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recherches en sciences naturelles et en génie du Canada (CRSNG), [numéro de référence RGPIN-2020-03912].



Abstract

A theorem of Mader shows that every graph with average degree at least eight has a K6 minor,
and this is false if we replace eight by any smaller constant. Replacing average degree by minimum
degree seems to make little difference: we do not know whether all graphs with minimum degree at
least seven have K6 minors, but minimum degree six is certainly not enough. For every ε > 0 there
are arbitrarily large graphs with average degree at least 8− ε and minimum degree at least six, with
no K6 minor.

But what if we restrict ourselves to bipartite graphs? The first statement remains true: for every
ε > 0 there are arbitrarily large bipartite graphs with average degree at least 8− ε and no K6 minor.
But surprisingly, going to minimum degree now makes a significant difference. We will show that
every bipartite graph with minimum degree at least six has a K6 minor. Indeed, it is enough that
every vertex in the larger part of the bipartition has degree at least six.



1 Introduction

The graphs with no K5 minor are well understood. A theorem of Wagner [6] gives an explicit
construction for all such graphs: they can all be built by piecing together planar graphs and copies
of one eight-vertex graph by a sum operation that we do not describe here. Consequently, every
graph with n ≥ 3 vertices and more than 3n − 6 edges has a K5 minor. (All graphs in this paper
are finite and have no loops or parallel edges.) This is tight: there are graphs with n vertices and
with exactly 3n−6 edges that have no K5 minor. Indeed, one can make such graphs that are almost
6-regular: for infinitely many values of n there is an n-vertex planar graph (which therefore has no
K5 minor) with all vertices of degree six except for twelve of degree five. In summary:

• all graphs with average degree at least six contain K5 minors, and this is false if we replace six
by any smaller real number;

• all graphs with minimum degree at least six have K5 minors, and this is false if we replace six
by any smaller integer;

• this is all still true even if we insist that maximum degree is at most six.

What if we look just at bipartite graphs? One can make n-vertex bipartite graphs with no K5

minor that have 3n − 9 edges (the complete bipartite graph K3,n−3 – in fact this is the only such
graph, which can easily be shown by induction using 1.1). So the situation for average degree is
virtually unchanged: average degree six is enough to guarantee a K6 minor, and no smaller constant
works. But K3,n−3 has vertices with degree much larger than the average, and also vertices with
degree much smaller than average (if three is much smaller than six). So what happens if we insist
that maximum degree is close to the average degree, or minimum degree is large?

It turns out that:

1.1 Every non-null bipartite graph with minimum degree at least four has a K5 minor.

This can be derived from Wagner’s construction [6], although the proof is rather long and we omit
it. The result is already known: it was stated (in a stronger form, replacing “bipartite” by “girth at
least four”) in a lecture by János Barát [1], as joint work with David Wood, and also (without proof)
in an early version of the paper [2] (unfortunately it was removed in a later version of the paper).
When excluding K5, imposing a bound on maximum degree is perhaps not so interesting: there are
n-vertex bipartite graphs with average degree at least four and maximum degree at most five, with
no K5 minor. (For example, take five disjoint copies of K3,5, and for 1 ≤ i ≤ 5 let vi be a vertex
with degree three from the ith copy. Now add two more vertices both adjacent to each of v1, . . . , v5.
To make bigger examples, take disjoint unions.) Perhaps average degree at least five and maximum
degree at most six will guarantee a K5 minor in a bipartite graph, but we have not worked this out.

In this paper, we ask what happens for K6 minors. A theorem of Mader [4] says:

1.2 For n ≥ 4, every n-vertex graph with more than 4n− 10 edges has a K6 minor.

There are graphs with n vertices and 4n− 10 edges with minimum degree at least six that have no
K6 minor: for instance, take a planar graph on n− 1 vertices with 3(n− 1)− 6 edges and minimum
degree five, and add a new vertex adjacent to everything. So we need average degree at least eight
to guarantee a K6-minor; no smaller constant works. Again, we might ask what happens if we insist
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that maximum degree is close to average degree, or minimum degree is large. We have found K6-
minor-free graphs with minimum degree six and maximum degree at most nine; and K6-minor-free
graphs with minimum degree five, maximum degree seven, and average degree arbitrarily close to
98/15 (we omit the details). But as far as we know, both the following are open:

1.3 Conjecture: Every non-null 6-regular graph has a K6 minor.

(Indeed, as far as we know, every non-null graph with minimum degree at least six and maximum
degree at most eight has a K6 minor.)

1.4 Conjecture: Every non-null graph with minimum degree at least seven has a K6 minor.

There is a well-known conjecture of Jørgensen [3] that is related:

1.5 Conjecture: Every 6-connected graph with no K6 minor can be made planar by deleting some
vertex, and therefore has a vertex of degree at most six.

But in this paper we will restrict ourselves to bipartite graphs. Still no constant smaller than
eight works as a bound on average degree to guarantee a K6 minor, since the complete bipartite
graph K4,n−4 has 4n − 16 edges and has no K6 minor. But what about minimum degree? We will
show:

1.6 Every non-null bipartite graph with minimum degree at least six has a K6 minor.

We do not know whether “six” can be replaced by “five” in 1.6. Minimum degree is more difficult
than average degree to work with inductively, and fortunately there is a strengthening of 1.6 that is
more amenable to induction:

1.7 Let G admit a bipartition (A,B) with |A| ≥ |B| > 0, such that every vertex in A has degree at
least six. Then G has a K6 minor.

We remark that 1.7 becomes false if we replace “six” by “five”; we will show this in the next section.
This was also motivated by one of the steps in the proof of [5] that every graph with no K6 minor

is five-colourable. Let G be a minor-minimal graph with no K6 minor that is not five-colourable, if
such a graph exists; then in [5], section 12 was devoted to showing that G has a matching with at
least (|G| − 1)/2 edges. If not, then by Tutte’s theorem, there is a set X ⊆ V (G) such that G \X
has more than |X| odd components, and it was known that G is six-connected, and so each of these
components has an edge to at least six vertices in X. By contracting these components to single
vertices we obtain a bipartite graph satisfying the hypotheses of 1.7, which would be a contradiction,
since G has no K6 minor. In [5], Mader’s theorem [4] was used in place of 1.7, with additional
analysis of the components that had only six or seven neighbours in X. But it should be added that
1.7 is not going to shorten the proof of the main theorem of [5]; the proof of 1.7 is considerable longer
than section 12 of [5]. It will take up almost all the paper, but we begin with proving the statements
for K5 mentioned above.
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2 Some definitions, and the results for K5

Let us be more precise. If X ⊆ V (G), G \ X is the graph obtained from G by deleting X, and
G[X] = G \ (V (G) \X) denotes the subgraph of G induced on X. A graph H is a minor of G if H
can be obtained by edge-contraction from a subgraph of G. (We repeat that graphs in this paper
have no loops or parallel edges, so any loops or parallel edges produced by edge-contraction should
be deleted.) We will only be concerned with complete graph minors. Let us say a cluster in G is
a set of disjoint subsets X1, . . . , Xk of V (G), such that G[Xi] is connected for 1 ≤ i ≤ k, and for
1 ≤ i < j ≤ k there is an edge of G between Xi, Xj ; and a t-cluster means a cluster of cardinality t.
Thus G contains the complete graph Kt as a minor if and only if G contains a t-cluster.

A word on taking minors of bipartite graphs: we start with a graph with a bipartition (A,B),
choose a subset X ⊆ V (G) that induces a connected subgraph, and contract X to a single vertex.
As we said, if this produces parallel edges we delete them, since we only work with simple graphs in
this paper. But there is another issue: the graph we obtain by contraction might not be bipartite,
and we want to produce a bipartite graph at the end, so we in general we must delete some of the
edges incident with the new vertex. We could explicitly list the edges that we need to delete, but
since we will apply this operation many times, let us set up a more convenient method. Let us say we
contract X into A if we first contract X to a single vertex, x say, and then delete all edges between
x and A. Thus the graph we produce has a bipartition ((A \ X) ∪ {x}, B \ X). “Contracting into
B” is defined similarly.

Let us see first:

2.1 For t = 1, 2, 3, 4, if G admits a bipartition (A,B) with |A| ≥ |B| > 0 such that every vertex in
A has degree at least t− 1 then G has a Kt minor.

Proof. We may assume that every vertex in A has degree exactly t− 1, by deleting edges, and we
may assume that |A| = |B|, by deleting |A| − |B| vertices from A. For t ≤ 2 the result is clear. For
t = 3, the graph has 2|A| = |G| edges and so has a cycle, and hence a K3 minor.

Next let t = 4; we proceed by induction on |A|. We may assume that G has a vertex of degree
at most two, b say (necessarily b ∈ B), because otherwise it has a K4 minor. If b has degree zero
we may delete it, and if it has degree one we may delete it and its neighbour, and in either case the
result follows from the inductive hypothesis. So we assume that b has two neighbours a1, a2. If there
are at least four vertices in B \ {b} with a neighbour in {a1, a2}, we may contract {a1, b, a2} into
A and apply the inductive hypothesis; so we assume that a1, a2 have exactly the same neighbours
b, b1, b2, b3. If some vertex different from a1, a2 is adjacent to both b1, b2 then G has a K4 minor: and
otherwise we may contract {b1, b2, a1, a2, b} into B and apply the inductive hypothesis. This proves
2.1.
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Figure 1: Counterexample to 2.1 with t = 5.

Since all bipartite graphs with minimum degree at least four have K5 minors, one might hope
that 2.1 would hold with t = 5, but that is false. Here is a counterexample (see figure 1). Let H be
the graph obtained from K3,5 by deleting three edges that form a matching. Now take k copies of
H, say H1, . . . ,Hk, and for 1 ≤ i ≤ k let ai, bi, ci be the three vertices of Hi that have degree two.
Let G be obtained from the disjoint union of H1, . . . ,Hk by making the identifications a1 = · · · = ak,
b1 = · · · = bk and c1 = · · · = ck. Then G admits a bipartition (A,B) with |A| = 3k and |B| = 2k+ 3,
and every vertex in A has degree four, and G has no K5 minor. Thus taking k ≥ 3 we obtain a
counterexample to 2.1 with t = 5. By taking k = 4 instead, and then adding a new vertex adjacent
to every vertex in A, we obtain a graph that shows that we cannot replace “six” by “five” in 1.7.

We have:

2.2 If G admits a bipartition (A,B) with |A| ≥ |B| > 0 such that every vertex in A has degree at
least five then G has a K5 minor.

This is turn is a consequence of 1.7 as we show now.

Proof of 2.2, assuming 1.7. Suppose that G admits a bipartition (A,B) with |A| ≥ |B| > 0 such
that every vertex in A has degree at least five and G has no K5 minor. We may assume that |A| = |B|.
Choose b ∈ B. Now take k copies of G, say G1, . . . , Gk, and let bi be the vertex of Gi that corresponds
to b. Let H be obtained from the disjoint union of G1, . . . , Gk by identifying b1, . . . , bk. Then H has
no K5 minor, and has a bipartition (C,D) with |C| = k|A| and |D| = k(|B|− 1) + 1 = k(|A|− 1) + 1,
and every vertex in C has degree at least five. Now add one more vertex d to H adjacent to every
vertex in C; then the graph we produce admits a bipartition (C,D ∪ {d}) where every vertex in C
has degree at least six, and it has no K6 minor (because H has no K5 minor). So if we choose k such
that k|A| ≥ k(|A| − 1) + 2, that is, k ≥ 2, we obtain a contradiction to 1.7. This proves 2.2.

