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Abstract

A theorem of Mader shows that every graph with average degree at least eight has a Kg minor,
and this is false if we replace eight by any smaller constant. Replacing average degree by minimum
degree seems to make little difference: we do not know whether all graphs with minimum degree at
least seven have Kg minors, but minimum degree six is certainly not enough. For every & > 0 there
are arbitrarily large graphs with average degree at least 8 — e and minimum degree at least six, with
no Kg minor.

But what if we restrict ourselves to bipartite graphs? The first statement remains true: for every
€ > 0 there are arbitrarily large bipartite graphs with average degree at least 8 — e and no Kg minor.
But surprisingly, going to minimum degree now makes a significant difference. We will show that
every bipartite graph with minimum degree at least six has a Kg minor. Indeed, it is enough that
every vertex in the larger part of the bipartition has degree at least six.



1 Introduction

The graphs with no K5 minor are well understood. A theorem of Wagner [6] gives an explicit
construction for all such graphs: they can all be built by piecing together planar graphs and copies
of one eight-vertex graph by a sum operation that we do not describe here. Consequently, every
graph with n > 3 vertices and more than 3n — 6 edges has a K5 minor. (All graphs in this paper
are finite and have no loops or parallel edges.) This is tight: there are graphs with n vertices and
with exactly 3n — 6 edges that have no K5 minor. Indeed, one can make such graphs that are almost
6-regular: for infinitely many values of n there is an n-vertex planar graph (which therefore has no
K5 minor) with all vertices of degree six except for twelve of degree five. In summary:

e all graphs with average degree at least six contain K5 minors, and this is false if we replace six
by any smaller real number;

e all graphs with minimum degree at least six have K5 minors, and this is false if we replace six
by any smaller integer;

e this is all still true even if we insist that maximum degree is at most six.

What if we look just at bipartite graphs? One can make n-vertex bipartite graphs with no Kj
minor that have 3n — 9 edges (the complete bipartite graph Kz, 3 — in fact this is the only such
graph, which can easily be shown by induction using 1.1). So the situation for average degree is
virtually unchanged: average degree six is enough to guarantee a Kg minor, and no smaller constant
works. But K3,_3 has vertices with degree much larger than the average, and also vertices with
degree much smaller than average (if three is much smaller than six). So what happens if we insist
that maximum degree is close to the average degree, or minimum degree is large?

It turns out that:

1.1 Every non-null bipartite graph with minimum degree at least four has a K5 minor.

This can be derived from Wagner’s construction [6], although the proof is rather long and we omit
it. The result is already known: it was stated (in a stronger form, replacing “bipartite” by “girth at
least four”) in a lecture by Jédnos Barat [1], as joint work with David Wood, and also (without proof)
in an early version of the paper [2] (unfortunately it was removed in a later version of the paper).
When excluding K3, imposing a bound on maximum degree is perhaps not so interesting: there are
n-vertex bipartite graphs with average degree at least four and maximum degree at most five, with
no K5 minor. (For example, take five disjoint copies of K35, and for 1 < i < 5 let v; be a vertex
with degree three from the ith copy. Now add two more vertices both adjacent to each of vy, ..., vs.
To make bigger examples, take disjoint unions.) Perhaps average degree at least five and maximum
degree at most six will guarantee a K5 minor in a bipartite graph, but we have not worked this out.
In this paper, we ask what happens for K¢ minors. A theorem of Mader [4] says:

1.2 For n > 4, every n-vertex graph with more than 4n — 10 edges has a Kg minor.

There are graphs with n vertices and 4n — 10 edges with minimum degree at least six that have no
K¢ minor: for instance, take a planar graph on n — 1 vertices with 3(n — 1) — 6 edges and minimum
degree five, and add a new vertex adjacent to everything. So we need average degree at least eight
to guarantee a Kg-minor; no smaller constant works. Again, we might ask what happens if we insist



that maximum degree is close to average degree, or minimum degree is large. We have found Kg-
minor-free graphs with minimum degree six and maximum degree at most nine; and Kg-minor-free
graphs with minimum degree five, maximum degree seven, and average degree arbitrarily close to
98/15 (we omit the details). But as far as we know, both the following are open:

1.3 Conjecture: Fvery non-null 6-regular graph has a Kg minor.

(Indeed, as far as we know, every non-null graph with minimum degree at least six and maximum
degree at most eight has a Kg minor.)

1.4 Conjecture: Fvery non-null graph with minimum degree at least seven has a Kg minor.
There is a well-known conjecture of Jorgensen [3] that is related:

1.5 Conjecture: FEvery 6-connected graph with no Kg minor can be made planar by deleting some
vertex, and therefore has a vertex of degree at most siz.

But in this paper we will restrict ourselves to bipartite graphs. Still no constant smaller than
eight works as a bound on average degree to guarantee a Kg minor, since the complete bipartite
graph K4 ,_4 has 4n — 16 edges and has no K minor. But what about minimum degree? We will
show:

1.6 FEvery non-null bipartite graph with minimum degree at least siz has a Kg minor.

We do not know whether “six” can be replaced by “five” in 1.6. Minimum degree is more difficult
than average degree to work with inductively, and fortunately there is a strengthening of 1.6 that is
more amenable to induction:

1.7 Let G admit a bipartition (A, B) with |A| > |B| > 0, such that every vertex in A has degree at
least sixz. Then G has a Kg minor.

We remark that 1.7 becomes false if we replace “six” by “five”; we will show this in the next section.

This was also motivated by one of the steps in the proof of [5] that every graph with no K¢ minor
is five-colourable. Let G be a minor-minimal graph with no Kg minor that is not five-colourable, if
such a graph exists; then in [5], section 12 was devoted to showing that G' has a matching with at
least (|G| —1)/2 edges. If not, then by Tutte’s theorem, there is a set X C V(@) such that G\ X
has more than |X| odd components, and it was known that G is six-connected, and so each of these
components has an edge to at least six vertices in X. By contracting these components to single
vertices we obtain a bipartite graph satisfying the hypotheses of 1.7, which would be a contradiction,
since G has no K minor. In [5], Mader’s theorem [4] was used in place of 1.7, with additional
analysis of the components that had only six or seven neighbours in X. But it should be added that
1.7 is not going to shorten the proof of the main theorem of [5]; the proof of 1.7 is considerable longer
than section 12 of [5]. It will take up almost all the paper, but we begin with proving the statements
for K5 mentioned above.



2 Some definitions, and the results for Kj

Let us be more precise. If X C V(G), G \ X is the graph obtained from G by deleting X, and
G[X] =G\ (V(G) \ X) denotes the subgraph of G induced on X. A graph H is a minor of G if H
can be obtained by edge-contraction from a subgraph of G. (We repeat that graphs in this paper
have no loops or parallel edges, so any loops or parallel edges produced by edge-contraction should
be deleted.) We will only be concerned with complete graph minors. Let us say a cluster in G is
a set of disjoint subsets Xji,..., X} of V(G), such that G[X;] is connected for 1 < i < k, and for
1 <@ < j < k there is an edge of G between X;, X;; and a t-cluster means a cluster of cardinality ¢.
Thus G contains the complete graph K; as a minor if and only if G' contains a t-cluster.

A word on taking minors of bipartite graphs: we start with a graph with a bipartition (A, B),
choose a subset X C V(@) that induces a connected subgraph, and contract X to a single vertex.
As we said, if this produces parallel edges we delete them, since we only work with simple graphs in
this paper. But there is another issue: the graph we obtain by contraction might not be bipartite,
and we want to produce a bipartite graph at the end, so we in general we must delete some of the
edges incident with the new vertex. We could explicitly list the edges that we need to delete, but
since we will apply this operation many times, let us set up a more convenient method. Let us say we
contract X into A if we first contract X to a single vertex, x say, and then delete all edges between
x and A. Thus the graph we produce has a bipartition ((A\ X)U {z}, B\ X). “Contracting into
B” is defined similarly.

Let us see first:

2.1 Fort=1,2,3,4, if G admits a bipartition (A, B) with |A| > |B| > 0 such that every vertex in
A has degree at least t — 1 then G has a K; minor.

Proof. We may assume that every vertex in A has degree exactly ¢ — 1, by deleting edges, and we
may assume that |A| = |B|, by deleting |A| — | B| vertices from A. For ¢ < 2 the result is clear. For
t = 3, the graph has 2|A| = |G| edges and so has a cycle, and hence a K3 minor.

Next let t = 4; we proceed by induction on |A|. We may assume that G has a vertex of degree
at most two, b say (necessarily b € B), because otherwise it has a K4 minor. If b has degree zero
we may delete it, and if it has degree one we may delete it and its neighbour, and in either case the
result follows from the inductive hypothesis. So we assume that b has two neighbours ai, as. If there
are at least four vertices in B\ {b} with a neighbour in {a;,as}, we may contract {a1,b,as} into
A and apply the inductive hypothesis; so we assume that a1, as have exactly the same neighbours
b, b1, ba, bs. If some vertex different from a1, as is adjacent to both b1, by then G has a K4 minor: and
otherwise we may contract {b1, b, a1, ag,b} into B and apply the inductive hypothesis. This proves
2.1. |



Figure 1: Counterexample to 2.1 with ¢t = 5.

Since all bipartite graphs with minimum degree at least four have K5 minors, one might hope
that 2.1 would hold with ¢ = 5, but that is false. Here is a counterexample (see figure 1). Let H be
the graph obtained from K35 by deleting three edges that form a matching. Now take k copies of
H, say Hy,...,Hg, and for 1 < i < k let a4, b;, ¢; be the three vertices of H; that have degree two.
Let G be obtained from the disjoint union of Hy, ..., H; by making the identifications a; = - - - = ag,
by =---=byand ¢; = --- = ¢,. Then G admits a bipartition (A, B) with |A| = 3k and |B| = 2k + 3,
and every vertex in A has degree four, and G has no K5 minor. Thus taking k£ > 3 we obtain a
counterexample to 2.1 with ¢ = 5. By taking k = 4 instead, and then adding a new vertex adjacent
to every vertex in A, we obtain a graph that shows that we cannot replace “six” by “five” in 1.7.

We have:

2.2 If G admits a bipartition (A, B) with |A| > |B| > 0 such that every vertex in A has degree at
least five then G has a K5 minor.

