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Abstract

Iron is an essential nutrient for all microorganisms of the marine environment. Iron limitation of primary production has been well
documented across a significant portion of the global surface ocean, but much less is known regarding the potential for iron limitation of
the marine heterotrophic microbial community. In this work, we characterize the transcriptomic response of the heterotrophic bacterial
community to iron additions in the California Current System, an eastern boundary upwelling system, to detect in situ iron stress
of heterotrophic bacteria. Changes in gene expression in response to iron availability by heterotrophic bacteria were detected under
conditions of high productivity when carbon limitation was relieved but when iron availability remained low. The ratio of particulate
organic carbon to dissolved iron emerged as a biogeochemical proxy for iron limitation of heterotrophic bacteria in this system. Iron
stress was characterized by high expression levels of iron transport pathways and decreased expression of iron-containing enzymes
involved in carbon metabolism, where a majority of the heterotrophic bacterial iron requirement resides. Expression of iron stress
biomarkers, as identified in the iron-addition experiments, was also detected in situ. These results suggest iron availability will impact
the processing of organic matter by heterotrophic bacteria with potential consequences for the marine biological carbon pump.
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Introduction

Iron (Fe) is an essential cofactor in many enzymes facilitating
fundamental life processes such as photosynthesis, respiration,
and nitrogen fixation. Dissolved iron (dFe) is therefore a necessary
micronutrient for all microbial growth in the marine environment
and is tightly linked to the cycling of carbon and other macronutri-
ents [1]. However, low solubility coupled with enhanced biological
uptake of Fe in the surface ocean results in pico- to nanomolar
concentrations of dFe across the global surface ocean and limits
primary production by photoautotrophs in more than one-third
of the surface ocean [2]. One such region, the California Current
System (CCS), is an eastern boundary current where upwelled
nutrients fuel high levels of primary production [3]. However, a
low supply of Fe relative to nitrate (NOs~) during upwelling events
can drive the phytoplankton community to Fe limitation [4].

This results in high nutrient-low chlorophyll-like regions where
NOs;~ accumulates in surface waters due to incomplete utiliza-
tion by the Fe-limited phytoplankton community. More recently,
Fe limitation within the southern sector of the CCS has been
documented [S, 6], and experimental evidence suggests that Fe
limitation at the deep chlorophyll maximum (DCM) is a persistent
and widespread feature of this system [7].

Although the effects of nutrient limitation on primary pro-
duction in the CCS have been well documented, much less is
known about the factors controlling heterotrophic bacterial activ-
ity, including the potential for Fe limitation. Marine heterotrophic
bacteria also have significant Fe requirements, possibly exceeding
those of marine phytoplankton [8-15]. Most of this Fe resides
within proteins driving central carbon metabolism, such as those
of glycolysis, the citric acid cycle, and the respiratory electron
transport chain, where it facilitates essential redox reactions [16].
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This indicates an important link between Fe availability to het-
erotrophic bacteria and the efficiency of their carbon metabolism.
It is now recognized that heterotrophic bacteria are a key deter-
minantin the fate of fixed carbon within the marine environment
[17], acting as a major control on the attenuation of particulate
organic carbon (POC) produced in the surface ocean [18-20].
Despite the small spatial coverage of eastern boundary current
systems such as the CCS, their disproportionate levels of pri-
mary production make them significant contributors to global
biogeochemical cycling and marine food webs [21]. Understand-
ing controls on the activity of heterotrophic bacteria will be an
important step in characterizing the efficiency of the biological
carbon pump in these systems, the transfer of energy to higher
trophic levels, and the net effects of eastern boundary currents
on global biogeochemical cycles. Given the significant role that
Fe plays in carbon metabolism and its limited availability in the
marine environment, characterizing “both” the Fe and carbon
requirements of heterotrophic bacteria will be critical to this
understanding.

Fe limitation of heterotrophic marine bacteria has been
assessed in a number of studies, both in the field [15, 22-27]
and with cultured isolates [8, 9, 13, 28-30]. Laboratory studies
have shown that Fe-limited bacterial strains generally exhibit
decreased rates of respiration, growth, and Fe:C ratios compared
to Fe-replete cultures [8, 9, 13, 29]. Field studies have shown
varied responses of this community to Fe additions [27]. However,
assessing Fe limitation of the heterotrophic community in situ
can be challenging given that Fe limitation of primary producers
can indirectly affect the nutritional status and growth response
of the heterotrophic microbial population. A reduced supply of
fixed carbon due to photoautotrophic Fe limitation may result
in a heterotrophic bacterial community that is carbon-limited
or co-limited by carbon and Fe. Therefore, studies need to be
designed to distinguish between carbon and Fe limitation of
the heterotrophic bacterial community in situ. Previous studies
relying on bulk growth indicators have attempted to isolate the
heterotrophic bacterial response to Fe availability by conducting
growth experiments in the dark to eliminate photosynthetic
activity or by removing the confounding effects of carbon
limitation with the addition of labile organic substrates. However,
by doing so, these experiments are no longer reflective of in situ
environmental conditions or interactions among the microbial
community, making broader conclusions difficult to achieve.