3 Some lemmas

Let us begin on the proof of 1.7. Thus, let G be a graph that admits a bipartition (A,B) with
|A| ≥ |B| > 0 such that every vertex in A has degree at least six; we need to show that G admits
a 6-cluster. Let us say G is a candidate if admits a bipartition (A,B) with |A| ≥ |B| > 0 such that
every vertex in A has degree at least six, and G has no 6-cluster. We need to show that there is no
candidate. We call (A,B) the bipartition of the candidate. If G is a candidate with |G| + |E(G)|
minimum, we say it is a minimal candidate.

Let us begin with some easy observations.
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3.1 Let G be a minimal candidate with bipartition (A,B). Then

• |A| = |B|;

• every vertex in A has degree exactly six;

• if X ⊆ B is nonempty then G \X has at most |X| components;

• if X ⊆ A is nonempty then G \X has at most |X| components; and

• if X ⊆ A is nonempty and G \ X has exactly |X| components then at most one of them has
more than one vertex.

Proof. If |A| > |B| we could delete a vertex in A and obtain a smaller candidate; and if some vertex
in A has degree more than six we could delete an edge incident with it to obtain a smaller candidate,
in either case contradicting minimality.

For the third bullet, let X ⊆ B be nonempty, and let G1, . . . , Gk be the components of G \X.
For 1 ≤ i ≤ k, let |V (G) ∩ A| = pi and |V (G) ∩ B| = qi. Then for 1 ≤ i ≤ k, since G \ V (Gi) is not
a candidate, it follows that |A| − pi < |B| − qi, and so pi ≥ qi + 1 since |A| = |B|; but then

|A| = p1 + · · ·+ pk ≥ q1 + · · ·+ qk + k = |B| − |X|+ k,

and since |A| = |B| it follows that k ≤ |X|. This proves the third bullet.
For the fourth bullet, let X ⊆ A be nonempty, and let G1, . . . , Gk be the components of G \X.

For 1 ≤ i ≤ k, let |V (G) ∩ A| = pi and |V (G) ∩ B| = qi. For 1 ≤ i ≤ k, since Gi is not a candidate,
it follows that pi ≤ qi − 1; but

|A| = p1 + · · ·+ pk + |X| ≤ q1 + · · ·+ qk − k + |X| = |B| − k + |X|,

and since |A| = |B| it follows that k ≤ |X|. This proves the fourth bullet.
Finally, in the same notation, suppose that k = |X|, and G1, G2 both have at least two vertices.

Thus pi ≤ qi − 1 for 1 ≤ i ≤ k, and since k = |X|, it follows that pi = qi − 1 for 1 ≤ i ≤ k. From
the third and fourth bullets it follows that G is two-connected, and so there are two vertex-disjoint
paths of G, say R,S each with first vertex in V (G1) and last vertex in V (G2), and each with no
other vertices in V (G1) ∪ V (G2). Consequently R,S each have first vertex in V (G1) ∩ B and last
vertex in V (G2) ∩B. By contracting V (R) and V (S) into B we see that G contains as a minor the
graph obtained from G1 ∪ G2 by identifying the ends of R and identifying the ends of S. But this
graph admits a bipartition with parts of cardinalities p1 + p2 and q1 + q2 − 2 = p1 + p2, and so it is
a smaller candidate, a contradiction. This proves the fifth bullet and so proves 3.1.

3.1 has a useful corollary:

3.2 Let G be a minimal candidate with bipartition (A,B), and let X ⊆ A or X ⊆ B with |X| = 4.
Then there do not exist five connected subgraphs Y1, . . . , Y5 of G \X, pairwise vertex-disjoint, such
that for 1 ≤ i ≤ 5, every vertex in X has a neighbour in Yi.

Proof. Let X = {x1, x2, x3, x4}. Suppose that such Y1, . . . , Y5 exist, and choose them with maximal
union. By the third and fourth bullets of 3.1 they are not all components of G \X, and so from the
maximality of their union, some two of them are joined by an edge, say Y4, Y5. But then there is a
6-cluster

{V (Y1) ∪ {x1}, V (Y2) ∪ {x2}, V (Y3) ∪ {x3}, V (Y4), V (Y5), {x4}},
which is impossible. This proves 3.2.
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Here is another way of using the minimality of the candidate. Let a1, . . . , ap ∈ A be distinct
and b1, . . . , bq ∈ B be distinct. The cover graph H (with respect to a1, . . . , ap, b1, . . . , bq) is the
graph with vertex set {b1, . . . , bq} in which two distinct vertices u, v are adjacent if there is a vertex
w ∈ A \ {a1, . . . , ap} adjacent in G to both u, v. We denote the chromatic number of H by χ(H). A
partition of V (H) = {b1, . . . , bq} into sets that are stable in H is a colouring of H, and a partition
{Y1, . . . , Yk} of V (H) is feasible if there are pairwise disjoint subsets X1, . . . , Xk of {a1, . . . , ap} such
that G[Xi ∪ Yi] is connected for 1 ≤ i ≤ k. (Note that the sets Xi might be empty.)

3.3 Let G be a minimal candidate with bipartition (A,B), and let a1, . . . , ap ∈ A be distinct and
b1, . . . , bq ∈ B, with cover graph H. Then no colouring of H of cardinality at most q − p is feasible.

Proof. Suppose that the colouring {Y1, . . . , Yk} of H is feasible, where k ≤ q−p, and let X1, . . . , Xk

be the corresponding subsets of {a1, . . . , ap}. By contracting each of the sets Xi∪Yi into B, we obtain
a graph with a bipartition (C,D) say, where |C| ≥ |A|−p and |D| = |B|− q+k ≤ |B|−p ≤ |C|; and
every vertex in C has degree at least six, since each of Y1, . . . , Yk is stable in H, and so this graph is
a candidate, which is impossible from the minimality of G. This proves 3.3.

A special case of 3.3 is used so frequently that it is worth stating explicitly:

3.4 Let G be a minimal candidate with bipartition (A,B). If b1, b2 ∈ B are distinct and have a
common neighbour in A then they have at least two common neighbours in A.

Proof. Let a ∈ A be adjacent to b1, b2. If b1, b2 have no other common neighbour, then the covering
graph of a, b1, b2 admits a colouring of cardinality one, which is therefore feasible, contrary to 3.3.

4 Excluding K(3, 5, 0)- and K(4, 4, 1)-subgraphs

We will prove a series of results about minimal candidates, which eventually allow to show that there
is no such graph. Most of these result are of the form “If G is a minimal candidate, then G has
no subgraph of the following type”, where the types describe subgraphs that become smaller and
simpler as the sequence goes on. For instance, one of our result will say that there do not exist two
vertices in A and six vertices in B such that each of the first is adjacent to each of the second. We
need some notation to describe these “types”. For integers p, q, r ≥ 0 with r ≤ min(p, q), let us say
a subgraph H of G is a K(p, q, r)-subgraph if it consists of p vertices a1, . . . , ap ∈ A and q vertices
b1, . . . , bq ∈ B, where the pairs a1b1, a2b2, . . . , arbr are nonadjacent, and otherwise each ai is adjacent
to each bj . Thus H is obtained from a complete bipartite graph Kp,q by deleting a matching with r
edges; but it matters that the p vertices belong to A and the q belong to B, and not the other way
around.

In this section we will prove that a minimal candidate has no K(3, 5, 0)-subgraph and noK(4, 4, 1)-
subgraph. We begin with:

4.1 Let G be a minimal candidate with bipartition (A,B). Then G has no K(4, 4, 0)-subgraph.

Proof. Suppose that a1, . . . , a4 ∈ A are adjacent to b1, . . . , b4 ∈ B. Let Z = {a1, . . . , a4, b1, . . . , b4}.
For each component C of G \Z, let N(C) denote the set of vertices in Z with a neighbour in V (C).
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(1) For each component C of G \ Z, {a1, a2, a3, a4} 6⊆ N(C), and {b1, b2, b3, b4} 6⊆ N(C).

This is immediate from two applications of 3.2, setting X = {a1, a2, a3, a4} and X = {b1, b2, b3, b4}.

a1 a2 a3 a4

b1 b2 b3 b4

Figure 2: K(4, 4, 0)-subgraph.

Since a1, a2, a3, a4 have degree six, and so each of them belongs to N(C) for some component C
of G \ Z, it follows from (1) that there are at least two such components.

(2) For each component C of G \ Z, |N(C) ∩A| 6= 1.

Suppose that N(C) ∩ A = {a1} say. Let b ∈ V (C) be adjacent to a1; thus b ∈ B. By (1) we
may assume that b1 /∈ N(C). But then b, b1 have a unique common neighbour, contrary to 3.4. This
proves (2).

(3) For each component C of G \ Z, one of |N(C) ∩A|, |N(C) ∩B| ≥ 2.

If |N(C)∩A| ≤ 1 then N(C)∩A = ∅ by (2), and so by the third bullet of 3.1, taking X = N(C), it
follows that |N(C) ∩B| ≥ 2. This proves (3).

(4) |N(C) ∩B| ≤ 1 and |N(C) ∩A| ∈ {2, 3} for every component C of G \ Z.

Suppose that |N(C) ∩ B| ≥ 2, and let b1, b2 ∈ N(C) say. By (1), there is a component C ′ 6= C
of G \ Z with N(C ′) ∩A 6= ∅, and hence with |N(C ′) ∩A| ≥ 2 by (2). Let a1, a2 ∈ N(C ′) say. Then
there is a 6-cluster

{{a1}, V (C ′) ∪ {a2}, {b1}, V (C) ∪ {b2}, {a3, b3}, {a4, b4}},

a contradiction. This proves that |N(C) ∩ B| ≤ 1 for every component C of G \ Z; and so
|N(C) ∩A| ∈ {2, 3} for every component C of G \ Z by (3) and (1). This proves (4).

(5) If v ∈ B \ Z has a neighbour in {a1, a2, a3, a4} then it has at least two such neighbours.

Let C be the component of G \ Z that contains v. We may assume that v is adjacent to a1,
and by (1), we may assume that b1 /∈ N(C). By 3.4, b1, v have another common neighbour, which
must be in {a2, a3, a4} since b1 /∈ N(C). This proves (5).

(6) If u, v ∈ B \Z have a common neighbour in {a1, a2, a3, a4} and belong to different components of

7



G \ Z then they have at least two common neighbours in {a1, a2, a3, a4}. Consequently, if C,C ′ are
distinct components of G \ Z then |N(C) ∩N(C ′) ∩A| 6= 1.

The first claim follows from 3.4 applied to u, v; and the second is a consequence. This proves (6).

(7) |N(C) ∩A| = 2 for each component C of G \ Z.

