INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS
VII. BASIC OBSTRUCTIONS IN H-FREE GRAPHS
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ABSTRACT. We say a class C of graphs is clean if for every positive integer ¢ there exists a
positive integer w(t) such that every graph in C with treewidth more than w(t) contains an
induced subgraph isomorphic to one of the following: the complete graph K, the complete
bipartite graph K., a subdivision of the (¢ x t)-wall or the line graph of a subdivision of the
(t x t)-wall. In this paper, we adapt a method due to Lozin and Razgon (building on earlier
ideas of Weilauer) to prove that the class of all H-free graphs (that is, graphs with no induced
subgraph isomorphic to a fixed graph H) is clean if and only if H is a forest whose components
are subdivided stars.

Their method is readily applied to yield the above characterization. However, our main result
is much stronger: for every forest H as above, we show that forbidding certain connected graphs
containing H as an induced subgraph (rather than H itself) is enough to obtain a clean class of
graphs. Along the proof of the latter strengthening, we build on a result of Davies and produce,
for every positive integer 77, a complete description of unavoidable connected induced subgraphs
of a connected graph G containing 7 vertices from a suitably large given set of vertices in G.
This is of independent interest, and will be used in subsequent papers in this series.

1. INTRODUCTION

A brief background. All graphs in this paper are finite and simple.

Treewidth is a well-studied graph parameter that is of great interest in both structural and
algorithmic graph theory. It was notably featured in the seminal work of Robertson and Seymour
on graph minors [18], and in numerous other papers ever since. For a more in-depth overview of
the literature, the reader is invited to see, for example, Bodlaender’s survey [9] and the references
therein.

As a part of their graph minors series, Robertson and Seymour fully described the unavoidable
minors in graphs of large treewidth. The relevant result, the so-called Grid Theorem [19], states
that every graph of large enough treewidth must contain a minor isomorphic to a large grid,
or equivalently, a subgraph isomorphic to a large wall (the (¢ x t)-wall, denoted by Wiy, is a
planar graph of maximum degree three on 2t% — 2t vertices; see [2] for a precise definition and
see Figure 1). Since walls have large treewidth themselves, and treewidth cannot increase when
taking minors, that result gives a structural dichotomy: a graph has large treewidth if and only
if it contains a large wall as a subgraph.
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FIGURE 1. The 3-basic obstructions, including a subdivision of W33 (middle)
and its line graph (right).

The overarching goal of the current series and of several other recent works [1, 7, 15, 16, 20, 21]
is to understand treewidth from the perspective of induced subgraphs rather than minors. A first
remark is that to force bounded treewidth, we need to forbid four kinds of induced subgraphs: a
complete graph K, a complete bipartite graph Ky, all subdivisions of the (¢ x t)-wall W, for
some t, and the line graphs of all subdivisions of W;x; for some . Let us call these graphs the
t-basic obstructions (see Figure 1), and say that a graph G is t-clean if G contains no induced
subgraph isomorphic to a t-basic obstruction. Moreover, we say a class C of graphs is clean if
the treewidth of t-clean graphs in C is bounded from above by a function of ¢.

The class of all graphs is not clean: various constructions of unbounded treewidth avoiding
the basic obstructions have been discovered [7, 10, 20]. In fact, it is at the moment unclear
whether a dichotomy similar to the Grid Theorem is at all achievable for induced subgraphs.
Nevertheless, steady progress is being made. Of note is the following result, characterizing all
finite sets of graphs which yield bounded treewidth when forbidden as induced subgraphs:

Theorem 1.1 (Lozin and Razgon [16]). Let H be a finite set of graphs. Then the class of all
graphs with no induced subgraph isomorphic to a member of H has bounded treewidth if and only
if H contains a complete graph, a complete bipartite graph, a forest of maximum degree at most
three in which every component has at most one vertex of degree more than two, and the line
graph of such a forest.

In addition, several clean classes have been identified. For instance, Aboulker, Adler, Kim,
Sintiari and Trotignon [1] proved that every proper minor-closed class of graphs is clean:

Theorem 1.2 (Aboulker, Adler, Kim, Sintiari and Trotignon [1]). For every graph H, the class
of all graphs with no minor isomorphic to H is clean. Equivalently, for every graph H and
integers t > 1, there exists an integer & = &(H,t) > 1 such that every graph with no minor
isomorphic to H and treewidth more than £ contains either a subdivision of Wikt or the line
graph of a subdivision of Wikt as an induced subgraph.

They also conjectured that graph classes of bounded maximum degree are clean, which was
later proved by Korhonen [15]:

Theorem 1.3 (Korhonen [15]). For every integer d > 1, the class of graphs of mazimum degree
at most d is clean. Equivalently, for all integers d,t > 1, there exists an integer v = y(d,t) > 1
such that every graph with maximum degree at most d and treewidth more than v contains either
a subdivision of Wixt or the line graph of a subdivision of Wikt as an induced subgraph.

There are also a number of results concerning holes, where a hole in a graph is an induced
cycle of length at least four. In particular, it was shown that (even hole, diamond, pyramid)-free
graphs are clean [3], and graphs in which no vertex has two or more neighbors in a hole disjoint
from itself are clean [4]. It was also independently proved twice that graphs with no long hole
are clean. For every positive integer A, let H) be the class of all graphs with no hole of length
more than .
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FIGURE 2. The smallest tree that is not a subdivided star.

Theorem 1.4 (Gartland, Lokshtanov, Pilipczuk, Pilipczuk and Rzazewski [13], WeiBauer [21]).
For every integer A > 1, the class Hy is clean.

Our results. The main result of this paper is Theorem 4.1. The precise statement of The-
orem 4.1 requires some set-up, and we postpone it until Section 4. Informally, we show that
every t-clean graph of sufficiently large treewidth contains, as an induced subgraph, a “connec-
tification” of any given subdivided star forest F'. Roughly speaking, this is a graph which can
be partitioned into a “rooted” copy of F' and a second part, which only attaches at the roots of
F and “minimally connects” these roots.

The proof of Theorem 4.1 uses three ingredients. The first one is Theorem 8.1, which adapts
the methods from [16] (itself employing the strategy from [21]) in order to show that clean
graphs with a large block — a certain kind of highly connected structure — must contain a large
subdivided star forest. As a byproduct of this, we also obtain another way to derive Theorem 1.4.

The second ingredient is Theorem 6.5. This theorem combines a result of Weilauer linking
blocks and tree decompositions, together with Korhonen’s bounded degree result (Theorem 1.3),
in order to show that the class of graphs without a large block is clean.

The final ingredient, Theorem 5.2, is a result of independent interest, and will be used in
future papers in our series. Starting from a result of Davies [11], we provide a complete de-
scription of minimal connected graphs containing many vertices from a suitably large subset of
a connected component. Put differently, we show that if a large enough set of vertices belongs
to the same component, then a large subset of them are contained in one of a few prescribed
induced subgraphs.

We note that the first two out of those intermediate results already yield (the difficult direction
of) an appealing dichotomy for clean classes defined by one forbidden induced subgraph. Indeed,
writing F; for the class of graphs with no induced subgraph isomorphic to H, we prove:

Theorem 1.5. Let H be a graph. Then Fp is clean if and only if H is a subdivided star forest.

While the stronger Theorem 4.1 might appear unwieldy at first, we remark that it has easier-
to-state implications that are still more general than the above dichotomy. To illustrate this,
denote by Fp the class of all graphs with no induced subgraph isomorphic to a subdivision of
H. Tt follows that the “if” direction of Theorem 1.5 is equivalent to Fgz being clean for every
subdivided star forest H, and Theorem 1.4 is equivalent to Fg being clean for every cycle H.
Then Theorem 4.1 readily implies the following, where by a subdivided double star, we mean a
a tree with at most two vertices of degree more than two.

Theorem 1.6. Let H be a forest in which one component is a subdivided double star and every
other component is a subdivided star. Then Fg is clean.

We remark that a full grid-type theorem for induced subgraphs is equivalent to a characteri-
zation of families H of graphs for which the class of all H-free graphs is clean. This remains out
of reach, and Theorem 1.5 takes the first step towards answering this question by characterizing
all singletons H for which the class of all H-free graphs is clean.

Here is a natural next step: for which finite families H of graphs is the class of all H-free
graphs clean? From Theorem 1.5, it follows that such a finite set H containing a subdivided star
forest has the above property. One may then speculate that in fact all finite set of graphs with
the above property must contain a subdivided star forest. This, however, is false: for instance,
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assume that H is the unique double star on six vertices (see Figure 2; note that H is the smallest
tree that is not a subdivided star). Then H = {H, K3} has the above property; in fact, this
follows from the main result of an upcoming paper [6] where the last four authors of the present
work provide a full description of finite families H for which the class of all H-free graphs is
clean.

Outline of the paper. We set up our notation and terminology in Section 2. Section 3
describes the construction of [10], which is used to prove the “only if” direction of Theorem 1.5.
In Section 4, we state Theorem 4.1 precisely, and show how to deduce Theorems 1.5 and 1.6
from it. In Section 5, we show that a connected graph G with a sufficiently large subset S of
its vertices contains an induced connectifier with many vertices from S. The main result of
Section 6 is Theorem 6.5, where we prove that the class of graphs with no k-block is clean. In
Section 7, we show that in a t¢-clean graph, every huge block can be transformed into a large
block such that there is no short path between any two vertices of the new block. Section 8
uses this in order to show that a ¢-clean graph with a huge block contains a large subdivided
star forest. Finally, in Section 9, we combine the main results from Sections 5, 6 and 8 to prove
Theorem 4.1.