High-throughput sequencing of transcriptomes can query
Fe limitation in the marine heterotrophic bacterial community
independently of the photoautotrophic community, thus pro-
viding insight on the in situ nutritional status of heterotrophic
bacteria. Like other microorganisms, heterotrophic bacteria
have molecular strategies for coping with limited Fe availability
and the wide array of chemical forms in which it can be
found in the marine environment [31, 32]. Culture studies have
identified genetic biomarkers of these molecular strategies,
which are differentially expressed by heterotrophic bacteria
in consistent and unique patterns under low-Fe conditions
(Fig. 1). These biomarkers broadly fall into three categories—
Fe acquisition pathways, Fe-containing enzymes, and Fe-free
metabolic replacements. The majority of dFe in the ocean is
complexed by a pool of highly diverse organic ligands [33]
(generally referred to as Fel), but trace amounts of inorganic
Fe(IIl) are also present [34], and inorganic Fe(ll) can accumulate
in low-oxygen environments [35]. Fe speciation, therefore, acts as
a strong control on Fe bioavailability, and heterotrophic bacteria
must utilize a specific cellular transport system to access each of

these forms of Fe (Fig. 1) [32, 36, 37]. In culture, these transport
systems are consistently observed to be highly expressed under
Fe-limiting conditions [13, 30, 38—41]. Once acquired by a bacterial
cell, Fe is primarily found as a cofactor in enzymes of central
carbon metabolism as well as within pathways for managing
oxidative stress (Fig. 1). In culture, Fe-limiting conditions result in
reduced expression of enzymes with Fe-containing cofactors as
well as increased expression of Fe-free metabolic replacements
[13, 30]. Combined, the expression patterns of such biomarkers
in response to Fe availability can detect Fe stress in the
heterotrophic bacterial community independently from that
of the photosynthetic community and allow us to distinguish
between multiple types of nutrient limitation [42], increasing
our understanding of the nutritional status of the heterotrophic
bacterial community in situ.

Materials and methods
Study site

The current study was conducted in the southern portion of
the CCS (Fig. 2). Samples were collected during two California
Current Ecosystem Long Term Ecological Research (CCE LTER)
process cruises, P1408 and P1706, taking place from 08 August
— 09 September 2014 aboard the R/V Melville and aboard the
R/V Roger Revelle between 03 June — 30 June 2017. Sampling was
conducted in a Lagrangian fashion within a single water mass
over the course of 2 to 4 days [43]. Each sampling period within
a single water mass has been termed a Cycle, as referred to
throughout the text. During each Cycle, the water mass was
tracked by the deployment of a drifter array with a subsurface
drogue centered at 15 m. Samples were collected from Cycles 2
through 4 during P1408 which individually sampled three distinct
regions and productivity regimes. During P1706, samples were
collected from Cycles 1 through 4 which collectively captured a
recently upwelled water mass from its origin at the coast asit aged
and moved offshore. See the Supplemental Materials and Methods
for detailed descriptions of sampling procedures and analyses of
biogeochemical parameters.

On-array Fe-addition incubations

On both the P1408 and P1706 cruises, Fe-addition experiments
were conducted in situ on the drifter array to assess the response
of the microbial community to Fe additions via changes in
gene expression. Whole seawater was collected from the DCM
(P1408) or surface mixed-layer (P1706) using a powder-coated
rosette equipped with Niskin-X bottles (Ocean Test Equipment)
deployed on a coated hydrowire and subsequently processed
inside a Class 100 clean van. These depths were targeted on
respective cruises using residual in situ NO3;~ concentrations as
an indicator of potential Fe limitation within the phytoplankton
community. Upon collection of seawater, replicate in situ samples
were immediately processed by filtering ~2.7 L of whole seawater
onto 0.2 um Sterivex filters (MilliporeSigma), which were stored
in liquid nitrogen until processing onshore. At the same time,
incubation experiments were initiated by dispensing whole
seawater into 1 L acid-cleaned (trace metal grade hydrochloric
acid) polycarbonate bottles (Nalgene). A final concentration of
10 nmol L' FeCl; was added to replicate treatment bottles
representing typical dFe concentrations of upwelled water masses
within the CCS [44]. The remaining replicate bottles were left
as unamended controls. Treatment bottles and control bottles
were each prepared in duplicate on P1408 and in triplicate on
P1706. Bottles were sealed and secured in mesh bags to the
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Figure 1. Summary of Fe stress biomarkers in heterotrophic marine bacteria identified in culture studies. (A) Simplified view of components of the
three main Fe transport systems found within marine heterotrophic bacteria for the acquisition of organically complexed Fe (FeL), inorganic Fe(III),
and inorganic Fe(Il). Although only a generic transport system for the acquisition of FelL is displayed, a specific TBDT, SBP, and ABCT are necessary for
each distinct FeL complex, which means that a high diversity of specific FeL transporters may be present within a bacterial community. FeL complexes
include exogenously produced ligands as well as siderophores, strong Fe-binding ligands produced specifically by heterotrophic bacteria for Fe
acquisition. The Fe-storage protein, bacterioferritin, enables luxury uptake of Fe and can significantly contribute to cellular Fe quotas in heterotrophic
bacteria. (B) Pathway for management of cellular oxidative stress utilizing the Fe-containing enzymes superoxide dismutase and catalase, highlighted
in blue. A nickel-containing superoxide dismutase is a non-Fe containing metabolic replacement present in some species. (C) Simplified summary of
central carbon metabolism within a cell represented by glycolysis, the citric acid cycle, and oxidative phosphorylation with Fe-containing enzymes
highlighted in blue. The individual steps of glycolysis are not displayed and specific pathways vary across species but can include Fe-containing
enzymes such as 6-phosphogluconate dehydratase in the Entner-Doudoroff pathway. The Fe-containing succinate dehydrogenase complex is a
component of both the citric acid cycle and oxidative phosphorylation. Class II fumarases (fumarase c) are Fe-free enzymes which can serve as
metabolic replacements for class I fumarases (fumarase a and b). The glyoxylate shunt, an alternative to the traditional citric acid cycle which
bypasses the loss of carbon as CO», is marked with dashed arrows. Flavodoxin, an Fe-free metabolic replacement for ferredoxin within photosynthetic
electron transfer reactions, is discussed in the text but is not pictured here as it is specific to Cyanobacteria. Across all panels, Fe-containing proteins
are highlighted in blue, and the expression of genes encoding these proteins has been observed to be decreased in marine bacteria under Fe-limiting
conditions in culture studies. In contrast, proteins that have been observed to have increased expression under low-Fe conditions in culture studies
are highlighted in red and include the Fe transport systems, non-Fe containing metabolic replacements, and enzymes of the glyoxylate shunt.
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Figure 2. CCE LTER study region during the P1408 and P1706 process cruises. Plots display monthly averages of satellite derived sea surface
temperature (SST, °C) and chlorophyll a concentrations (Chl a, ug L") during August 2014 (P1408) and June 2017 (P1706). Stations where on-array
Fe-addition experiments were conducted are marked with a black circle and labeled according to the corresponding Cycle number.