Suppose not; then by (4) |N(C) ∩ A| = 3, and we may assume that N(C) ∩ A = {a1, a2, a3}.
Let C ′ be a component of G \ Z with a4 ∈ N(C ′). By (4), N(C) ∩ N(C ′) 6= ∅, and so by (6),
|N(C ′) ∩ A| = 3 and we may assume that a2, a3, a4 ∈ N(C ′). Since a2 has a neighbour in each
of C,C ′ and is also adjacent to b1, b2, b3, b4, it has no more neighbours, and the same holds for a3.
Consequently if C ′′ 6= C,C ′ is a component of G\Z then N(C ′′)∩A ⊆ {a1, a4}, and so equality holds
by (4), contrary to (6). Thus C,C ′ are the only components of G \ Z. Hence a1 has two neighbours
d1, d2 ∈ V (C), and a2, a3 each have exactly one neighbour in V (C ′). By (5), each of d1, d2 is adjacent
to two of a1, a2, a3, a4, and so we may assume that d1 is adjacent to a2 and not to a3. Similarly there
exists d′ ∈ V (C ′) adjacent to a2 and not to a3. But then d1, d

′ have a unique common neighbour,
contrary to (6). This proves (7).

By (4), b1, b2, b3, b4 belong to different components of G \ {a1, a2, a3, a4}, and so by 3.1, these are
the only components of G\{a1, a2, a3, a4}, and three of them have only one vertex. Consequently we
may assume that b2, b3, b4 have degree four in G, and b1 ∈ N(C) for each component C of G \Z. By
(7) and (6), we may assume that for each component C of G \ Z, N(C) ∩ A = {a1, a2} or {a3, a4}.
Let G1 be the union of the components C with N(C) ∩ A = {a1, a2}, and define G2 similarly for
{a3, a4}. Thus a1, a2 each have two neighbours in V (G1), and a3, a4 each have two in V (G2). Hence
by contracting {a1, b2, a3} and {a2, b3, b4} into A we obtain a smaller candidate, a contradiction.
This proves 4.1.

4.2 Let G be a minimal candidate with bipartition (A,B). Then G has no K(3, 6, 0)-subgraph.

Proof. Suppose that a1, a2, a3 ∈ A are all adjacent to each of b1, . . . , b6 ∈ B. Let H be the cover
graph with respect to a1, a2, a3, b1, . . . , b6.

a1 a2 a3

b1 b2 b3 b4 b5 b6

Figure 3: K(3, 6, 0)-subgraph.

(1) If b1, b2, b3 are pairwise adjacent in H, there is a vertex a 6= a1, a2, a3 adjacent to all of b1, b2, b3,
and no other vertex in A \ {a1, a2, a3} is adjacent to any two of b1, b2, b3.
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Since b1b2 ∈ E(H), there exists c3 ∈ A \ {a1, a2, a3} adjacent to b1, b2; and similarly there exists
c1 adjacent to b2, b3 and c2 adjacent to b3, b1. If c1, c2, c3 are all different, there is a 6-cluster

{{c2, b1}, {c3, b2}, {c1, b3}, {a1, b4}, {a2, b5}, {a3, b6}},

a contradiction. So c1, c2, c3 cannot be chosen all different. In particular we may assume that some
c ∈ A \ {a1, a2, a3} is adjacent to b1, b2, b3. If some other vertex d ∈ A \ {a1, a2, a3} is adjacent to
two of b1, b2, b3, say to b1, b2, there is a 6-cluster

{{b1, d}, {b2}, {c, b3}, {a1, b4}, {a2, b5}, {a3, b6}},

a contradiction. This proves (1).

Every colouring of H of cardinality three is feasible (as we can add one ai to each vertex class),
so χ(H) ≥ 4 by 3.3. Consequently either H consists of an induced cycle of length five together with
one more vertex adjacent to every vertex of the cycle, or H has a clique of size four. In either case
there are four vertices of H such that five of the six pairs of them are adjacent in H. We may assume
that b1b2, b1b3, b1b4, b2b3, b2b4 are all edges of H. By (1) there exists c ∈ A \ {a1, a2, a3} adjacent to
b1, b2, b3, and d ∈ A \ {a1, a2, a3} adjacent to b1, b2, b4; and by (1) again, c = d. Thus c is adjacent
to b1, b2, b3, b4, and so G[{a1, a2, a3, c, b1, b2, b3, b4}] is a K(4, 4, 0)-subgraph, contrary to 4.1. This
proves 4.2.

If P is a path, we denote by P ∗ the set of vertices in the interior of P , that is, the vertices that
have degree two in P .

4.3 Let G be a minimal candidate with bipartition (A,B). Then G has no K(3, 5, 0)-subgraph.

Proof. Suppose that a1, a2, a3 ∈ A are all adjacent to each of b1, . . . , b5 ∈ B.

a1 a2 a3

b1 b2 b3 b4 b5

Figure 4: K(3, 5, 0)-subgraph.

Each of a1, a2, a3 has exactly one neighbour different from b1, . . . , b5, and they are not all equal
since G has no K(3, 6, 0)-subgraph by 4.2. So some vertex is adjacent to exactly one of a1, a2, a3; say
b6 is adjacent to a1 and not to a2, a3. By 3.4, for 1 ≤ i ≤ 5 bi, b6 have a common neighbour different
from a1. Choose a set X of neighbours of b6, with a1, a2, a3 ∈ X, minimal such that b1, . . . , b5 each
have a neighbour in X. Consequently for each x ∈ X there exists i ∈ {1, . . . , 5} such that x is the
unique neighbour of bi in X.
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(1) Every vertex different from a1, a2, a3 with two neighbours in {b1, . . . , b5} is in X.

Suppose that a ∈ A \ {a1, a2, a3} is adjacent to a1, a2 say, and a /∈ X. Then there is a 6-cluster

{{b1}, {a, b2}, {b6, b3} ∪X, {a1}, {a2, b4}, {a3, b5}},

a contradiction. This proves (1).

(2) Some vertex different from a1, a2, a3 has three neighbours in {b1, . . . , b5}.

Let H be the cover graph with respect to a1, a2, a3, b1, . . . , b5. By 3.3, χ(H) ≥ 3. So either it
is a cycle of length five, or it has a triangle. (A triangle means a clique with cardinality three.)
Suppose first that H is a cycle of length five, with edges b1b2, b2b3, b3b4, b4b5, b5b1 say. Some vertex
d1,2 6= a1, a2, a3 is adjacent in G to b1, b2, from the definition of H, and it is nonadjacent to b3, b4, b5
since H is a cycle. Define d2,3 and so on similarly. By (1), each of these five vertices is in the set X;
but then none of b1, . . . , b5 has a unique neighbour in X, contrary to the minimality of X.

It follows that H has a triangle, say with vertices b1, b2, b3. Some vertex d1,2 6= a1, a2, a3 is
adjacent in G to b1, b2, from the definition of H; define d2,3, d3,1 similarly. Suppose that d1,2, d2,3, d3,1
are all different. Then there is a 6-cluster

{{d1,2, b1}, {d2,3, b2}, {d3,1, b3}, {a1}, {a2, b4}, {a3, b5}},

a contradiction. So two of d1,2, d2,3, d3,1 are equal. This proves (2).

Let a4 be adjacent to b1, b2, b3 say. It is nonadjacent to b4, b5 since G has no K(4, 4, 0)-subgraph
by 4.1. By 3.3 the cover graph with respect to a1, a2, a3, a4, b1, . . . , b5 has chromatic number at least
two, and so has an edge. Choose a5 different from a1, . . . , a4 with two neighbours in {b1, . . . , b5}. By
(1), a4, a5 are both adjacent to b6.

a1 a2 a3

b1 b2 b3 b4 b5b6

a4 a5

Figure 5: For the last part of the proof of 4.3. a5 is adjacent to two of b1, . . . , b5.

Up to symmetry there are three cases: a5 is adjacent to b1, b2; a5 is adjacent to b1, b4; and a5 is
adjacent to b4, b5.

First, if a5 is adjacent to b1, b2, there is a 6-cluster

{{b1}, {a5, b2}, {a4, b3}, {a1}, {a2, b4}, {a3, b5}},

10



a contradiction. If a5 is adjacent to b1, b4, there is a 6-cluster

{{b1}, {a4, b2}, {a5, b4, b6}, {a1}, {a2, b3}, {a3, b5}},

a contradiction. So a5 is adjacent to b4, b5.
By 3.1, the graph G\{a1, a2, a3, a4, a5} has at most five components; and so some two of b1, . . . , b6

belong to the same component. So there is a path P of G between two of b1, . . . , b6 with no other ver-
tices in {a1, . . . , b5, b1, . . . , b6}. Let P have ends bi, bj say. The subgraph induced on {a4, a5, b1, . . . , b6}
is a tree, and its union with P includes a cycle that contains P ; and in all cases we can use this cycle
to make three of b1, . . . , b5 adjacent and thereby produce a K6 minor. In detail (up to symmetry
these are the only possibilities):

• If (i, j) = (1, 2), there is a 6-cluster {{b1}, {P ∗ ∪ {b2}}, {a4, b3}, {a1}, {a2, b4}, {a3, b5}}.

• If (i, j) = (1, 4), there is a 6-cluster {{b1}, {a4, b2}, P ∗ ∪ {b4, b6}, {a1}, {a2, b3}, {a3, b5}}.

• If (i, j) = (1, 6) there is a 6-cluster {{b1}, {a4b2}, P ∗ ∪ {b6, a5, b4}, {a1}, {a2, b3}, {a3, b5}}.

• If (i, j) = (4, 5) there is a 6-cluster {{b1, a4, b6, a5}, {b4}, P ∗ ∪ {b5}, {a1}, {a2, b2}, {a3, b3}}.

• If (i, j) = (4, 6) there is a 6-cluster {P ∗ ∪ {b6}, {b4}, {a5, b5}, {a1}, {a2, b2}, {a3, b3}}.

In each case we have a contradiction. This proves 4.3.

4.4 Let G be a minimal candidate with bipartition (A,B). Then G has no K(4, 7, 4)-subgraph.

Proof. Suppose that a1, . . . , a4 ∈ A are all adjacent to each of b1, . . . , b7 ∈ B, except the pairs
a1b1, a2b2, a3b3, a4b4. Let H be the cover graph with respect to a1, . . . , a4, b1, . . . , b7. We claim that
every partition of V (H) into at most three sets is feasible. To see this, let {Y1, . . . , Yk} be a parti-
tion of V (H) with k ≤ 3. We must show there are disjoint subsets X1, . . . , Xk of {a1, . . . , a4} such
that Xi ∪ Yi is connected for 1 ≤ i ≤ k. If some Yi, say Y1, contains all of b1, . . . , b4 we may set
X1 = {a1, a2} and X2, . . . , Xk each to contain one of a3, a4; so we may assume that for 1 ≤ i ≤ k,
there exists j ∈ {1, . . . , 4} such that bj /∈ Yi. But then (from Hall’s “marriage” theorem, for in-
stance), there is an injection φ : {1, . . . , k} → {1, . . . , 4} such that bφ(i) /∈ Yi for 1 ≤ i ≤ k; so we may
set Xi = {aφ(i)} for 1 ≤ i ≤ k. This proves that every partition of V (H) into at most three sets is
feasible, and so χ(H) ≥ 4 by 3.3.

(1) b1, b2, b3, b4 are pairwise adjacent in H, and H has no other edges.

