Now set D to be the component of A(K1,K2)∪A(K ′1,K ′2)
that contains D(K1,K2) ∪D(K ′1,K ′2), and (7) holds.

Since (G,w) is 8-unbalanced, there is a component B of G\ (K1∪K ′1∪K2∪K ′2) with w(B) > 1
2 .

Then B ⊆ B(K1,K2) ∩B(K ′1,K ′2). Let C = N(B) and let A = G \ (B ∪ C). Then (A,C,B) is
a separation of G. Note that C ⊆ (C(K1,K2) ∪ C(K ′1,K ′2)) \ (A(K1,K2) ∪A(K ′1,K ′2))

(8) K2 ∩K ′2 6= ∅ and C ∩ (K1 ∪K ′1) is not a clique.

Note first that, since B ⊆ B(K1,K2), we have N(B) ⊆ (C(K1,K2)∪C(K ′1,K ′2))\A(K1,K2).
Then in view of the last sentence before (7), this means N(B) ⊆ K1 ∪K2 ∪K ′1. Similarly, since
B ⊆ B(K ′1,K ′2), we obtain that N(B) ⊆ K ′1 ∪K ′2 ∪K1.

This shows that, if K2 ∩K ′2 = ∅, or if C ∩ (K1 ∪K ′1) is a clique, then C is the union of two
cliques, say X and Y , and so (A,C,B) is a two-clique-separation of G. We claim that (A,C,B)
is proper. By (7) there is a component D of A such that K1 ∪ K2 ∪ K ′1 ∪ K ′2 ⊆ N [D], and
therefore C ⊆ N(D). If |C| > 2, the claim follows. Since G does not admit a clique cutset, we
may assume that X = {x} and Y = {y} and x is non-adjacent to y. We need to show that A
is not a path from x to y. Suppose it is. Then every vertex of A has exactly two neighbors in
A ∪X ∪ Y , and each of x, y has exactly one neighbor in A. Since A(K1,K2) ∪ A(K ′1,K ′2) ⊆ A,
this contradicts Lemma 4.6. This proves the claim that (A,C,B) is proper.

Observe that B ∪C ⊆ B(K1,K2)∪K1 ∪K2. Since C(K1,K2)∩A(K ′1,K ′2) 6= ∅, the inclusion
is proper and we get a contradiction to the fact that S is active. This proves (8).

In view of (8), we write K2∩K ′2 = {s}. Note that |K2|, |K ′2| = 2, since we know K2∩A(K ′1,K ′2)
and K ′2 ∩ A(K1,K2) are non-empty, and s /∈ A(K1,K2) ∪ A(K ′1,K ′2). Hence write K2 = {s, t}
and K ′2 = {s, r}, with t ∈ A(K ′1,K ′2) and r ∈ A(K1,K2). Also by (8), there exist non-adjacent
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k1 ∈ K1 ∩ C and k′1 ∈ K ′1 ∩ C. Let P be a path from k1 to k′1 with P ∗ ⊆ B. Let Q be a path
from k1 to k′1 with Q∗ ⊆ D where D is as in (7). Then H = k1-P -k′1-Q-k1 is a hole.

(9) A(K1,K2) ∩A(K ′1,K ′2) 6= ∅.

Suppose that A(K1,K2)∩A(K ′1,K ′2) = ∅. Since S′ is proper, r has a neighbor x ∈ A(K ′1,K ′2).
Since r ∈ A(K1,K2), we have x ∈ A(K1,K2) ∪ C(K1,K2), but by assumption, A(K1,K2) ∩
A(K ′1,K ′2) = ∅, so we conclude x ∈ C(K1,K2) = K1 ∪ {s, t}. From above, K1 ⊆ B(K ′1,K ′2) ∪
C(K ′1,K ′2), and s ∈ C(K ′1,K ′2), so the only possible neighbor of r lying in A(K ′1,K ′2) is t. But
now {s, t, r} is a triangle, contrary to the fact that G ∈ F2. This proves (9).

