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Field-theoretic simulations are numerical treatments of polymer field theory models that go

beyond the mean-field (SCFT) level and have successfully captured a range of mesoscopic

phenomena. Inherent in molecularly-based field theories is a “sign problem” associated

with complex-valued Hamiltonian functionals. One route to field-theoretic simulations

utilizes the complex Langevin (CL) method to importance sample complex-valued field

configurations to bypass the sign problem. Although CL is exact in principle, it can be

difficult to stabilize in strongly fluctuating systems. An alternate approach for blends or

block copolymers with two segment species is to make a “partial saddle point approxima-

tion” (PSPA) in which the stiff pressure-like field is constrained to its mean-field value,

eliminating the sign problem in the remaining field theory, allowing for traditional (real)

sampling methods. The consequences of the partial saddle point approximation are rela-

tively unknown, and direct comparisons between the two methods are limited. Here, we

quantitatively compare thermodynamic observables, order-disorder transitions, and peri-

odic domain sizes predicted by the two approaches for a weakly compressible model of AB

diblock copolymers. Using Gaussian fluctuation analysis, we validate our simulation ob-

servations, finding that the partial saddle point approximation incorrectly captures trends in

fluctuation corrections to certain thermodynamic observables, microdomain spacing, and

location of order-disorder transitions. For incompressible models with contact interactions,

we find similar discrepancies between the predictions of CL and PSPA, but these can be

minimized by regularization procedures such as Morse calibration. These findings man-

date caution in applying the PSPA to broader classes of soft-matter models and systems.
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I. INTRODUCTION

Polymer field theories have provided considerable insight into the equilibrium self-assembly

behavior of broad classes of inhomogeneous polymers, notably block copolymers and polymer

blends. Most commonly, the field theories are treated with a mean-field approximation, also

known as self-consistent field theory (SCFT).1–5 A more refined approach is a field-theoretic

simulation (FTS), which is a numerical treatment of the field theory without any simplifying

approximations.6–9 FTS samples field fluctuations that depart from the mean-field (or saddle

point) configuration and can capture strongly correlated phenomena such as unbinding transitions,

fluctuation-induced changes in the order of phase transitions, and charge-driven polyelectrolyte

condensation.

Numerical implementation of FTS is challenged by the fact that molecularly-derived field the-

ories have a complex-valued Hamiltonian functional H, so the Boltzmann-like weight exp(−H) is

not positive definite and suffers a “sign problem.” Traditional Monte Carlo methods for sampling

such high-dimensional complex distributions are ineffective, so alternative approaches must be de-

vised. Over the past 20 years, two separate paths to conducting field-theoretic polymer simulations

have emerged: one based on a method known as complex Langevin sampling (CL) that in principle

makes no approximations,4,6,7,10–14, and a second method that approximates one of the fields using

a “partial saddle point approximation” (PSPA), which renders the resulting statistical weight pos-

itive definite and enables conventional Monte Carlo or (real) Langevin sampling.15–21 Both FTS

methods have been successfully applied to obtain fluctuation-corrected phase diagrams of block

copolymers13,22–26 and microemulsion-forming ternary polymer blends27–29. In addition, CL-

based field-theoretic simulations have enabled studies of “bricks and mortar” emulsion phases30,31

in mikto-arm block copolymer alloys, the structure and assembly of salt-doped diblock melts32,

nematic ordering in bottlebrush polymers33, and complexation of oppositely charged polyelec-

trolyte and polyampholyte solutions34–38.

CL-based field-theoretic simulations have the advantage of being approximation free, but com-

plex Langevin trajectories can be difficult to stabilize in certain classes of problems. In contrast,

the PSPA approach provides for stable sampling, but it is limited to blends or solutions with only

two monomer or solvent species and the impact of the partial saddle point approximation on struc-

tural and thermodynamic predictions is largely unknown. Here we provide a detailed, quantitative

comparison of the two methods for the specific case of a diblock copolymer melt model that is
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amenable to study by both techniques.

The theoretical basis for the particular AB diblock copolymer models employed is detailed in

the next section, but it helpful to first clarify the nature of the approximation involved in the PSPA

and the approach to sampling field fluctuations in both methods. The canonical partition function

of standard models of diblock copolymer melts can be expressed in terms of two auxiliary fields

w±(r) as4,39

ZC(T,V,n) = Z0

∫

Dw+

∫

Dw− e−H[w+,w−] (1)

Here, Z0 is a term that includes the ideal-gas contribution and Gaussian integral normalizing

denominator terms, w+ is a pressure-like field that resists total density variations in the melt, and

w− is an exchange field that determines instantaneous composition profiles (i.e., the relative spatial

distribution of A and B block segments). The two integrals in Eq. (1) are functional integrals taken

along the real axis for both fields and the Hamiltonian functional H[w+,w−] is complex-valued

along this integration path. The specific form of H is deferred to the next section.

The simplest method of analyzing Eq. (1) invokes a mean-field (or SCFT) approximation,

which assumes that a single field configuration (w∗
+ and w∗

−) dominates the partition function.

Such a mean-field configuration represents a saddle point in the complex plane of the Hamiltonian

functional and satisfies the stationary conditions:

δH[w+,w−]

δw−(r)

∣

∣

∣

∣

w∗
±

= 0 (2)

δH[w+,w−]

δw+(r)

∣

∣

∣

∣

w∗
±

= 0 (3)

The saddle point value of the pressure field w∗
+ proves to be pure imaginary, while w∗

− is purely

real and all physical observables are likewise real. This includes the mean-field approximation to

the Helmholtz free energy, βA = H[w∗
+,w

∗
−].