Suppose that say b5b6 are adjacent in H, and let P be a path of G between b5, b6 with no other
vertex in {a1, . . . , a4, b1, . . . , b7}. There is a 6-cluster

{a1, b2}, {a2, b3}, {a3, b4}, {a4, b1}, {b5}, P ∗ ∪ {b6}},

a contradiction. So b5, b6, b7 are pairwise nonadjacent in H. Let S be the set of edges of H with
both ends in {b1, . . . , b4}, and T the set of edges of H with one end in {b1, . . . , b4} and the other in
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{b5, b6, b7}. Thus every edge of H belongs to exactly one of S, T . If say b3b4 and b4b5 are edges of
H, let P,Q be the corresponding paths of G; then there is a 6-cluster

{{a1, b2}, {a2, b1}, {a3, b6}, {a4, b7}, V (P ), Q∗ ∪ {b5}},

a contradiction. Hence no edge in S shares an end with an edge in T , and so no component of H
has an edge in S and an edge in T . But some component H ′ of H has chromatic number at least
four, and so not all its edges are in T , since then it would be bipartite. Hence all its edges are in S,
and so V (H ′) ⊆ {b1, . . . , b4}; and since H ′ has chromatic number four, H ′ is a complete graph. This
proves (1).

a1 a2 a3 a4

b1 b2 b3 b4

b5 b6 b7

Figure 6: K(4, 7, 4)-subgraph.

Choose c 6= a1, . . . , a4 adjacent to b1, b2, and c′ 6= a1, . . . , a4 adjacent to b3, b4. Then c = c′, since
otherwise the connected subgraphs with vertex sets {b1, c, b2}, {b3, c′, b4}, {b5}, {b6}, {b7} violate 3.2.
Consequently c is adjacent to b1, b2, b3, b4. By the same argument, no other vertex has two neighbours
in {b1, . . . , b4}, and hence no other vertex has two neighbours in {b1, . . . , b7}, since b5, b6, b7 have
degree zero in H. But then the cover graph with respect to a1, . . . , a4, c, b1, . . . , b7 has no edges and
3.3 is violated. This proves 4.4.

4.5 Let G be a minimal candidate with bipartition (A,B). Then G has no K(4, 5, 2)-subgraph.

Proof. Suppose that a1, . . . , a4 ∈ A are all adjacent to each of b1, . . . , b5 ∈ B, except the pairs
a1b1, a2b2.

(1) Every vertex in B \ {b1, . . . , b5} with a neighbour in {a1, . . . , a4} has exactly two neighbours
in this set.

Suppose that some vertex b6 ∈ B \ {b1, . . . , b5} is adjacent to exactly one of a1, . . . , a4. By 3.4,
for i = 3, 4, 5 there is a vertex ci adjacent to bi, b6 and not in {a1, . . . , a4}. But then

{{a1, b2}, {a2, b3}, {a3, b1}, {b4}, {a4}, {b5, c5, b6, c4}}

12



is a 6-cluster, a contradiction.
So every vertex in B \ {b1, . . . , b5} with a neighbour in {a1, . . . , a4} has at least two neighbours

in this set. No vertex is adjacent to all of a1, a3, a4 or to all of a2, a3, a4, since there is no K(3, 5, 0)-
subgraph by 4.3. If some vertex b6 different from b1, . . . , b5 is adjacent to a1, a2, a3, then each
of a1, a2, a4 has exactly one neighbour different from b1, . . . , b6, and these must all be equal since
no vertex has one neighbour in {a1, a2, a3, a4}; but then G has a K(4, 7, 4)-subgraph, contrary to
4.4. Similarly no vertex different from b1, . . . , b5 is adjacent to a1, a2, a4; and so every vertex in
B \ {b1, . . . , b5} with a neighbour in {a1, . . . , a4} has exactly two neighbours in this set. This proves
(1).

a1 a2a3 a4

b1b2

b3 b4 b5

Figure 7: K(4, 5, 2)-subgraph.

(2) b3, b4, b5 each have degree four in G.

There are four edges between {a1, a2} and B \ {b1, . . . , b5}, and only two between {a3, a4} and
B \ {b1, . . . , b5}; and so by (1) there is a vertex b6 ∈ B \ {b1, . . . , b5} adjacent to a1, a2 and not to
a3, a4. By 3.4, there is a vertex different from a1, . . . , a4 adjacent to b6, b1 (because b6, b1 are adjacent
to a2), and similarly there is a vertex different from a1, . . . , a4 adjacent to b6, b2. Consequently there
is a path P between b1, b2 with no other vertices in {a1, . . . , a4, b1, . . . , b5} (possibly containing b6).

We claim that P, b3, b4, b5 all belong to different components of G \ {a1, a2, a3, a4}. Because
suppose not; then, either there is a path Q of G between two of b3, b4, b5 with no other vertex in
{a1, . . . , a4, b1, . . . , b5}, or there is a path Q between one of b1, b2 and one of b3, b4, b5 with no other
vertex in {a1, . . . , a4, b1, . . . , b5}. In the first case, say Q has ends b3, b4; then

{{b3}, Q∗ ∪ {b4}, {a4}, {a1, b2}, {a2, b5}, {a3, b1}}

is a 6-cluster, a contradiction. In the second case, let Q have ends b1, b3 say; then

{{P ∗ ∪Q∗ ∪ {b1}, {a1, b2}, {b3}, {a2, b4}, {a3, b5}, {a4}}

is a 6-cluster, a contradiction.
This proves that P, b3, b4, b5 all belong to different components of G \ {a1, a2, a3, a4}. By 3.2, the

components containing b3, b4, b5 are all singletons. This proves (2).

Now for i = 3, 4, ai has one neighbour not in {b1, . . . , b5}, say ci. Either c3 = c4 and c3 has no
neighbour in {a1, a2}, or each of c3, c4 has a unique neighbour in {a1, a2}, and not the same one. Thus
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in either case we may assume that c3 is not adjacent to a1 and c4 is not adjacent to a2. Consequently,
there are at least six vertices in B \ {b1, b2} with a neighbour in {a1, a3}, namely b3, b4, b5, c3 and the
two neighbours of a1 not in {b1, . . . , b5}. Similarly there are at least six vertices in B \{b1, b2} with a
neighbour in {a2, a4}. Since b1, b2 both have degree four, by contracting {a1, b1, a3} and {a2, b2, a4}
into A we obtain a smaller candidate, a contradiction. This proves 4.5.

4.6 Let G be a minimal candidate with bipartition (A,B). Then G has no K(4, 4, 1)-subgraph.

Proof. Suppose that a1, . . . , a4 ∈ A are all adjacent to each of b1, . . . , b4 ∈ B, except the pair a1b1.
No vertex in B \ {b1, . . . , b4} is adjacent to all of a2, a3, a4 since G has no K(3, 5, 0)-subgraph by 4.3.
No vertex is adjacent to a1 and to two of a2, a3, a4 since G has no K(4, 5, 2)-subgraph by 4.5. So
every vertex in B \ {b1, . . . , b4} with a neighbour in {a1, . . . , a4} has at most two neighbours in this
set.

a1 a2 a3 a4

b1

b2 b3 b4

Figure 8: K(4, 4, 1)-subgraph.

Suppose that some vertex b5 ∈ B \ {b1, . . . , b4} has only one neighbour in {a1, . . . , a4}, and that
neighbour is different from a1; let it be a2 say. By 3.4, for i = 1, 2, 3, 4 there is a vertex ci 6= a2
adjacent to both b5, bi. But then

{{b5, c1, c2, c3, c4}, {a2}, {a3, b1}, {a4, b2}, {a1, b3}, {b4}}

is a 6-cluster. So every vertex in B \ {b1, . . . , b4} with a neighbour in {a2, . . . , a4} has exactly two
neighbours in {a1, . . . , a4}.

But there are an odd number of edges (nine) between {a1, . . . , a4} and B \ {b1, . . . , b4}; so some
vertex b5 ∈ B \ {b1, . . . , b4} has a unique neighbour in {a1, . . . , a4}, and consequently this neighbour
is a1. It follows that at most two neighbours of a1 are different from b2, b3, b4 and have a neighbour
in {a2, a3, a4}. But there are six edges between {a2, a3, a4} and B \ {b1, . . . , b4}, and so there is a
vertex b6 ∈ B \ {b1, . . . , b4} adjacent to two of a2, a3, a4, say a2, a3. By 3.4, for i = 2, 3, 4 there is a
vertex ci 6= a1 adjacent to both b5, bi. But then

{{a2}, {a3, b6}, {a4, b1}, {a1, b3}, {b4}, {b5, c2, c3, c4, b2}}

is a 6-cluster, a contradiction. This proves 4.6.
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5 Excluding K(3, 4, 0)- and K(2, 6, 0)-subgraphs.

Our main goal in this section is to eliminate K(3, 4, 0)-subgraphs; and to do this, we first eliminate
K(3, 7, 3)-subgraphs.

5.1 Let G be a minimal candidate with bipartition (A,B). Then G has no K(3, 7, 3)-subgraph.

Proof. Suppose that a1, a2, a3 ∈ A are all adjacent to each of b1, . . . , b7 ∈ B except for the pairs
a1b1, a2, b2, a3b3.

(1) No vertex different from a1, a2, a3 has three neighbours in {b4, b5, b6, b7}.

This is immediate since G has no K(4, 4, 1)-subgraph by 4.6.

a1 a2 a3

b1b2b3

b4 b5 b6 b7

Figure 9: K(3, 7, 3)-subgraph.

(2) No vertex different from a1, a2, a3 has at least four neighbours in {b1, . . . , b7}.

Suppose a4 has at least four neighbours in {b1, . . . , b7}. Let I be the set of i ∈ {1, . . . , 7} such
that a4, bi are adjacent. Thus |I| ≥ 4. Let b8 be a neighbour of a4 not in {b1, . . . , b7}. Thus b8 is
nonadjacent to a1, a2, a3, since the latter have degree only six. By 3.4, for each i ∈ I there exists
ci 6= a1, . . . , a4 adjacent to bi, b8.

Suppose first that 1, 2, 3 ∈ I; and we may assume that 4 ∈ I since |I| ≥ 4. Then

{{a4}, {b8, c1, c2, c3, c4}, {a1, b2}, {a2, b3}, {a3, b1}, {b4}}

is a 6-cluster. So not all 1, 2, 3 belong to I; and hence by (1), since |I| ≥ 4, we may assume that
I = {1, 2, 4, 5}. But then

{{a4}, {b8, c1, c2, c4, c5}, {a1, b2}, {a2, b3, b4}, {a3, b1}, {b5}}

is a 6-cluster. This proves (2).

Let H be the cover graph with respect to a1, a2, a3, b1, . . . , b7. By an argument like that in the
proof of 4.4, it follows that every partition of V (H) into four sets is feasible, and so χ(H) ≥ 5 by
3.3. For each edge bibj of H let ci,j ∈ A \ {a1, a2, a3} be adjacent to bi, bj .
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(3) The subgraph H[{b4, b5, b6, b7}] has no triangle, and so is bipartite; and hence b1, b2, b3 are pair-
wise adjacent in H.