2. PRELIMINARIES

Graphs, subgraphs, and induced subgraphs. All graphs in this paper are finite and with no
loops or multiple edges. Let G = (V(G), E(G)) be a graph. A subgraph of G is a graph obtained
from G by removing vertices or edges, and an induced subgraph of G is a graph obtained from
G by only removing vertices. Given a subset X C V(G), G[X] denotes the subgraph of G
induced by X, that is, the graph obtained from G by removing the vertices not in X. We put
G\ X = G[V(G) \ X] (and in general, we will abuse notation and use induced subgraphs and
their vertex sets interchangeably). Additionally, for an edge e € F(G), we write G — e to denote
the graph obtained from G by removing the edge e. For a graph H, by a copy of H in G, we
mean an induced subgraph of G isomorphic to H, and we say G contains H if G contains a
copy of H. We also say G is H-free if G does not contain H. For a class H of graphs we say G
is H-free if G is H-free for every H € ‘H. For a graph H, we write G = H whenever G and H
have the same vertex set and the same edge set.

Neighborhoods. Let v € V(G). The open neighborhood of v, denoted by N (v), is the set of all
vertices in G adjacent to v. The closed neighborhood of v, denoted by N|v], is N(v) U {v}. Let
X C G. The open neighborhood of X, denoted by N(X), is the set of all vertices in G \ X with
at least one neighbor in X. If H is an induced subgraph of G and X C G with HN X = (), then
Np(X)=N(X)NnH. Let X,Y C V(G) be disjoint. We say X is complete to Y if all possible
edges with one end in X and one end in Y are present in G, and X is anticomplete to Y if there
is no edge between X and Y. In the case X = {z}, we often say x is complete (anticomplete) to
Y to mean X is complete (anticomplete) to Y.

Tree decompositions and blocks. A tree decomposition (T, x) of G consists of a tree T and
amap x : V(T) — 2V(©) with the following properties:
(i) For every vertex v € V(G), there exists t € V(T') such that v € x(¢

).
(ii) For every edge vivy € E(G), there exists t € V(T') such that vy, ve € x(?).
(iii) For every vertex v € V(G), the subgraph of T induced by {t € V(T) | v € x(t)} is

connected.

For each t € V(T'), we refer to x(t) as a bag of (T,x). The width of a tree decomposition
(T, x), denoted by width(Tx), is max,cy (7 [x(t)| — 1. The treewidth of G, denoted by tw(G),
is the minimum width of a tree decomposition of G.
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Cliques, stable sets, paths, and cycles. A clique in G is a set of pairwise adjacent vertices
in G, and a stable set in G is a set of pairwise non-adjacent vertices in G. A path in G is an
induced subgraph of G that is a path, while a cycle in G is a (not necessarily induced) subgraph
of G that is a cycle. If P is a path, we write P = pj-----pg to mean that V(P) = {p1,...,px},
and p; is adjacent to p; if and only if [i — j| = 1. We call the vertices p; and py the ends of P,
and say that P is from p; to pg. The interior of P, denoted by P*, is the set P\ {p1,px}. For a
path P in G and z,y € P, we denote by P|z,y| the subpath of P with ends x and y. The length
of a path P is the number of its edges. Let C' be a cycle. We write C' = ¢y----- cg-c1 to mean
V(C) ={c1,...,cx}, and ¢; is adjacent to ¢; if and only if |[i — j| € {1,k —1}. A hole of G is an
induced subgraph of G that is a cycle. The length of a cycle or a hole is the number of its edges.

Subdivisions. By a subdivision of a graph GG, we mean a graph obtained from G by replacing
the edges of G by pairwise internally disjoint paths between the corresponding ends. Let r > 0
be an integer. An r-subdivision of G is a subdivision of G in which the path replacing each edge
has length r+1. Also, a (< r)-subdivision of G is a subdivision of G in which the path replacing
each edge has length at most r + 1, and a (> r)-subdivision of G is defined similarly. We refer
to a (> 1)-subdivision of G as a proper subdivision of G.

Classes of graphs. A class C of graphs is called hereditary if it is closed under isomorphism
and taking induced subgraphs, or equivalently, if C is the class of all H-free graphs for some
family H of graphs. For a class of graphs C and a positive integer ¢, we denote by C? the class
of all t-clean graphs in C. Thus, C is clean if for every positive integer ¢t there exists a positive
integer w(t) such that every graph in C! has treewidth at most w(t). The following is immediate
from the definition of a clean class.

Lemma 2.1. Let X be a class of graphs. Assume that for every t, there exists a clean class of
graphs Yy such that Xt C ;. Then X is clean. In particular, every subclass of a clean class is
clean.

Forests and stars. By a branch vertex of a graph G, we mean a vertex of degree more than
two in G. For every forest F', we say a vertex v € V(F') is a leaf of F' if v has degree at most one
in F'. We denote by L(F') the set of all leaves of F. By a star we mean a graph isomorphic to
the complete bipartite graph K s for some integer 6 > 0, and a star forest is a forest in which
every component is a star. Then subdivided stars are exactly trees with at most one branch
vertex, and subdivided star forests are exactly forests in which every component is a subdivided
star. A subdivided double star is a tree with at most two branch vertices.

By a rooted subdivided star S we mean a subdivided star S together with a choice of one
vertex r in S, called the root, such that if S is not a path, then r is the unique branch vertex of
S. A rooted subdivided star forest F' is a subdivided star forest with a choice of a root for every
component of F'. We also refer to the root of each component of F' as a root of F', and denote
by R(F') the set of all roots of F. By a stem in F', we mean a path in F' from a leaf to a root. It
follows that each stem is the (unique) path from a leaf of some component of F' to the root of
the same component. The reach of a rooted subdivided star S is the maximum length of a stem
in S. Also, the reach of a subdivided star forest F' is the maximum reach of its components and
the size of F' is the number of its components. For a positive integer 6 and graph H, we denote
by 6H the disjoint union of ¢ copies of H. For integers § > 0 and A > 1, we denote by S; ) the
(A — 1)-subdivision of K s. So for 6 > 3, 0S5 is a subdivided star forest of maximum degree 9,
reach X\ and size 6.

3. A CONSTRUCTION FROM [10]

The goal of this section is to prove the “only if” direction of Theorem 1.5 using a construction
from [10].
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FIGURE 3. The graphs Jy 1,4 (left) and Jj 1 4 (right).

We begin with a definition, which will be used in subsequent sections, as well. Let P be a
path and p,o > 0 and 6 > 1 be integers. A 20-tuple (p1,...,p2g) of vertices of P is said to be a
(p, 0)-widening of P if

e the vertices p; and poy are the ends of P;

e traversing P from p; to pog, the vertices p1,...,poy appear on P in this order;
e P[pai_1,p2i] has length p for each i € [f], and;

e P[pa;, p2i+1] has length at least o for each i € [# — 1].

The (p, o)-widening (p1,...,pag) is strict if for each i € [0 — 1], P[p2i, p2i+1] has length equal
to 0. Also, we say a 6-tuple (p1,...,pp) of vertices of P is a o-widening of P if the 20-tuple
(p1,p1---,P0,D0) is a (0, 0)-widening of P.

We now describe the construction of [10] (though [10] only mentions the case p = 0). Let
p=>0,0>1and 6 > 2 be integers. We define J = J, ;¢ to be the graph with the following
specifications (see Figure 3).

e J contains ¢ pairwise disjoint and anticomplete paths Py, ..., Py.
e For each j € [0], P; admits a strict (p, o)-widening (p},...,ply)-
e We have J \ (Ueg V(£5)) = {z1,... 2} such that z1,...,2¢ are all distinct, and for

all i, j € [0], we have Ny(z;) = Ujepg Pi[Phi_y. Phil-
The following was proved in [11]. Here we include a proof for the sake of completeness.

Theorem 3.1. For all integers p >0, 0 > 1 and 0 > 2, J, ;¢ is a 4-clean graph of treewidth at
least 0.

Proof. Note that J, ;¢ contains a Ky g-minor (by contracting each path P; into a vertex), which
implies that tw(J, ) > 0. Also, J, ;¢ is easily seen to be {Ky, K33}-free. Let us say that a
connected graph H is feeble if either H has a vertex v such that H \ Ng[v] is not connected, or
H has a set S of at most two branch vertices such that H \ S has maximum degree at most two.
Then every connected induced subgraph of .J, ;¢ is feeble. On the other hand, for an integer
t > 4, let H be either a subdivision of Wy or the line graph of such a subdivision. Then one
may observe that for every vertex v € H, H\ Ng[v] is connected. Moreover, H contains a stable
set S of branch vertices with |S| > 3. It follows that H is not feeble, and so H is not isomorphic
to an induced subgraph of J, ;9. Hence, J, ;¢ is 4-clean, as desired. |

The proof of the next lemma is straightforward, and we leave it to the reader.