This is turn is a consequence of 1.7 as we show now.

Proof of 2.2, assuming 1.7.  Suppose that G admits a bipartition (A, B) with |A| > |B| > 0 such
that every vertex in A has degree at least five and G has no K5 minor. We may assume that |A| = |B].
Choose b € B. Now take k copies of G, say G1, ..., G, and let b; be the vertex of G; that corresponds
to b. Let H be obtained from the disjoint union of Gy, ..., Gy by identifying b1, ...,br. Then H has
no K5 minor, and has a bipartition (C, D) with |C| = k|A| and |D| =k(|B|—1)+1=k(|A|—1)+1,
and every vertex in C has degree at least five. Now add one more vertex d to H adjacent to every
vertex in C'; then the graph we produce admits a bipartition (C, D U {d}) where every vertex in C
has degree at least six, and it has no K minor (because H has no K5 minor). So if we choose k such
that k|A| > k(]A| — 1) + 2, that is, k > 2, we obtain a contradiction to 1.7. This proves 2.2. |

3 Some lemmas

Let us begin on the proof of 1.7. Thus, let G be a graph that admits a bipartition (A, B) with
|A| > |B| > 0 such that every vertex in A has degree at least six; we need to show that G admits
a 6-cluster. Let us say G is a candidate if admits a bipartition (A, B) with |A| > |B| > 0 such that
every vertex in A has degree at least six, and G has no 6-cluster. We need to show that there is no
candidate. We call (A, B) the bipartition of the candidate. If G is a candidate with |G| + |E(G)|
minimum, we say it is a minimal candidate.

Let us begin with some easy observations.



3.1 Let G be a minimal candidate with bipartition (A, B). Then
Al = [Bl;

o cvery vertex in A has degree exactly siz;
e if X C B is nonempty then G\ X has at most | X| components;
e if X C A is nonempty then G\ X has at most |X| components; and

e if X C A is nonempty and G\ X has exactly |X| components then at most one of them has
more than one vertex.

Proof. If |A| > | B| we could delete a vertex in A and obtain a smaller candidate; and if some vertex
in A has degree more than six we could delete an edge incident with it to obtain a smaller candidate,
in either case contradicting minimality.

For the third bullet, let X C B be nonempty, and let Gy, ..., Gy be the components of G \ X.
For 1 <i <k, let |V(G)NA| =p; and |V(G) N B| = ¢;. Then for 1 < i <k, since G\ V(G;) is not
a candidate, it follows that |A| — p; < |B| — ¢;, and so p; > ¢; + 1 since |A| = |B|; but then

Al=p1+-+p>q+-+aq+k=|B - |X[+k,

and since |A| = |B| it follows that k£ < |X|. This proves the third bullet.

For the fourth bullet, let X C A be nonempty, and let Gy, ..., Gy be the components of G \ X.
For 1 <i<k,let |V(G)NA| =p; and |V(G) N B| = ¢g;. For 1 <i <k, since G; is not a candidate,
it follows that p; < ¢g; — 1; but

Al=p1+-+pe+ X[ <@+ +q—k+|X|=|B|—k+|X|,

and since |A| = |B| it follows that k& < |X|. This proves the fourth bullet.

Finally, in the same notation, suppose that k = |X|, and G1, G2 both have at least two vertices.
Thus p; < ¢; — 1 for 1 < i < k, and since k = |X|, it follows that p; = ¢; — 1 for 1 < i < k. From
the third and fourth bullets it follows that G is two-connected, and so there are two vertex-disjoint
paths of G, say R, S each with first vertex in V(G;) and last vertex in V(G2), and each with no
other vertices in V(G1) U V(G2). Consequently R, S each have first vertex in V(G1) N B and last
vertex in V(G2) N B. By contracting V(R) and V (S) into B we see that G contains as a minor the
graph obtained from G U G2 by identifying the ends of R and identifying the ends of S. But this
graph admits a bipartition with parts of cardinalities p; + p2 and ¢ + g2 — 2 = p1 + po, and so it is
a smaller candidate, a contradiction. This proves the fifth bullet and so proves 3.1. |

3.1 has a useful corollary:

3.2 Let G be a minimal candidate with bipartition (A, B), and let X C A or X C B with |X| = 4.
Then there do not exist five connected subgraphs Y1,...,Ys of G\ X, pairwise vertex-disjoint, such
that for 1 < i <5, every verter in X has a neighbour in Y;.

Proof. Let X = {x1,x9,x3,24}. Suppose that such Y7, ..., Y5 exist, and choose them with maximal
union. By the third and fourth bullets of 3.1 they are not all components of G\ X, and so from the
maximality of their union, some two of them are joined by an edge, say Yy, Y5. But then there is a
6-cluster

which is impossible. This proves 3.2. |



Here is another way of using the minimality of the candidate. Let ai,...,a, € A be distinct
and by,...,b; € B be distinct. The cover graph H (with respect to ai,...,ap,b1,...,bq) is the
graph with vertex set {b1,...,b,} in which two distinct vertices u, v are adjacent if there is a vertex
w e A\ {ai,...,a,} adjacent in G to both u,v. We denote the chromatic number of H by x(H). A
partition of V(H) = {b1,...,b,} into sets that are stable in H is a colouring of H, and a partition
{Y1,..., Y} of V(H) is feasible if there are pairwise disjoint subsets Xi,..., X} of {a1,...,ap} such
that G[X; UY;] is connected for 1 <1i < k. (Note that the sets X; might be empty.)

3.3 Let G be a minimal candidate with bipartition (A, B), and let a1,...,a, € A be distinct and
bi,...,by € B, with cover graph H. Then no colouring of H of cardinality at most g — p is feasible.

Proof. Suppose that the colouring {Y1,...,Ys} of H is feasible, where k < ¢—p, and let X;,..., X}
be the corresponding subsets of {a1,...,a,}. By contracting each of the sets X;UY; into B, we obtain
a graph with a bipartition (C, D) say, where |C| > |A| —p and |D| = |B|—q+k < |B|—p < |C|; and
every vertex in C' has degree at least six, since each of Yi,..., Y} is stable in H, and so this graph is
a candidate, which is impossible from the minimality of G. This proves 3.3. |

A special case of 3.3 is used so frequently that it is worth stating explicitly:

3.4 Let G be a minimal candidate with bipartition (A, B). If by,bs € B are distinct and have a
common neighbour in A then they have at least two common neighbours in A.

Proof. Let a € A be adjacent to by, by. If by, by have no other common neighbour, then the covering
graph of a, by, bo admits a colouring of cardinality one, which is therefore feasible, contrary to 3.3. |

4 Excluding K(3,5,0)- and K (4,4, 1)-subgraphs

We will prove a series of results about minimal candidates, which eventually allow to show that there
is no such graph. Most of these result are of the form “If G is a minimal candidate, then G has
no subgraph of the following type”, where the types describe subgraphs that become smaller and
simpler as the sequence goes on. For instance, one of our result will say that there do not exist two
vertices in A and six vertices in B such that each of the first is adjacent to each of the second. We
need some notation to describe these “types”. For integers p,q,r > 0 with » < min(p, ¢), let us say
a subgraph H of G is a K(p, q,r)-subgraph if it consists of p vertices a1,...,a, € A and ¢ vertices
bi,...,bq € B, where the pairs aiby, asbs, ..., a,b, are nonadjacent, and otherwise each a; is adjacent
to each bj. Thus H is obtained from a complete bipartite graph K, ; by deleting a matching with r
edges; but it matters that the p vertices belong to A and the ¢ belong to B, and not the other way
around.

In this section we will prove that a minimal candidate has no K (3,5, 0)-subgraph and no K (4,4, 1)-
subgraph. We begin with:

4.1 Let G be a minimal candidate with bipartition (A, B). Then G has no K(4,4,0)-subgraph.

Proof. Suppose that aj,...,as € A are adjacent to by,...,by € B. Let Z ={a1,...,a4,b1,...,b4}.
For each component C of G\ Z, let N(C') denote the set of vertices in Z with a neighbour in V' (C).



(1) For each component C' of G\ Z, {a1,az2,a3,a4} € N(C), and {by,bs,b3,b4} L N(C).

This is immediate from two applications of 3.2, setting X = {a1, a2, a3,a4} and X = {b1,ba, b3, bs}.

ai az as a4

b1 bo bs by

Figure 2: K(4,4,0)-subgraph.

Since aq, a9, a3, aq have degree six, and so each of them belongs to N(C) for some component C'
of G\ Z, it follows from (1) that there are at least two such components.

(2) For each component C of G\ Z, IN(C) N A| # 1.

Suppose that N(C) N A = {a1} say. Let b € V(C) be adjacent to a;; thus b € B. By (1) we
may assume that b; ¢ N(C). But then b, b; have a unique common neighbour, contrary to 3.4. This
proves (2).

(3) For each component C of G\ Z, one of [N(C)NA|,|N(C)NB| > 2.

If IN(C)NA| <1 then N(C)NA =0 by (2), and so by the third bullet of 3.1, taking X = N(C), it
follows that |N(C') N B| > 2. This proves (3).

(4) IN(C)NB| <1 and |[N(C)NA| € {2,3} for every component C of G\ Z.
Suppose that |N(C) N B| > 2, and let by,bo € N(C) say. By (1), there is a component C" # C

of G\ Z with N(C")N A # ), and hence with |[N(C")N A| > 2 by (2). Let a1,a2 € N(C”) say. Then
there is a 6-cluster

{{a1}, V(C') U{az}, {01}, V(O) U {ba}, {as, b3}, {aq, ba}},

a contradiction. This proves that |[N(C) N B| < 1 for every component C' of G \ Z; and so
|IN(C) N A| € {2,3} for every component C' of G\ Z by (3) and (1). This proves (4).

(5) If v e B\ Z has a neighbour in {a1,as,as,as} then it has at least two such neighbours.

Let C be the component of G \ Z that contains v. We may assume that v is adjacent to ai,
and by (1), we may assume that b; ¢ N(C). By 3.4, by, v have another common neighbour, which
must be in {ag, a3, a4} since by ¢ N(C). This proves (5).