Suppose that say b4, b5, b6 are pairwise adjacent in H. By (1), c4,5, c5,6, c4,6 are all distinct. But
then

{{a1, b2}, {a2, b3}, {a3, b1}, {c4,5, b4}, {c5,6, b5}, {c4,6, b6}}

is a 6-cluster. So H[{b4, b5, b6, b7}] is bipartite. Since χ(H) ≥ 5 it follows that b1, b2, b3 are pairwise
adjacent in H. This proves (3).

(4) Let i ∈ {1, 2, 3}, and let j, k ∈ {4, 5, 6, 7} be distinct. If bi, bj , bk are pairwise adjacent in H,
then ci,j , ci,k, cj,k are all equal.

Let i = 3, j = 4 and k = 5 say. Suppose first that c3,4, c4,5, c3,5 are all different. Since c4,5 is
different from c2,3 by (2) it follows that

{{a1}, {a2, b6}, {a3, b7}, {b3, c2,3, b2, c3,4, c3,5}, {b4}, {c4,5, b5}}

is a 6-cluster. Thus one of c3,4, c4,5, c3,5 (say c) is adjacent to all of b3, b4, b5. Suppose that some
d ∈ {c3,4, c4,5, c3,5} is different from c. Then d is different from one of c1,3, c2,3 by (2), say d 6= c2,3,
and

{{a1}, {a2, b6}, {a3, b7}, {b3, c2,3, b2, c}, {b4}, {d, b5}}

is a 6-cluster. This proves (4).

(5) There exists a clique X ⊆ V (H) of H containing two of b1, b2, b3 and two of b4, . . . , b7.

If H is perfect, then it has a clique of cardinality five, which therefore contains all of b1, b2, b3
by (3) and the claim holds. Otherwise, H has an odd hole or antihole as an induced subgraph; and
since H has only seven vertices and χ(H) ≥ 5, it follows that H has an induced cycle C of length five,
and the other two vertices of H are adjacent to each other and to every vertex of C. Since b1, b2, b3
are pairwise adjacent, at least one of them is not in V (C), say b1; and so at least three vertices of
C are not in {b1, b2, b3}, and consequently an edge of C has both ends in {b4, . . . , b7}. But this set
contains no triangle of C by (3), and so the second vertex of H not in V (C) belongs to {b1, b2, b3}.
This proves (5).

From (5) we may assume that b2, b3, b4, b5 are pairwise adjacent in H. By (4), c1,4, c1,5, c4,5 are all
equal, and also c1,5, c1,6, c5,6 are all equal. But then c1,4 = c5,6 contrary to (2). This proves 5.1.

5.2 Let G be a minimal candidate with bipartition (A,B). Then G has no K(3, 4, 0)-subgraph.

Proof. Suppose that a1, a2, a3 ∈ A are all adjacent to each of b1, . . . , b4 ∈ B.
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a1 a2 a3

b1 b2 b3 b4

Figure 10: K(3, 4, 0)-subgraph.

No vertex in A\{a1, a2, a3} has more than two neighbours in {b1, . . . , b4}, sinceG has noK(4, 4, 1)-
subgraph or K(4, 4, 0)-subgraph by 4.6 and 4.1. Also no vertex in B \ {b1, . . . , b4} is adjacent to all
three of a1, a2, a3, since G has no K(3, 5, 0)-subgraph by 4.3.

Let B0 be the set of vertices in B with exactly one neighbour in {a1, a2, a3}. Thus |B0| is even.

(1) B0 6= ∅ and hence |B0| ≥ 2.

Suppose that B0 = ∅. Since there are exactly six edges between {a1, a2, a3} and B \ {b1, . . . , b4}, it
follows that there are exactly three vertices each adjacent to exactly two of a1, a2, a3, and each of
a1, a2, a3 is adjacent to exactly two of these three vertices; but then G contains a K(3, 7, 3)-subgraph,
contrary to 5.1. This proves (1).

(2) Every vertex adjacent to exactly two of b1, . . . , b4 is adjacent to every vertex in B0.

Let a4 be adjacent to b1, b2 say, and let b5 be adjacent to a1 and not to a2, a3. Suppose that a4, b5
are nonadjacent. By 3.4, for 1 ≤ i ≤ 4 there is a vertex ci 6= a1 adjacent to b5, bi; and ci 6= a2, a3, a4
since these are not adjacent to b5. But then

{{a4, b1}, {b2}, {b5, c1, c2, c3, c4}, {a1}, {a2, b3}, {a3, b4}}

is a 6-cluster. This proves (2).

Contracting {a1, a2, a3, b1, b2, b3, b4} into B does not yield a smaller candidate, so some vertex a4
different from a1, a2, a3 has at least two (and hence exactly two) neighbours in {b1, b2, b3, b4}. From
the symmetry we may assume that a4 is adjacent to b1, b2. Since a4 has degree six, and is adjacent to
every vertex in B0, it follows that |B0| ≤ 4, and so some vertex is adjacent to exactly two of a1, a2, a3.

(3) There is a vertex different from a1, . . . , a4 adjacent to b3, b4.

Suppose not. Choose distinct b5, b6 ∈ B0. By 3.4, for i ∈ {3, 4} and j ∈ {5, 6} there is a vertex
ci,j /∈ {a1, . . . , a4} adjacent to bi, bj ; and ci,j 6= a4 since a4 has only two neighbours in {b1, . . . , b4}.
Moreover {c3,5, c3,6} is disjoint from {c4,5, c4,6}, since these vertices only have one neighbour in
{b3, b4} by hypothesis. Let b7 be a vertex adjacent to exactly two of a1, a2, a3, say a2, a3; then since
a4 is adjacent to b5, b6 by (2),

{{a1, b1}, {a2}, {a3, b7}, {c3,5, c3,6, b3, b5}, {c4,5, c4,6, b4}, {a4, b2, b6}}
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is a 6-cluster. This proves (3).

a1 a2 a3

a4 a5

b1 b2 b3 b4

Figure 11: For the proof of 5.2.

Let a5 6= a1, . . . , a4 be adjacent to b3, b4. By (2) a5 is adjacent to every vertex in B0.

(4) There is no path P of G\{a1, . . . , a5} with ends in distinct sets in the list {b1}, {b2}, {b3}, {b4}, B0.

Suppose that P is such a path. By choosing P minimal we may assume that no internal vertex
of P belongs to {b1, b2, b3, b4} ∪ B0; and from the symmetry we may assume that b1 is an end of P .
Let the other end be bi say. Up to symmetry there are three cases: i = 2, i = 3, and i = 5 for some
b5 ∈ B0, and in the third case we may assume that a1 is adjacent to b5 from the symmetry.

• If i = 2 then {{a1}, {a2, b3}, {a3, b4}, {b1}, P ∗ ∪ {b2}, B0 ∪ {a4, a5}} is a 6-cluster.

• If i = 3 then {{a1}, {a2, b2}, {a3, b4}, {b1}, P ∗ ∪ {b3}, B0 ∪ {a4, a5}} is a 6-cluster.

• If i = 5 then {{a1}, {a2, b3}, {a3, b4}, P ∗ ∪ {b1}, {a4, b2}, {a5, b6}} is a 6-cluster.

This proves (4).

(5) b1, . . . , b4 all have degree four in G.

From (4), b1, b2, b3, b4, b5 all belong to different components of G \ {a1, . . . , a5}, and none of these
four compoents contains any vertex of B0. By 3.1, G \ {a1, . . . , a5} has exactly five components,
and four of them are singletons; and therefore one contains all of B0 and so is not a singleton. This
proves (5).

As we observed earlier, there is a vertex c ∈ B that is adjacent to exactly two of a1, a2, a3, say
to a2, a3. Moreover, since B0 6= ∅, not both neighbours of a1 in B \ {b1, . . . , b4} have a neighbour
in {b2, b3}; and so a1 has a neighbour in B0, say b5. Since we cannot obtain a smaller candidate by
contracting {a1, . . . , a5, b1, . . . , b5, c} into B, there exists a6 ∈ A different from a1, . . . , a5 with two
neighbours in {b1, . . . , b5, c}. By (5), a6 is adjacent to b5, c. Let b6 ∈ B0 \ {b5}. Then

{{a1}, {a2, b1}, {a3, b3}, {a4, b2}, {a5, b4}, {a6, c, b5}}

is a 6-cluster. This proves 5.2.
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6 Excluding K(2, 5, 0)-subgraphs

Our next goal is to eliminate K(2, 5, 0)-subgraphs. We begin with:

6.1 Let G be a minimal candidate with bipartition (A,B). Then G has no K(2, 6, 0)-subgraph.

Proof. Suppose that a1, a2 ∈ A are both adjacent to each of b1, . . . , b6 ∈ B. The cover graph H
with respect to a1, a2, b1, . . . , b6 has chromatic number at least five, by 3.3 (note that every partition
of {b1, . . . , b6} into four sets is feasible, since at least two of them will be singletons and therefore
already induce connected subgraphs). Consequently H has a clique of size five, and so we may
assume that b1, . . . , b5 are pairwise adjacent in H. By 5.2, no vertex in A \ {a1, a2} has more than
three neighbours in {b1, . . . , b6}.

a1 a2

b1 b2 b3 b4 b5 b6

Figure 12: K(2, 6, 0)-subgraph.

For 1 ≤ i < j ≤ 5 let ci,j ∈ A\{a1, a2} be adjacent to bi, bj . If the six vertices ci,j (1 ≤ i < j ≤ 4)
are all distinct, there is a 6-cluster

{{b1, c1,2, c1,3, c1,4}, {b2, c2,3, c2,4}, {b3, c3,4}, {b4}, {a1}, {a2, b5}},

a contradiction. So we may assume that some two are equal, and hence some vertex in A \ {a1, a2}
is adjacent to three of b1, b2, b3, b4; say a3 is adjacent to b1, b2, b3. If none of the vertices ci,j (i ∈
{1, 2, 3}, j ∈ {4, 5}) is adjacent to both b4, b5, then

{{b1}, {b2, a3}, {b4, c1,4, c2,4}, {b5, c1,5, c2,5, c4,5}, {a1}, {a2, b6}},

is a 6-cluster, a contradiction; so we may assume that some a4 is adjacent to b3, b4, b5 say. (See figure
13.)

a1 a2

b1 b2
b3

b4 b5

b6

a3 a4

Figure 13: For the proof of 6.1.
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If some a5 different from a1, . . . , a4 is adjacent to three of b1, b2, b4, b5, say to b1, b2, b4, then

{{b1}, {b2, a3}, {b4, a5}, {b5, a4, c1,5, c2,5}, {a1}, {a2, b6}}

is a 6-cluster, a contradiction; so we may assume that no vertex different from a1, . . . , a4 is adjacent
to three of b1, b2, b4, b5. Consequently c1,4, c2,4, c1,5, c2,5 are all different. But then

{{b1}, {b2, a3}, {b4, c1,4, c2,4}, {b5, a4, c1,5, c2,5}, {a1}, {a2, b6}}

is a 6-cluster, a contradiction. This proves 6.1.