drifter array at the depth at which water was initially collected
(Table 1) and incubated at in situ temperatures and light levels for
24 hours. Upon retrieval of the bottles, samples were immediately
processed for RNA preservation by filtering the entire 1 L of
seawater onto 0.2 um Sterivex filters, which were stored in liquid
nitrogen until processing onshore.

RNA library preparation, sequencing, and
bioinformatic analysis

RNA was extracted using a NucleoMag RNA kit (Macherey Nagel),
with the lysis step performed inside the Sterivex unit. Lysate was
transferred to a 96-well plate and the remainder of the proto-
col was performed on an epMotion liquid handling workstation
(Eppendorf). RNA was analyzed on a TapeStation system (Agilent)
using the high-sensitivity RNA ScreenTape assay. Ribosomal RNA
was removed using RiboZero Magnetic kits (Epicenter) following
the manufacturer’'s low input protocol. cDNA was synthesized
using the Ovation RNA-seq System V2 (NuGNE), and Agencourt
RNAClean XP beads were used for cDNA purification. cDNA was
fragmented using the Covaris E210 focused ultrasonicator, target-
ing 300 bp fragments. Library preparation was conducted with the
Ovation Ultralow System V2 (NuGEN). After end repair, ligation,
and amplification, libraries were quantified by qPCR with the
KAPA Library Quantification Kit on the 7900HT Fast Real-time PCR
System (Applied Biosystems). Pooled libraries were sequenced on
a HiSeq 4000 platform (Illumina) using a 2x150 bp paired-end
sequencing protocol at the Institute for Genomic Medicine at the
University of California, San Diego.

Metatranscriptomes were constructed using the RNAseq
Annotation Pipeline v0.4 (RAP) as described previously [45], and
ab initio open-reading frames (ORFs) were predicted. Individual
libraries were then merged to create a single assembly of the
entire dataset used for downstream taxonomic and functional
annotations. ORFs were annotated via BLASTP [46] to the phyloDB

protein database, and pfam and Kyoto Encyclopedia of Genes
and Genomes (KEGG) annotations were used for functional
identifications. Taxonomy was assigned to ORFs based on a
lineage probability index [47]. The terms ORF and gene will be
used interchangeably throughout the text. Differential expression
under varying experimental conditions was assessed using
DESeq?2 [48] within the R environment [49] and was considered
significant for fold-change values with an FDR < 0.05 (Benjamini-
Hochberg adjusted P value). ORF abundances from in situ samples
were normalized using the variance stabilizing transformation
(vst) function in DESeq2 before downstream ordination and
clustering analyses using the vegan package [50] within R.

Results
In situ biogeochemical conditions

P1408 took place following the onset of anomalous warming in
the CCS, and surface waters were 0.8-1.5°C above average [51, 52]
(Fig. 2). Each Cycle of P1408 sampled a distinct water mass, and
rates of primary production, POC concentrations, and chlorophyll
a (Chl a) concentrations indicate that productivity sequentially
decreased from Cycle 2 to Cycle 4 (Fig. 3A,C and E). Overall, mea-
sures of production in the upper 30 m were below summer
mean values for this region as determined by the long-term
California Cooperative Oceanic Fisheries Investigation (CalCOFI)
dataset (Fig. S1A). In particular, concentrations of accumulated
POC (APOC) were low, remaining near or below zero during Cycles
3 and 4 (Fig. 3D), indicating POC concentrations were within the
bottom 10th percentile of those measured over the course of the
CalCOFI timeseries. Measures of secondary production, as deter-
mined by bacterial cell abundances and carbon production (BCP)
also decreased sequentially from Cycle 2 to Cycle 4 (Fig. 3B and F),
and there was a tight coupling between POC concentrations and
measures of primary and secondary production (Fig. S1B).
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Table 1. In situ environmental conditions at the onset of each Fe-addition experiment conducted during the P1408 (deep chlorophyll maximum) and P1706 (surface mixed-layer) CCE

LTER process cruises.