(6) If u,v € B\ Z have a common neighbour in {a1,as,as,as} and belong to different components of



G\ Z then they have at least two common neighbours in {ay,as,as,as}. Consequently, if C,C’ are
distinct components of G\ Z then [N(C)NN(C")NA| # 1.

The first claim follows from 3.4 applied to u,v; and the second is a consequence. This proves (6).
(7) IN(C)N A| =2 for each component C of G\ Z.

Suppose not; then by (4) |[N(C) N A| = 3, and we may assume that N(C) N A = {a1,a2,a3}.
Let C’ be a component of G\ Z with ay € N(C"). By (4), N(C) N N(C") # 0, and so by (6),
IN(C") N A] = 3 and we may assume that ag,as,as € N(C'). Since ag has a neighbour in each
of C,C" and is also adjacent to by, bo, b3, by, it has no more neighbours, and the same holds for as.
Consequently if C” # C, C" is a component of G\ Z then N(C")NA C {a1, a4}, and so equality holds
by (4), contrary to (6). Thus C,C" are the only components of G \ Z. Hence a; has two neighbours
dy,dy € V(C), and ag, ag each have exactly one neighbour in V' (C"). By (5), each of dy, ds is adjacent
to two of a1, as, as, as, and so we may assume that d; is adjacent to ae and not to as. Similarly there
exists d' € V(C") adjacent to ay and not to asz. But then dy,d have a unique common neighbour,
contrary to (6). This proves (7).

By (4), by, ba, b3, by belong to different components of G\ {a1, as, a3, as}, and so by 3.1, these are
the only components of G\ {a1, az, a3, as}, and three of them have only one vertex. Consequently we
may assume that by, bg, by have degree four in G, and b; € N(C) for each component C of G\ Z. By
(7) and (6), we may assume that for each component C of G\ Z, N(C)N A = {a1,as} or {as,as}.
Let G be the union of the components C' with N(C) N A = {a1,as}, and define G similarly for
{as,as}. Thus aj,as each have two neighbours in V(G1), and as, a4 each have two in V(G3). Hence
by contracting {a1,02,as} and {ag,bs,bs} into A we obtain a smaller candidate, a contradiction.
This proves 4.1. |

4.2 Let G be a minimal candidate with bipartition (A, B). Then G has no K (3,6,0)-subgraph.

Proof. Suppose that ai,a2,a3 € A are all adjacent to each of by,...,bs € B. Let H be the cover
graph with respect to a1, a9, as, by,. .., bs.

Figure 3: K(3,6,0)-subgraph.

(1) If b1, ba, by are pairwise adjacent in H, there is a verter a # a1, as,as adjacent to all of by, ba, bs,
and no other vertex in A\ {a1,as,as} is adjacent to any two of by, ba, bs.



Since biby € E(H), there exists c3 € A\ {a1,a2,a3} adjacent to b1, by; and similarly there exists
c1 adjacent to bo, b3 and cy adjacent to bs, by. If c1, co, c3 are all different, there is a 6-cluster

{{027b1}a{637b2}>{617b3}a{a17b4}a{a2>b5}7{a37b6}}7

a contradiction. So cq, ¢9, c3 cannot be chosen all different. In particular we may assume that some
c € A\ {a1,a2,a3} is adjacent to by, be, bs. If some other vertex d € A\ {a1, a2, a3} is adjacent to
two of b1, bo, b3, say to by, bg, there is a 6-cluster

{{b17d}v{b2}7{c7b3}>{a1’b4}7{aﬂvb5}’{a3vb6}}>

a contradiction. This proves (1).

Every colouring of H of cardinality three is feasible (as we can add one a; to each vertex class),
so x(H) > 4 by 3.3. Consequently either H consists of an induced cycle of length five together with
one more vertex adjacent to every vertex of the cycle, or H has a clique of size four. In either case
there are four vertices of H such that five of the six pairs of them are adjacent in H. We may assume
that b1ba, b1bs, b1ba, babs, baby are all edges of H. By (1) there exists ¢ € A\ {a1,a2,as} adjacent to
b1,b2,b3, and d € A\ {a1,a2,a3} adjacent to by, b, by; and by (1) again, ¢ = d. Thus c is adjacent
to b1, b, b3, by, and so G[{a1,az,as,c, b1, b2, bs,bs}] is a K(4,4,0)-subgraph, contrary to 4.1. This
proves 4.2. |

If P is a path, we denote by P* the set of vertices in the interior of P, that is, the vertices that
have degree two in P.

4.3 Let G be a minimal candidate with bipartition (A, B). Then G has no K(3,5,0)-subgraph.
Proof. Suppose that a1, a9,a3 € A are all adjacent to each of b1,...,b5 € B.

al a2 as

bl b2 b3 b4 b5
Figure 4: K (3,5,0)-subgraph.

Each of a1, a9, a3 has exactly one neighbour different from b1, ..., b5, and they are not all equal
since G has no K (3, 6,0)-subgraph by 4.2. So some vertex is adjacent to exactly one of ay, as, ag; say
be is adjacent to a; and not to ao,as. By 3.4, for 1 < i <5 b;, bg have a common neighbour different
from a;. Choose a set X of neighbours of bg, with a1, as,as € X, minimal such that by, ..., bs each
have a neighbour in X. Consequently for each x € X there exists ¢ € {1,...,5} such that z is the
unique neighbour of b; in X.



(1) Every vertex different from ay,as,as with two neighbours in {by,...,bs} is in X.

Suppose that a € A\ {a1,a2,a3} is adjacent to a1, as say, and a ¢ X. Then there is a 6-cluster
b1}, {a, b2}, {bs, b3} U X, {a1}, {az, bs}, {as, b5} },

a contradiction. This proves (1).
(2) Some vertex different from ay,as,as has three neighbours in {by, ..., bs}.

Let H be the cover graph with respect to ai,as,as,bi,...,b5. By 3.3, x(H) > 3. So either it
is a cycle of length five, or it has a triangle. (A triangle means a clique with cardinality three.)
Suppose first that H is a cycle of length five, with edges b1bs, bobs, b3by, bsibs, bsb1 say. Some vertex
dy 2 # a1,az2, a3 is adjacent in G to by, be, from the definition of H, and it is nonadjacent to bs, b4, bs
since H is a cycle. Define dy 3 and so on similarly. By (1), each of these five vertices is in the set X;
but then none of b1, ...,bs has a unique neighbour in X, contrary to the minimality of X.

It follows that H has a triangle, say with vertices b1,b2,b3. Some vertex dia # ai,a2,a3 is
adjacent in G to by, ba, from the definition of H; define ds 3, d3 1 similarly. Suppose that dy 2,d23,d3.1
are all different. Then there is a 6-cluster

{{d1,2,b1},{da,3,b2},{d5,1,b3}, {a1}, {az, bs}, {as,b5}},

a contradiction. So two of d; 2,ds2 3,ds3 1 are equal. This proves (2).

Let a4 be adjacent to by, by, bg say. It is nonadjacent to by, bs since G has no K (4,4, 0)-subgraph
by 4.1. By 3.3 the cover graph with respect to a1, a9, as, a4, b1, ...,bs has chromatic number at least
two, and so has an edge. Choose as different from ay, ..., a4 with two neighbours in {b1,...,b5}. By
(1), a4, as are both adjacent to bg.

Figure 5: For the last part of the proof of 4.3. a5 is adjacent to two of by, ..., bs.

Up to symmetry there are three cases: as is adjacent to by, be; a5 is adjacent to by, by; and as is
adjacent to by, bs.
First, if a5 is adjacent to by, by, there is a 6-cluster

{{b1},{as, b2}, {aa, b3}, {ar}, {az, ba}, {as, b5} },
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a contradiction. If a5 is adjacent to by, by, there is a 6-cluster

{{bl}v {a47 bQ}’ {a57 ba, b6}7 {a1}7 {a2’ b3}7 {a3v b5}}v

a contradiction. So as is adjacent to by, bs.

By 3.1, the graph G\ {a1, az, as, a4, a5} has at most five components; and so some two of by, ..., bg
belong to the same component. So there is a path P of G between two of by, . .., bg with no other ver-
ticesin {a1,...,bs5,b1,...,bs}. Let P have ends b;, b; say. The subgraph induced on {a4, as, b1, ...,bs}
is a tree, and its union with P includes a cycle that contains P; and in all cases we can use this cycle
to make three of by,...,bs adjacent and thereby produce a Kg minor. In detail (up to symmetry
these are the only possibilities):

o If (i,7) = (1,2), there is a 6-cluster {{b1},{P* U {ba}}, {as,b3},{a1},{a2,bs},{as, bs5}}.
o If (i,7) = (1,4), there is a 6-cluster {{b1}, {as4, b2}, P* U {bs, b6}, {a1},{a2,bs},{as, bs}}.
e If (i,7) = (1,6) there is a 6-cluster {{b1}, {asba}, P* U {bg,as,bs},{a1},{a2,bs},{as, bs}}.
o If (i,7) = (4,5) there is a 6-cluster {{b1, as,bs, a5}, {bs}, P* U {bs},{a1},{az, b2}, {as,bs}}.
o If (i,7) = (4,6) there is a 6-cluster {P* U{bg}, {bsa},{as,b5},{a1},{az,b2},{as, b3}}.
In each case we have a contradiction. This proves 4.3. |

4.4 Let G be a minimal candidate with bipartition (A, B). Then G has no K(4,7,4)-subgraph.

Proof. Suppose that ai,...,aq4 € A are all adjacent to each of b1,...,b7 € B, except the pairs
a1b1, asbs, asbs, asby. Let H be the cover graph with respect to ay,...,aq4,b1,...,b7. We claim that
every partition of V(H) into at most three sets is feasible. To see this, let {Y1,...,Y%} be a parti-
tion of V(H) with k£ < 3. We must show there are disjoint subsets Xi,..., Xy of {a1,...,as4} such
that X; UY; is connected for 1 < i < k. If some Yj;, say Y7, contains all of bq,...,bs we may set
X1 = {a1,a2} and Xo,..., X} each to contain one of a3, as; so we may assume that for 1 < i < k,
there exists j € {1,...,4} such that b; ¢ Y;. But then (from Hall’s “marriage” theorem, for in-
stance), there is an injection ¢ : {1,...,k} — {1,...,4} such that by;) ¢ Y; for 1 <14 < k; so we may
set X; = {ay(;)} for 1 <4 < k. This proves that every partition of V/(H) into at most three sets is
feasible, and so x(H) > 4 by 3.3.