The mean-field approximation (SCFT) evidently neglects field fluctuations away from the sad-

dle point, whose strength is controlled by a dimensionless chain concentration C = nR3
g/V (n is

the number of polymers, Rg is the unperturbed radius of gyration of a copolymer, and V is the

system volume) that multiplies every term in the Hamiltonian and serves as a Ginzburg parameter.

SCFT is thus most accurate in the limit where C ≫ 1, i.e. the case of dense melts of long polymer

chains. We do not correct for fluctuation-induced changes to C through renormalization of the

statistical segment length b.40 In our work, the dimensionless chain concentration C is related to a
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“bare” invariant degree of polymerization41 N̄ = 63C2 = ρ2
0 b6N that is expressed entirely in bare

model parameters. Most studies applying the PSPA use a renormalized b parameter and hence

N̄ obtained from a Morse calibration procedure.26,42 Experimentally relevant dimensionless chain

concentrations for a block copolymer range from C ≈ 1− 5.41,43–45 As previously mentioned, a

major challenge in sampling such molecularly-derived field theories is the sign problem that arises

from a complex-valued Hamiltonian, leading to Boltzmann weights that are not positive-definite.

The partial saddle point approximation (PSPA)16 bypasses this problem by approximating the w−

dependent w+ integral with a saddle point approximation while retaining the functional integral

over w−, i.e.

ZC(T,V,n) = Z0

∫

Dw−

∫

Dw+ e−H[w+,w−]

≈ Z0

∫

Dw− e−Hp[w−] (4)

Hp[w−] ≡ H[w∗
+[w−],w−] (5)

Here w∗
+[w−] denotes the saddle point value of the w+ field at fixed w−, which is obtained by

numerically solving the equation

δH[w+,w−]

δw+(r)

∣

∣

∣

∣

w∗
+

= 0 (6)

with w− specified. Crucially, the PSPA renders w∗
+[w−] pure imaginary and the effective Hamil-

tonian Hp[w−] purely real, so the sign problem is avoided in the second line of Eq. (4). The

resulting approximate theory in the single real field w− can thus be numerically simulated using

any stochastic method capable of efficient sampling of high-dimensional, real-valued probability

distributions, e.g. Monte Carlo or (real) Langevin dynamics.

Real Langevin dynamics is the most commonly used method for sampling field configurations

w− within the PSPA. This is a fictitious dynamics used to generate a Markov chain of field con-

figurations representative of the Boltzmann distribution exp(−Hp[w−]). At steady state, fictitious-

time-averages over the Markov chain can be used to approximate ensemble averages of the PSPA

field theory defined by Eq. (4). In such a sampling scheme, Langevin updates of the w− field are

staggered with numerical solutions of Eq. (6) to obtain the partial saddle point field w∗
+[w−] nec-

essary to evaluate Hp[w−]. Specifically, the coupled scheme involves the solution of the following
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equations

δH[w+,w−]

δw+(r, t)

∣

∣

∣

∣

w∗
+

= 0 (7)

∂w−(r, t)

∂ t
=−

δHp[w−]

δw−(r, t)
+η(r, t) (8)

where t is the fictious time variable and η(r, t) is a real Gaussian white noise. The statistical

properties of the noise are defined by its first two moments

⟨η (r, t)⟩ = 0 (9)
〈

η (r, t)η
(

r′, t ′
)〉

= 2δ (t − t ′)δ (r− r′) (10)

where the covariance in Eq. (10) is chosen in accordance with the fluctuation-dissipation theorem.

The alternative to the partial saddle point approach is to retain the exact field theory of Eq. (1)

and tackle the sign problem using complex Langevin (CL) dynamics. In contrast to real Langevin,

CL is a fictitious stochastic dynamics that explores complex-valued field configurations and

in this instance generates a Markov chain of states representative of the complex distribution

exp(−H[w+,w−]). The CL equations are not guaranteed to converge to a steady state, but if

convergent, it can be proven that fictitious-time averages using the Markov chain are equivalent to

ensemble averages of the full field theory given in Eq. (1).46,47 The complex Langevin dynamical

equations are as follows:7,39

∂w−(r, t)

∂ t
= −

δH[w+,w−]

δw−(r, t)
+η−(r, t) (11)

∂w+(r, t)

∂ t
= −

δH[w+,w−]

δw+(r, t)
+η+(r, t) (12)

where η±(r, t) are independent real Gaussian white noises with statistical properties defined by the

moments given in Eqs. (9) and (10). Within the complex Langevin scheme, both w+ and w− are

updated simultaneously. With the noise terms omitted, Eqs. (11) and (12) reduce to a deterministic

descent scheme for finding saddle point solutions, i.e. solutions of Eqns. (2) and (3). More gener-

ally, the stochastic CL equations serve to importance sample the full complex distribution of field

states. At large chain concentration, C ≫ 1, CL trajectories are usually concentrated on constant

phase paths in the close vicinity of saddle points, but in cases of stronger fluctuations (C ≲ 1) CL

trajectories can sample states far removed from saddle points. Under such conditions of strong

fluctuations, the CL equations can prove difficult to stably integrate.48
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Both methods of conducting FTS simulations have qualitatively captured the experimental ob-