Lemma 3.2. For all integers o > 1 and 0 > 2, the following hold.

o Jo o0 has girth at least 20 + 4.
o Let ui,ug € Jis9 such that for each i € {1,2}, Ny ,(ui) contains a stable set of
cardinality three. Then there is no path of length less than o 42 in Jy 59 from uy to us.

We are now ready to prove the main result of this section.

Theorem 3.3. Let H be a graph for which Fp is clean. Then H is a subdivided star forest.
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Proof. By the assumption, for every integer ¢t > 1, there exists an integer w(t) > 1 such that
every t-clean graph in Fp has treewidth at most w(t). We deduce:

(1) H is a forest.

Suppose not. Let o be the length of the shortest cycle in H. By Theorem 3.1, Jy g y(4)41 18
4-clean. Also, by the first outcome of Lemma 3.2, Jy 5 (1)1 has girth at least 20 + 4, and so
Jo,ow(4)+1 € Fu- But then we have tw(Jy 5, (4)+1) < w(4), which violates Theorem 3.1. This
proves (1).

(2) Every component of H has at most one branch vertex.

Suppose for a contradiction that some component C' of H contains two branch vertices v and
v. By (1), H is a forest, and so C'is a tree. Therefore, there exists a unique path in H from u to
v, say of length o, and we have |[Ng(u)\ Ng(v)|, |[Ng(v)\ Ng(u)| > 2. It follows from the second
outcome of Lemma 3.2 that Jy 5 y4)+1 € Fu. Also, by Theorem 3.1, Jy 5 (4)41 is 4-clean. But
then we have tw(J; 5 (1)4+1) < w(4), a contradiction with Theorem 3.1. This proves (2).

Now the result follows from (1) and (2). This completes the proof of Theorem 3.3. [ |

4. CONNECTIFICATION AND STATEMENT OF THE MAIN RESULT

Here we state the main result of the paper, Theorem 4.1. Then we discuss how it implies
Theorems 1.5 and 1.6.

We need numerous definitions. A vertex v of a graph G is said to be simplicial if Ng(v) is
a clique of G. The set of all simplicial vertices of G is denoted by Z(G). It follows that every
degree-one vertex in G belongs to Z(G). In particular, for every forest F', we have L(F') = Z(F).

By a caterpillar we mean a tree C of maximum degree three in which all branch vertices lie
on a path. A path P in C is called a spine for C' if all branch vertices of C' belong to V(P) and
subject to this property P is maximal with respect to inclusion (our definition of a caterpillar is
non-standard for two reasons: a caterpillar is often allowed to be of arbitrary maximum degree,
and a spine often contains all vertices of degree more than one.)

Let C be a caterpillar with 8 > 3 leaves. Note that C' has exactly # — 2 branch vertices,
and both ends of each spine of C' are leaves of C. Also, for every leaf [ € L(C), there exists
a unique branch vertex in C, denoted by v;, for which the unique path in C from [ to v; does
not contain any branch vertex of C' other than v; (and, in fact, {v; : [ € £L(C)} is the set of all
branch vertices of C'). We say an enumeration (I1,...,ly) of L(C) = Z(C) is o-wide if for some
spine P of C, the 6-tuple (I1,vy,,...,v;,_,,l) is a o-widening of P. Also, let H be the line graph
of C. Then assuming e; to be the unique edge in C incident with the leaf [ € £(C), we have
Z(H) ={e : 1l € L(C)}. An enumeration (e, ,...,e;,) of Z(H) is called o-wide if (I1,...,lp)
is a o-wide enumeration of £(C'). By a o-caterpillar, we mean a caterpillar C' for which £(C)
admits a o-wide enumeration. It follows that if H is the line graph of a caterpillar C, then Z(H)
admits a o-wide enumeration if and only if C' is a o-caterpillar.

Let H be a graph and S be a set. We say H is S-tied if Z(H) C HN S and loosely S-tied
if Z(H) = HNS. Also, for a positive integer n > 1, we say H is (loosely) (S,n)-tied if H is
(loosely) S-tied and |H NS| =n. It follows that if H is loosely (S5, n)-tied, then |Z(H)| = n.

For a graph G, a set S C G and integers n > 2 and ¢ > 1 and @ € {0,...,4}, we say an
induced subgraph H of G is an (S,n, 0)-connectifier of type i if H satisfies the condition (Ci)
below.

(CO) H is a loosely (S,n)-tied line graph of a subdivided star in which every stem has length at
least o.

(Cl) H is an (5, n)-tied rooted subdivided star with root r in which every stem has length at
least o, and we have (H N S)\ L(H) C {r}.

(C2) H is an (S, n)-tied path with HNS = {s1,...,s,} where (s1,...,s,) is a o-widening of H.

(C3) H is a loosely (S,n)-tied o-caterpillar.
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FIGURE 4. From left to right: an (S,4)-connectifier H of type 0,1,2,3 and 4.
Circled nodes depict the vertices in H N S. Note that for the subdivided star, r
may or may nor belong to S (and if it does, then we have n = 5).

(C4) H is a loosely (S,n)-tied line graph of a o-caterpillar.

See Figure 4. We say H is an (S, n)-connectifier of type i if it is an (S, 7, 1)-connectifier of
type i. Also, we say H is an (S, n, 0)-connectifier (resp. (S,n)-connectifier) if it is an (S, n,0)-
connectifier (resp. (.9, n)-connectifier) of type ¢ for some i € {0, ...,4}.

Note that connectifiers of type 0 contain large cliques, and since we mostly work with ¢-clean
graphs, they do not come up in our arguments. However, for the sake of generality, we cover
them in both the above definition and the main result of the next section, Theorem 5.2. We
also remark that, unlike the connectifiers of other types, connectifiers of type 1 in fact need to
be “tied” rather than “loosely tied.” For instance, let G be a subdivided star with root r and
let S = L(G)U{r}. Then for every n > 1, every (S, n)-connectifier in G contains r.

Let o be a positive integer, F' be a graph and X C F with |X| > 2. Let 7 : [|X|] — X be
a bijection. By a o-connectification of (F, X) with respect to m, we mean a graph Z with the
following specifications.

e F'is an induced subgraph of =.
e F'\ X is anticomplete to =\ F.
e Let H=E\ (V(F)\ X). Then H is (X,|X]|,o)-connectifier in = of type i for i € [4]
such that
— if H is of type 2 (that is, H is path), then, traversing H from one end to another,
(m(1),...,7(]X])) is a o-widening of H, and;
— if H is of type 3 or 4, then (7(1),...,7(|X]|)) is a o-wide enumeration of Z(H).

Also, by a o-connectification of (F, X), we mean a o-connectification of (F, X) with respect
to some bijection 7 : [| X|] — X.

Let Cs . x = be the class of all graphs with no induced subgraph isomorphic to a o-connectification
of (F, X) with respect to m, and C,  x be the class of all graphs with no induced subgraph iso-
morphic to a o-connectification of (F, X). In other words, C, r x is the intersection of all classes
Co.r.x,x over all bijections 7 : [|X|] — X. As a result, for every 7 : [|X|] — X, we have
Corx € CoFxm-

The following is our main result, which we will prove in Section 9.

Theorem 4.1. Let 0 > 1 be an integer, F' be a rooted subdivided star forest of size at least two
and 7 : [|R(F)|] = R(F) be a bijection. Then the class C, pr(F)x i5 clean.

Next we discuss briefly how to deduce Theorems 1.5 and 1.6 using Theorem 4.1. The “only
if” direction of Theorem 1.5 is proved in Theorem 3.3. Also, the “if” direction of Theorem 1.5
follows from Theorem 1.6. So it suffices to prove Theorem 1.6, which we restate:

Theorem 4.2. Let H be a forest in which one component is a subdivided double star and every
other component is a subdivided star. Then Fp is clean.

Proof. We define F' and o as follows. If H is a subdivided star forest, then let ' = 2H be rooted
and ¢ = 2. If H is not a subdivided star forest, let H’ be the 1-subdivision of H. Then there
are two branch vertices uj,us € H' and a path Q in H' from u; to us with Q* # () such that
F' = H"\ Q* is a subdivided star forest. For each i € {1,2}, let F; be the component of F”
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containing u;. Then wu; is a vertex of maximum degree in F; and so u; is a valid choice for a root
of F;. Let F' be rooted such that uj,us € R(F'). Let 0, A and 6 be the maximum degree, the
reach and the size of F’, respectively. So we have 6,6 > 2 and A > 1. Let F' = 0S5, » be rooted
with its unique choice of roots and let 0 = |@| > 3. Then, every o-connectification of (F, R(F))
contains a subdivision of H. Therefore, for every bijection = : [|R(F)|] — R(F'), we have
Fu C Co,rr(F) € CorR(F)x It follows that for every integer ¢t > 1, we have .7:"}1 C CoFR(F) 7
This, together with Theorem 4.1 and Lemma 2.1, implies Theorem 4.2.

In fact, one may deduce Theorem 1.5 directly using the material from Sections 3, 6, 7 and 8
(and in particular, skipping Section 5).

5. OBTAINING A CONNECTIFIER

We begin with the following folklore result, see, for example, [2] for a proof.