6.2 Let G be a minimal candidate with bipartition (A,B). Then G has no K(2, 5, 0)-subgraph.

Proof. Suppose that a1, a2 ∈ A are both adjacent to each of b1, . . . , b5 ∈ B. Let b6, b7 be the
neighbours of a1, a2 respectively that are not in {b1, . . . , b5}. Thus b6 6= b7 since there is no K(2, 6, 0)-
subgraph by 6.1. No vertex different from a1, a2 has four neighbours in {b1, . . . , b5} since there is no
K(3, 4, 0)-subgraph by 5.2.

a1 a2

b1 b2 b3 b4 b5

Figure 14: K(2, 5, 0)-subgraph.

The cover graph H with respect to a1, a2, b1, . . . , b5 has chromatic number at least four, by 3.3,
and so has a clique of cardinality four, say b1, b2, b3, b4. For all distinct i, j ∈ {1, 2, 3, 4, 6, 7} let
ci,j ∈ A \ {a1, a2} be adjacent to bi, bj , if there is such a vertex. Thus ci,j exists for 1 ≤ i < j ≤ 4,
and also for all i ∈ {1, . . . , 5} and j ∈ {6, 7}, by 3.4.

(1) Some vertex in A \ {a1, a2} has three neighbours in {b1, . . . , b4}.

Suppose not. Then each of the vertices ci,j (1 ≤ i < j ≤ 4) has only two neighbours in {b1, . . . , b4},
and in particular they are all different. But then

{{b1}, {c1,2, b2}, {c1,3, c2,3, b3}, {c1,4, c2,4, c3,4, b4}, {a1}, {a2, b5}}

is a 6-cluster. This proves (1).

Thus we may assume that some a3 is adjacent to b1, b2, b3.

(2) Some vertex in A \ {a1, a2, a3} is adjacent to b4 and to two of b1, b2, b3.
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Suppose not; so c1,4, c2,4, c3,4 are all different. Suppose that some vertex c 6= a1, a2, a3 is adjacent to
two of b1, b2, b3, say to b1, b2. Then

{{b1}, {c, b2}, {a3, b3}, {c1,4, c2,4, c3,4, b4}, {a1}, {a2, b5}}

is a 6-cluster. Thus there is no such c. There is a vertex b8 ∈ B \ {b1, . . . , b7} adjacent to a3; and
by 3.4, for i = 1, 2, 3 there exists di ∈ A \ {a1, a2, a3} adjacent to b8, bi. Since no c 6= a1, a2, a3 is
adjacent to two of b1, b2, b3, it follows that d1, d2, d3 are all different. Consequently ci,4 6= dj for all
distinct i, j ∈ {1, 2, 3}. But then

{{c1,4, d1, b1}, {a3, c2,4, d2, b2}, {c3,4, d3, b3, b8}, {a1}, {a2, b5}}

is a 6-cluster. This proves (2).

a1 a2

b1 b2 b3 b4

b5

a3 a4a5

b6 b7

Figure 15: For the proof of 6.2.

Thus we may assume that a4 ∈ \{a1, a2, a3} is adjacent to b2, b3, b4. Since {b1, b2, b3, b4} is a
clique of H, there exists a5 ∈ A \ {a1, a2, a3, a4} adjacent to b1, b4. (See figure 15.)

(3) No vertex in A different from a1, a2, a3, a4 has two neighbours in {b1, b2, b3}, or has two neigh-
bours in {b2, b3, b4}.

Suppose that a6 is such a vertex, adjacent to two of b1, b2, b3 say. (Possibly a6 = a5.) If a6 is
adjacent to b2, b3, then a6 6= a5, and

{{a3, b1}, {b2}, {a6, b3}, {a4, a5, b4}, {a1}, {a2, b5}}

is a 6-cluster. Thus from the symmetry we may assume that a6 is adjacent to b1, b2, and now possibly
a6 = a5. Then

{{a5, a6, b1}, {b2}, {a3, b3}, {a4, b4}, {a1}, {a2, b5}}

is a 6-cluster. This proves (3).

21



(4) Every vertex in B \ {b1, . . . , b7} adjacent to one of a3, a4 is adjacent to both a3, a4.

Suppose that b8 ∈ B \ {b1, . . . , b7} is adjacent to b3 and not to b4. By 3.4, for i = 2, 3 there
exists ci,8 ∈ A \ {a3} adjacent to bi, b8; ci,8 6= a1, a2, a4 since a1, a2, a4 are not adjacent to b8, and
ci,8 6= a5 since a5 is not adjacent to bi by (3). But then

{{a3, b1}, {c2,8, c3,8, b8, b2}, {b3}, {a4, a5, b4}, {a1}, {a2, b5}}

is a 6-cluster. This proves (4).

(5) Each of b6, b7 is adjacent to at least one of a3, a4.

Suppose that b6 is nonadjacent to both a3, a4. Thus ci,6 6= a4, a5 for 1 ≤ i ≤ 4. But then

{{c1,6, c4,6, b1, b6}, {a3, b2}, {a4, b3}, {b4}, {a1}, {a2, b5}}

is a 6-cluster. This proves (5).

(6) Each of b6, b7 is adjacent to both of a3, a4.

a1 a2

b1 b2 b3 b4

b5

a3 a4a5

b6 b7

b8

Figure 16: For the proof of 6.2, step (6).

Suppose that a4, b6 are nonadjacent. By (5), a3b6 is an edge. From (4), since a3, a4 both have
degree six, and have the same number of neighbours in B \ {b1, . . . , b7}, it follows that they have
the same number of neighbours in {b6, b7}; and so a4 has at least one neighbour in {b6, b7}, and
therefore a4b7 is an edge, and a3, b7 are not adjacent. Suppose that c4,6, c1,7 are different; then from
the symmetry we may assume that c1,7 6= a5. Then

{{c1,7, b1}, {a3, b2, b6}, {a4, b3, b7}, {a5, c4,6, b4}, {a1}, {a2, b5}}

is a 6-cluster. So c1,7 = c4,6, and we may assume that they both equal a5. Since a5 has at most
five neighbours in {b1, . . . , b7}, it has a neighbour b8 different from b1, . . . , b7. Consequently b8 is
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nonadjacent to a1, a2. Suppose that b8 is nonadjacent to both a3, a4. By 3.4, for i = 1, 4, 6, 7 there
exists ci,8 adjacent to bi, b8, and different from a5. Since b8 is nonadjacent to a1, a2, a3, a4, it follows
that ci,8 6= a1, . . . , a5. But then

{{a5, b1}, {a3, b2}, {a4, b3, b7}, {c4,8, c6,8, b4, b6, b8}, {a1}, {a2, b5}}

is a 6-cluster. So b8 is adjacent to one of a3, a4, and hence to both a3, a4 by (2). By 3.4, there is a
vertex a6 6= a5 adjacent to b6, b7; and so a6 6= a1, a2, a3, a4 since none of these four vertices is adjacent
to both b6, b7. But then

{{a1, b1}, {a3, b2}, {a4, b3}, {a5, b4}, {a2}, {a6, b6, b7}}

is a 6-cluster. This proves (6).

a1 a2

b1

b2 b3

b4

b5

a3 a4

b6 b7

b8

Figure 17: For the last part of the proof of 6.2. (a5 is not drawn.)

From (6), there is a unique vertex b8 ∈ B \ {b1, . . . , b7} adjacent to a3, and it is adjacent to both
of a3, a4 by (4). The subgraph induced on {a1, a2, a3, a4, b1, b2, b3, b4, b5, b6, b7, b8} (note that a5 is not
included) has some significant symmetry, which will help reduce the case analysis to come. There
are symmetries that exchange

• b2 with b3;

• a1 with a2, and b6 with b7;

• a3 with a4, and b1 with b4;

• a1 with a3, a2 with a4, b5 with b8, b6 with b1, and b7 with b4.

Let us call these symmetries the first, second, third and fourth symmetries respectively. In the ar-
gument to come, we will avoid making use of a5, in order to maintain these symmetries.

(7) Let C2 be the component of G\{a1, a2, a3, a4} that contains b2; then it contains none of b1, . . . , b8
except b2.

Suppose not. By 3.4, c5,6, c5,7, c1,8, c4,8 exist, and they are different from a1, . . . , a4. Let X =
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{c5,6, c5,7, b5, b6, b7} and Y = {c1,8, c4,8, b1, b4, b8}. (X,Y might not be disjoint.) Since C1 contains
one of b1, b3, . . . , b8, there is a a minimal path P of G \ {a1, a2, a3, a4} with one end b2 and the other
end in {b3} ∪X ∪ Y . From the minimality of P it has no other neighbour in {b3} ∪X ∪ Y . Let z be
the end of P different from b2. If z = b3 then

{{b3}, P ∗ ∪ {b2}, {a1}, {a2, b5}, {a3, b1}, {a4, b4}}

is a 6-cluster. Thus z ∈ X ∪Y , and from the fourth symmetry we may assume that z ∈ X, and from
the second symmetry we may assume that z ∈ {a1, b5, b6}. But then

{P ∗ ∪X, {a1, b4}, {a2}, {a3, b1}, {b2}, {a4, b3}}

is a 6-cluster. This proves (7).

Similarly, let C3 be the component of G \ {a1, a2, a3, a4} that contains b3; then it contains none
of b1, . . . , b8 except b3. Now a1, . . . , a4 are the only vertices in A \ V (Ci) that have a neighbour in
V (Ci), for i = 2, 3, and in particular, no vertex in V (Ci) ∩ A has a neighbour in V (G) \ V (Ci).
Since Ci is not a smaller candidate, it follows that |A ∩ V (Ci)| < |B ∩ V (Ci)|, for i = 2, 3. But
there are at least six vertices in B \ (V (C2) ∪ V (C3)) that have a neighbour in {a1, a3}, namely
b1, b4, b5, b6, b7, b8; and similarly there are six such vertices that have a neighbour in {a2, a4}. Hence
contracting V (C2)∪{a1, a3} and V (C2)∪{a2, a4} into A makes a smaller candidate, a contradiction.
This proves 6.2.

7 Excluding K(4, 4, 2)-subgraphs

7.1 Let G be a minimal candidate with bipartition (A,B). Then G has no K(4, 4, 2)-subgraph.

Proof. Suppose that a1, . . . , a4 ∈ A are all adjacent to each of b1, . . . , b4 ∈ B except the pairs
a1b1, a2b2.

a1 a2a3 a4

b1 b2b3 b4

Figure 18: K(4, 4, 2)-subgraph.

For i = 3, 4, ai has two neighbours, d1,i, d2,i say, not in {b1, . . . , b4}. Since there is no K(2, 5, 0)-
subgraph by 6.2, none of d1,3, d2,3, d1,4, d2,4 is adjacent to both a3, a4, and so they are all distinct.

(1) Each of d1,3, d2,3, d1,4, d2,4 has a neighbour in {a1, a2}.
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Suppose that d1,3 say is nonadjacent to both a1, a2. By 3.4, for 1 ≤ i ≤ 4 there is a vertex ci
different from a3 that is adjacent to both d1,3, bi. But then

{{a3}, {c1, c2, c3, c4, d1,3}, {a1, b2}, {a2, b3}, {a3, b1}, {b4}}

is a 6-cluster. This proves (1).