servation that fluctuation contributions lead to shifts in the order-disorder transition in linear di-

block copolymers that increase with decreasing C. However, there have been only two quantita-

tive comparisons between fully fluctuating and partial saddle-point approximation field-theoretic

simulations; one was conducted in a ternary blend of a AB diblock copolymer with A and B ho-

mopolymer and the other in thin films of molten AB diblock copolymer.21,27 Both works showed

good agreement between the CL and PSPA methods in a region where fluctuation corrections are

small (C ≫ 1). The diblock study showed that even in the weakly fluctuating regime, there were

perceptible differences between CL and PSPA. To date, the partial saddle point approximation has

not been tested in the important regime of C ≲ 10 and we lack a theoretical argument to clearly

establish the conditions that would justify its use. In the absence of such theoretical guidance,

here we embark on a direct numerical comparison of the two methods to better understand the

consequences of invoking the partial saddle point approximation.

II. THEORETICAL AND NUMERICAL METHODS

In this section we detail the specific models of AB diblock copolymer melts that will used as

a test bed for the PSPA-CL comparison and summarize the theoretical and numerical methods

employed. Two diblock copolymer models are considered: Model I, an incompressible melt with

continuous Gaussian chains and contact non-bonded interactions and, Model II, a weakly com-

pressible melt with continuous Gaussian chains and repulsive Gaussian non-bonded interactions.

Model I is a standard model used in polymer physics,3 but is ultraviolet divergent, so requires

care to extract thermodynamic properties independent of fine scale artifacts of the computational

grid. Model II is ultraviolet convergent11,13 and can be used directly to obtain grid-independent

properties.

Our investigation of the validity of the partial saddle point approximation focuses primarily

on the weakly compressible model because it is mathematically well-defined and free of UV di-

vergences. A more limited study of the incompressible model is contained in the supplementary

information.
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A. Model I: Unregularized Incompressible Model

We first consider the model of incompressible AB-diblock copolymers with contact segmental

interactions.3,4 Its canonical partition function ZC(n,V,T ) is given by

ZC(n,V,T ) =

1

λ 3nN
T n!

n

∏
i=1

∫

Dri e−βU0−βU1

∏
r

δ (ρ̂A(r)+ ρ̂B(r)−ρ0) (13)

βU0 =
3

2b2

n

∑
j=1

∫ N

0
ds

∣

∣

∣

∣

dr j(s)

ds

∣

∣

∣

∣

2

(14)

βU1 =
χ

ρ0

∫

dr ρ̂A(r)ρ̂B(r) (15)

where β ≡ 1/(kBT ) is the inverse of the thermal energy, T is the temperature, and λT is the thermal

de Broglie wavelength of a polymer segment. The potential energy in Eq. (13) is composed of

an elastic bonded term (βU0) and a contact non-bonded interaction term (βU1). We have used

the continuous Gaussian chain model for βU0 (shown in Eq. (14)) with N the total number of

segments on each diblock copolymer and b the statistical segment length. The strength of the

interaction term βU1, (shown in Eq. (15)) is dictated by a Flory Huggins χ parameter between

A and B segments. The final factor in the integrand of Eq. 13 is an incompressibility constraint

that fixes the sum of the microscopic densities of A and B segments locally at each point r to the

average total segment density ρ0 = Nn/V . The microscopic densities for the two segment species

are defined as

ρ̂A(r) =
n

∑
i=1

∫ f N

0
ds δ (r− ri(s)) (16)

ρ̂B(r) =
n

∑
i=1

∫ N

f N
ds δ (r− ri(s)) (17)

with f the volume fraction of type A segments on each diblock chain. By introducing ρ̂±(r) =

ρ̂A(r)± ρ̂B(r) and using two auxiliary fields w±(r) (conjugate to ρ̂±) to decouple the U1 interac-

tion and exponentiate the incompressibility constraint, we obtain the following field theory:

ZC(n,V,T ) = Z0

∫

Dw+

∫

Dw− e−H[w+,w−] (18)

H[w+,w−] =

−C

∫

dr iw+(r)+
C

χABN

∫

dr w2
−(r)

−CV̂ lnQ[wA,wB] (19)

8

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
73

04
7



Accepted to J. Chem. Phys. 10.1063/5.0173047

Assessment of the Partial Saddle Point Approximation in Field-Theoretic Polymer Simulations

Here, Z0 is a term that includes the ideal gas partition function of n noninteracting polymers, and

a Gaussian functional integral denominator.7,13 All lengths have been scaled by the unperturbed

radius of gyration Rg = b(N/6)1/2, C = nR3
g/V is the dimensionless chain concentration introduced

above, and V̂ = V/R3
g is the dimensionless volume. Since C multiplies all three terms in the

effective Hamiltonian of Eq (19), it is clear that it plays the role of a Ginzburg parameter regulating

the strength of fluctuations about saddle point (mean field) solutions.

The functional Q[wA,wB] is a normalized partition function of a single copolymer experiencing

the species fields wA and wB, which are linear combinations of the auxiliary fields w±,

wA ≡ iw+−w−, wB ≡ iw++w− (20)

Q can be evaluated from the formula4 Q = (1/V̂ )
∫

dr q(r,1), where q(r,s) is a single-chain prop-

agator for a chain experiencing the wA/wB fields. The propagator q(r,s; [wA,wB]) satisfies the

modified diffusion equation

∂

∂ s
q(r,s) =

(

∇2 −w(r,s)
)

q(r,s) (21)

w(r;s) =











wA(r) 0 ≤ s ≤ f

wB(r) f < s ≤ 1

(22)

with initial condition q(r,0) = 1. We note that the chain contour variable s has been scaled by N

and lengths by Rg in these expressions.