POC:dFe
(xmol:nmol)

Si:N
(mol:mol)

NO3~: dFe
(pmol:nmol)
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(wmol L~1)

NO3~
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During P1408, dFe concentrations were sub-nanomolar in the
upper 100 m of the water column, and NOs~ concentrations were
generally <1 umol L1 in the upper 30 m (Fig. 3G, H). In the CCS,
Fe is likely to be the proximate limiting nutrient when NO;~:dFe
ratios are >10 pumol:nmol, indicating incomplete utilization of
available NOs~ due to low Fe availability [5, 6]. Fe limitation of
the diatom community is indicated by Si:NOs3~ ratios <1 mol:mol
as a result of the preferential uptake of silicic acid by diatoms
relative to NO3;~ under Fe limitation [4]. At the DCM, NO;~:dFe
ratios exceeded a value of 10 pmol:nmol only at Cycle 3 whereas
Si: NO5~ ratios <1 mol:mol were observed at both Cycles 2 and 3
(Table 1).

P1706 took place after the anomalously warm period of 2014—
2016 in the CCS and captured a representative upwelling event
from its source at the coast as it aged and moved offshore (Fig. 2).
Overall, measures of productivity were significantly higher during
P1706 compared to P1408 and exceeded summer mean values for
the region in the near surface (Fig. 3A-E, Fig. S1A). Measures of
primary production generally decreased from Cycle 1 to Cycle 4;
however, POC concentrations remained elevated in both Cycles
1 and 2 (Fig. 3C). Across all Cycles, POC concentrations were
nearly equal to APOC concentrations (Fig. 3D), an indicator of
upwelled, higher-density water masses at the surface, fueling
high levels of production. Measures of BCP followed a similar
pattern to that of POC (Fig. 3B), and POC was again strongly
correlated with measures of primary and secondary production
(Fig. S1B).

Residual NOs~ concentrations at the surface were detected
across the study region during P1706 (Fig.3H), indicating the
potential for widespread Fe limitation of the photosynthetic
community. Average surface dFe concentrations at the beginning
of Cycle 1 were ~2 nmol L=? but quickly decreased to sub-
nanomolar levels moving offshore beyond the shelf break
(Fig. 3G). NO3~:dFe ratios >10 wumolinmol and Si:NOs;~ ratios
<1 mol:mol were observed in surface waters at Cycles 2-4
(Table 1).

In situ gene expression of the bacterial
community

Across the dataset, an average of 53.3 +44.3 million high-quality
read pairs were generated per sample, yielding an average of
8.8+3.1 million mRNA read pairs per sample. Across the P1408
dataset, this ranged from 7.5 to 16.3 million total read pairs per
sample, with 4.3-12.0 million read pairs per sample attributed to
mRNA. Across the P1706 dataset, 74.2-138 million total read pairs
per sample were generated. However, due to inefficient TRNA
removal, 1.4-18.8 million mRNA read pairs were obtained per
sample, on par with the P1408 dataset. mRNA reads were merged
and co-assembled into a metatranscriptome, across which
3096 711 unique ORFs were detected. Of these, 1275520 (41.2%)
could be assigned a functional annotation and 99% of functionally
annotated ORFs were also assigned a taxonomic annotation.
Unannotated ORFs were sparingly expressed; 1375843 (75.5%)
of the unannotated ORF set recruited <50 reads across the entire
dataset. Of the annotated ORF set, 245850 unique ORFs (19.3%)
were determined to be likely bacterial proteins and used for
downstream analysis. The relative abundance of total mRNA
reads attributed to Bacteria was overall higher in P1408, but with
the exception of P1408 Cycle 2, a majority of mRNA reads mapped
to ORFs belonging to Eukaryota (Fig. S2).

Principal component (PC) analysis of in situ bacterial mRNA
expression showed a distinct separation between P1408 and P1706
along PC1, accounting for 89.2% of the total variation between
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Figure 3. Depth profiles of biogeochemical parameters during each Cycle of the P1408 and P1706 CCE LTER process cruises. (A) Rates of primary
production (umol C L~ day~1). (B) Rates of bacterial carbon production (BCP, umol C L~! day~). (C) Concentrations of particulate organic carbon
(POC, umol L~1). (D) Concentrations of accumulated POC (APOC, umol L~1). (E) Concentrations of chlorophyll a (Chl a, ug L~1). (F) Heterotrophic
bacteria cell abundances (cells mL~1). (G) Concentrations of dissolved Fe (dFe, nmol L~1). (H) Concentrations of nitrate (NO3~, umol L~1). For all
panels, sampling locations correspond to Cycles (Fig. 2) and values represent the mean value of all measurements taken across the duration of a Cycle
(2-4 days) at a given depth. In most panels, different x-axis scales have been used for each cruise.