Theorem 5.1. Let G be a connected graph, X C V(G) with |X| = 3 and H be a connected
induced subgraph of G with X C H and with H minimal subject to inclusion. Then one of the
following holds.

e There exists a verter a € H and three paths {P, : x € X} (possibly of length zero) where
P, has ends a and x, such that
— H =,ex Pr, and;
— the sets {P; \ {a} : x € X} are pairwise disjoint and anticomplete.
o There exists a triangle with vertex set {ay : © € X} in H and three paths {P, : x € X}
(possibly of length zero) where P, has ends a, and x, such that
- H= Ua:eX Py
— the sets {P; \ {a} : x € X} are pairwise disjoint and anticomplete, and;
— for distinct x,y € X, agay is the only edge of H between P, and P,.

Theorem 5.1 may be reformulated as follows: for every choice of three vertices x,y, z in a
connected graph G, there is an induced subgraph H of GG containing x, ¥, z such that, for some
d € [3], H is isomorphic to either a subdivision of K s or the line graph of a subdivision of
K5, and Z(H) C {z,y,2}. The main result of this section, the following, can be viewed as a
qualitative extension of Theorem 5.1.

Theorem 5.2. For every integer n > 1, there exists an integer = p(n) > 1 with the following
property. Let G be a graph and S C V(G) with |S| > p such that S is contained in a connected
component of G. Then G contains an (S,n)-connectifier H. In particular, H is connected,
|H N S| =n, and every vertex in H NS has degree at most n in H.

For a graph G, S C G and positive integer 7, one may observe that (S, n)-connectifiers are
minimal with respect to being connected and containing 7 vertices from S. Also, for 1y, > 4
(which, given Theorem 5.1, captures the main content of Theorem 5.2) and distinct i1,i9 €
{0,1,...,4}, no (S, n )-connectifier of type i; contains an induced subgraph which is an (S, 72)-
connectifier of type i3. Therefore, Theorem 5.2 provides an efficient characterization of all
minimally connected induced subgraphs of G containing many vertices from a sufficiently large
subset S of vertices in G.

In order to prove Theorem 5.2, we need a few definitions and a result from [11]. By a big
clique in a graph J, we mean a maximal clique of cardinality at least three. A graph J is said
to be a bloated tree if

e every edge of J is contained in at most one big clique of J.
e for every big clique K of J and every v € K, v has at most one neighbor in J \ K; and
e the graph obtained from J by contracting each big clique into a vertex is a tree.
It follows that every bloated tree is connected, and every connected induced subgraph of a
bloated tree is a bloated tree. Furthermore, we deduce:

Lemma 5.3. Let J be a bloated tree. Then for every cycle C in J, V(C) is a clique of J.
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Proof. Suppose for a contradiction that for some cycle C'in J, V(C') contains two vertices which
are non-adjacent in J. Let C be chosen with |V(C)| = k as small as possible. It follows that
k>4. Let C =c¢1----- ck-c1 such that ¢; and ¢; are not adjacent for some i € {3,...,k — 1}.
Let P be a path in J from c¢; to ¢; with P* C {ca...,¢;—1} and let Q be a path in J from
c1 to ¢ with Q* C {¢ijt1...,¢,}. So P and @ are internally vertex-disjoint and |P|,|Q] > 3.
Also, H = J[P U ()] is a connected induced subgraph of J, and so H is a bloated tree. If P* is
anticomplete to Q*, then H is cycle. But then the graph obtained from H by contracting each
big clique into a vertex is H itself, which is not tree, a contradiction with H being a bloated
tree. It follows that there exists p € P* and ¢ € Q* such that pg € E(J). Consequently,
C1 = c1-P-p-¢-Q-c1 and Cy = ¢;-P-p-¢-Q-¢; are two cycles in J with |V(Cy)], |V (C2)| < [V (C)|.
Thus, by the choice of C, for each i € {1,2}, K; = J[V(C;)] is a clique of J. For each i € {1, 2},
let K/ be a maximal clique of J containing K;. Then we have ¢; € K| and ¢; € K5, which implies
that K| and K} are distinct. But now the edge pq € E(J) is contained in two maximal cliques
of J, namely K/ and K, which violates J being a bloated tree. This proves Lemma 5.3. |

The following was proved in [11]:

Theorem 5.4 (Davies [11]). For every integer k > 1, there exists an integer f = f(k) such that
if G is a connected graph and S C V(G) with |S| > f(k), then G has an induced subgraph J
which is a bloated tree and |J N S| > k.

We also need the following well-known result; see, for example, [2] for a proof.

Lemma 5.5. For all positive integers d, q, there exists a positive integer N(d,q) such that for
every connected graph G on at least N(d, q) vertices, either G contains a vertex of degree at least
d, or there is a path in G with q vertices.

For a graph G and a set S C G, by an S-bump we mean a vertex v € G \ S of degree two in
G, say Ng(v) = {v1,v2}, such that vive ¢ E(G). Also, by suppressing the S-bump v we mean
removing v from G and adding the edge vivs (hence, G is a subdivision of the resulting graph).
We are now ready to prove Theorem 5.2, which we restate:

Theorem 5.2. For every integer n > 1, there exists an integer = p(n) > 1 with the following
property. Let G be a graph and S C V(G) with |S| > p such that S is contained in a connected
component of G. Then G contains an (S,n)-connectifier H. In particular, H is connected,
|HNS| =n, and every vertex in H NS has degree at most n in H.

Proof. Let f(-) be as in Theorem 5.4, and N(-,-) be as in Lemma 5.5. We choose

= pu(n) = f(max{N(n,87" +n),2}).

By Theorem 5.4, since |S| > p, it follows that G has an induced subgraph J which is a bloated
tree with |J N S| > max{N(n,8n*+n),2}, and subject to this property, J has as few vertices as
possible. Assume that n = 2. Then, since J is connected and |J N S| > 2, there is a path H in J
with ends in S and H* NS = (). But then H is an (5, 2)-connectifier of type 2 in G, as desired.
Therefore, we may assume that n > 3.

(3) Let X C J such that X is connected. Then for every connected component Q of J\ X, we
have QNS # 0. In particular, we have Z(J) C S.

Suppose not. Let @ be a component of J\ X such that QNS = (). Since X connected, it holds
that J\ @ is connected, as well. It follows that J \ @ is bloated tree and |(J\ Q)N S| =|JNS]|,
which contradicts the minimality of J. This proves (3).

Let J; be the graph obtained from J by successively suppressing S-bumps in J until there are
none. Then Jj is also a bloated tree, and J is a subdivision of J;. The following is immediate
from (3) and the definition of J;.
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(4) J1 has no S-bump and Jy NS = JNS. Also, for every X C J; with X connected and every
connected component Q of Ji \ X, we have QNS # (. In particular, we have Z(J;) C S.

Since J is a bloated tree and so contains no hole, it follows that J is a subdivision of J; with
the additional property that for every edge e € F(J;) which is contained in a big clique of J;, we
have e € E(J) (that is, e is not subdivided while obtaining J from .J;). This, along with the fact
that J; NS = J NS, implies that J contains an (S, n)-connectifier if and only if J; contains an
(S, n)-connectifier. Therefore, in order to prove Theorem 5.2, it suffices to show that J; contains
an (.9, n)-connectifier, which we do in the rest of the proof.

(5) Let K be a mazimal clique of J1, and for every v € K, let Q, be the connected component of
J1\ (K \{v}) containing v. Then for every two distinct vertices u,v € K, we have Q, NQ, =0,
and uv is the only edge of J1 between Q, and Q.

Suppose for a contradiction that there exist two distinct vertices u,v € K for which either
QuNQ, # 0 or there is an edge in J; different from wv with one end in @, and one end in Q,. It
follows that J1[Q,UQ,] —uv is connected, and so there exists a path P in Jj of length more than
one from u to v with P* C (Q,UQy)\{u,v} C J1\ K. Let x € P*. Then C = u-P-v-u is a cycle
in J;. Since Jp is a bloated tree, by Lemma 5.3, V(C) is a clique, and so x is adjacent to both u
and v. Now, suppose that there exists a vertex y € K\ Ny, (z). Then we have y ¢ {u, v}, and so
C’' = z-u-y-v-z is a cycle in J; where V(C’) contains two non-adjacent vertices, namely x and
y, which contradicts Lemma 5.3 and the fact that J; is a bloated tree. Therefore, x is complete
to K, and so K U{zx} is a clique of J; strictly containing K. This violates the maximality of K,
and so proves (5).

(6) Suppose that Jy contains a big clique K with |K| > n. Then Jy contains an (S,n)-connectifier
of type 0.

For every v € K, let ), be the connected component of J; \ (K \ {v}) containing v. Then
by (5), for every two distinct vertices u,v € K, we have Q, N @, = 0, and there is no edge in
J1 with one end in @, and one end in @, except for uv. Also, by (4), for every v € K, we
have Q, NS # (. Therefore, since @, is connected, we can choose a path P, in @, from v to
a vertex £, € S (possibly v = ¢,) with P, NS = {{,}. It follows that for distinct u,v € K, we
have P, N P, = (), and there is no edge in J; with one end in P, and one end in P, except for
wv. Now, let K’ C K with |K'| = n. Since n > 3, it follows that H = Ji[U,cx P»] is a loosely
(S,n)-tied line graph of a subdivided star; that is, H is an (.S, n)-connectifier of type 0 in J;.
This proves (6).