Since N(A(K1,K2) ∩ A(K ′1,K ′2)) ⊆ K2 ∪ K ′2 ∪ (K1 ∩ K ′1), and since K2 ∪ K ′2 is not a star
cutest in G, it follows that K1 ∩ K ′1 6= ∅. Let x ∈ K1 ∩ K ′1. Now x has two non-adjacent
neighbors in H, namely k1 and k′1, contrary to the fact that G ∈ F2. �

6. Heavy seagulls

A seagull is a graph that is a three-vertex path. Given a seagull F = a-v-u in G, an induced
subgraph T of G is a theta through F if T is a theta, one of a, u is an end of T , and F ⊆ T . A
seagull a-v-u is heavy if degG(a) > 2 and degG(u) > 2. A heavy seagull is extendable if there is
a theta through it in G. The goal of this section is to show that every heavy seagull is “broken”
by some two-clique-separation. We start with a lemma. Recall that for a path P with end s, t
we denote by P ∗ the set P \ {s, t}

Lemma 6.1. Let G ∈ F2, let F = a-v1-u1 be a seagull in G and let T be a theta through F in
G. Let the ends of T be a, b and let the paths of T be P1, P2, P3 where F ⊆ P1. Assume that T
is chosen with |P1| minimum among all thetas through F with end a in G. Let P be a path from
u1 to (P2 ∪ P3) \N [b]. Then P ∗ contains a vertex of N [b] ∪N [v1].

Proof. Suppose for a contradiction that P ∗∩(N [b]∪N [v1]) = ∅. Let NT (b) = {w1, w2, w3} where
wi ∈ Pi. Then P contains a path Q = q1- · · · -qk such that q1 has a neighbor in P1 \ {a, v1, b},
qk has a neighbor in (P2 ∪ P3) \ {b, w2, w3} and Q∩ T = ∅. We may assume that Q is chosen in
such a way that k is minimum. We may also assume that qk has a neighbor s in P2 \ {b, w2}.
Since G ∈ F2, it follows that NT (qk) = {s}. Let t be a neighbor of q1 in P ∗1 \ {v1}; similarly
NT (q1) = {t}. In particular k > 1. It follows from the minimality of k that Q∗ is anticomplete
to T \ {w2, w3}. Moreover, since s-Q-t-P1-a-P2-s is a hole, it follows that each of w2, w3 has at
most one neighbor in Q.

(10) Not both w2 and w3 have a neighbor in Q.

Suppose not. Let i, j ∈ {1, . . . , k} be such that qi is adjacent to w3 and qj is adjacent to w2.
Since NT (qk) = {s}, it follows that i, j 6= k. Now, w3-P3-a-P2-w2-qj-Q-qi-w3 is a hole, and b has
two neighbors in it, contrary to the fact that G ∈ F2. This proves (10).

(11) w3 is anticomplete to Q.

Suppose not. Let i ∈ {1, . . . , k} be such that qi is adjacent to w3. Then, by (10), it follows
that w2 has no neighbor in Q, and so s-P2-b-P1-t-Q-s is a hole and w3 has two neighbors b and
qi in it, contrary to the fact that G ∈ F2. This proves (11).

(12) w2 is anticomplete to Q.

Suppose w2 has a neighbor in Q; let i ∈ {1, . . . k} be such that w2 is adjacent to qi. Let S be
the path w1-P1-t-q1-Q-qk. Since t 6= v1, we have that v1 6∈ S. Now H = b-w1-S-qk-s-P2-a-P3-b
is a hole and b, qi ∈ NH(w2), contrary to the fact that G ∈ F2. This proves (12).
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Since s 6= w2 and t 6= v1 the paths t-P1-a, t-q1-Q-qk-s-P2-a and t-P1-b-P3-a form a theta through
{a, v1, u1} that contradicts the choice of T with |P1| minimum. �

The next result allows us to use Lemma 6.1 to handle heavy seagulls.
Lemma 6.2. Let G ∈ F2 and let F be a heavy seagull in G. Assume that G does not admit a
star cutset. Then F is extendable.
Proof. Let F = a-v-u. Since F is heavy, there exist x1, x2 ∈ N(a) \ {v}. Since G ∈ F2 the set
{x1, v, x2} is stable. Since G does not admit a star cutset, it follows that for i ∈ {1, 2}, there
exists a path Pi from xi to u with P ∗i ∩N [a] = ∅. By choosing P1, P2 with P1 ∪P2 minimal, and
permuting the indices if necessary, we may assume that one of the following two cases holds.