samples (Fig. 4). Increases in rates of BCP, POC concentrations,
NOs5~ concentrations, and the NOs~:dFe ratio correlated (P value
<0.05, linear surface fit) with the ordination of samples from
P1706 (R?=0.53, 0.48, 0.40, and 0.34, respectively), whereas the
Si:NOs ™ ratio positively correlated with the ordination of samples
from P1408 (R? =0.85). Ordination of the most abundant bacterial
orders associated Cyanobacteria, Marinimicrobia, SAR11, Rhodospir-
illales, and Rhodobacterales with P1408 along PC1 whereas SAR92,
Flavobacteriales, SAR86, a group of unclassified Gammaproteobac-
teria, and Alteromonadales were affiliated with P1706, consistent

with the contrast in productivity between these two years.
During P1408, cyanobacterial transcriptional activity was domi-
nated by Prochlorococcus (75%-96%). Similar patterns in taxonomic
distributions were observed based on the relative abundance of
mRNA and 16S rRNA reads (Fig. S3). The taxonomic distribution
of the phytoplankton community also reflected the differences
in productivity between P1408 and P1706 (Fig. S4). Cyanobacteria
contributed to 26.7+23.8% of mRNA reads of photosynthetic
taxa in P1408, whereas diatoms were prevalent during P1706
(36.6 £ 15.1%).
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Figure 4. In situ gene expression of the bacterial community during the P1408 and P1706 CCE LTER process cruises. Ordination plot displays the
principal component analysis of vst-normalized mRNA read abundances belonging to a bacterial taxonomic group aggregated at the order level. The
ordination of in situ samples collected at the onset of each Fe-addition experiment are displayed as open symbols while the ordination of the most
abundant bacterial orders from these samples are displayed as colored points. Replicate samples are displayed and labelled with corresponding Cycle
number. Arrows display the surface linear fitted vectors of continuous environmental variables to the ordination space. Direction of arrows
corresponds with the direction in the ordination space towards which a given environmental variable increases most rapidly, and the length of arrows
is proportional to the R? value of the fit between the variable and ordination space. (x#x) P value < 0.001, (%) P value <0.01, (x) P value <0.05.

Differential gene expression of the heterotrophic
bacterial community in response to Fe additions

During each of the seven Cycles sampled (Fig. 2), experiments
were conducted under in situ temperature and light conditions
to track the transcriptional response of the surface microbial
community to Fe additions. In five of the seven experiments
conducted, statistically significant differential gene expression
by bacteria was detected in response to Fe additions, and
this response was dominated by heterotrophic bacteria (Fig. 5,
Dataset S1). Differential gene expression is presented as the
log,fold-change in ORF abundance, comparing control treatments
to Fe-amended treatments such that a positive fold-change
indicates higher expression under unamended, low-Fe conditions.
Results compare expression after the control and Fe-addition
treatments were incubated for 24 hours to account for changes
in gene expression due to growth or potential bottle effects.

Across all Cycles, genes from Fe acquisition pathways repre-
sented 45+ 22% of the total number of differentially expressed
genes but just 0.8 +0.1% of the total number of unique bacterial
ORFs detected in situ. The significant enrichment of Fe trans-
port genes within the differentially expressed gene set (P value
<0.001, hypergeometric distribution) indicates the transcriptomic
response of the heterotrophic bacterial community was a result
of Fe availability and suggests that the in situ community was
experiencing Fe stress. At P1408 Cycle 4 and P1706 Cycle 1, statis-
tically significant differential gene expression was not detected
in response to Fe additions by any member of the bacterial
community, indicating that Fe was not a primary limiting nutri-
ent to the heterotrophic bacterial community in these Cycles.
When considering the ordination of all bacterial ORFs detected
following 24 hours of incubation (including those that were not
differentially expressed), the dissimilarity of the transcript pools
between Cycles remained greater than the dissimilarity between
experimental treatments within each Cycle (Fig. S5), indicating
that Fe additions did not cause large shifts in the overall dynamics
of the microbial community within 24 hours.

During P1408, differential expression by heterotrophic bacteria
in response to Fe additions was strongest in Cycle 3 (Fig.5).
Differentially expressed genes (n=30) consisted almost entirely of
those encoding known Fe transport pathways, which were upreg-
ulated in unamended treatments. These included genes encoding

the solute binding protein (SBP) of Fe(Ill) ATP-binding cassette
transport (ABCT) systems (K02012) from members of the SAR11
clade as well as TonB-dependent transporters (TBDT) for the
acquisition of FeL complexes (K02014) from an unclassified group
of Gammaproteobacteria, SAR86, Marinimicrobia, and Rhodobacterales.
A smaller number of differentially expressed genes (n=11), pri-
marily of unknown function, were also detected in Cycle 2. Despite
its significant contribution to the in situ bacterial transcript pool
during P1408, differential gene expression in response to Fe addi-
tions was not detected for Prochlorococcus in any Cycle.