(7) Let x € Jy such that Ny, (z) is a stable set of Ji, and for every a € Ny, (x), let Qq be the
connected component of Ji \ x containing a. Then the sets {Qq : a € Ny (x)} are pairwise
disjoint and anticomplete to each other.

Suppose for a contradiction that there exist two distinct vertices a,b € Ny, (x) for which either
Qo NQyp # 0, or there is an edge in .J; with one end in @, and one end in Q. It follows that
J1[Qq U @Qp) is connected, and so there exists a path P in J; of length more than one from a to
b with P* C Q, N Qp \ {a,b} C J1 \ {a,b,z}. Then C = a-P-b-z-a is a cycle in J; where V(C)
contains two non-adjacent vertices, namely a and b. This contradicts Lemma 5.3 and the fact
that Jp is a bloated tree, and so proves (7).

Now we can handle the case where J; contains vertices of large degree.

(8) Suppose that Ji has a vertex of degree at least n. Then Jy contains an (S,n)-connectifier of
type 0 or 1.

Since J; is a bloated tree, for every vertex x € Ji, either Ny (z) is a clique, or Ny, (z) is
stable set, or Ji[Ny, (x)] has an isolated vertex y for which Ny, (x) \ {y} is a clique. Therefore,
Ji has a vertex of degree at least 7, and it follows that either J; contains a big clique K with
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| K| > n or there exists a vertex x € V(J;) of degree at least n in J; such that Ny, (z) is a stable
set of Ji. In the former case, (8) follows from (6). So we may assume that the latter case holds.
For each a € Ny, (z), let Q, be the connected component of J; \ = containing a. Then by (7),
the sets {Qq : @ € Ny, (z)} are pairwise disjoint and anticomplete to each other. Also, by (4),
for every a € Ny (z), we have Q, NS # (). Therefore, since @, is connected, we can choose a
path P, in Q, from a to a vertex ¢, € S (possibly a = ¢,) with P, NS = {{,}. It follows that
the paths {P, : a € Ny, (z)} are pairwise disjoint and anticomplete to each other. Let A be a
subset of Ny, (z) with |[A| =n—1ifz € Sand |A| =nif 2 ¢ S. Then H = Ji[U,eca Pal is a
(S, n)-tied rooted subdivided star with root x such that (H N S)\ L(H) C {x}; that is, H is
(S, n)-connectifier in J; of type 1. This proves (8).

Henceforth, by (8), we may assume that J; has no vertex of degree at least n. Also, by (4),
we have |J1| > [J1 N S| > N(n,87% +n). As a result, by Lemma 5.5, J; contains a path P on
8n? 4 1 vertices.

(9) Suppose that there is no path in P\ S of length 8n. Then Jy contains an (S,n)-connectifier
of type 2.

Suppose not. Then P contains no (S,n)-tied path. Let |[P N S| = s. It follows that s < 7.
Therefore, since there is no path in P\ S of length 87, we have |P| < 8n(s+1)+s < 892 +1, a
contradiction. This proves (9).

In view of (9), we may assume that P contains a path P; of length 8y with P; NS = (), say
Py = dp-a1-b1-c1-d1-az-ba-ca-da- - - - -a2y-bay-coy-day.

For each ¢ € [2n)], let A; = {a;,b;,c;}, let L; be the connected component of J; \ A; containing
Pi[dy, d;—1], and let R; be the connected component of J; \ X; containing P [d;, d2,|. We deduce:

(10) For each i € [2n], L; and R; are distinct, and so L; N R; = ).

Suppose not. Then Ji[L; U R;] is connected. Therefore, there exists a path Z in J; from a
vertex z € L; to a vertex 2’ € R; such that Z* C (L; U R;) \ P;. But then C = 2-P;-2'-Z-z is a
cycle in J; and V(C') contains two non-adjacent vertices, namely a; and ¢;, contradicting that
Jp is a bloated tree. This proves (10).

(11) For each i € [2n)], there exists a component Q; of Ji1 \ A; different from L; and R;.

Suppose not. Then J; \ A; has exactly two distinct components, namely L; and R;. Assume
that b; has degree two in J1. Then, since b; € P, C J;\ S, it follows that b; is an S-bump, which
violates (4). So there exists a vertex z € Ny, (b;)\4; C L;UR;, say z € L;. Consequently, since L;
is connected, there exists a path Z in L; from z to a vertex 2z’ € Pi[dy,d;—1] with ZN P, = {z'}.
But then C' = b;-2-Z-2'-P;-b; is a cycle in J; and V(C) contains two non-adjacent vertices,
namely b; and d;_1, contradicting that J; is a bloated tree. This proves (11).

(12) For each i € [2n)], let Q; be as in (11). Then we have PyNQ; =0 and Ny, (Q;) C A;. Also,
the sets {Q; : i € [2n]} are pairwise disjoint and anticomplete to each other.

The first two assertions are immediate from the fact that @; is a component of J; \ A; different
from L; and R;. For the third one, suppose for a contradiction that @; U @); is connected for
some distinct i, j € [2n], say ¢ < j. Since Ji is connected and Ny, (Q;) C Aj;, it follows that
Q; U Aj is connected, and so @Q; U Qj U A; is connected. As a result, there exists a path
R in J; with one end ¢ € @Q; and one end ¢ € A; C R; with R* C @;. Also, we have
ANRCAN(QUQR;UA;) CPiN(Q;NQ;) = 0. In other words, R is a path in J; \ 4; from
q € Q; to ¢’ € L;. But then we have ¢ € Q; N R;, a contradiction with (11). This proves (12).

For each i € [27], let @Q; be as in (11). Then by (4), since A; is connected, we have Q; NS # (.
Also, from (11) and the connectivity of Ji, we have Ng,(A4;) # (. Therefore, since @Q; is
connected, we can choose a path W in @Q); from a vertex in ; € Ng,(A;) to a vertex in y; € Q;NS
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(possibly z; = y;) such that W; N (Ng,(A4;) US) = 0. Let G; = J1[A; UW;]. It follows that G;
is connected and G; N S = {y;}.
The following is easily observed:

(13) The sets {G; : i € [2n]} are pairwise disjoint and anticomplete to each other. Also, for every
i € [2n], di—1a; and c;d; are the only edges in Jy with one end in G; and one end in Py \ G;.

The proof is almost concluded. Note that since J; is a bloated tree, it follows that for
every i € [2n], there is no cycle in J; containing both a; and ¢;. Consequently, we have either
|Na,(zi)| = 1, or Na,(x;) = {ai,bi}, or Na,(x;) = {bi,c;}, as otherwise z;-a;-bi-c;-z; is a cycle
in J; containing both a; and ¢;. Let I C [2n]. We say I is light if [Ny, (z;)| = 1 for every i € I.
Also, we say I is heavy if for every i € I, we have either N, (z;) = {ai, b}, or Na,(z;) = {bi, i}
It follows that there exists I C [2n] with |I| = n which is either light or heavy. Let i; and i,
be smallest and the largest elements of I, respectively. It follows from 7 > 3 that 41 and 4, are
distinct and i, > 3. Let Z1 be a path in G;, from ¢;; to y;;, and let Z, be a path in G, from
a;, to y;,. Let

H=J Pl[cil,ain] U (Zl U Zﬂ) U ( U Gz) .

i€I\{i1,in}
Using (13), it is straightforward to observe that if I is light, then H is a loosely (.S, n)-tied
caterpillar, and if I is heavy, then H is a loosely (.S, n)-tied line graph of a caterpillar. In other
words, H is an (S, n)-connectifier of type 3 or 4. This completes the proof of Theorem 5.2. MW

6. STRONG k-BLOCKS

Let G be a graph. By a separation in G we mean a triple (L, M, R) of pairwise disjoint subsets
of vertices in G with L U M U R = (G, such that neither L nor R is empty and L is anticomplete
to R in G. Let x,y € G be distinct. We say a set M C G \ {z,y} separates x and y if there
exists a separation (L, M, R) in G with € L and y € R. For a positive integer k, a k-block
in G is a maximal set B of at least k vertices such that no two distinct vertices z,y € B are
separated by a set M C G \ {z,y} with |[M| < k. The application of k-blocks to bounding the
treewidth in hereditary graph classes is not unprecedented; see for example, [16, 21]. However,
we find it best to work with a stronger notion of a k-block, which we define next.

Let k be a positive integer and let G be a graph. A strong k-block in GG is a set B of at least k
vertices in G such that for every 2-subset {x,y} of B, there exists a collection Pa,yy of at least
k distinct and pairwise internally disjoint paths in G from z to y, where for every two distinct
2-subsets {z,y},{z’,y'} € B and every choice of paths P € P,y and P' € Py, we have
PNnP ={z,y}n{a',y}.

In this section, we prove that for all positive integers k and ¢, every t-clean graph with no
strong k-block has bounded treewidth. In other words, we show that for every positive integer
k, the class of all graphs with no strong k-block is clean.