As mentioned previously, this incompressible model with contact repulsions is UV divergent

and does not possess a well-defined continuum limit. This is manifested by some thermodynamic

properties (such as the chemical potential) being infinite. UV divergences for an observable oc-

cur when the high-wavenumber modes of field fluctuations are not sufficiently damped and often

arise from an inadequate description of short-ranged physics. Two strategies have been used to

“regularize,” i.e. mitigate, UV divergences in the model: impose a high-wavenumber cutoff or

modify the short scale physics of the model such that high-wavenumber fluctuation modes are

suppressed. The latter strategy is deferred to the next section, while the former is implemented

by discretizing the theory onto a spatial grid. Such a regularization method yields finite observ-

ables, but their values are sensitive to the spatial resolution of the lattice.23,26,49 This can create

challenges in locating order-disorder (and especially order-order) phase boundaries, where differ-

ent lattice discretizations would normally be used for the phases being analyzed. Nonetheless, a

9

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
73

04
7



Accepted to J. Chem. Phys. 10.1063/5.0173047

Assessment of the Partial Saddle Point Approximation in Field-Theoretic Polymer Simulations

variety of methods have been developed for managing UV divergences in the present model19,23,26

and isolating universal order-disorder phase behavior.50,51

B. Model II: Regularized Weakly Compressible Model

The alternative to imposing a lattice cutoff is to modify the model such that UV divergences

are eliminated. The primary sources of UV divergences in the model described in Eq. (19) arise

from continuous Gaussian chain statistics, the point-like contact interactions, and the constraint

of local incompressibility. The continuous Gaussian chain statistics can be easily remediated

by referencing all thermodynamic observable to an ideal gas reference of continuous Gaussian

chains. Similarly, replacing contact repulsions among non-bonded pairs of segments with a repul-

sive Gaussian pair potential can serve to eliminate UV divergences. As discussed elsewhere,7,11,52

this is equivalent to smearing (convolving) the microscopic segment densities by a Gaussian with

half the variance of the pair potential. In the model described here, we smear with the normalized

Gaussian, Γ(r) = (2πa2)−3/2 exp(−r2/2a2), where r is the radial coordinate from the segment

center, and a is the width of the spread, proportional to the interaction range. Finally, instead

of strictly enforcing local incompressibility, we harmonically penalize deviations from the target

density.53 The resulting model in the particle representation has the following form:

ZC(n,V,T ) =
1

λ 3nN
T n!

n

∏
i=1

∫

Dri e−βU0−βU1−βU2 (23)

βU1 =
χ

ρ0

∫

dr ρ̌A(r)ρ̌B(r) (24)

βU2 =
ζ

2ρ0

∫

dr (ρ̌A(r)+ ρ̌B(r)−ρ0)
2 (25)

The potential energy in Eq. (23) is composed of the bonded elasticity (βU0) and non-bonded inter-

actions (βU1 and βU2). The term βU0 (Eq. (14)) remains the same as in the incompressible model.

The first interaction term βU1 (Eq. (24)) is again parameterized by a Flory Huggins χ parameter

between A and B segments. In contrast to Eq. (15), the current model adopts smeared segments

whose densities are related to the microscopic densities (Eqs. (16 - 17)) by the three-dimensional

convolution operation ρ̌ j(r) = Γ ⋆ ρ̂ j ≡
∫

dr′ Γ(|r− r′|)ρ̂ j(r
′). The second interaction term βU2

(Eq. (25)) harmonically penalizes local deviations of the total density from the target density ρ0

with a stiffness parameterized by the Helfand compressibility coefficient ζ .12,13,54 By following

similar steps described for the incompressible model and employing the same dimensionless scal-
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ings, we obtain a field-theoretic represesentation of the weakly-incompressible model:

ZC(n,V,T ) = Z0

∫

Dw+

∫

Dw−e−H[w+,w−] (26)

H[w+,w−] =

C

χABN +2ζ N

∫

dr
(

w2
+(r)−2iζ Nw+(r)

)

+
C

χABN

∫

dr w2
−(r)−CV̂ lnQ[Γ⋆wA,Γ⋆wB]

(27)

Evidently the unregularized incompressible model, Eq. (19), is recovered in the limit where ζ N →

∞ and a → 0.

C. Gaussian Fluctuation Analysis

We utilize analytical Gaussian fluctuation analysis in the weakly-inhomogenous regime to val-

idate and confirm our simulation observations. This approach deforms the contour of the func-

tional integrals to a (locally) constant phase contour through the homogeneous saddle point and

expands the Hamiltonian functional to quadratic order in the deviations of the w± fields away from

that point. The simplified field theory has Gaussian functional integrals that can be analytically

performed, yielding approximate expressions for the partition function and free energy. These

formulas are valid only in the homogeneous disordered phase of a block copolymer melt, where

field fluctuations are concentrated in the basin of the homogeneous saddle point, and are most

accurate at large C, when the fluctuations are weak in amplitude. In the case of Model II described

by Eqs. (26) and (27), we recover a previously reported Gaussian fluctuation formula.13 Since the

underlying model is UV convergent, we report the continuum thermodynamic limit that uses an

integral rather than a sum over reciprocal lattice vectors k. Detailed derivations are included in the

supplementary information. The fluctuation-corrected Helmholtz free energy per chain is given by