During P1706, a strong transcriptomic response by het-
erotrophic bacteria to Fe additions was detected across Cycle 2
(n=79 genes), Cycle 3 (n=45 genes), and Cycle 4 (n=77 genes)
(Fig. 5). Differentially expressed genes consisted of a wider
diversity of both taxonomic and functional annotations compared
to that of P1408 but continued to include genes encoding known
Fe transport pathways and were indicative of an initially Fe-
stressed community. During Cycle 2, genes encoding Fe(III)
SBPs (K02012) were upregulated in unamended conditions and
came from members of the SAR11 clade, Rhodobacterales, and
unclassified Gammaproteobacteria. Genes encoding FeL TBDTs
(K02014) were upregulated across Cycles 2-4 and came from
unclassified members of Gammaproteobacteria as well as from
the orders Alteromonadales, Flavobacteriales, SAR86, Marinimicrobia,
Oceanospirillales, Methylococcales, and Sphingomonadales. A putative
Fe(Il) transport system (pfam09375) from unclassified members
of Gammaproteobacteria was also upregulated in Cycles 2 and 3.

In line with culture studies, genes involved in carbon
metabolism also showed patterns of differential expression
consistent with Fe stress during P1706. During Cycles 2 and 4 there
was a downregulation of the Fe-containing enzymes succinate
dehydrogenase (K00239), aconitase (K01682), formate dehydro-
genase (K00123), and Class II fructose-bisphosphate aldolase
(K01624) coming from members of Flavobacteriales, Rhodobacterales,
Sphingobacteriales, and the SAR116 clade. Additionally, genes from
Alteromonadales encoding enzymes of the glyoxylate shunt—
malate synthase (K01638) and isocitrate lyase (K01637)—were
upregulated in unamended conditions during Cycles 2 and
3. Finally, the hydrolytic enzymes chitinase and g-glycosidase
showed decreased expression in unamended treatments during
Cycles 3 and 4.
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Figure 5. Differential gene expression of the heterotrophic bacterial community detected in response to Fe additions across the P1408 and P1706 study
regions. The log,fold-change in expression for a given gene is plotted against its normalized mean abundance on a logig scale for a given Cycle where
differential gene expression was detected in response to Fe additions and separated according to the most abundant bacterial taxonomic orders.
Cyanobacteria are included in the “other” category. Logsfold-changes were calculated based on ORF abundances in unamended treatments relative to
those with Fe additions following 24 hours of incubation such that a positive value indicates upregulation of a given ORF under low-Fe conditions.
Only ORFs with an FDR < 0.05 are displayed (n=2 for P1408 and n=3 for P1706). Colors indicate ORFs known to be Fe stress biomarkers (Fig. 1). The
complete list of annotated, differentially expressed genes for each of the five Cycles displayed can be found in Dataset S1. Differential gene expression
in response to Fe additions (FDR < 0.05) was not detected in P1408 Cycle 4 or P1706 Cycle 1. Abbreviations are consistent with those used throughout
the text and KEGG/pfam orthology identifiers used for functional annotations are as follows — FeL TBDT: K02014, Fe(III) SBP: K02012, Fe(II) permease:
K04759, K07243, and pfam09375, glyoxylate shunt: K01637 and K01638, hydrolysis: K03791, glycolysis/citric acid cycle: K00123, K00239, K01624, and

K01682.
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POC:dFe ratios across the CCS

Across these Fe addition experiments, the ratio of POC to dFe
concentrations (POC:dFe) emerged as a consistent indicator
of heterotrophic Fe stress. In all Cycles where the POC:dFe
ratio exceeded 20 umol:nmol at the onset of the experiment,
differential gene expression of the bacterial community was
detected in response to Fe additions (Fig. 6). Sampling locations
can be arranged by NOs ™~ concentrations, indicating the influence
of coastal upwelling at each Cycle. Within this frame of reference,
POC:dFe ratios peaked in the transition zone of the California
Current (P1408 Cycles 2-3 and P1706 Cycles 2-4), whereas the
lowest values were present at the extremes of both highly
productive (P1706 Cycle 1) and oligotrophic (P1408 Cycle 4)
waters. The POC:dFe ratio during Cycle 2 of P1408 lies right at
the proposed Fe-stress threshold of 20 pmol:nmol, which is also
reflected in the modest transcriptomic response to Fe additions
detected here relative to other Cycles. The POC:dFe ratio was
also examined across three GEOTRACES transects spanning
the Peru-Humboldt Current System, the Atlantic sector of the
Southern Ocean, and the North Atlantic (Supplemental Results).
This analysis demonstrated consistent patterns of the POC:dFe
ratio and identified additional regions of the global surface
ocean where the POC:dFe ratio exceeds 20 pumol:nmol (Fig. S6,
Table S1).