(1) by, ba, b3, by are pairwise adjacent in H, and H has no other edges.

Suppose that say bsbg are adjacent in H, and let P be a path of GG between bs, bg with no other
vertex in {ai,...,a4,b1,...,b7}. There is a 6-cluster

{a17 b2}7 {CL?’ b3}7 {a37 b4}) {a47 b1}7 {b5}7 P*U {bﬁ}}’

a contradiction. So bs, bg, by are pairwise nonadjacent in H. Let S be the set of edges of H with
both ends in {b1,...,bs}, and T the set of edges of H with one end in {b1,...,bs} and the other in
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{bs,bg,b7}. Thus every edge of H belongs to exactly one of S,T. If say bsbs and bsbs are edges of
H, let P,Q be the corresponding paths of G; then there is a 6-cluster

{{alv b2}7 {a27 bl}a {(Ig, bﬁ}v {a47 b7}7 V(P)a Q* U {b5}}7

a contradiction. Hence no edge in S shares an end with an edge in 7', and so no component of H
has an edge in S and an edge in 7. But some component H’ of H has chromatic number at least
four, and so not all its edges are in T, since then it would be bipartite. Hence all its edges are in .S,
and so V(H') C {b1,...,bs}; and since H' has chromatic number four, H' is a complete graph. This
proves (1).

Figure 6: K(4,7,4)-subgraph.

Choose ¢ # aq, ..., a4 adjacent to by, by, and ¢’ # aq, ..., a4 adjacent to bz, bs. Then ¢ = ¢/, since
otherwise the connected subgraphs with vertex sets {b1, c,ba}, {b3, ', bs}, {bs}, {bs}, {b7} violate 3.2.
Consequently c is adjacent to by, b, b3, by. By the same argument, no other vertex has two neighbours

in {b1,...,bs}, and hence no other vertex has two neighbours in {b1,...,b7}, since bs, bg, by have
degree zero in H. But then the cover graph with respect to aq,...,a4,¢,b1,...,b7y has no edges and
3.3 is violated. This proves 4.4. |

4.5 Let G be a minimal candidate with bipartition (A, B). Then G has no K(4,5,2)-subgraph.

Proof. Suppose that ai,...,a4 € A are all adjacent to each of by,...,b5 € B, except the pairs
al bl, agbg.

(1) Every wvertex in B \ {b1,...,bs} with a neighbour in {ai,...,as} has exactly two neighbours
in this set.

Suppose that some vertex bg € B\ {b1,...,b5} is adjacent to exactly one of aj,...,as. By 3.4,
for i = 3,4,5 there is a vertex ¢; adjacent to b;, bg and not in {aj,...,as}. But then

{{a1, b2}, {az, b3}, {as, b1}, {ba}, {aa}, {bs, c5, b6, ca}}
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is a 6-cluster, a contradiction.

So every vertex in B\ {b1,...,b5} with a neighbour in {ai,...,as} has at least two neighbours
in this set. No vertex is adjacent to all of a1, as, aq or to all of ag, as, a4, since there is no K (3,5,0)-
subgraph by 4.3. If some vertex bg different from bq,...,b5 is adjacent to ai,as2,as, then each
of a1, a9,a4 has exactly one neighbour different from b1, ..., bg, and these must all be equal since
no vertex has one neighbour in {ai,as2,as,as}; but then G has a K(4,7,4)-subgraph, contrary to
4.4. Similarly no vertex different from by,...,b5 is adjacent to ai,as2,as; and so every vertex in
B\ {b1,...,bs} with a neighbour in {ay,...,as} has exactly two neighbours in this set. This proves

(1).

Figure 7: K(4,5,2)-subgraph.

(2) b3, by, bs each have degree four in G.

There are four edges between {ai,as} and B\ {b1,...,b5}, and only two between {as,as} and
B\ {b1,...,b5}; and so by (1) there is a vertex bg € B\ {b1,...,bs} adjacent to a;,as and not to
as,ays. By 3.4, there is a vertex different from aq, ..., as adjacent to bg, by (because bg, b are adjacent
to az), and similarly there is a vertex different from ay, ..., a4 adjacent to bg, by. Consequently there
is a path P between by, by with no other vertices in {ai,...,a4,b1,...,b5} (possibly containing bg).

We claim that P,bs,bs,bs all belong to different components of G\ {ai, a2, as3,as}. Because
suppose not; then, either there is a path @) of G between two of bs, by, b5 with no other vertex in
{ai,...,a4,b1,...,b5}, or there is a path @ between one of by, by and one of bs, by, b5 with no other
vertex in {ai,...,a4,b1,...,b5}. In the first case, say @ has ends b3, by; then

{63}, Q" U {ba}, {aa}, {a1,b2}, {a2, b5}, {a3, b1 }}
is a 6-cluster, a contradiction. In the second case, let () have ends by, b3 say; then
HP uQ*U{bi},{a1,b2}, {b3}, {az,bs}, {as, b5}, {as}}

is a 6-cluster, a contradiction.
This proves that P, b3, by, bs all belong to different components of G'\ {a1, ag, as,as}. By 3.2, the
components containing bs, by, b5 are all singletons. This proves (2).

Now for i = 3,4, a; has one neighbour not in {b1,...,b5}, say ¢;. Either c3 = ¢4 and c3 has no
neighbour in {ay, as}, or each of ¢3, ¢4 has a unique neighbour in {a;, as}, and not the same one. Thus
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in either case we may assume that c3 is not adjacent to a1 and c4 is not adjacent to as. Consequently,
there are at least six vertices in B\ {b1, b2} with a neighbour in {a1, as}, namely bs, b4, b5, c3 and the
two neighbours of a; not in {b1,...,bs}. Similarly there are at least six vertices in B\ {b1, b2} with a
neighbour in {ag,as}. Since by, bs both have degree four, by contracting {ai, b1, a3} and {agz, b2, a4}
into A we obtain a smaller candidate, a contradiction. This proves 4.5. |

4.6 Let G be a minimal candidate with bipartition (A, B). Then G has no K (4,4, 1)-subgraph.

Proof. Suppose that aq,...,a4 € A are all adjacent to each of by, ..., by € B, except the pair a1b;.
No vertex in B\ {b1,...,bs} is adjacent to all of ag, a3, as since G has no K(3,5,0)-subgraph by 4.3.
No vertex is adjacent to a; and to two of ag,as,as since G has no K(4,5,2)-subgraph by 4.5. So
every vertex in B\ {b1,...,bs} with a neighbour in {ai,..., a4} has at most two neighbours in this
set.

Figure 8: K(4,4,1)-subgraph.

Suppose that some vertex bs € B\ {b1,...,bs} has only one neighbour in {aq,...,as4}, and that
neighbour is different from aq; let it be as say. By 3.4, for i = 1,2,3,4 there is a vertex ¢; # as
adjacent to both b5, b;. But then

{{bs5, c1, c2, c3, ca}, {az}, {as, b1}, {aq, b2}, {a1, b3}, {ba}}

is a 6-cluster. So every vertex in B\ {b1,...,bs} with a neighbour in {as,...,as} has exactly two
neighbours in {aj,...,a4}.

But there are an odd number of edges (nine) between {ai,...,a4} and B\ {b1,...,bs}; so some
vertex by € B\ {b1,...,bs} has a unique neighbour in {ay,...,as}, and consequently this neighbour
is ay. It follows that at most two neighbours of aq are different from bo, b3, b4 and have a neighbour
in {ag2,as,as}. But there are six edges between {ag,as,as} and B\ {b1,...,bs}, and so there is a
vertex bg € B\ {b1,...,bs} adjacent to two of as,as,as, say as,as. By 3.4, for i = 2,3,4 there is a
vertex ¢; # a1 adjacent to both bs, b;. But then

{{az2},{as, b6}, {as, b1}, {a1, b3}, {ba}, {bs, c2, 5, ca,b2}}

is a 6-cluster, a contradiction. This proves 4.6. |
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5 Excluding K (3,4,0)- and K(2,6,0)-subgraphs.

Our main goal in this section is to eliminate K (3,4, 0)-subgraphs; and to do this, we first eliminate
K (3,7,3)-subgraphs.

5.1 Let G be a minimal candidate with bipartition (A, B). Then G has no K(3,7,3)-subgraph.

Proof. Suppose that ai,as,a3 € A are all adjacent to each of by,...,b7 € B except for the pairs
aiby, ag, by, agbs.

(1) No vertex different from ai,as,as has three neighbours in {by, bs, bg, b7}.

This is immediate since G has no K (4,4, 1)-subgraph by 4.6.

Figure 9: K (3,7,3)-subgraph.

(2) No vertex different from ay,as,as has at least four neighbours in {by,...,b7}.

Suppose a4 has at least four neighbours in {by,...,b7}. Let I be the set of i € {1,...,7} such
that a4, b; are adjacent. Thus |I| > 4. Let bg be a neighbour of a4 not in {by,...,b7}. Thus bg is
nonadjacent to ai,as,as, since the latter have degree only six. By 3.4, for each ¢ € I there exists
¢ # ai,...,aq adjacent to b;, bs.

Suppose first that 1,2,3 € I; and we may assume that 4 € I since |I| > 4. Then

{{aa}, {bs, c1,c2, ¢35, ca}, {ar, ba}, {az, b3}, {as, b1}, {ba}}

is a 6-cluster. So not all 1,2,3 belong to I; and hence by (1), since |I| > 4, we may assume that
I =1{1,2,4,5}. But then

{{CL4}, {b87 C1,C2,C4, 05}7 {ala 62}7 {CLQ, b37 b4}7 {a3a bl}; {65}}
is a 6-cluster. This proves (2).

Let H be the cover graph with respect to a1, as,as,b1,...,b7. By an argument like that in the
proof of 4.4, it follows that every partition of V(H) into four sets is feasible, and so x(H) > 5 by
3.3. For each edge b;b; of H let ¢; j € A\ {a1,a2,a3} be adjacent to b;,b;.
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(3) The subgraph H[{b4,bs,bg,b7}| has no triangle, and so is bipartite; and hence by, by, by are pair-
wise adjacent in H.