Not both d1,3, d2,3 are adjacent to a1, since there is no K(2, 5, 0)-subgraph by 6.2, and similarly
they are not both adjacent to a2, so we may assume that d1,3 is nonadjacent to a2, and d2,3 is
nonadjacent to a1. The same applies for d1,4, d2,4; so for each i ∈ {1, 2} and each j ∈ {3, 4}, di,j is
adjacent to ai, aj and nonadjacent to the other two vertices in {a1, . . . , a4}.

a1 a2a3 a4

b1 b2b3 b4

d1,3 d1,4 d2,3 d2,4

Figure 19: For the proof of 7.1, step (2).

(2) There is a vertex b5 not in {b1, . . . , b4} adjacent to a1, a2

Suppose not. Let d be the neighbour of a1 different from d1,3, d1,4, b2, b3, b4. Thus d is adjacent
to a1 and to none of a2, a3, a4. By 3.4, for 2 ≤ i ≤ 4 there exists ci different from a1 that is adjacent
to both d, bi. Also by 3.4, there is a vertex f different from a3 that is adjacent to both b2, d2,3. So
c2, c3, c4, f are all in A \ {a1, . . . , a4}. But then

{{c2, c4, f, b2}, {b3}, {a2, d2,3}, {a3, b1}, {a4, d2,4}, {b4}}

is a 6-cluster. This proves (2).

By 3.4, there is a vertex c1 different from a2 and adjacent to b5, b1; and so c1 6= a1, . . . , a4.
Similar there exists c2 6= a1, . . . , a4 adjacent to b5, b2. By 3.4, there is a vertex f1,3 different from a3
that is adjacent to both b1, d1,3; and similarly there exists f1,4 different from a4 that is adjacent to
both b1, d1,4; there exists f2,3 different from a3 that is adjacent to both b2, d2,3; and there exists f2,4
different from a4 that is adjacent to both b2, d1,4. Consequently none of f1,3, f1,4, f2,3, f2,4 belongs
to {a1, . . . , a4}. If they are all equal, equal to a5 say, then a5 is adjacent to b1, b2, d1,3, d1,4, d2,3, d2,4;
but then

{{c1, c2, b1, b2, b5}, {a5}, {a1, d1,4}, {a2, d2,3, b3}, {a3, d1,3}, {a4, d2,4, b4}}

25



is a 6-cluster. Thus they are not all equal, and so there exist i, j ∈ {3, 4} such that f1,i is different
from f2,j .

a1 a2a3 a4

b1 b2b3 b4b5

d1,3 d1,4 d2,3 d2,4

c1 c2

f1,i f2,j

Figure 20: For the last part of the proof of 7.1. f1,i is adjacent to d1,i for some i ∈ {3, 4}, and
similarly for f2,j . The vertices c1, c2 might be equal, but f1,i is different from f2,j .

(3) There are two disjoint subsets X,Y of {b1, f1,i, b2, f2,j , c1, c2, b5}, both inducing connected sub-
graphs, with b1, f1,3 ∈ X and b2, f2,j ∈ Y , such that there is an edge between X,Y .

If f1,i is adjacent to b2 we may take X = {b1, f1,i} and Y = {b2, f2,j}, so we assume that f1,i is non-
adjacent to b2, and similarly f2,j is nonadjacent to b1. It follows that f1,i 6= c2 and f2,j 6= c1. So the
only possible equalities between two of f1,i, f2,j , c1, c2 are f1,i = c1, f2,j = c2, and c1 = c2. If f1,i = c1,
then c1 is different from f2,j , c2 and we may set X = {b1, c1, b5} and Y = {b2, f2,j , c2}, so we assume
f1,i 6= c1, and similarly f2,j 6= c2. But then we may set X = {b1, f1,i} and Y = {b5, c1, c2, b2, f2,j}.
This proves (3).

But then
{X,Y, {a1, d1,3, d1,4}, {a2, b4, d2,3, d2,4, b4}, {a3, b3}, {a4}}

is a 6-cluster. This proves 7.1.

8 Excluding K(2, 4, 0)-subgraphs

We begin with:

8.1 Let G be a minimal candidate with bipartition (A,B). Then G has no K(3, 4, 1)-subgraph.

Proof. Suppose that a1, a2, a3 ∈ A are all adjacent to each of b1, . . . , b4 ∈ B except a1b1. We observe:

(1) No vertex in A\{a1, a2, a3} is adjacent to b1 and to two of b2, b3, b4. No vertex in B \{b1, . . . , b4}
is adjacent to both a2, a3. At most one vertex in B \ {b1, . . . , b4} is adjacent to both a1, a2, and at
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most one is adjacent to a1, a3,

The first is because there is no K(4, 4, 2)-subgraph by 7.1, and the other three because there is
no K(2, 5, 0)-subgraph by 6.2. This proves (1).

a1 a2 a3

b1b2 b3 b4d1 d2 d3

ci,j

Figure 21: The start of the proof of 8.1. ci,j is adjacent to di and bj .

Let B0 be the set of vertices that have exactly one neighbour in {a1, a2, a3}. Thus |B0| is odd.
From (1) it follows that each of a1, a2, a3 has a neighbour in B0; let us call these neighbours d1, d2, d3
respectively. For i = 1, 2, 3 and j = 1, 2, 3, 4 (except when (i, j) = (1, 1)), by 3.4 there is a vertex
ci,j different from ai and adjacent to di, bj . Hence ci,j 6= a1, a2, a3. For i = 2, 3 choose the set
{ci,1, ci,2, ci,3, ci,4} minimal, and choose the set {c1,2, c1,3, c1,4} minimal.

(2) Some vertex a4 ∈ A \ {a1, a2, a3} has more than one neighbour in {b2, b3, b4}.

Suppose not. Thus c2,2, c2,3, c2,4 are all different. We chose {c2,1, c2,2, c2,3, c2,4} minimal; so we
may assume that either

• c2,1, c2,2, c2,3, c4,4 are all distinct, and each has only one neighbour in {b1, . . . , b4}; or

• c2,1 = c2,2. In this case c2,1 is nonadjacent to b3, b4 by (1).

In both cases neither of c2,1, c2,2 have a neighbour in {b3, b4}, and so {c1,3, c1,4} is disjoint from
{c2,1, c2,2}. But then

{{c2,1, c2,2, d2}, {a2}, {c1,3, c2,3, d1, b3}, {c1,4, c2,4, b4}, {a3, b1}, {a1, b2}}

is a 6-cluster. This proves (2).

We assume that a4 is adjacent to b2, b3 (and possibly to b4, but not to b1, by (1)).

(3) a4 is adjacent to d2, d3.

Suppose that a4, d2 are nonadjacent, say. Then

{{c2,1, c2,2, c2,3, c2,4, d2}, {a2}, {b2}, {a4, b4}, {a3, b1}, {a1, b4}}
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is a 6-cluster. This proves (3).

a1 a2 a3

b1b2 b3 b4d1 d2 d3

a4

Figure 22: For the proof of 8.1, step (4).

(4) If a4 is nonadjacent to b4, then no vertex in A \ {a1, . . . , a4} has a neighbour in {b2, b3} and a
neighbour in {d2, d3}.

Suppose that some a5 ∈ A \ {a1, . . . , a4} is adjacent to b2, d2 say. By (1), c2,1 6= a4, and since
a4, b4 are nonadjacent, c2,4 6= a4. Hence

{{a2}, {c2,1, c2,4, a5, d2}, {a1, b4}, {a3, b1}, {b2}, {a4, b3}}

is a 6-cluster. This proves (4).

(5) a4 is adjacent to d1 and hence to every vertex in B0.

Suppose that a4 is nonadjacent to d1. Thus c1,2, c1,3, c1,4 6= a4. If a4 is adjacent to b4, then c2,4 = a4
by (3) (with b3, b4 exchanged), and at most one of c1,2, c1,3, c1,4 = c2,1 by (1), and so we may assume
that {c2,1, c2,4} is disjoint from {c1,2, c1,3}. If a4 is nonadjacent to b4, then by (3), neither of c2,1, c2,4
has a neighbour in {b2, b3}, and so again c2,1, c2,4 6= c1,2, c1,3. In either case

{{b2}, {b3, c1,2, c1,3, d1}, {d2, c2,1, c2,4, a4}, {a1, b4}, {a2}, {a3, b1}}

is a 6-cluster. Hence a4 is adjacent to each of d1, d2, d3, and hence to every vertex in B0. This proves
(5).

(6) a4 is adjacent to b4.

Suppose not. Since a4 has degree six and is nonadjacent to b1 by (1), it has a neighbour b5 6=
b1, . . . , b4, d1, d2, d3. By 3.4, for each v ∈ {b2, b3, d1, d2, d3} there is a vertex c(v) different from a4
adjacent to b5, v; and hence c(v) 6= a1, . . . , a4. But then

{{a4}, {b5, c(b2), c(b3), c(d1), c(d2), c(d3)}, {a1, d1, b4}, {a2, b1, d2}, {a3, d3}, {b2}}

is a 6-cluster. This proves (6).
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Figure 23: For the last part of the proof of 8.1.

Since a4 has degree only six, it follows from (5) that |B0| ≤ 4. Since |B0| is odd, it follows that
B0 = {d1, d2, d3}, and there are two vertices d4, d5 ∈ B \ {b1, . . . , b4} that have two neighbours in
{a1, a2, a3}. By (1) we may assume that d4, d5 are adjacent to a1, a2 and to a1, a3 respectively.

We do not obtain a smaller candidate by contracting {d4, a1, b2}, {d5, a3, b3}, {b1, a2, b4} into B;
and so there is a vertex a5 6= a1, . . . , a4, adjacent either to both b2, d4, or to both b3, b5, or to both
b1, b4. There is symmetry between b1, d4, d5 (see figure 23), so we may assume that a5 is adjacent
to b1, b4. By 3.4, there is a vertex c(d2) different from a2 adjacent to both b1, d2; a vertex c(d3)
different from a3 adjacent to both b1, d3; and a vertex c(d5) different from a3 adjacent to both b1, d5.
It follows that c(d2), c(d3) 6= a1, . . . , a4. But then

{{b1, a5, c(d2), c(d3), c(d5), d2}, {a2, b3}, {a1, d5}, {a3, d3}, {a4, b2}, {b4}}

is a 6-cluster. This proves 8.1.

8.2 Let G be a minimal candidate with bipartition (A,B). Then G has no K(2, 4, 0)-subgraph.

Proof. Suppose that a1, a2 ∈ A are both adjacent to each of b1, . . . , b4 ∈ B. No other vertex is
adjacent to both a1, a2, since there is no K(2, 5, 0)-subgraph by 6.2. Let b5, b6, b7, b8 be the vertices
in B that have exactly one neighbour in {a1, a2}, where b5, b6 are adjacent to a1, and b7, b8 to a2.

No other vertex is adjacent to more than two of of b1, . . . , b4, since there is no K(3, 4, 0)- or
K(3, 4, 1)-subgraph by 5.2 and 8.1. Let H be the cover graph with respect to a1, a2, b1, b2, b3, b4;
then χ(H) ≥ 3 by 3.3, and so H has a triangle, say with vertices b1, b2, b3. Consequently there are
three vertices c1, c2, c3, such that ci is adjacent to the two vertices in {b1, b2, b3} \ {bi}, and ci is
nonadjacent to bi.
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Figure 24: For the proof of 8.2.