In situ expression of Fe stress biomarkers

Given the indication of heterotrophic bacterial Fe stress based
on differential gene expression, patterns in the in situ expression
of Fe stress biomarkers (Fig. 1) were investigated. The expression
of Fe stress biomarkers was detected in situ at every Cycle (Fig. 7
and Fig. S7), and the abundance of specific orthologous groups
clustered according to expression by taxonomic class (Fig. 7A,
Fig. S7B and C, Supplemental Results). Hierarchical clustering
(Fig. 7A) divides the expression of Fe stress biomarkers by order
into two primary groups. The first contains Alphaproteobacteria
and Cyanobacteria identified by the above-average expression of
Fe(III) SBPs (K02012). The second consists of Gammaproteobacteria,
Flavobacteria, Marinimicrobia, and Rhodospirallales characterized by
the above-average expression of FeL TBDTs (K02014). In the case
of nickel-containing superoxide dismutase (NiSOD) (K00518),
flavodoxin (K03839), Fe(ll) permeases (K04759, K07243), and
ferritin (K02217), expression by a single bacterial order fell outside
the 95% confidence interval of the mean expression across all
taxa. Thus, the in situ distribution of specific Fe stress biomarkers
often significantly correlated with shifts in the taxonomic
distribution of the overall transcript pool (P value <0.05, linear
regression) (Fig. 7B). However, the abundance of bacterioferritin
(K03594), fumarase c (K01679), FeL TBDTs, and Fe(Il) permeases
did not significantly correlate with the overall taxonomic
distribution (Fig. 7B). Of these orthologous groups, fumarase c,
an Fe-free metabolic replacement within the citric acid cycle
(Fig. 1), was expressed by the highest diversity of bacterial orders
as well as the most evenly across bacterial orders (Fig. S7C). It
was also the only Fe stress biomarker detected in situ that signif-
icantly correlated with the POC:dFe ratio (P value <0.05, linear
regression) (Fig. 7C). ORFs coming from siderophore biosynthetic
pathways were also searched for across this dataset (pfam04183,
pfam00501, pfam00668, and pfam00550). However, only two
ORFs, homologs to dhbF and entF (coming from bacillibactin
and enterobactin biosynthetic pathways, respectively), were
identified and detected sparingly in situ, recruiting fewer than
10 reads each.
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Figure 6. Relative availability of Fe and organic carbon as an indicator of
Fe stress in heterotrophic bacterial communities of the CCS. Plots
display the (A) ratios of the concentrations of particulate organic carbon
to dissolved Fe (POC:dFe, umol:nmol), (B) concentrations of particulate
organic carbon (POC, umol L™1), (C) concentrations of dissolved Fe (dFe,
nmol L=1), and (D) concentrations of nitrate (NOs~, umol L~1) at the
onset of each Fe-addition experiment conducted in the CCS.
Experiments are arranged in order of decreasing NO3~ concentrations
as an indicator of relative upwelling strength at each Cycle. Shaded gray
area indicates Cycles at which Fe stress of the heterotrophic bacterial
community was indicated based on the detection of differential gene
expression in response to Fe additions. The y-axis in (A) is on a logio
scale and the dashed line marks the 20 umol:nmol POC:dFe threshold.

Discussion

Differential gene expression indicates the
nutritional status of marine heterotrophic
bacteria

In this work, we examined the differential gene expression of the
heterotrophic bacterial community across the southern CCS in
response to Fe additions, and the observed expression patterns
indicate that this community was experiencing Fe stress under
in situ conditions. This response was particularly prevalent during
P1706 where biogeochemical parameters and growth experiments
also demonstrated widespread Fe limitation of the photosynthetic
community [53, 54]. However, the disproportionate response of
genes specific to Fe acquisition in the heterotrophic bacterial
community, along with the rapid timeframe of this response,
suggests that heterotrophic bacteria were specifically responding
to Fe availability rather than secondary effects resulting from
an Fe-limited photosynthetic community. The concurrent Fe lim-
itation of both the heterotrophic and photosynthetic microbial
communities supports the idea that these two groups are indeed
competing for scarce Fe resources in the sunlit waters of the
surface ocean [14, 15, 45, 55].
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Figure 7. In situ expression of bacterial Fe stress biomarkers. (A) Heatmap displays normalized ORF abundances from orthologous groups of known Fe
stress biomarkers for a given bacterial order across all in situ samples. Values are displayed as row z-scores and bacterial orders (x-axis) and
orthologous groups (y-axis) are clustered based on Pearson correlations using Ward’s minimum variance method. Column color bar denotes bacterial
class for each order while row color bar denotes whether the given orthologous group is involved in Fe acquisition, storage, or conservation. Cells
marked with an asterisk are those for which the in situ expression was 1.960 greater than or less than the row mean value, indicating expression by a
single bacterial order that falls outside of the 95% confidence interval for a given orthologous group. (B) The relative abundance of mRNA reads from
specific Fe stress biomarkers within the total transcript pool is plotted against the relative abundance of all mRNA reads within the transcript pool
from bacterial orders that significantly contributed to the expression of the Fe stress biomarker. In situ expression from replicate samples at every
Cycle are plotted from both P1408 and P1706. Linear regressions are displayed with the R? and P values given. Linear regressions denoted with “n.s.” are
not statistically significant (P value >0.05). The number of bacterial orders included in the taxa relative abundance for each plot is given by n as
determined from (A) and Fig. S7. (C) The relative abundance of fumarase ¢ within the total transcript pool is plotted against the POC:dFe ratio
measured at each Cycle. Mean values from replicate samples at each Cycle are displayed and error bars represent +1 standard deviation from the
mean (n=2 for P1408 and n=3 for P1706). A single linear regression is displayed with the R? and P values given. The x-axis is displayed on a logio scale.
For all panels, abbreviations are consistent with those used throughout the text and KEGG orthology identifiers used for functional annotations are as
follows — NiSOD: K00518, isocitrate lyase: K01637, fumarase c: K01679, Fe(III) SBP: K02012, FeL TBDT: K02014, ferritin: K02217, bacterioferritin: K03594,
flavodoxin: K03839, Fe(Il) FeoB: K04759, Fe(Il) FTR1: K07243.
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The diversity of Fe stress biomarkers within the genomes of
heterotrophic bacteria, particularly those involved in cellular Fe
transport, represents an opportunity as well as a challenge in
efforts to detect in situ Fe stress within this community. The
results presented here highlight the effectiveness of short-term
incubations using differential gene expression in response to Fe
additions as a means to detect in situ Fe stress. The expression
of Fe stress biomarkers, particularly that of Fe transport systems,
was sensitive to Fe additions. Furthermore, these additions did not
result in large or artificial changes to the overall transcript pool
within 24 hours-in situ environmental conditions and the overall
dynamics of the microbial community appeared to be largely
preserved. Even so, the ability to detect in situ Fe stress using
transcriptomic techniques independently of incubations would
allow for a better understanding of the nutritional status of het-
erotrophic bacteria on a larger scale. Across this study, the expres-
sion of Fe stress biomarkers by the heterotrophic bacterial com-
munity was consistently detected in situ. However, the distribution
of specific biomarkers was often largely a factor of the taxonomic
distribution of the overall transcript pool, likely due to adapta-
tions in Fe transport capacity of specific taxa to distinct ecological
niches [37, 56, 57]. For example, the expression of specific Fe
acquisition pathways was distinct between background-adapted
clades such as SAR11 and copiotrophic groups like Alteromonadales
and Flavobacteriales, as has been observed in previous genomic
and transcriptomic analyses [31, 32, 36]. Thus, as a first order,
the expression of a given bacterial Fe stress biomarker in situ
may be the result of trophic state. Methods for determining an
Fe stress response in situ will, therefore, need to control for micro-
bial community composition and the taxonomic distribution of
specific Fe stress biomarkers [57, 58]. In order to evaluate Fe
stress at a community-wide scale based on in situ expression,
biomarkers such as fumarase c, which was expressed by a wide
diversity of bacterial taxa in this study and correlated with trends
in the relative availability of carbon and Fe, may make an effective
choice.