Suppose that say b4, bs, bs are pairwise adjacent in H. By (1), ca5,¢56,ca6 are all distinct. But
then
{{a1, b2}, {a2,b3}, {a3, b1}, {ca5,ba},{c56,b5}, {ca.b6}}

is a 6-cluster. So H[{b4, bs, bs, b7}] is bipartite. Since x(H) > 5 it follows that by, by, b3 are pairwise
adjacent in H. This proves (3).

(4) Let i € {1,2,3}, and let j,k € {4,5,6,7} be distinct. If b;,b;,by are pairwise adjacent in H,
then c; j, ¢ i, cjr are all equal.

Let i = 3, j = 4 and £ = 5 say. Suppose first that c34,ca5,c35 are all different. Since cyp5 is
different from ¢ 3 by (2) it follows that

{{a1}, {a2, b6}, {as, b7}, {bs,ca3,b2, ¢34, ¢35}, {ba}, {ca5,b5}}

is a 6-cluster. Thus one of c34,c45,c35 (say c) is adjacent to all of bs,bs,bs. Suppose that some
d € {c34,c45,c35} is different from c. Then d is different from one of ¢ 3,c23 by (2), say d # ca3,
and

{{a1}7 {a2a bG}a {a3a b7}a {b3a 2,3, bQ? C}a {b4}a {dv b5}}

is a 6-cluster. This proves (4).
(5) There exists a cligue X C V(H) of H containing two of b1, ba,bs and two of by, ..., br.

If H is perfect, then it has a clique of cardinality five, which therefore contains all of by, bo, b3
by (3) and the claim holds. Otherwise, H has an odd hole or antihole as an induced subgraph; and
since H has only seven vertices and x(H) > 5, it follows that H has an induced cycle C of length five,
and the other two vertices of H are adjacent to each other and to every vertex of C. Since by, ba, b3
are pairwise adjacent, at least one of them is not in V(C'), say b1; and so at least three vertices of
C' are not in {by, ba, b3}, and consequently an edge of C' has both ends in {by,...,b7}. But this set
contains no triangle of C' by (3), and so the second vertex of H not in V(C) belongs to {b1, b2, b3}.
This proves (5).

From (5) we may assume that by, b3, b4, b5 are pairwise adjacent in H. By (4), c1.4, ¢15, ca 5 are all
equal, and also ¢1 5,¢1,6,¢56 are all equal. But then ¢; 4 = ¢56 contrary to (2). This proves 5.1. |

5.2 Let G be a minimal candidate with bipartition (A, B). Then G has no K(3,4,0)-subgraph.

Proof. Suppose that ai,as,a3 € A are all adjacent to each of by,...,by € B.
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a1 az az

by by b3 by
Figure 10: K (3,4,0)-subgraph.

No vertex in A\{a1, a2, ag} has more than two neighbours in {b1, ..., bs}, since G hasno K (4,4, 1)-
subgraph or K(4,4,0)-subgraph by 4.6 and 4.1. Also no vertex in B\ {b1,...,bs} is adjacent to all
three of a1, ag,as, since G has no K(3,5,0)-subgraph by 4.3.

Let By be the set of vertices in B with exactly one neighbour in {a1,az2,as}. Thus |By| is even.

(1) By # 0 and hence |Bo| > 2.

Suppose that By = ). Since there are exactly six edges between {a1,a2,a3} and B\ {b1,...,bs}, it
follows that there are exactly three vertices each adjacent to exactly two of ai,as,as, and each of
a1, az, a3 is adjacent to exactly two of these three vertices; but then G contains a K (3,7, 3)-subgraph,
contrary to 5.1. This proves (1).

(2) Every vertex adjacent to exactly two of by, ..., by is adjacent to every vertex in By.

Let a4 be adjacent to b1, by say, and let bs; be adjacent to a; and not to as,as. Suppose that a4, b5
are nonadjacent. By 3.4, for 1 < i < 4 there is a vertex ¢; # a1 adjacent to bs, b;; and ¢; # ag, a3, aq
since these are not adjacent to bs. But then

{{aa, b1}, {ba}, {b5, c1, c2, 3, ca}, {ar}, {az, b3}, {as, ba}}

is a 6-cluster. This proves (2).

Contracting {a1, ag, as, by, ba, b3, by} into B does not yield a smaller candidate, so some vertex ay
different from a1, as, asg has at least two (and hence exactly two) neighbours in {b1, b, b3, bs4}. From
the symmetry we may assume that a4 is adjacent to by, ba. Since a4 has degree six, and is adjacent to
every vertex in By, it follows that | By| < 4, and so some vertex is adjacent to exactly two of a1, ag, as.

(3) There is a vertex different from ay,...,as adjacent to bs,by.

Suppose not. Choose distinct bs,bs € By. By 3.4, for i € {3,4} and j € {5,6} there is a vertex
¢ij ¢ {a1,...,as} adjacent to b;,bj; and ¢; ; # a4 since aq has only two neighbours in {by,...,bs}.
Moreover {c35,c36} is disjoint from {cs5,cs6}, since these vertices only have one neighbour in
{bs,bs} by hypothesis. Let b7 be a vertex adjacent to exactly two of a1, as, as, say as,as; then since
a4 is adjacent to bs, bg by (2),

{{a1,b1},{a2}, {as, b7}, {c35,¢36,03,b5}, {ca5,ca6,ba}, {aa, b2, b6}}
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is a 6-cluster. This proves (3).

a1 a2 a3

b1 2 b3 by

a4 as

Figure 11: For the proof of 5.2.

Let a5 # ay, ..., a4 be adjacent to bs,bs. By (2) a5 is adjacent to every vertex in By.
(4) There is no path P of G\{ax,...,as} with ends in distinct sets in the list {b1},{b2},{b3}, {bs}, Bo.

Suppose that P is such a path. By choosing P minimal we may assume that no internal vertex
of P belongs to {by, ba,bs,bs} U By; and from the symmetry we may assume that b; is an end of P.
Let the other end be b; say. Up to symmetry there are three cases: ¢ =2, i = 3, and ¢ = 5 for some
bs € By, and in the third case we may assume that a; is adjacent to b5 from the symmetry.

o If i = 2 then {{a1},{a2,b3},{as,bs},{b1}, P* U{b2}, Bo U{a4,a5}} is a 6-cluster.

o If i = 3 then {{a1},{ag2, b2}, {as,bs},{b1}, P* U{bs}, Bo U{a4,a5}} is a 6-cluster.

e If i =5 then {{a1},{ag,b3},{as,bs}, P* U {b1},{as,b2},{as,bs}} is a 6-cluster.
This proves (4).

(5) b1,...,bs all have degree four in G.

From (4), by, by, bs, by, bs all belong to different components of G \ {aq,...,as}, and none of these
four compoents contains any vertex of By. By 3.1, G \ {a1,...,as} has exactly five components,
and four of them are singletons; and therefore one contains all of By and so is not a singleton. This
proves (5).

As we observed earlier, there is a vertex ¢ € B that is adjacent to exactly two of ay,as,as, say
to ag,az. Moreover, since By # (), not both neighbours of a; in B\ {b1,...,bs} have a neighbour
in {ba,bs}; and so a; has a neighbour in By, say bs. Since we cannot obtain a smaller candidate by
contracting {ai,...,as,b1,...,bs,c} into B, there exists ag € A different from ay, ..., a5 with two
neighbours in {b1,...,bs,c}. By (5), ag is adjacent to bs,c. Let bg € By \ {b5}. Then

{{al}v {a27 b1}7 {ag, b3}7 {a47 bQ}’ {a’5v b4}7 {aﬁv ¢, b5}}

is a 6-cluster. This proves 5.2. |
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6 Excluding K(2,5,0)-subgraphs

Our next goal is to eliminate K(2,5,0)-subgraphs. We begin with:
6.1 Let G be a minimal candidate with bipartition (A, B). Then G has no K(2,6,0)-subgraph.

Proof. Suppose that a;,as € A are both adjacent to each of by,...,bg € B. The cover graph H
with respect to aj,ag,bi, ..., bs has chromatic number at least five, by 3.3 (note that every partition
of {b1,...,bs} into four sets is feasible, since at least two of them will be singletons and therefore
already induce connected subgraphs). Consequently H has a clique of size five, and so we may
assume that by, ..., bs are pairwise adjacent in H. By 5.2, no vertex in A \ {a1, a2} has more than
three neighbours in {b1,...,bs}.

al a2

b1 bg b3 b4 b5 bG
Figure 12: K(2,6,0)-subgraph.

For1 <i<j<b5letc; ;€ A\{ai,az} be adjacent to b;, b;. If the six vertices ¢; ; (1 <i < j <4)
are all distinct, there is a 6-cluster

{{b1,c12,c1.3,c1,4},{b2,c23,c24},{b3,c34},{ba}, {a1}, {a2,b5}},

a contradiction. So we may assume that some two are equal, and hence some vertex in A\ {a1, a2}
is adjacent to three of by, b, b3, bs; say ag is adjacent to by, bo,b3. If none of the vertices ¢;; (i €
{1,2,3},7 € {4,5}) is adjacent to both by, b5, then

{{b1}, {b2, a3}, {ba,c14,c24}, {bs,Cc15,¢25,ca5}, {ar}, {a2,b6}},

is a 6-cluster, a contradiction; so we may assume that some a4 is adjacent to bs, by, b5 say. (See figure
13.)

Figure 13: For the proof of 6.1.
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If some a5 different from aq, ..., a4 is adjacent to three of by, bo, by, b5, say to b1, bo, by, then

{{b1}, {b2, a3}, {bs, a5}, {b5, a4, c15,c25}, {a1}, {az, b6} }

is a 6-cluster, a contradiction; so we may assume that no vertex different from aq, ..., a4 is adjacent
to three of by, ba, by, bs. Consequently c; 4, 24,15, c25 are all different. But then

{{b1},{b2, a3}, {ba,c14,c24}, {b5,a4,c15,c25},{a1},{az,bs}}

is a 6-cluster, a contradiction. This proves 6.1. |

6.2 Let G be a minimal candidate with bipartition (A, B). Then G has no K(2,5,0)-subgraph.
Proof. Suppose that a1,a2 € A are both adjacent to each of by,...,b5 € B. Let bg, by be the
neighbours of ay, ag respectively that are not in {b1,...,bs}. Thus bg # by since there is no K (2,6, 0)-
subgraph by 6.1. No vertex different from aj, as has four neighbours in {b1,...,bs} since there is no

K (3,4,0)-subgraph by 5.2.

a a2

bl b2 b3 b4 b5
Figure 14: K(2,5,0)-subgraph.