To begin with, we need some definitions as well as a couple of results from the literature. For
a tree T' and an edge zy € E(T), we denote by T, ,, the component of 7' — zy containing x. Let
G be a graph and (7, x) be a tree decomposition for G. For every S C T, let x(S) = U,eg x(2).
Also, for every edge zy € E(T), we define an adhesion for (T, x) as x(z,y) = x(x) N x(y) =
X(Tyy) N X(Ty.z). For every x € V(T), by the torso at x, denoted by %(z), we mean the graph
obtained from the bag x(x) by, for each y € Np(z), adding an edge between every two non-
adjacent vertices u,v € x(z,y). It is a well-known observation that clique cutsets do no effect the
treewidth. More precisely, the following holds (a proof can be worked out easily using Lemma
5 from [8]).

Theorem 6.1 (folklore, see Lemma 5 in [8]). Let G be a graph and let (T, x) be a tree decompo-
sition for G. Then the treewidth of G is at most the mazimum treewidth of a torso X(zx) taken
over all x € V(T).
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Next we bring the material we need from [12] and [22]. The fatness of a tree decomposition
(T, x) of an n-vertex graph G is the (n + 1)-tuple (ao,...,a,), where a; denotes the number
of parts of (T, x) of size n —i. If (T, x) has lexicographically minimum fatness among all tree
decompositions with all adhesions less than k, we call (T, x) k-atomic. Also, a tree decomposition
(T, x) of a graph G is tight if for each vertex x € V(T') and every neighbor y € V(T of x, there
is a component C of x(7Ty,) \ x(T%,y) such that every vertex in x(x,y) has a neighbor in C. The
following is proved in [22].

Lemma 6.2 (Weilauer, Lemma 6 in [22]). Every k-atomic tree decomposition is tight.

Let (T, x) be a tree decomposition for a graph G and S be a set of pairwise disjoint subtrees
of T. Let T" be the tree obtained from T by contracting every subtree S € S into a new vertex
vg. Let x' : V(T') — 2V(%) be defined as follows. Let x/(vg) = x(S) for every S € S, and let
X' (v) = x(v) for every v € V(T") \ {vg : S € S} = V(T) \ (Uges S)- One may readily observe
that (7", %) is a tree decomposition for G, which is referred to as a contraction of (T, x). The
following theorem from [12] is the key ingredient in our proof of the main result of this section.!

Theorem 6.3 (Erde and Weilauer [12], see also [14]). Let r be a positive integer, and let G
be a graph containing no subdivision of K, as a subgraph. Then G admits a tree decomposition
(T, x) for which the following hold.

o (T, x) is a contraction of a k-atomic tree decomposition for G with k = r(r — 1).

e Every adhesion of (T,x) has cardinality less than r2.

e For every x € V(T), either X(x) has fewer than r? vertices of degree at least 2r*, or ()
has no minor isomorphic to Kq,2.

It is straightforward to check that every contraction of a tight tree decomposition is tight.
Also, for every positive integer k and every graph G, if G contains a subdivision of K3 as
a subgraph, then G contains a strong k-block. Therefore, the following is immediate from
Theorem 6.3 and Lemma 6.2.

Theorem 6.4. Let k be a positive integer and let G be a graph containing no strong k-block.
Then G admits a tight tree decomposition (T, x) for which the following hold.

o Every adhesion of (T,x) has cardinality less than kS.
o For every x € V(T), either X(x) has fewer than kS vertices of degree at least 2k'2, or
X(z) has no minor isomorphic to Koye.

We can now prove the main result of this section. For every positive integer k, let B be the
class of all graphs with no strong k-block.

Theorem 6.5. For every integer k > 1, the class By, is clean.

Proof. Let t > 1 and let G € B, that is, G is a t-clean graph with no strong k-block. We aim
to show that there exists an integer w(k,t) > 1 such that tw(G) < w(k,t). By Theorem 6.4,
G has a tight tree decomposition (7)) for which every torso either has fewer than k% vertices
of degree at least 2k'? or has no minor isomorphic to Kqs. For each x € V(T), let K, C x(z)
be the set of all vertices in X(z) of degree at least 2k'2. We define 7, as follows: if |K,| < kS,
then let 7, = X(z) \ K., and otherwise let 7, = x(x). It follows that either 7, has maximum
degree less than 2k!'2, or 7, has no minor isomorphic to Koys. Let £(-,-) be as in Theorem 1.2
and 7(+,-) be as in Theorem 1.3. Let

Y0 = 7(3,1),
Y1 = 7(2]{;127 270)1

1We remark that the corresponding statement in [12], namely “Theorem 4” therein, does not explicitly mention
that (T, x) is a contraction of a k-atomic tree decomposition. However, as the reader can check, the proof given in
Section 3 of [12] is easily seen to yield this: it starts with a k-atomic tree decomposition “(7,V)” with k = r(r—1),
and concludes at the end that the desired tree decomposition is a certain contraction of (7,V).
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51 = g(K2k67 270)a
wy = wi(k,t) = max{v, &}
We claim that:

(14) For every xz € V(T'), we have tw(7,;) < wy.

Suppose for a contradiction that tw(r;) > w; for some z € V(T). Note that either 7,
has maximum degree less than 2k'? or 7, has no minor isomorphic to Kys. Therefore, the
choice of wy together with Theorems 1.2 and 1.3 implies that 7, contains an induced subgraph
W which is isomorphic to either a subdivision of Wa,,x2+, or the line graph of a subdivision of
Waqox2+0- On the other hand, it can be seen that for every positive integer g, every subdivision of
Wagx2q contains an induced subgraph isomorphic to a proper subdivision of Wy, (see Figure 5.)
Consequently, W, and so 7., contains an induced subgraph Wy which is isomorphic to either a
proper subdivision of W, «~, or the line graph of a proper subdivision of W, ~,. In particular,
Wy has maximum degree at most three. Let us say a non-empty subset K C W is a blossom
if there exists y € Np(x) such that K C x(z,y), and subject to this property, K is maximal
with respect to inclusion. It follows that every blossom K is a clique in Wy and so we have
|K| € {1,2,3}. Also, every two blossoms intersect in at most one vertex, and since no two
triangles in Wy share a vertex, blossoms of cardinality three are pairwise disjoint. Let /C be the
set of all blossoms, and for every blossom K € K, let us fix yx € Np(z) such that K C x(z,yx).
From the maximality of blossoms, it follows that the vertices {yx : K € K} are all distinct. Note
that (7, x) is tight, and so for every y € Np(x), there exists a component C(y) of x(Ty »)\x(T%y)
such that the every vertex in x(z,y) has a neighbor in C(y). Since (7', x) is a tree decomposition,
it follows that the sets {C(yk) : y € Nr(x)} are pairwise distinct, disjoint and anticomplete
in G. Let Hg be a connected induced subgraph of G[(C(yx) U K)] which contains K, and
subject to this property, assume that Hg is minimal with respect to inclusion. It follows that if
|K| =1, then Hx = K, if |K| = 2, then H is a path in G between the two vertices in K with
Hj C C(yk), and if |K| = 3, then Hg satisfies one of the two outcomes of Theorem 5.1. Also,
the sets {Hg \ K : K € K} are pairwise distinct, disjoint and anticomplete in G. Now, let

n=a|(m (Y x))o (Y )]

Let H' be the minor of H obtained through the following steps in order:

(i) For every blossom K € K with |K| = 3, contract the connected induced subgraph Hp of
H into a vertex.
(ii) For every blossom K € K with |K| = 2 such that K is contained in a triangle of Wy,
contract the path Hi in H into an edge between the two vertices in K.
(iii) Contract each triangle of the resulting graph after (ii) into a vertex.

Since W) is isomorphic to either a proper subdivision of W, «,, or the line graph of a proper
subdivision of W, x~,, it is readily observed that H’ is isomorphic to a subdivision of W x~,-
It follows that H contains W,,x~, as a minor, and so we have tw(H) > v9 = 7(3,t) + 1. Note
that since Wy has maximum degree at most three, H has maximum degree at most three, as
well. Therefore, by Theorem 1.3, H, and so G, contains either a subdivision of W;x¢ or the line
graph of a subdivision of Wiy, as a induced subgraph. But this violates the assumption that G
is t-clean, and so proves (14).

Now, for every @ € V(T), if |K,| < k%, then we have X(z) = 7, U K, and otherwise we have
X (z) = 75. This, along with (14), implies that tw(¥(z)) < w; + kb for every x € V(T'). Hence,
writing w(k,t) = wi(k,t) + k%, by Theorem 6.1, we have tw(G) < w(k,t). This completes the
proof of Theorem 6.5. ]

Note that for every integer k > 1, if a graph G contains a strong k-block, then G contains
K}, as a topological minor, which in turn implies that G contains every k-vertex graph as a
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FIGURE 5. Proof of (14): the subgraph of Wgyg induced by the filled nodes
(top) is isomorphic to a proper subdivision of Wyx4 (bottom). Note the
correspondence between the numbered removed nodes at the top and the inner
faces of the subdivided wall at the bottom.

topological minor. Therefore, the following common strengthening of Theorems 1.2 and 1.3 is
in fact an immediate corollary of Theorem 6.5:

Corollary 6.6. For every graph H, the class of all graphs with no H -topological-minor is clean.

7. k-BLOCKS WITH DISTANT VERTICES

The main result of this section, Theorem 7.2, asserts that for every positive integer k, every
graph containing a sufficiently large block contains either a subgraph that is a subdivision of a
large complete graph with all paths short, or an induced subgraph which contains a k-block with
its vertices pairwise far from each other. This will be of essential use in subsequent sections, and
before proving it, we recall the classical result of Ramsey (see e.g. [5] for an explicit bound).