(1) P ∗1 ⊆ P ∗2 and x1 has a neighbor in P ∗2 .
(2) There exists a vertex q ∈ V (G) \ {v, a, x1, x2} and a path Q from u to q such that

Pi = u-Q-q-P ′i -xi and P ′1 \ q is disjoint from and anticomplete to P ′2 \ q.
We handle the former case first. Let P2 = p1- · · · -pk where p1 = u and pk = x2. Let i be

maximum such that both x1 and v have neighbors in pi-P2-pk. Then there exists x ∈ {x1, v}
such that x is anticomplete to {pi+1, . . . , pk}, and consequently H = x-pi-P2-pk-a-x is a hole.
Let y ∈ {x1, v}\{x}. Since y is adjacent to a and has a neighbor in {pi, . . . , pk}, if follows that y
has at least two neighbors in H, contrary to the fact that G ∈ F2. This proves that the first case
is impossible, and so the second case holds. Now let H ′ be the hole q-P ′2-x2-a-x1-P ′1-q. Since
v is adjacent to a and G ∈ F2, it follows that v is anticomplete to P ′1 ∪ P ′2, and in particular,
u 6∈ V (H ′). Let R be a shortest path from u to a vertex u′ with a neighbor in H ′ such that R
is contained in G \ (N [v] \ {a, u}). Such a path exists, since v is not a star cutset center. Since
G ∈ F2, it follows that u′ has a unique neighbor h in H ′. If h 6∈ {x1, x2, a}, then H ′ ∪ R ∪ {v}
is a theta in G with ends h and a, and paths a-v-u-R-u′-h and the the two paths from h to a in
H ′, and the result holds. So (by symmetry) we may assume that h ∈ {x1, a}.

Let R′ be the path from h to q with interior in R ∪ Q. Write R′ = r1- · · · -rt, where r1 = h,
rt = q, and there exists i ∈ {2, . . . , t− 1} such that r1, . . . , ri ∈ R and ri+1, . . . , rt ∈ Q. Suppose
first that v has a neighbor w in {ri+1, · · · , rt}. Then h-R′-q-P ′2-x2-a-h is a hole, and v has two
neighbors in it (namely a and w), contrary to the fact that G ∈ F2. So v is anticomplete to
{ri+1, . . . , rt}.

If v is anticomplete to Q \ u, then H ′ ∪Q∪ {v} is a theta with ends a, q and paths a-v-u-Q-q
and the the two paths from a to q in H ′, and so F is extendable. Thus we may assume that v
has a neighbor in Q \ u, and therefore u is distinct from and non-adjacent to ri+1.

Next suppose that ri is adjacent to a. Then i = 2 and h = a. Let Q′ be the path from a to
q contained in Q ∪ {a, v} (thus Q′ is obtained from a-v-u-Q-q by shortcutting through an edge
incident with v). Then a, ri+1 ∈ Q′. Now a-Q′-q-P ′2-x2-a is a hole, and ri has two neighbors in
it (namely a and ri+1), contrary to the fact that G ∈ F2. This proves that ri is non-adjacent to
a.

Now there is a path S from u to q with S ⊆ u-R-ri ∪ ri+1-Q-q. It follows that {a, v} is
anticomplete to S \ u. Consequently, a-v-u-S is a path from a to q. If x1 has a neighbor s ∈ S,
then x1 has two neighbors in the hole a-S-q-P ′2-x2-a (namely a and s), contrary to the fact that
G ∈ F2. This proves that x1 is anticomplete to S. But now H ′ ∪S is a theta with ends a, q and
paths S and the two paths from a to q in H ′, and so F is extendable.

�

Now we deal with extendable seagulls.
Theorem 6.3. Let G ∈ F2 and let (G,w) be a 4-unbalanced pair. Assume that G does not
admit a star cutset. Let F = a-v1-u1 be a heavy seagull in G. Then there are two cliques K1,K2
of G such that S(K1,K2) is active and A(K1,K2) ∩ {a, u1} 6= ∅.
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Proof. Let T be a theta through F (such T exists by Lemma 6.2). We may assume that a is an
end of T ; let the other end be b. Let the paths of T be P1, P2, P3 with v1 ∈ P1, and T is chosen
with |P1| minimum among all thetas through F in G with end a.

(13) Let D be a component of G \ ((N [b] \N [v1]) \ {a, u1}). Then |D ∩ {a, u1}| ≤ 1.

Since G ∈ F2, we have that |V (Pi)| ≥ 4 and so v1, u1 ∈ P1 \ {b}. Suppose for a contradiction
that u1, a ∈ D. Then there is a path P from u1 to a with P ∗ ⊆ D. Consequently P ∗ contains no
vertex of N [b] ∪N [v1]. Since a ∈ (P2 ∪ P3) \N [b] we get a contradiction to Lemma 6.1 applied
to F, T and P . This proves (13).