The cover graph H with respect to a1, as9,b1,...,bs has chromatic number at least four, by 3.3,
and so has a clique of cardinality four, say b1,be,bs,by. For all distinct i,j € {1,2,3,4,6,7} let
ci,j € A\ {a1,a2} be adjacent to b;,b;, if there is such a vertex. Thus ¢;; exists for 1 <1i < j <4,
and also for all i € {1,...,5} and j € {6, 7}, by 3.4.

(1) Some vertex in A\ {a1,as} has three neighbours in {by,...,bs}.

Suppose not. Then each of the vertices ¢; j (1 < i < j < 4) has only two neighbours in {b1,...,bs},
and in particular they are all different. But then

{{01}, {c1,2,b2}, {c1,3,¢2,3,b3}, {c14,¢24, 34,04}, {a1}, {az,b5}}

is a 6-cluster. This proves (1).

Thus we may assume that some a3 is adjacent to b1, bo, b3.

(2) Some vertex in A\ {a1,as,a3} is adjacent to by and to two of by, ba, bs.
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Suppose not; so c1.4, c2,4, ¢34 are all different. Suppose that some vertex ¢ # a1, a2, az is adjacent to
two of bl, bg, b3, say to bl, bg. Then

{{b1}, {c, b2}, {a3, b3}, {c1,4,c24, 34,04}, {a1}, {a2, b5} }

is a 6-cluster. Thus there is no such c¢. There is a vertex bg € B\ {b1,...,br} adjacent to as; and
by 3.4, for i = 1,2,3 there exists d; € A\ {a1,a2,a3} adjacent to bg,b;. Since no ¢ # a1, a9, as is
adjacent to two of by, ba, b3, it follows that dy,d2,ds are all different. Consequently c¢; 4 # d; for all
distinct 4,5 € {1,2,3}. But then

{{c14,d1, b1}, {as, co4,do, ba}, {34, d3, b3, b8}, {a1}, {az, b5} }

is a 6-cluster. This proves (2).

Figure 15: For the proof of 6.2.

Thus we may assume that a4 € \{a1,a2,a3} is adjacent to b, b3, by. Since {b1,bo, b3, by} is a
clique of H, there exists a5 € A\ {a1, a2, as,as} adjacent to by, by. (See figure 15.)

(3) No vertex in A different from aq,az,as,aq has two neighbours in {b1, ba, bs}, or has two neigh-
bours in {bo, b3, by}.

Suppose that ag is such a vertex, adjacent to two of by, by, bs say. (Possibly ag = as.) If ag is
adjacent to bo, b3, then ag # a5, and

{{a’3v bl}v {bZ}v {a67 b3}7 {CL4, as, b4}’ {al}v {a27 b5}}

is a 6-cluster. Thus from the symmetry we may assume that ag is adjacent to by, ba, and now possibly
ag = as. Then

{{a5, ae, bl}v {b2}v {a3’ b3}7 {CL4, b4}’ {al}v {a27 b5}}

is a 6-cluster. This proves (3).
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(4) Every vertex in B\ {b1,...,br} adjacent to one of as,ay is adjacent to both as,ay.
Suppose that bg € B\ {b1,...,b7} is adjacent to b3 and not to by. By 3.4, for i = 2,3 there

exists ¢;8 € A\ {as} adjacent to b;,bg; cig # a1,as2,aq since ay,az,aqs are not adjacent to bg, and
¢i 8 # as since as is not adjacent to b; by (3). But then

{{a3,b1},{c28,c338,08,b2},{b3}, {as,as,bs}, {a1},{az,b5}}

is a 6-cluster. This proves (4).
(5) Each of bg, b7 is adjacent to at least one of as,ay.

Suppose that bg is nonadjacent to both as,as. Thus ¢; 6 # a4, as for 1 <i < 4. But then

{{c16,ca,6, 01,06}, {a3, ba}, {as, b3}, {bs}, {a1}, {a2,b5}}

is a 6-cluster. This proves (5).

(6) Each of bg, b7 is adjacent to both of ag,ay.

Figure 16: For the proof of 6.2, step (6).

Suppose that ag4, bg are nonadjacent. By (5), asbg is an edge. From (4), since as, as both have
degree six, and have the same number of neighbours in B\ {by,...,b7}, it follows that they have
the same number of neighbours in {bg, b7}; and so a4 has at least one neighbour in {bg, b7}, and
therefore a4by is an edge, and as, by are not adjacent. Suppose that c4¢,c1 7 are different; then from
the symmetry we may assume that c; 7 # as. Then

{{e1,7,01},{as, b2, b6}, {as, b3, b7}, {as, cap, ba}, {a1},{az,b5}}

is a 6-cluster. So c17 = c46, and we may assume that they both equal as. Since as has at most
five neighbours in {b1,...,b7}, it has a neighbour bg different from b,...,b;. Consequently bg is
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nonadjacent to a1, as. Suppose that bg is nonadjacent to both as,as. By 3.4, for ¢ = 1,4,6,7 there
exists ¢; g adjacent to b;, bg, and different from as. Since bg is nonadjacent to a1, as, as, a4, it follows
that ¢;8 # a1,...,as. But then

{{af)v bl}a {a37 b2}7 {614, b37 b7}a {64,87 C6,8, b4a b67 b8}7 {a1}7 {(12, b5}}

is a 6-cluster. So bg is adjacent to one of as, a4, and hence to both as,as by (2). By 3.4, there is a
vertex ag 7 as adjacent to bg, by; and so ag # a1, as, as, aq since none of these four vertices is adjacent
to both bg, b7. But then

{{alv bl}a {(Lg, bQ}v {a47 b3}7 {a5> b4}7 {GQ}’ {aﬁv be, b7}}

is a 6-cluster. This proves (6).

Figure 17: For the last part of the proof of 6.2. (a5 is not drawn.)

From (6), there is a unique vertex bg € B\ {b1,...,b7} adjacent to a3, and it is adjacent to both
of as, aq by (4). The subgraph induced on {ay, as, as, a4, by, b, b3, by, bs, bg, b7, bg} (note that as is not
included) has some significant symmetry, which will help reduce the case analysis to come. There
are symmetries that exchange

e by with bs;

e a1 with as, and bg with br;

e a3 with a4, and by with by;

e a; with as, as with a4, bs with bg, bg with b1, and by with by.

Let us call these symmetries the first, second, third and fourth symmetries respectively. In the ar-
gument to come, we will avoid making use of as, in order to maintain these symmetries.

(7) Let Cy be the component of G\ {a1,as,as,as} that contains by; then it contains none of by, . .., bs
except bo.
Suppose not. By 3.4, c56,¢57,c18,c48 exist, and they are different from ay,...,as. Let X =
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{c56,¢57,b5,b6,b07} and Y = {c18,ca8,b1,b4,b3}. (X,Y might not be disjoint.) Since C; contains
one of by, bs, ..., bs, there is a a minimal path P of G \ {a1, as,as,as} with one end be and the other
end in {b3} U X UY. From the minimality of P it has no other neighbour in {b3} UX UY. Let z be
the end of P different from bs. If z = b3 then

{{bs}, P* U {ba},{a1},{az2,bs5},{as, b1}, {as,ba}}

is a 6-cluster. Thus z € X UY, and from the fourth symmetry we may assume that z € X, and from
the second symmetry we may assume that z € {a1, b5, bg}. But then

{P* U X7 {ala b4}7 {CLQ}, {a37 b1}7 {b2}7 {a/47 b3}}
is a 6-cluster. This proves (7).

Similarly, let C3 be the component of G \ {a1, a2, as,as} that contains bs; then it contains none
of by,...,bs except bs. Now aq,...,as are the only vertices in A\ V(C;) that have a neighbour in
V(C;), for i = 2,3, and in particular, no vertex in V(C;) N A has a neighbour in V(G) \ V(C)).
Since C; is not a smaller candidate, it follows that |[A NV (C;)| < |[BNV(C;)|, for i = 2,3. But
there are at least six vertices in B\ (V(C3) U V(Cs)) that have a neighbour in {a1,as}, namely
b1, by, bs, b, b7, bg; and similarly there are six such vertices that have a neighbour in {ag,as}. Hence
contracting V(C2)U{a1,a3} and V(C2)U{ag,as} into A makes a smaller candidate, a contradiction.
This proves 6.2. |

7 Excluding K (4,4,2)-subgraphs
7.1 Let G be a minimal candidate with bipartition (A, B). Then G has no K(4,4,2)-subgraph.

Proof. Suppose that ay,...,a4 € A are all adjacent to each of by,...,bs € B except the pairs
aiby, azbs.

ai as a4 az

b1 bs ba ba
Figure 18: K (4,4, 2)-subgraph.

For i = 3,4, a; has two neighbours, d ;,d2; say, not in {by,...,bs}. Since there is no K(2,5,0)-
subgraph by 6.2, none of dy 3,d23,d1 4, d2 4 is adjacent to both as, a4, and so they are all distinct.

(1) Each of dy 3,d23,d1.4,d2.4 has a neighbour in {a1,as}.
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Suppose that dy 3 say is nonadjacent to both aj,as. By 3.4, for 1 < ¢ < 4 there is a vertex ¢;
different from a3 that is adjacent to both d; 3,b;. But then

{{as}, {c1, e, ¢3,c4,dr 3}, {a1, b2}, {az, b3}, {as, b1}, {ba}}
is a 6-cluster. This proves (1).