Let Z = {a1, a2, b1, b2, b3, b4, c1, c2, c3}, and let C be the set of components of G \ Z that contain
at least one of b5, b6, b7, b8. For each C ∈ C, let N(C) be the set of vertices in {b1, b2, b3, c1, c2, c3}
that have a neighbour in V (C).

(1) If C ∈ C, then b4 has a neighbour in V (C), and either

• N(C) = {bi, ci} for some i ∈ {1, 2, 3}; or

• N(C) = {ci, cj} for some two distinct i, j ∈ {1, 2, 3}.

Let b5 ∈ V (C) say. By 3.4, for i = 1, 2, 3, 4 there is a vertex different from a1 adjacent to both
b5, bi. Since none of c1, c2, c3 is adjacent to b4, it follows that b4 has a neighbour in V (C). Also,
for 1 ≤ i ≤ 3, either bi ∈ N(C) or N(C) contains a vertex in {c1, c2, c3} \ {ci}. In summary, N(C)
contains a member of each of the sets {b1, c2, c3}, {b2, c3, c1}, {b3, c1, c2}. Consequently, if |N(C)| = 2
then the claim holds, so we assume that |N(C)| ≥ 3. Since

{{c3, b1}, {c2, b3}, {c1, b2}, {a1}, {a2, b4}, V (C)}

is not a 6-cluster, it follows that N(C) is disjoint from one of the sets {c3, b1}, {c2, b3}, {c1, b2}, and we
may assume from the symmetry that b1, c3 /∈ N(C). Since N(C) contains a member of {b1, c2, c3}, it
follows that c2 ∈ N(C). By a similar argument, N(C) is disjoint from one of {c3, b2}, {c2, b1}, {c1, b3},
and hence from one of {c3, b2}, {c1, b3}. Since |N(C)| ≥ 3, N(C)∩{c1, b3} 6= ∅; and hence b2 /∈ N(C).
Since |N(C)| ≥ 3 it follows that c1, b3 ∈ N(C). But then

{{c2, c3, b1}, {c1, b2}, {b3}, {a1}, {a2, b4}, V (C)}

is a 6-cluster. This proves (1).

(2) If C ∈ C, then every vertex of V (C) ∩ {b5, b6, b7, b8} is adjacent to every vertex of N(C) ∩
{c1, c2, c3}.

We may assume that b5 ∈ V (C) and c3 ∈ N(C), and we must show that b5, c3 are adjacent. It
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follows from (1) that b1, b2 /∈ N(C). But for i = 1, 2 there is a vertex different from a1 adjacent to
both b5, bi, and this vertex is one of c1, c2, c3 since b1, b2 /∈ N(C). Thus b5 is adjacent to one of c1, c3,
and also to one of c2, c3. But b5 is not adjacent to both c1, c2 since not all c1, c2, c3 ∈ N(C); and so
b5 is adjacent to c3. This proves (2).

(3) Let C ∈ C contain one of b5, b6, b7, b8; then N(C) ∩ {b1, b2, b3} = ∅.

Suppose that b1, b5 ∈ V (C) say. Thus N(C) contains c1 and none of b2, b3, c2, c3. Let C ′ ∈ C
contain b6. We claim that b6 is also adjacent to c1; because suppose not. Then b6 /∈ V (C), by
(2), and so C ′ 6= C. Since b6 is nonadjacent to c1, (2) implies that c1 /∈ N(C ′). Since b5, b6 are
both adjacent to a1, they have a second common neighbour c say. But c /∈ {c1, c2, c3}, since c1 is
not adjacent to b6, and c2, c3 /∈ N(C) and so are not adjacent to b5. Also c 6= a1, a2; so c /∈ Z,
contradicting that C 6= C ′ are components of G \ Z. This proves that b6 is adjacent to c1.

We claim also that c2, c3 /∈ N(C ′). There is a symmetry exchanging c2, c3 and fixing c1, so we
suppose without loss of generality that c2 ∈ N(C ′), and hence C 6= C ′. But then

{{V (C ′) ∪ {c2}, V (C) ∪ {c1, b3}, {b1}, {b2, c3}, {a1}, {a2, b4}}

is a 6-cluster. This proves that c2, c3 /∈ N(C ′), and hence N(C ′) = N(C).
Now a1, c1 have four common neighbours, namely b2, b3, b5, b6; and so they satisfy the same

conditions as a1, a2. At the start of this proof, we showed the existence of c1, c2, c3, that with three
of b1, b2, b3 induce a 6-cycle. Consequently the same is true for b2, b3, b5, b6, and in particular there
are two vertices c4, c5, different from a1, c1, that have a neighbour in {b2, b3}. Since c2, c3 /∈ N(C) =
N(C ′), it follows that c4, c5 /∈ Z, and hence at least one of b2, b3 belongs to N(C) = N(C ′), contrary
to (1). This proves (3).

For i = 5, 6, 7, 8, let Ci ∈ C contain bi (they are not necessarily all different). From (1), (2) and
(3) it follows that each of b5, b6, b7, b8 is adjacent to two of c1, c2, c3. They are not all adjacent to the
same two of c1, c2, c3, since there is no K(2, 5, 0)-subgraph by 6.2; so there exists C ∈ {C5, C6} and
C ′ ∈ {C7, C8} with N(C) 6= N(C ′). Thus we may assume that c2, c3 ∈ N(C5) and c1, c2 ∈ N(C7).
In particular C5 6= C7; and by (2), b5, b7 are adjacent to c2. By 3.4 they have another common
neighbour, say c. Thus c /∈ {a1, a2} because b5, b7 each have only one and different neighbours in
that set; c /∈ {c1, c2, c3}, since c 6= c2 from its definition, and c1 /∈ N(C5), and c3 /∈ N(C7); and
c /∈ V (G) \ Z since C 6= C ′, a contradiction. This proves 8.2.

9 The end

Next we need the following lemma. Let H be a complete graph with six vertices. If C is a triangle of
H, a C-path means a path of H with vertex set C. Let C1, . . . , Ck be triangles of H, not necessarily
all different. We denote by M(C1, . . . , Ck) the graph with vertex set V (H) and edge set the set of
all edges uv of H such that {u, v} is not a subset of any of C1, . . . , Ck. Let J be the graph obtained
from a six-vertex complete graph by deleting four edges, the edges of two disjoint three-vertex paths.
We observe that J admits a 5-cluster (one of the five sets contains the two vertices of degree three,
the others are singletons).
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9.1 Let H,C1, . . . , Ck be as above. Then for 1 ≤ i ≤ k there is a Ci-path Pi, such that

M(C1, . . . , Ck) ∪ P1 ∪ · · · ∪ Pk
has a subgraph isomorphic to J .

Proof. We proceed by induction on k. Suppose first that u, v ∈ V (H) and two of C1, . . . , Ck contain
u, v, say C1, C2. Let C1 = {u, v, w} say. Let P1 be the path u-w-v. From the inductive hypothesis,
for 2 ≤ i ≤ k there is a Ci-path Pi such that M(C2, . . . , Ck) ∪ P2 ∪ · · · ∪ Pk admits a 5-cluster. But
every edge of M(C2, . . . , Ck) that is not an edge of M(C1, . . . , Ck) is one of uw, vw, and they are
edges of P1; so M(C1, . . . , Ck) ∪ P1 ∪ · · · ∪ Pk contains a copy of J as required.

So we may assume that no two of C1, . . . , Ck share more than one vertex. Every subgraph of
H obtained by deleting at most two edges contains a copy of J , so we may assume that k ≥ 3 and
hence no two of C1, . . . , Ck are disjoint (because if C1 ∩C2 = ∅ then C3 shares two vertices with one
of them). Let V (H) = {h1, . . . , h6}; then we may assume that C1 = {h1, h2, h3}, C2 = {h1, h4, h5},
C3 = {h2, h4, h6} and either k = 3, or k = 4 and C4 = {h3, h5, h6}. Define P1 = h2-h1-h3, P2 =
h1-h5-h4, P3 = h4-h2-h6, and if k = 4, define P4 = h3-h6-h5. If k = 4, M(C1, . . . , Ck) ∪ P1 ∪ · · · ∪ Pk
is isomorphic to J , and if k = 3, M(C1, . . . , Ck) ∪ P1 ∪ · · · ∪ Pk contains a copy of J . This proves
9.1.

We deduce 1.7, which we restate as follows:

9.2 No graph is a candidate.

Proof. Assume some graph is a candidate, and let G be a minimal candidate, with bipartition (A,B).
Let a ∈ A, and let its neighbours be b1, . . . , b6. By 3.3 (or by 3.4), the cover graph H with respect to
a, b1, . . . , b6 is complete. No vertex different from a has more than three neighbours in {b1, . . . , b6},
since there is no K(2, 6, 0)-, K(2, 5, 0)- or K(2, 4, 0)-subgraph, by 6.1, 6.2 and 8.2. Consequently
there is a set of vertices a1, . . . , a` ∈ A \ {a}, each with two or three neighbours in {b1, . . . , b6}, such
that for all distinct u, v ∈ {b1, . . . , b6}, there exists i ∈ {1, . . . , `} such that ai is adjacent to u, v.
We may assume that a1, . . . , ak have three neighbours in {b1, . . . , b6} and ak+1, . . . , a` have two. For
1 ≤ i ≤ k let Ci be the set of three neighbours of ai in {b1, . . . , b6}. By 9.1, for 1 ≤ i ≤ k there is a
Ci-path Pi such that M(C1, . . . , Ck) ∪ P1 ∪ · · · ∪ Pk contains a copy of J as a subgraph, and hence
admits a 5-cluster {X1, . . . , X5} say. Let pi be the middle vertex of Pi for 1 ≤ i ≤ k, and let pi be
one of the two members of Ci for k + 1 ≤ i ≤ `.

For each v ∈ {b1, . . . , b6} let C(v) be the union of {v} and all the vertices ci with 1 ≤ i ≤ ` such
that pi = v. For 1 ≤ j ≤ 5 let Yj be the union of the sets C(v) over all v ∈ Xj . We claim that
{{a}, Y1, . . . , Y5} is a 6-cluster. To see this, we must check that these six sets are pairwise disjoint
subsets of V (G), which is clear; that Y1, . . . , Y5 each contain a neighbour of a, which is true since
X1, . . . , X5 are nonempty subsets of {b1, . . . , b6}; that each of the sets Yi induces a connected subgraph
of G; and that for 1 ≤ i < i′ ≤ 5, some vertex in Yi has a neighbour in Yi′ . To see both these final
statements, it suffices to show that if u, v ∈ {b1, . . . , b6} are adjacent in M(C1, . . . , Ck)∪P1∪· · ·∪Pk,
there is an edge of G between C(u), C(v). To see this, there are two cases: uv ∈ E(M(C1, . . . , Ck)),
and uv ∈ E(Pi) for some i ∈ {1, . . . , k}. In the first case, there exists i with k + 1 ≤ i ≤ ` such
that ci is adjacent to both u, v, and since pi is one of u, v, the claim holds. In the second case, let
uv ∈ E(Pi) for some i ∈ {1, . . . , k}; then one of u, v equals pi, say v; the other, u, is an end of Pi;
and in G there is an edge between ci and u. This proves 9.2.
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