βFfull

n
=

βFIG

n
+χN f (1− f )

+
1

4π2C

∫ ∞

0
dk k2 ln

[

1+(2χNĝAB(k
2)+ζ NĝD(k

2))Γ̂2(k2)

+χN(χN +2ζ N)(ĝ2
AB(k

2)− ĝAA(k
2)ĝBB(k

2))Γ̂4(k2)
]

(28)

where Γ̂(k2) = exp[−k2(a/Rg)
2/2] is the three dimensional Fourier transform of Γ(r). The first

term is the intensive free energy of an ideal gas of continuous Gaussian chains; the second is
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the mean-field contribution. The final term is a Gaussian fluctuation correction where ĝAA(k
2),

ĝBB(k
2), ĝAB(k

2), and ĝD(k
2) are Debye functions that arise from the expansion of the single-

chain partition function. These are given by

ĝAA(k
2) =

2

k4

[

exp(− f k2)+ f k2 −1
]

(29)

ĝBB(k
2) =

2

k4

[

exp(−(1− f )k2)+(1− f )k2 −1
]

(30)

ĝAB(k
2) =

1

k4

[

exp(− f k2)−1
][

exp(−(1− f )k2)−1
]

(31)

ĝD(k
2) =

2

k4

[

exp(−k2)+ k2 −1
]

(32)

From Eq. (28), we can use standard thermodynamic relationships to obtain additional quantities

such as chemical potential µ and osmotic pressure P. The fluctuation contribution in Eq. (28)

given by the reciprocal-space integral is divergent in the limit of a → 0 and ζ N → ∞, confirm-

ing that incompressibility and point-like interactions are indeed the problematic sources of UV

divergence within the conventional (incompressible and unsmeared) Model I.

We repeat the Gaussian fluctuation analysis for the partial saddle point approximation by ex-

panding the saddle point approximation for w+ to second order in powers of w− to obtain an

effective Hamiltonian solely dependent on w−. This leads to the free energy expression

βFpartial

n
=

βFIG

n
+χN f (1− f )

+
1

4π2C

∫ ∞

0
dk k2 ln

[

d(k2)

(

1−
χN

2

(

a(k2)−b(k2)e(k2)+ c(k2)e2(k2)
)

)]

(33)

where

e(k2) =
(ĝAA(k

2)− ĝBB(k
2))(χN +2ζ N)Γ̂2(k2)

2+(χN +2ζ N)ĝD(k2)Γ̂2(k2)
(34)

d(k2) =
2ζ N +χN

2ζ N +χN(1− Ω̄∗2
+ (k2))

(35)

a(k2) =
(

ĝAA(k
2)+ ĝBB(k

2)−2ĝAB(k
2)
)

Γ̂2(k2) (36)

b(k2) = 2(ĝAA(k
2)− ĝBB(k

2))Γ̂2(k2) (37)

c(k2) =
2

2ζ N +χN
+ ĝD(k

2)Γ̂2(k2) (38)

This expression simplifies considerably for the specific case of a symmetric diblock copolymer
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melt ( f = 1/2) where e(k2) = 0 and ĝAA(k
2) = ĝBB(k

2),

βFpartial

n
=

βFIG

n
+

χN

4

+
1

4π2C

∫ ∞

0
dk k2 ln

[

1−χN
(

ĝAA(k
2)− ĝAB(k

2)
)

Γ̂2(k2)
]

(39)

In this particular case, the dependence on ζ N is eliminated.

D. Simulation Details

For all calculations involving real and complex Langevin dynamics, we use an exponential time

differencing (ETD) scheme55,56. PSPA requires saddle points of the w+ field for every configura-

tion of w−; we utilize the ETD scheme and terminate our search when the L2 norm of the force

is below a tolerance of 10−4.57 We use a second-order Strang operator splitting algorithm to solve

Eq. 21 with a contour discretization of ∆s = 0.01.58,59 To regularize our model, we have picked

a moderate Gaussian smearing width a = 0.2 Rg, and all our results correspond to the symmetric

composition f = 0.5 at various segregation strengths χN and inverse compressibilities ζ N.

We evaluate the free energy of the system in both sampling methods using the direct free energy

method outlined by Fredrickson and Delaney that computes the Helmholtz free energy using the

thermodynamic relationship F = n⟨µ̃[w±]⟩−
〈

P̃[w±]
〉

V ,14 where µ̃[w±] and P̃[w±] are chemical

potential and pressure field operators, respectively. In the case of ordered mesophases, we con-

sider cell size and shape variation at constant concentration c = n/V . Specifically, we seek the

equilibrium condition

∂βF(n,h,T )/V

∂h

∣

∣

∣

∣

c,T

=
∂βFex(n,h,T )/V

∂h

∣

∣

∣

∣

c,T

= 0 (40)

where h is the cell tensor that defines the shape and volume V = det(h) of a parallelpiped cell. The

first equality is due to the ideal gas contributions to the free energy density βF/V being constant

at fixed c; Fex is the Helmholtz free energy in excess of the ideal gas. The second expression in

Eq. (40) can be shown to be equal to14

∂βFex(n,h,T )/V

∂h

∣

∣

∣

∣

c,T

hT =

cβ ⟨µ̃ex(h; [w±])⟩I+β ⟨σ̃ex(h; [w±])⟩− (βAex/V )I (41)
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where µ̃ex is the excess chemical potential operator, σ̃ex is the excess internal stress operator, and

I is the unit tensor. For a cell that has been relaxed at fixed volume to a state of isotropic stress

⟨σ̃ex(h; [w±])⟩ = −PexI with excess pressure Pex, the right side of Eq. (41) vanishes, providing

access to both the equilibrium domain size and the Helmholtz free energy.