(14) There are cliques X,Y of G and a separation (A,X ∪ Y,B) such that a ∈ A and u1 ∈ B.

Let Da, Du be the components of G \ ((N [b] ∪ N [v1]) \ {a, u1}) with a ∈ Da and u1 ∈ Du.
By (13), we have that Da 6= Du. It follows that there is a separation S = (A, (N [b] ∪ N [v1]) \
{a, u1}, B) of G with Da ⊆ A and Du ⊆ B. Now (14) follows from Lemma 2.1 applied to S.
This proves (14).

Let X,Y be as in (14). Since G ∈ F2 and since (G,w) is a 4-unbalanced pair, the canonical
two-clique-separation corresponding to {X,Y } is defined, and by (13) |B(X,Y ) ∩ {a, u1}| ≤ 1.
Since |B(X,Y ) ∩ {a, u1}| ≤ 1, we deduce that A(X,Y ) ∩ {a, u1} 6= ∅; let p ∈ A(X,Y ) ∩ {a, u1}.
Let D be the component of A(X,Y ) containing p, and let N = N(D). Then N is the union of
two cliques K1,K2.

(15) The pair {K1,K2} is proper.

Observe that B(X,Y ) ⊆ B(K1,K2) and D ⊆ A(K1,K2). Since G does not admit a clique
cutset, both K1 and K2 are non-empty. If |K1 ∪K2| ≥ 3, then D is a component of A(K1,K2)
with K1 ∪K2 ⊆ N(D), and the claim holds. Thus we may assume that |K1| = |K2| = 1. Since
F is heavy, it follows that degG(p) > 2, and therefore D∪K1 ∪K2 is not a path from K1 to K2,
and again the claim holds. This proves (15).

Now among all proper pairs (K ′1,K ′2) with B(K ′1,K ′2)∪K ′1 ∪K ′2 ⊆ B(K1,K2)∪K1 ∪K2 choose
K ′1,K

′
2 with B(K ′1,K ′2) ∪K ′1 ∪K ′2 inclusion-wise minimal, and subject to that with B(K ′1,K ′2)

inclusion-wise maximal. Then (K ′1,K ′2) is active and A(K ′1,K ′2) ∩ {a, u1} 6= ∅. �

7. Proof of Theorem 3.4

We begin with proving an extension of Theorem 1.3. For a graph G and positive integer d,
we denote by γd(G) the maximum degree of the subgraph of G induced by the set of vertices
with degree at least d in G.

Theorem 7.1. For all k, γ > 0, there exists w = w(k, γ) such that every graph G with γ3(G) ≤ γ
and treewidth more than w contains a subdivision of Wk×k or the line graph of a subdivision of
Wk×k.

Proof. Let w = w(k, γ) = f(c(k, γ + 3)), where f is as in Theorem 1.1 and c is as in Theorem
1.3. Let G be a graph with treewidth at least w. By Theorem 1.1, G has a subgraph X which is
isomorphic to Wc(k,γ+3)×c(k,γ+3). Let H = G[V (X)]. Then H has treewidth at least c(k, γ + 3).
Also, we claim that G has maximum degree at most γ+3. To see this, suppose for a contradiction
that H has a vertex v of degree at least γ + 4 > 3. Then, since X has maximum degree at most
3, there are at least γ + 1 edges in E(H) \E(X) incident with v. Moreover, for each such edge,
its end distinct from v has degree at least two in X, and so degree at least 3 in H. But then v
is a vertex of degree at least 3 in G with at least γ+ 1 neighbors, each of degree at least 3 in G.
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This violates γ3(G) ≤ γ, and so proves the claim. Now, by Theorem 1.3, H, and so G, contains
a subdivision of Wk×k or the line graph of a subdivision of Wk×k. �

We remark that Theorem 7.1 is sharp, in the sense that the conclusion fails if the number 3
in γ3(G) is replaced by any larger integer. This is due to the construction of [11, 17], in which
the set of vertices of degree 4 or more is stable. Next, we deduce:

Theorem 7.2. For all t, there exists M = M(t) such that every graph in Ft with no heavy
seagull and with treewidth more than M contains a subdivision of Wt×t.