Theorem 7.1 (See [5]). For all integers a,b > 1, there exists an integer R = R(a,b) > 1 such
that every graph G on at least R(a,b) vertices contains either a clique of cardinality a or a stable
set of cardinality b. In particular, for all integerst > 1 and p > R(t,t), every graph G containing
K, , as a subgraph contains either K; or Ki; as an induced subgraph.

For a graph G and a positive integer d, a d-stable set in G is a set S C G such that for every
two distinct vertices u,v € S, there is no path of length at most d in G from u to v. Note that
a d-stable set is also a d’-stable set for every 0 < d’ < d. Here comes the main result of this
section.

Theorem 7.2. For all integers d,k > 1 and m > 2, there exists an integer ko = ko(d, k,m) > 1
with the following property. Let G be a graph and By be a strong ko-block in G. Assume that

G does not contain a (< d)-subdivision of Ky, as a subgraph. Then there exists A C G with
S C By \ A such that S is both a strong k-block and a d-stable set in G\ A.
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Proof. Let R(m, k) be as in Theorem 7.1. We show that

satisfies Theorem 7.2. Let X C By with |X| = R(m, k). Let g = (R(’g’k)). Let eq,..., e, be an
enumeration of all 2-subsets of X, and let e; = {z;,y;} for each i € [g]. Let Uy = 0, and for
every i € [g], having defined U;_1, we define P; and U; as follows. If there exists a path P in G
of length at most d from z; to y; with P*N(U;—1 UX) = 0, then let P, = P and U; = U;_1 U P;".
Otherwise, let P; = () and U; = U;—. It follows that for all 4, j € [g] with ¢ < j and P;, P; # 0,
we have P, N P = U; N P} =Qand PFNP=PNX=0.

Let Gy be the graph with V(Gp) = X and for each i € [g], z; is adjacent to y; in Go if and
only if P; # ().

(15) Go contains no clique of cardinality m.

Suppose for a contradiction that G contains a clique C' of cardinality m. Then for every i € [g]
with e; C C, we have P; # (). Also, for all distinct i, € [g], we have P;N P} = P/ N P; = (). But
then G|U,,cc Pi], and so G contains a (< d)-subdivision of K, as a subgraph, a contradiction.
This proves (15).

Since |Go| = |X| = R(m, k), it follows from Theorem 7.1 and (15) that G contains a stable
set S of cardinality k. Let A = Uy, U (X \ S). Then we have |A| < g(d — 1) + R(m, k) — k.
Therefore, since S C By \ A and By is a strong (g(d — 1) + R(m, k))-block, we deduce that S
is a strong k-block in G\ A. It remains to show that S is a d-stable set in G \ A. Suppose
not. Then there exists x,y € S and a path @ in G \ A of length at most d from = to y. Thus,
we may choose i € [g] such that e; € @ N S. Therefore, assuming P = Q[x;,y;], we have
P*NS = 0. Now P is a path in G\ A (and so in G) of length at most d from z; to y; with
P*CG\(AUS) =G\ (U,UX)CG\ (Ui—1 UX). It follows that P; # (. But we have e¢; C S
and S is a stable set in G, which implies that P; = ), a contradiction. This completes the proof
of Theorem 7.2. [}

8. PLANTED SUBDIVIDED STAR FORESTS

In this section we extend ideas from [16] to produce a subdivided star forest whose roots are
contained in sets with useful properties. Let G be a graph, S C G, and F' a subdivided star
forest. We say a subgraph F’ of G isomorphic to F' is S-planted if F’ is rooted and R(F’) C S.
Write H, for the class of graphs with no holes of length greater than A. The main result of this
section is the following.

Theorem 8.1. For all positive integers d,k,t,0,\, and 0 with 6 > 2, there exists a positive
integer k1 = ky(d, k,t, 0, A, 0) with the following property. Let G be a t-clean graph and let By be
a strong ki-block in G. Then there exist A C V(G) and S C By \ A such that the following hold.

e S is both a strong k-block and a d-stable set in G\ A.

e G\ A contains an S-planted copy of 0S5 .

e G\ A contains a hole of length greater than A.

In particular, we have .7-"555 A,Hg\ C By, -

Note that Theorem 8.1, combined with Theorem 6.5 and Lemma 2.1, implies Theorems 1.4
and 1.5 at once. Theorem 8.1 is also a key tool in the proof of Theorem 4.1 in Section 9. We
need the following two results from [16].

Lemma 8.2 (Lozin and Razgon [16]). For all positive integers a and b, there is a positive
integer ¢ = c(a,b) such that if a graph G contains a collection of ¢ pairwise disjoint subsets of
V(Q), each of cardinality at most a and with at least one edge between every two of them, then
G contains Ky as a subgraph.
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Theorem 8.3 (Lozin and Razgon [16]). For all positive integers p and r, there exists a positive
integer m = m(p, r) such that every graph G containing a (< p)-subdivision of K, as a subgraph
contains either Ky, as a subgraph or a proper (< p)-subdivision of K, , as an induced subgraph.

We deduce the following lemma.

Lemma 8.4. For every integer t > 1, there exists an integer n = n(t) > 1 with the following
property. Let G be a t-clean graph and let p be an integer with p > R(t,t), where R(-,-) is as in
Theorem 7.1. Then G does not contain a (< p)-subdivision of K, as a subgraph.

Proof. Let n = n(t) = m(R(t,t),2t?), where m(,-) is as in Theorem 8.3. Suppose for a con-
tradiction that G' contains a (< p)-subdivision of K, as a subgraph. Then by Theorem 8.3, G
either contains K, , as a subgraph, or contains an induced subgraph H isomorphic to a proper
subdivision of K2 52. In the former case, by Theorem 7.1, G contains either K} or Ky, which
violates the assumption that G is t-clean. In the latter case, note that a proper subdivision
of K2 942 contains a proper subdivision of every bipartite graph on at most 2t2 vertices. In
particular, H, and so G, contains a subdivision of W;y;, again contradicting that G is t-clean.
This proves the Lemma 8.4. ]

We are now ready to prove the main result of this section.

Proof of Theorem 8.1. Let R(-,-) be as in Theorem 7.1. Let ¢ = ¢(\, R(t,t)), where c(-,-) is as
in Lemma 8.2. Let n = n(t), be as in Lemma 8.4. Let ko(-,-,-) be as in Theorem 7.2. Let

k1 = ki1(d, k,t,0, A, 0) = ko(max{d, R(t,t), 2\ + 1}, max{k, R(c,d),0},n).

We claim that this choice of k; satisfies Theorem 8.1. To see this, suppose that G is a t-clean
graph which has a strong ki-block Bj. Note first that, by Lemma 8.4, G does not contain
a (< max{d, R(t,t),2\ + 1})-subdivision of K, as a subgraph. Therefore, by Theorem 7.2,
there exist A C G and S C By \ A such that S is both a strong max{k, R(c,?),0}-block and
a max{d, R(t,t),2X + 1}-stable set in G \ A. In particular, S is both a strong k-block and a
d-stable set in G\ A, which proves the first bullet of Theorem 8.1. Next we claim that:

(16) For every x € S, there exists a copy Fy of S5 in G\ A where x € F, has degree § in Fy.

It is easily seen that |S| > 2. Pick a vertex y € S\ {z}. Since S is a strong R(c, d)-block
in G\ A, there exists a collection {P; : i € [R(c,0)]} of pairwise internally disjoint paths in
G\ A from z to y. Since S is a (2A + 1)-stable set in G \ A, for each i € [R(c,d)], P, has length
greater than A 4+ 1. Let P/ be the subpath of P; of length A containing x as an end. Then
{P!:i€[R(c,0)]} is a collection of R(c,d) pairwise disjoint subsets of G\ A, each of cardinality
A. Let T be the graph with V(I') = [R(c, ¢)] such that for all distinct 4, j € [R(c,0)], i is adjacent
to j in I if and only if P\ {z} is not anticomplete to P;\ {z} in G. By Theorem 7.1, I' contains
either a clique of cardinality ¢ or a stable set of cardinality §. Suppose first that I' contains a
clique of cardinality c. Then Lemma 8.2 implies that G contains Kp( ) r(,) as a subgraph, and
thus by Theorem 7.1, G contains K; or K;;, which violates the assumption that G is t-clean.
Consequently, I' has a stable set I of cardinality §. But now F, = G[U;c; P/] is a copy of S5 x
in G\ A where x € F, has degree § in F,. This proves (16).

Now we can prove the second bullet of Theorem 8.1. For every = € S, let F, be as in (16).
Note that since S is a (2\+ 1)-stable set in G'\ 4, it follows that for all distinct z, 2’ € S, F, and
F,s are disjoint and anticomplete to each other. Also, since S is a strong #-block, there exists
S’ C S with || = 0. But now G[U,cg Fy| is an S-planted copy of 6S; 5 in G\ A, as desired.