III. RESULTS

To understand the implications of taking the saddle point approximation from an analytical and

simulation perspective, we first study the homogeneous disordered phase of a symmetric diblock

melt ( f = 0.5) far from the order-disorder transition (χN = 5.0). We compare the chemical po-

tential µ , osmotic pressure P, and Helmholtz free energy F over four orders of magnitude of the

dimensionless chain concentration C. Simulations employed cubic cells of side lengths L = 3.0Rg,

over a ζ N range spanning 50−500. Each subplot reports thermodynamic averages computed us-

ing complex Langevin (CL) simulations with filled squares and real Langevin simulations invok-

ing the partial saddle point approximation (PSPA) with unfilled triangles. The lines are analytical

references from Gaussian fluctuation analysis of the full and approximated (PSPA) models.

Figures 1a, 1b, and 1c demonstrate that the fluctuation contributions (beyond SCFT, includ-

ing ideal gas terms) to each property differ significantly between methods that use the full field

theory and those that invoke the PSPA. Both simulation methods (CL and the PSPA) agree semi-

quantitatively with the corresponding analytical Gaussian fluctuation analysis. The predicted full

field theory corrections are positive in the chemical potential and Helmholtz free energy and nega-

tive of similar magnitude in the osmotic pressure. In contrast, the PSPA corrections are negative in

all three thermodynamic quantities. For µ , the fluctuation contribution given by the PSPA is much

smaller than predicted by CL. Although the pressure corrections trend correctly, the PSPA severely

underestimates the fluctuation corrections by several orders of magnitude. Since we calculate F

by combining µ and P, unsurprisingly, the free energy corrections are lower and trend incorrectly.

CL predicts that P and µ contribute similarly to F , but the PSPA predicts that µ contributions

dominate the free energy. Another trend we observe is in the variations with compressibility: an

increase in ζ N reduces the compressibility and leads to more significant fluctuation contributions

to F . It is also evident that both the analytical and simulation PSPA results are insensitive to

compressibility variations, consistent with the lack of ζ N dependence in Eq (39).

The incompressible limit of Eqs. (28) and (33) provides additional insights into the PSPA. The
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FIG. 1: Comparison of thermodynamic properties in the disordered phase at χN = 5.0 and

f = 0.5 between fully fluctuating field-theoretic simulations using complex Langevin sampling

(CL) and the partial saddle point approximation using real Langevin sampling (PSPA) at different

chain concentrations C and inverse compressibilities ζ N. The mean-field (MFT or SCFT)

contribution to each property, including ideal gas terms, has been subtracted to isolate fluctuation

contributions. Lines are from Gaussian fluctuation analysis of the full theory (GA-CL) and with

the partial-saddle point approximation (GA-PSPA). The properties studied are (a) chemical

potential µ , (b) osmotic pressure P, and (c) intensive Helmholtz free energy F/n. Inset subplots

are PSPA results on an expanded scale.

full theory in the Gaussian approximation is divergent for ζ N → ∞, while the Gaussian approxi-

mation for the PSPA is not divergent in the incompressible limit. Nonetheless, the divergence can

be eliminated by subtracting the free energy of a system in a reference state, real or hypothetical.

A convenient reference state for this purpose is a copolymer melt with χN = 0.0. Figure 2 shows

that when the free energy of the reference state is subtracted, the data of Figure 1c undergoes con-

siderable collapse with the weakly compressible model continuously approaching the behavior of

the incompressible model for ζ N → ∞. The differing behaviors of the full and PSPA treatments of

the model are also minimized by this simple regularization. Overall, we see that in the disordered

phase, far from the order-disorder transition, the failings of the PSPA can be mitigated by refer-

encing the free energy to a state with χN = 0.0. We now turn our attention to weakly segregated

systems in the vicinity of the order-disorder transition (ODT).

Both FTS methods have been extensively applied to study order-disorder transitions. To un-

derstand how they differ, we investigated the melting of a lamellar structure by varying the inter-

action strength (χ ∼ T−1). We set the single chain concentration and compressibility parameters
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GA
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FIG. 2: The free energy data in Figure 1c referenced to a state with χN = 0. The free energy

difference shown is defined as β∆F/n = β (F/n−FχN=0/n)−χN/4, a quantity that smoothly

approaches the incompressible limit for ζ N → ∞.

to C = 100 and ζ N = 100 and initialized each stochastic simulation from a three-period lamellar

structure obtained by SCFT.

FIG. 3: Comparison of structure factors S(k) at C = 100.0 and ζ N = 100 between field-theoretic

simulations using complex Langevin sampling (CL) and the partial saddle point approximation

with real Langevin sampling (PSPA). (a) Disordered phase with χN = 12.10, (b) Ordered

lamellar phase (LAM) with χN = 12.50. (c) Melting of the LAM phase by tracking the

orientational persistence order parameter Ψ across a range of segregation strengths χN.