Not both d; 3,d2 3 are adjacent to aj, since there is no K(2,5,0)-subgraph by 6.2, and similarly
they are not both adjacent to az, so we may assume that dj 3 is nonadjacent to as, and dp3 is
nonadjacent to a;. The same applies for dy 4,ds4; so for each ¢ € {1,2} and each j € {3,4}, d;; is
adjacent to a;,a; and nonadjacent to the other two vertices in {ai, ..., a4}.

dq3 dy 4 da3 da 4

Figure 19: For the proof of 7.1, step (2).
(2) There is a vertex bs not in {by,...,bs} adjacent to ay,as

Suppose not. Let d be the neighbour of a; different from di 3,d1 4,0b2,b3,bs. Thus d is adjacent
to a1 and to none of a9, a3, as. By 3.4, for 2 < i < 4 there exists ¢; different from aq that is adjacent
to both d,b;. Also by 3.4, there is a vertex f different from ag that is adjacent to both by, d2 3. So
¢, c3,¢4, f are all in A\ {a1,...,aq4}. But then

{{ca, ca, [ 02}, {b3}, {az, d2 3}, {as, b1}, {a4, doa}, {ba}}

is a 6-cluster. This proves (2).

By 3.4, there is a vertex c¢; different from as and adjacent to bs,b1; and so ¢ # ai,...,aq4.
Similar there exists cz # a1, ..., as adjacent to bs,by. By 3.4, there is a vertex f; 3 different from a3
that is adjacent to both b1, d; 3; and similarly there exists fi 4 different from a4 that is adjacent to
both b1,d 4; there exists fo 3 different from a3 that is adjacent to both bs, ds 3; and there exists f2 4
different from a4 that is adjacent to both by, d; 4. Consequently none of fi 3, f1.4, f2.3, fo,4 belongs
to {a1,...,as}. If they are all equal, equal to as say, then as is adjacent to by, be, d1 3, d1 4, d2 3, d2 4
but then

{{c1,¢2,b1,b2,b5}, {as}, {a1,d1a}, {a2,d23,b3}, {a3, d1 3}, {as,d24,bs}}
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is a 6-cluster. Thus they are not all equal, and so there exist i,j € {3,4} such that f;; is different
from fo ;.

Figure 20: For the last part of the proof of 7.1. f;; is adjacent to d;; for some i € {3,4}, and
similarly for fs ;. The vertices c1, co might be equal, but fq; is different from f5 ;.

(3) There are two disjoint subsets X,Y of {b1, f14,b2, f2j,c1,¢2,b5}, both inducing connected sub-
graphs, with by, fi3 € X and by, fo; €Y, such that there is an edge between X,Y .

If f1, is adjacent to by we may take X = {by, fi1;} and Y = {bo, f2;}, so we assume that f;; is non-
adjacent to b, and similarly f5; is nonadjacent to by. It follows that fi; # c2 and fo; # c1. So the
only possible equalities between two of f1;, f2;,c1,c2 are f1; = c1, faj = c2, and ¢1 = ca. If f1; = c1,
then ¢; is different from fs ;, co and we may set X = {b1,c1,b5} and Y = {bg, f2 j, c2}, so we assume
fi,i # c1, and similarly fo; # c2. But then we may set X = {by, fi;} and Y = {bs, c1, c2, b2, f2,;}.
This proves (3).

But then
{X, Y, {a1,d13,d14},{a2,bs,d23,d2.4,ba},{as, b3}, {as}}

is a 6-cluster. This proves 7.1. |

8 Excluding K (2,4,0)-subgraphs
We begin with:
8.1 Let G be a minimal candidate with bipartition (A, B). Then G has no K(3,4,1)-subgraph.

Proof. Suppose that aq,as, a3 € A are all adjacent to each of by, ...,bs € B except a1b;. We observe:

(1) No vertex in A\{a1,a2,as} is adjacent to by and to two of by, bz, by. No vertex in B\ {b1,...,bs}
is adjacent to both ag,as. At most one verter in B\ {bi,...,bs} is adjacent to both ai,as, and at
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most one is adjacent to a1, as,

The first is because there is no K(4,4,2)-subgraph by 7.1, and the other three because there is
no K(2,5,0)-subgraph by 6.2. This proves (1).

al a9 as
d1 d2 dg b2 b3 b4 bl

C’L"]
Figure 21: The start of the proof of 8.1. ¢; ; is adjacent to d; and b;.

Let By be the set of vertices that have exactly one neighbour in {ai,as,as}. Thus |By| is odd.
From (1) it follows that each of aj, a9, a3 has a neighbour in By; let us call these neighbours dy, dg, ds3
respectively. For i = 1,2,3 and j = 1,2,3,4 (except when (7,j) = (1,1)), by 3.4 there is a vertex
c;; different from a; and adjacent to d;,b;. Hence ¢;; # a1,a2,a3. For i = 2,3 choose the set
{¢i1,ci2,¢i3, ¢4} minimal, and choose the set {c12,¢1,3,¢1,4} minimal.

(2) Some vertex ay € A\ {a1,a2,a3} has more than one neighbour in {ba, b3, bs}.

Suppose not. Thus cz9,c23,c24 are all different. We chose {c21,¢2,2,¢2,3,¢24} minimal; so we
may assume that either

® C21,C22,C23,c44 are all distinct, and each has only one neighbour in {b1,...,bs}; or
® cy1 = cp2. In this case ¢z 1 is nonadjacent to b3, by by (1).

In both cases neither of ¢z 1,c22 have a neighbour in {b3,b4}, and so {c13,c14} is disjoint from
{c2.1,c22}. But then

{{c2,1,c22,da}, {az}, {c13,c2,3,d1,b3}, {c14,¢24,ba},{a3,b1},{a1,b2}}

is a 6-cluster. This proves (2).

We assume that a4 is adjacent to be, b3 (and possibly to b4, but not to by, by (1)).
(3) a4 is adjacent to da,ds.

Suppose that a4, d2 are nonadjacent, say. Then

{{e21, 22,23, ¢04,do}, {as}, {ba}, {aq, ba}, {as, b1}, {a1,bs}}
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is a 6-cluster. This proves (3).

Figure 22: For the proof of 8.1, step (4).

(4) If a4 is nonadjacent to by, then no vertex in A\ {ai,...,as} has a neighbour in {ba,bs} and a
neighbour in {dz,ds}.

Suppose that some a5 € A\ {ai1,...,a4} is adjacent to bg,ds say. By (1), c21 # a4, and since
a4, by are nonadjacent, ca 4 # a4. Hence

{{az}, {21, c24,a5,d2}, {a1, b4}, {a3, b1}, {b2}, {as, b3}}

is a 6-cluster. This proves (4).
(5) ay is adjacent to dy and hence to every vertex in By.

Suppose that a4 is nonadjacent to di. Thus ¢y 2,c1,3,¢1.4 # as. If ay is adjacent to by, then co 4 = a4
by (3) (with b3, by exchanged), and at most one of ¢1 2, ¢1.3,¢14 = c21 by (1), and so we may assume
that {c1,c24} is disjoint from {c1 2,¢13}. If a4 is nonadjacent to by, then by (3), neither of ¢z 1, c24
has a neighbour in {bs, b3}, and so again ca 1, 24 # c1,2,c¢1,3. In either case

{{b2}, {b3,c1,2,¢c1,3,d1},{d2, 21,24, a4}, {a1,bs}, {az}, {as, b1}}

is a 6-cluster. Hence a4 is adjacent to each of dy, ds, d3, and hence to every vertex in By. This proves

(5).
(6) a4 is adjacent to by.
Suppose not. Since a4 has degree six and is nonadjacent to by by (1), it has a neighbour b; #

bi,...,bs,d1,do,ds. By 3.4, for each v € {bo, b3, d1,ds,ds} there is a vertex c(v) different from ay
adjacent to bs,v; and hence c(v) # aq,...,as. But then

{{a4}’ {b5? C(bQ)a C(b3)> C(dl)a C(dQ)v C(d3)}a {alv dl? b4}’ {a2a blv dQ}a {a3> d3}a {bQ}}

is a 6-cluster. This proves (6).
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Figure 23: For the last part of the proof of 8.1.

Since a4 has degree only six, it follows from (5) that |By| < 4. Since |By| is odd, it follows that
By = {d1,ds,d3}, and there are two vertices dy,ds € B\ {b1,...,bs} that have two neighbours in
{a1,a2,a3}. By (1) we may assume that dg4, ds are adjacent to aj,as and to ai,as respectively.

We do not obtain a smaller candidate by contracting {dy, a1,b2}, {ds, as, b3}, {b1,a2,bs} into B;
and so there is a vertex as # a1, ..., a4, adjacent either to both b, dy, or to both bs, b5, or to both
b1,bs. There is symmetry between by, dy4, ds (see figure 23), so we may assume that aj is adjacent
to by,by. By 3.4, there is a vertex c(dy) different from ag adjacent to both by, ds; a vertex c(ds)
different from a3 adjacent to both by, ds; and a vertex c(ds) different from a3 adjacent to both by, ds.
It follows that c(ds), c(d3) # a1, ..., a4. But then

{{b17 as, C(dZ)a C(dS)a C(d5)’ d2}7 {CLQ’ b3}v {ah d5}> {a3a d3}> {CL4, b2}7 {b4}}

is a 6-cluster. This proves 8.1. |

8.2 Let G be a minimal candidate with bipartition (A, B). Then G has no K(2,4,0)-subgraph.

Proof. Suppose that ai,as € A are both adjacent to each of by,...,by € B. No other vertex is
adjacent to both a1, as, since there is no K(2,5,0)-subgraph by 6.2. Let bs, bg, b7, bs be the vertices
in B that have exactly one neighbour in {a1, a2}, where by, bg are adjacent to a;, and bz, bg to as.

No other vertex is adjacent to more than two of of by,..., by, since there is no K(3,4,0)- or
K(3,4,1)-subgraph by 5.2 and 8.1. Let H be the cover graph with respect to a1, as, b1, ba, b3, by;
then x(H) > 3 by 3.3, and so H has a triangle, say with vertices b1, be, b3. Consequently there are
three vertices ¢y, cg, c3, such that ¢; is adjacent to the two vertices in {b1,b2,bs} \ {b;}, and ¢; is
nonadjacent to b;.
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C3 Cc2 C1

Figure 24: For the proof of 8.2.