Proof. Since G contains no heavy seagull, it follows that no two vertices of degree at least three
in G are at distance two in G. This implies that every connected component of the subgraph of
G induced by the set of vertices of degree at least three in G is a clique, and therefore has size
at most t. It follows that γ3(G) ≤ t − 1. Also, since G ∈ F , no induced subgraph of G is the
line graph of a subdivision of W3×3. Now Theorem 7.2 follows from Theorem 7.1. �

We are now ready to prove Theorem 3.4, the main result of this section, which we restate.

Theorem 7.3. For all k, there exists c = c(k) such that every graph in F2 with no star cutset
and with treewidth more than c contains a subdivision of Wk×k.

Proof. Let M = M(k) ≥ 1 be as in Theorem 7.2. Let G ∈ F2 and assume that G does not
contain a subdivision of Wk×k. We show that tw(G) ≤ 8(M + 1). Suppose not. By Lemma 4.1,
there is a weight function w on G such that (G,w) is 4(M + 1)-unbalanced, and in particular
8-unbalanced. Let H be the set of all heavy seagulls of G. By Lemma 6.2, every seagull in H is
extendable. Let S be the set of all pairs of cliques {K1,K2} obtained by applying Theorem 6.3
to each member of H. Then all elements of S are active. Let T be the set of the canonical two-
clique-separations corresponding to the members of S. By Theorem 5.1 every pair of members
of T is loosely non-crossing. Let β be a central bag for T .

(16) There is no heavy seagull in β.

Suppose X = a-b-c is a heavy seagull in β. Then X ∈ H, and so there is a separation
(A,C,B) ∈ T such that {a, c} ∩ A 6= ∅. We may assume that a ∈ A. It follows from the
definition of β that there exists a pair {K1,K2} ∈ S such that a ∈ P ∗K1K2

. Since S is loosely
non-crossing, it follows that Nβ(a) ⊆ PK1K2 . But then degβ(a) = 2, contrary to the fact that
X is a heavy seagull of β. This proves (16).

Recall that for v ∈ V (G) we have defined δS(v) =
⋃
K: v∈K and there exists L such that {K,L}∈S K.

(17) |δS(v)| ≤ 2 for every v ∈ β.

Suppose |δS(v)| > 2 for some v ∈ β. Then there exist pairs {K1,K2}, {K ′1,K ′2} ∈ S such that
v ∈ K1 ∩ K ′1. Let K1 = {k1, v} and K ′1 = {k′1, v}. Since G ∈ F2, it follows that k1-v-k′1 is a
seagull in G. Since k1 ∈ K1, it follows from Lemma 4.7 that k1 has a neighbor in B(K1,K2).
Since all elements of S are active, and therefore proper, we deduce that k1 has a neighbor in
A(K1,K2). Since v ∈ C(K1,K2), we deduce that degG(k1) > 2. Similarly, degG(k′1) > 2.
Consequently, k1-v-k′1 is a heavy seagull of G. It follows that there exists a pair {L1, L2} ∈ T
such that A(L1, L2) ∩ {k1, k

′
1} 6= ∅, say k1 ∈ A(L1, L2). But then k1 ∈ A(L1, L2) ∩ C(K1,K2),

contrary to Theorem 5.1. This proves (17).

It follows from (16) that there is no heavy seagull in β. By Theorem 7.2, since G does not
contain a subdivision of Wk×k, we have that tw(β) ≤ M . Let wβ be the inherited weight
function on β. Since tw(β) ≤ M , Lemma 4.2 implies that (β,wβ) is (M + 1)-balanced. Now,
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by (17) and Theorem 4.5 (G,w) is max(4(M + 1), 2(M + 1))-balanced, and therefore (G,w) is
4(M + 1)-balanced, a contradiction. �

8. Putting everything together

In this section, we prove Theorem 1.6, which we restate.

Theorem 8.1. For all t > 0, there exists c = c(t) such that every graph in Ft with treewidth
more than c contains a subdivision of Wt×t as an induced subgraph.

Proof. Let c = c(t) be as in Theorem 7.3. By increasing c(t), we may assume that c(t) ≥ t. Let
G ∈ Ft, and suppose that tw(G) > c. Lemma 7 from [8] shows that clique cutsets do not affect
treewidth, and so we may assume that G does not admit a clique cutset. Now we deduce from
Lemma 2.1 that G does not admit a star cutset. By Lemma 3.3 it follows that either G ∈ F2,
or G is a complete graph (and so tw(G) ≤ t). So we may assume that G ∈ F2. But now the
result follows from Theorem 7.3. �
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