In Figure 3a and 3b, we compare the scattering functions S(k) obtained from the CL and PSPA

simulation methods at two different interaction strengths: disordered (χN = 12.10) and ordered
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(χN = 12.50). The CL data are shown with filled red squares, the PSPA data with unfilled blue

triangles, and the lines are guides to the eye. Both methods yield similar scattering functions in the

disordered regime with peak positions k∗ and intensities S(k∗) nearly identical. The data for the

weakly-ordered lamellar (LAM) phase shown in Figure (3b) reveals different predictions by the

two methods, especially in the peak intensity S(k∗) which is significantly larger in CL compared

to PSPA. For both disordered and ordered phases, we observe that CL produces scattering profiles

that are broader about the primary peak k∗ than those generated by PSPA. The intensity of the

peak (S(k∗)) is sensitive to the simulation cell size. Both sets of simulations share the same cell

dimensions.

In Figure 3c, the melting of the lamellar phase is followed by tracking an orientational per-

sistence order parameter Ψ that is nonzero only in a well-ordered LAM structure. We employ

an expression for Ψ that has been previously used to study order-disorder transitions in lamellar

diblock copolymers.13,60 Two main observations are that the PSPA predicts a lower χN order-

disorder transition than CL and, at the same segregation strength, the lamellar structure emerging

from PSPA is more ordered than that from CL. This behavior has its origins in the PSPA not sam-

pling the full spectrum of field fluctuations, which leads to smoother field configurations, stronger

ordering, and a smaller fluctuation-induced shift of the ODT in comparison with the “exact” CL

results.

The location of the ODT can be more precisely determined by comparing the free energies of

the LAM and disordered phases, following the “direct” approach recently developed by Fredrick-

son and Delaney.14 Two simulations were run for each interaction strength: one cell initialized

from a three-period lamellae seed obtained by SCFT and the other from a homogeneous seed of

the same volume. The ODT is determined by interpolating the zero crossing of the free energy

difference between the LAM and disordered phases (in Figure 4a at C = 100). We track the order-

disorder predictions for the CL and PSPA methods over a series of C ranging from 20− 1000 in

Figure 4b. Figure 4a shows that the direct free energy method leads to precise ODT predictions

that are consistent with the broad transitions identified using the orientational persistence order pa-

rameter in Figure (3c). The trend remains that the PSPA underestimates the χN threshold for the

order-disorder transition. In our study of the critical segregation strength over chain concentration

C spanning 20−1000, both methods trend similarly, with (χN)ODT increasing as C decreases. Fig-

ure 4b shows that this trend does not saturate, and the gap between the ODT predicted by CL and

PSPA widens as C decreases, with the PSPA consistently underestimating the critical segregation
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FIG. 4: Comparision of order-disorder transitions obtained using complex Langevin sampling

(CL) and the partial saddle point approximation (PSPA) at ζ N = 100. (a) The ODT is located by

the zero crossing of the free energy difference between LAM and disordered phases at C = 100.

(b) ODT shift relative to numerical SCFT as a function of chain concentration C.

strength.

In applying the direct free energy method, the cell size of the LAM phase is adjusted until the

internal stress becomes isotropic. Besides serving as a precursor to free energy calculations, the

“stress-free” cell size results in an immediate estimate of the equilibrium microdomain period D.

To this end, we have computed the microdomain period of the LAM phase at χN = 20.0 with

α = 0.2Rg, ζ N ranging from 50−500, and C spanning 5−100.

Figure 5 shows the fluctuation correction to the domain spacing, ∆D = D−DMFT, where DMFT

is the mean-field domain spacing determined from SCFT. As shown previously by Fredrickson
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FIG. 5: Concentration dependence of the equilibrium microdomain period of the LAM phase

relative to the mean-field/SCFT prediction, ∆D = D−DMFT, computed both with CL and PSPA.

The segregation strength is fixed at χN = 20.0 and the lines are guides to the eye.

and Delaney,14 CL sampling of field fluctuations results in a small positive displacement of the

LAM microdomain period relative to the SCFT value. This fluctuation enhancement of D is seen

to increase with decreasing C or compressibility 1/(ζ N) and is consistent in sign with analytical

theory.61 In contrast, the partial saddle point approximation predicts domain contraction rather

than domain expansion. This qualitative failing of the PSPA is evidently a consequence of trun-

cating the full field fluctuation spectrum of the repulsive mode w+.

IV. DISCUSSION

The results presented above for the regularized weakly-compressible model, Model II, demon-

strated, both qualitatively and quantitatively, that the predictions emerging from the partial saddle

point approximation (PSPA) are not thermodynamically consistent with those of the full theory.

Nonetheless, Model II is not the model that is typically used in conjunction with the PSPA. The

PSPA is traditionally applied to the unregularized incompressible model (Model I), whose UV

divergences are addressed using a lattice cutoff in conjunction with a renormalization strategy

known as Morse calibration.19,26,50 With this in mind, we conducted a more limited study com-

paring PSPA and CL in the incompressible melt model, which is included in the supplementary

material.

The results presented above for the regularized weakly-compressible model, Model II, demon-

19

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
73

04
7



Accepted to J. Chem. Phys. 10.1063/5.0173047

Assessment of the Partial Saddle Point Approximation in Field-Theoretic Polymer Simulations

strated, both qualitatively and quantitatively, that the predictions emerging from the partial saddle

point approximation (PSPA) are not thermodynamically consistent with those of the full theory.