It remains to prove the third bullet of Theorem 8.1. Proceeding as in the proof of (16), we
choose distinct vertices z,y € S and two internally disjoint paths P; and P; in G\ A from z to y
such that P| \ {z} is anticomplete to Pj \ {z}, where for each i € {1,2}, P/ is the subpath of P,
of length A containing x as an end. Traversing P from «x to y, let z be the first vertex in P} with
a neighbor in P, \ {z} (this vertex exists, since the neighbor of y in Pj is adjacent to Py \ {z}).
Also, traversing P» from x to y, let w € P\ {z} be the first neighbor of z in P>\ {z}. Note that
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since P is anticomplete to Py, it follows that either z ¢ P or w ¢ Pj. But now z-Pj-z-w-Pa-x
is a hole in G \ A of length at least A\ + 3. This completes the proof of Theorem 8.1. |

9. PROOF OF THEOREM 4.1

The last step in the proof of Theorem 4.1 is the following. Note that the condition § > 3 is
due to the fact that there is only one choice of roots for subdivided star forests in which every
component has a branch vertex, and so it is slightly more convenient to work with them.

Lemma 9.1. For all positive integers t,0, A\, 0,0 with § > 3 and 6 > 2, there exists an integer
ko = ka(t, 6, X, 0,0) > 1 with the following property. Let G be a t-clean graph containing a strong
ko-block. Then G contains a o-connectification of (0S5, R(0S5s5x)). In other words, we have

Co.053,R(055,) © B
Proof. Let u(-) be as in Theorem 5.2. Let
1= ,u(max{t, a,0 + 1})’

Y2 = p(n),
73 = Y2((2ty1 +9)A + 1).
Let ki(-,+,+,+,+,-) be as in Theorem 8.1. We define:

k2 = k2(t7 57 )\7 g, 9) = kl (20 - 17 Y3 + R(ta t) (gi) ) ta 2#)/1 + 57 )\a 72) .
Let By be a strong ks-block in G. By Theorem 8.1, there exist A C G and S C By \ A such that
the following hold. Let Go = G'\ A.

e S is both a strong R(t,t)(}?)-block and a (20 — 1)-stable set in Gj.
e Gy contains an S-planted copy F' of 72524, 45

Then |R(F)| = 2 and |F| = 3. For every x € R(F), let F, be the component of F with
root x. Let W be the set of all vertices in Gy \ F' with at least 2¢ neighbors in F.

(17) We have |W| < R(t,t) (gi)

Suppose not. Let ¢ = R(t,t)(3}) and let wy,...,w, € W be distinct. For every i € [q], let
N; be a set of 2t neighbors of w; in F. It follows that there exist I C [¢] and N C F such that
|I| = R(t,t), |[N| = 2t and N; = N for all i € I. Note that since F is a forest, N contains
a stable set N’ of Gy with |N'| = t. Also, since Gy is t-clean, it does not contains a clique of
cardinality ¢. Thus, by Lemma 7.1, Go[{w; : i € I}] contains a stable set N of cardinality ¢.
But then Go[N’ U N"] is isomorphic to Ky, which contradicts that Gy is ¢t-clean. This proves
(17).

Let G1 = Go\W. Then G is a t-clean induced subgraph of G. In order to prove Theorem 9.1,
it suffices to show that G1 contains a o-connectification of 655, which we do in the rest of the
proof.

Recall that S is both a strong (v3 + R(t,1)(}?))-block and a (20 — 1)-stable set in Gg. Thus,
since S\ W C Gy, by (17), S\ W is both a strong 73-block and a (20 — 1)-stable set in G.
Also, we have R(F) C S\ W. It follows that R(F') is a (20 — 1)-stable set in Gy, and for every
two distinct vertices z,2’ € R(F), since |F \ R(F)| < 73, there is a path in Gy \ (F \ R(F))
from x to /. Consequently, G; \ (F U R(F)) has a component containing R(F). Let G2 be
the graph obtained from G; by contracting F, into x for each x € R(F). Then G2 contains
G1\ (FUR(F)) as a spanning subgraph, and so G2 has a component containing R(F'). Since
R(F) > v2 = p(71), from Theorem 5.2 applied to G2 and R(F), it follows that G2 contains a
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connected induced subgraph Hs such that, assuming S’ = Hy NR(F), we have |S’| = v; and
every vertex in S’ has degree at most v; in Hy. Let

Hy U ( U FI)
zes’

In other words, H; is the induced subgraph of Gy obtained from Hy by undoing the contraction
of F, into z for each x € Hy N R(F'). It follows that H; is a connected induced subgraph of G
and H1 NR(F) = HyNR(F) = S’. Moreover, since R(F) is a (20 — 1)-stable set in Gy, S’ is
also a (20 — 1)-stable set in Hj.

(18) For every x € S', we have |Np, (Hy \ Fy)| < 2t7y;.

H =G

Note that Ny, (Fz) = Np,(7), and so [Ny, (Fr)| < 71. Also, since H; is an induced
subgraph of Gy, by the definition of W, no vertex in Ngy\p, (F:) € G1 \ F has at least 2t
neighbors in F,. Therefore, we have |Np, (H; \ Fy)| < 2t7y;. This proves (18).

The following is immediate from (18) and the fact that for every x € S’, F, is isomorphic to
S2ty1 452

(19) For every x € S', F, contains an induced copy F, of S5 containing x such that F, \ {z}
is anticomplete to Hy \ F.

Next, we define:

Hy=H\ | |J@E\{z}) ]
z€es’
It follows that Hj is a connected induced subgraph of Gy and S’ C Hj is a (20 — 1)-stable set

in Hj.
(20) Hy, and so Gy, contains an (S',0,0)-connectifier H of type i for some i € [4].

Since |S'| > v1 = p(max{t,00,0 + 1}), we can apply Theorem 5.2 to Hj and S’. It follows
that H{ contains an (S’, max{t,f0c,6 + 1})-connectifier H'. Since S’ is a (20 — 1)-stable set in
H{, H' NS is also a (20 — 1)-stable set in H'. It is straightforward to observe that if H’' is of
type i for i € {2,3,4}, then H', and so Hj, contains an (S’, 6, o)-connectifier H. Also, if H' is of
type 0, then H' contains a clique of cardinality ¢, which violates that G is t-clean. It remains to
consider the case where H' is of type 1. Then H’ contains an (S’, 60 + 1)-tied rooted subdivided
star H” with root r in which every stem has length at least o and (H” N S’)\ L(H") C {r}.
Since 6 > 2, it follows that H” has at least three vertices and r is not a leaf of H”. If H" is a
path with ends hy,ho € S/, then § = 2 and r € S’. This, along with the fact that H” N S’ is
a (20 — 1)-stable set in H”, implies that H = H"[hq,r| has length at least 20. But then H is
a (5,0, 0)-connectifier of type 2 in H”, and so in H{. Also, if H” is not a path, then r is the
unique branch vertex of H”. Again, since H” N S’ is (20 — 1)-stable set in H' (and so in H”),
there exists a stem P of H” such that every stem of H” other than P has length at least o.
Therefore, H = H'\ (P \ {r}) is an (5,0, 0)-connectifier of type 1 in H”, and so in H{. This
proves (20).

Let H be as in (20). Let X = HN S. Let F' = J,cx F,, and E = G1[H U F']. Then by (19),
F' is an induced subgraph of Z isomorphic to §Ss and F”\ X is anticomplete to =\ F. Also,
we have =\ (F’\ X) = H. But then by (20), E is a o-connectification of (F’, X), and so Z is an
induced subgraph of G isomorphic to a o-connectification of (655, R(6S5)). This completes
the proof of Lemma 9.1. |

We need one more definition before proving Theorem 4.1. For two rooted subdivided star
forests I and Fy, we say Iy embeds in Fy if R(F) C R(F1) and there exists a collection S of
stems of Fy such that Fy» = F1 \ (Upes P) \ R(F1)).
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Now we prove Theorem 4.1, which we restate:

Theorem 4.1. Let 0 > 1 be an integer, let F' be a rooted subdivided star forest of size at least
two and let 7 : [|R(F)|] — R(F) be a bijection. Then the class Co pr(F)+ 5 clean.

Proof. Let F be of maximum degree § > 0, reach A > 0 and size § > 2. For every x € R(F),
let F, be the component of F' with root z. Let F't = 0S513 41 be rooted (with its unique
choice of roots). For every y € R(F*), let F,f be the component of F* with root y. Then for
every © € R(F) and every y € R(F*), F,/ contains a copy F,f, of F, such that F,f embeds
in F,f. Now, for every choice of bijections 7 : [f] — R(F) and 7" : [f] — R(F™T), and every
o-connectification =1 of (FT, R(FT)) with respect to 7, let

E=(E"\FMU | Flomr
i€[0]

It follows that Z is isomorphic to a o-connectification of (F,R(F')) with respect to 7. In other
words, for every bijection 7 : [0] — R(F), every o-connectification of (F'*, R(F1)) contains an
induced subgraph isomorphic to a o-connectification of (F, R(F')) with respect to m. Therefore,
we have C; pr(F),x C Cop+ g(pt+). This, together with Lemma 9.1, implies that for every
integer ¢ > 1, we have C;F,R(F)Jr C CZ7F+’R(F+) C Bi,, where ks = ka(t,0 + 3,2+ 1,0,0) is as
in Lemma 9.1. Now the result follows from Theorem 6.5 and Lemma 2.1. |
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