Let Z = {a1,a2,b1,b2,bs, by, c1,c2,c3}, and let C be the set of components of G\ Z that contain
at least one of bs, bg, by, bg. For each C' € C, let N(C') be the set of vertices in {b1, be, b3, c1, 2,3}
that have a neighbour in V' (C).
(1) If C € C, then by has a neighbour in V(C), and either

o N(C) = {bi,c;} for somei e {1,2,3}; or

o N(C) = {ci,c;} for some two distinct i,j € {1,2,3}.

Let b5 € V(C) say. By 3.4, for i = 1,2,3,4 there is a vertex different from ay adjacent to both
bs, b;. Since none of cj,ca,c3 is adjacent to by, it follows that by has a neighbour in V(C'). Also,
for 1 < i < 3, either b; € N(C) or N(C) contains a vertex in {c1,co,c3} \ {¢;}. In summary, N(C)
contains a member of each of the sets {b1, ca, c3}, {b2, c3,¢1}, {b3, c1,c2}. Consequently, if |[N(C)| = 2
then the claim holds, so we assume that |N(C')| > 3. Since

{{637 b1}7 {027 b3}’ {Cl? b2}v {al}v {a27 b4}7 V(C)}

is not a 6-cluster, it follows that N(C) is disjoint from one of the sets {cs, b1}, {c2, b3}, {c1, b2}, and we
may assume from the symmetry that by, c3 ¢ N(C). Since N(C') contains a member of {b1, co, c3}, it
follows that co € N(C'). By a similar argument, N (C') is disjoint from one of {c3, ba}, {c2, b1}, {c1, b3},
and hence from one of {cs, b2}, {c1,bs}. Since |[N(C)| > 3, N(C)N{c1,b3} # 0; and hence by ¢ N(C).
Since |[N(C)| > 3 it follows that ¢1,b3 € N(C). But then

{{CQ’ €3, bl}’ {01, b2}7 {b3}7 {al}v {a27 b4}7 V(C)}

is a 6-cluster. This proves (1).

(2) If C € C, then every vertex of V(C) N {bs,bg,b7,bs} is adjacent to every vertex of N(C) N
{e1,¢2, 3}

We may assume that b; € V(C) and c¢3 € N(C), and we must show that bs,cs are adjacent. It
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follows from (1) that by, b2 ¢ N(C). But for i = 1,2 there is a vertex different from a; adjacent to
both b5, b;, and this vertex is one of ¢y, ¢, c3 since by, by ¢ N(C). Thus bs is adjacent to one of ¢y, c3,
and also to one of cg, c3. But b5 is not adjacent to both cj, co since not all ¢1, ca,c3 € N(C); and so
bs is adjacent to cz. This proves (2).

(3) Let C € C contain one of bs, bg, bz, bs; then N(C) N {b1,ba, b3} = 0.

Suppose that by,b5 € V(C) say. Thus N(C) contains ¢; and none of bg,bs,ca,c3. Let C' € C
contain bg. We claim that bg is also adjacent to c;; because suppose not. Then b ¢ V(C), by
(2), and so C" # C. Since bg is nonadjacent to ¢y, (2) implies that ¢; ¢ N(C’). Since bs, bg are
both adjacent to aj, they have a second common neighbour ¢ say. But ¢ ¢ {c1,co,c3}, since ¢; is
not adjacent to bg, and co,c3 ¢ N(C) and so are not adjacent to bs. Also ¢ # aj,az; so ¢ ¢ Z,
contradicting that C' # C’ are components of G \ Z. This proves that bg is adjacent to c;.

We claim also that ca,c3 ¢ N(C’). There is a symmetry exchanging cs, c3 and fixing ¢, so we
suppose without loss of generality that co € N(C’), and hence C # C’. But then

{{V(Cl) U {CQ}, V(C) U {Cl, bg}, {bl}, {bg, 03}, {al}, {CLQ, b4}}

is a 6-cluster. This proves that ¢, cs ¢ N(C”), and hence N(C") = N(C).

Now ai,c; have four common neighbours, namely bs, b3, b5, bg; and so they satisfy the same
conditions as a1, as. At the start of this proof, we showed the existence of c1, o, c3, that with three
of b1, ba, b3 induce a 6-cycle. Consequently the same is true for bo, bs, bs, bg, and in particular there
are two vertices ¢y, c5, different from aj, ¢1, that have a neighbour in {be,b3}. Since ca,c3 ¢ N(C) =
N(C"), it follows that c4,c5 ¢ Z, and hence at least one of by, b3 belongs to N(C) = N(C’), contrary
to (1). This proves (3).

For i = 5,6,7,8, let C; € C contain b; (they are not necessarily all different). From (1), (2) and
(3) it follows that each of bs, bg, b7, bs is adjacent to two of ¢1, ca, c3. They are not all adjacent to the
same two of ¢y, cg, 3, since there is no K(2,5,0)-subgraph by 6.2; so there exists C' € {C5,Cs} and
C" € {Cr,Cs} with N(C) # N(C"). Thus we may assume that co,c3 € N(C5) and ¢1,co € N(C7).
In particular C5 # C7; and by (2), bs, by are adjacent to ca. By 3.4 they have another common
neighbour, say c¢. Thus ¢ ¢ {a;,as} because bs, by each have only one and different neighbours in
that set; ¢ ¢ {c1,co,c3}, since ¢ # co from its definition, and ¢; ¢ N(C5), and ¢3 ¢ N(C7); and
c ¢ V(G)\ Z since C # C', a contradiction. This proves 8.2. |

9 The end

Next we need the following lemma. Let H be a complete graph with six vertices. If C' is a triangle of
H, a C-path means a path of H with vertex set C. Let Cq,...,C} be triangles of H, not necessarily
all different. We denote by M(C1,...,C}) the graph with vertex set V(H) and edge set the set of
all edges uv of H such that {u, v} is not a subset of any of C1,...,Ck. Let J be the graph obtained
from a six-vertex complete graph by deleting four edges, the edges of two disjoint three-vertex paths.
We observe that J admits a 5-cluster (one of the five sets contains the two vertices of degree three,
the others are singletons).
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9.1 Let H,C1,...,Cy be as above. Then for 1 <1i <k there is a C;-path P;, such that
M(Cy,...,Ce)UPLU---U P
has a subgraph isomorphic to J.

Proof. We proceed by induction on k. Suppose first that u,v € V/(H) and two of C1, ..., C contain
u,v, say C1,Cy. Let C; = {u,v,w} say. Let P; be the path u-w-v. From the inductive hypothesis,
for 2 < i < k there is a Cj-path P; such that M(Cs,...,C;) U P, U---U Py admits a 5-cluster. But
every edge of M(Cy,...,C)) that is not an edge of M(C4,...,C%) is one of uw,vw, and they are
edges of Py;s0 M(Cq,...,C;)U Py U---U Py contains a copy of J as required.

So we may assume that no two of C1,...,C} share more than one vertex. Every subgraph of
H obtained by deleting at most two edges contains a copy of J, so we may assume that k£ > 3 and
hence no two of C, ..., Cy are disjoint (because if C; N Cy = () then C3 shares two vertices with one
of them). Let V(H) = {h1,...,hg}; then we may assume that C; = {hi, ha, hs}, Co = {h1, h4, hs5},
03 = {hQ,h4,h6} and either £ = 3, or Kk =4 and C4 = {h37h5,h6}. Define P1 = hg—hl—hg,, PQ =
h1-hs-hy, P3 = hg-ho-hg, and if k = 4, define Py = hg-hg-hs. If k = 4, M(Cl, ey Ck) UPLU---UPg
is isomorphic to J, and if k = 3, M(C1,...,Cx) U Py U--- U Py contains a copy of J. This proves
9.1. |

We deduce 1.7, which we restate as follows:
9.2 No graph is a candidate.

Proof. Assume some graph is a candidate, and let G be a minimal candidate, with bipartition (A, B).
Let a € A, and let its neighbours be by, ...,bs. By 3.3 (or by 3.4), the cover graph H with respect to
a,by,...,bg is complete. No vertex different from a has more than three neighbours in {b,...,bs},
since there is no K(2,6,0)-, K(2,5,0)- or K(2,4,0)-subgraph, by 6.1, 6.2 and 8.2. Consequently
there is a set of vertices ai,...,as € A\ {a}, each with two or three neighbours in {b1,...,bg}, such
that for all distinct u,v € {b1,...,bg}, there exists i € {1,...,¢} such that a; is adjacent to u,v.
We may assume that ay, ..., ar have three neighbours in {b1,...,bs} and ag41,...,a; have two. For
1 <i <k let C; be the set of three neighbours of a; in {b1,...,b}. By 9.1, for 1 <1i < k there is a
Ci-path P; such that M(Cy,...,Cy) U Py U---U Py contains a copy of J as a subgraph, and hence
admits a 5-cluster {X1,..., X5} say. Let p; be the middle vertex of P; for 1 < i < k, and let p; be
one of the two members of C; for k+1 < i < /.

For each v € {b1,...,bg} let C(v) be the union of {v} and all the vertices ¢; with 1 < i < ¢ such
that p; = v. For 1 < j < 5 let Y; be the union of the sets C(v) over all v € X;. We claim that
{{a},Y1,...,Y5} is a 6-cluster. To see this, we must check that these six sets are pairwise disjoint
subsets of V(G), which is clear; that Y7,...,Ys each contain a neighbour of a, which is true since
X1, ..., X5 are nonempty subsets of {b1, ..., bg}; that each of the sets Y; induces a connected subgraph
of G; and that for 1 < ¢ < ¢ <5, some vertex in Y; has a neighbour in Y. To see both these final
statements, it suffices to show that if u,v € {b1,...,bs} are adjacent in M(C1,...,Cr)UP U---UPy,
there is an edge of G between C(u),C(v). To see this, there are two cases: uv € E(M(C4,...,Ck)),
and uwv € E(P;) for some i € {1,...,k}. In the first case, there exists ¢ with k + 1 < i < ¢ such
that ¢; is adjacent to both u,v, and since p; is one of u, v, the claim holds. In the second case, let
wv € E(F;) for some i € {1,...,k}; then one of u,v equals p;, say v; the other, w, is an end of P;;
and in G there is an edge between c¢; and u. This proves 9.2. |
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