Nonetheless, Model II is not the model that is typically used in conjunction with the PSPA. The

PSPA is traditionally applied to the unregularized incompressible model (Model I), whose UV

divergences are addressed using a lattice cutoff in conjunction with a renormalization strategy

known as Morse calibration.19,26,50 With this in mind, we conducted a more limited study com-

paring PSPA and CL in the incompressible melt model, which is included in the supplementary

material.

For the supplementary investigation, the Gaussian fluctuation formulas appropriate for Model

I were derived from those for Model II by taking the dual limits ζ N → ∞ and a → 0. This would

nominally produce singular terms in the free energy, but it is straightforward to see that they can be

cancelled by substracting the same formula in the reference state of χN = 0. This regularization

procedure for the incompressible model effectively removes contributions from the w+ mode,

curiously leading to the same result for the PSPA and the full theory in the symmetric case of

f = 0.5,26,62

β∆F

n
=

1

4π2C

∫ ∞

0
dk k2 ln

[

1−χN
(

ĝAA(k
2)− ĝAB(k

2)
)]

(42)

As in Fig. 2, β∆F/n is defined as the fluctuation contribution of the intensive Helmholtz free en-

ergy that has had ideal gas, mean-field, and reference state contributions removed. This analytical

result suggests that the PSPA may be accurate in predicting fluctuation corrections to the regu-

larized Helmholtz free energy in the incompressible limit, as has been tacitly assumed without

rigorous demonstration in the literature.15–21,27 In Figure S2, we compare β∆F/n obtained from

the Gaussian fluctuation analysis of Eq. (42) with numerical results obtained from PSPA and CL

simulations. The simulation data from the two methods are in semi-quantitative agreement across

a range of C, and significantly deviate from the analytical Gaussian formula only below C ≈ 100.

Overall, we conclude that the primitive regularization scheme of subtracting a reference state is

remarkably effective at minimizing the difference between PSPA and CL free energy predictions

for the standard incompressible, unsmeared Model I. We speculate that lattice cutoff and Morse

calibration would produce a similar effect.

The periodic domain contraction trend noticed by the PSPA for Model II appears to be contrary

to both analytical theory61,63 and weakly-compressible CL simulations14. Previous works present

disordered phase structure factors S(k) and show decreases in the location of the primary peak k∗
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as C decreases. The peak location is expected to approximately set the periodic domain spacing

in the weakly ordered lamellar phase according to D = 2π/k∗. The analytical results suggest and

the simulation results confirm for Model II that decreasing C increases the domain spacing D to

accommodate stronger field fluctuations. Figure S3 shows that domain contraction is observed

in the incompressible Model I for both the PSPA and CL simulations. Such contraction has been

previously seen in PSPA-based simulations,24,57 but Figure S3 shows that PSPA applied to a model

with no regularization (bare parameters) significantly overestimates the contraction relative to CL.

These findings for Model I further support our assertion that the domain contraction seen in the

PSPA results for Model II is a consequence of the suppression of the repulsive mode w+.

Within the confines of Model I, the ultraviolet divergences can be suppressed using a technique

known as Morse calibration.50,51 Morse calibration regularizes the UV divergent model by renor-

malizing both the interaction parameter χ and the statistical segment length b, thus adjusting both

the relevant lengthscale Rg and the Ginzburg parameter C. With Morse calibration, PSPA simula-

tions of Model I produce results that demonstrate remarkably good agreement with particle-based

simulations that have undergone calibration as well. These results closely align the two sets of sim-

ulations’ free energy values, order-disorder transition locations, and periodic domain spacing.26,42

Our findings reinforce the fact that, without Morse calibration, the PSPA approximation breaks

down for incompressible diblocks in domain spacing predictions. This requirement of regular-

ization in applying the PSPA is likely even more pronounced for incompressible/contact models

of complex architecture systems (such as bottlebrush polymers) that undergo fluctuation-induced

backbone stiffening.22,33,64,65 Unfortunately, Morse calibration theory has not been extended to

date to such broader classes of single and multicomponent systems.66,67

V. CONCLUSION

This work is the first comprehensive comparison of field-theoretic simulation methods that em-

ploy the partial saddle point approximation (PSPA) against complex Langevin (CL) methods that

invoke no simplifying approximation. The PSPA removes the sign problem in sampling the field

theory at the cost of admitting an uncontrolled approximation. We have primarily compared the

PSPA with the full theory (CL) using a weakly-compressible model of symmetric AB diblock

copolymers with finite-range interactions that is free of ultraviolet (UV) divergences. It was found

both numerically and analytically that the PSPA in the weakly-inhomogenous regime predicts in-
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correct trends in the fluctuation contribution to the free energy, predicting negative rather than

positive corrections to the mean field reference. The PSPA also underestimates the critical segre-

gation strength for the order-disorder transition and forms more strongly ordered phases. In the

lamellar phase, the PSPA incorrectly predicts domain period contraction rather than expansion.

These results were augmented by numerical and analytical assessments of the PSPA in a “stan-

dard” incompressible model with contact interactions that is UV-divergent. Our analysis indicates

that the PSPA is most appropriate in the incompressible limit where deviations with field-theoretic

simulations based on CL sampling are smallest.

SUPPLEMENTARY MATERIAL

The supplementary material includes details regarding the Gaussian fluctuations analysis used

in this work. In addition, a more limited study comparing PSPA and CL in the incompressible

melt model (Model I) is also included in the supplementary material.
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