The POC:dFe ratio as a biogeochemical proxy for
Fe limitation of heterotrophic bacteria

Based on the transcriptomic response of the heterotrophic com-
munity to Fe additions across P1408 and P1706, marine het-
erotrophic bacterial activity appears to be a factor of organic
carbon as well as Fe availability. Indeed, where Fe limitation of the
heterotrophic community has been tested previously, responses
to Fe additions are often only observed with the simultaneous
addition of organic carbon, suggesting co-limitation between Fe
and carbon is common [15, 23, 24, 27]. The range of productivity
in the CCS across P1408 and P1706 created a natural laboratory
in which to explore this hypothesis. Under coastal upwelling
conditions, nutrients delivered to surface waters fueled high rates
of primary production, increasing the availability of organic mat-
ter to heterotrophic bacteria and likely relieving carbon limita-
tion. However, as these upwelled water masses moved offshore,
Fe availability decreased relative to the availability of freshly
produced organic matter, and the heterotrophic bacterial com-
munity exhibited signs of Fe stress. Consistently high levels of
production in eastern boundary upwelling systems such as the
CCS may mean that Fe limitation of the heterotrophic bacterial
community is a persistent feature in these systems (Supplemental
Results, Fig. S6). In contrast, in regions such as the Southern
Ocean or oligotrophic gyres where primary production is chroni-
cally nutrient-limited, heterotrophic bacteria may predominantly

experience carbon limitation, being driven to Fe limitation only
during episodic bloom events [27].

In order to quantify the relationship between carbon and
Fe availability as controlling factors of heterotrophic bacterial
growth, we explored the ratio of POC:dFe concentrations as a
biogeochemical proxy for in situ Fe stress that can complement
molecular-based approaches. The ratio of nutrients available
within a system can be a useful indicator of nutrient limitation
[6,7,59, 60], and the threshold indicative of limitation for such a
proxy will depend on the ratio at which two nutrients are utilized
by dominant microbial groups within a given environment. In
this dataset, POC:dFe ratios >20 umol:nmol were indicative of
Fe-limited heterotrophic bacterial communities. Values above
this threshold, therefore, represent conditions where carbon is in
excess relative to Fe based on cellular requirements. Thus, even
within an Fe-limited phytoplankton community that may respond
to Fe additions with increased productivity, the heterotrophic
bacterial community would be expected to respond to Fe rather
than carbon availability when the in situ POC:dFe ratio exceeds
20 wmol:nmol.

Relatively few studies have attempted to characterize the Fe
requirements of marine heterotrophic bacteria either in culture
or natural communities [8-13, 15, 61]. However, across these
studies, values for the cellular C:Fe stoichiometry of heterotrophic
marine bacteria range from ~1 to >2000 pumol:nmol - likely
varying as a factor of growth conditions, lifestyle strategies, the
potential for luxury Fe storage, and methodologies employed.
However, culture studies focused on strains from the copiotrophic
groups Alteromonas and Pseudoalteromonas report C:Fe stoichiome-
tries between ~7 and 62 pmol:nmol under replete growth condi-
tions [13, 61]. During P1706 in particular, copiotrophic strains such
as these comprised a significant portion of the bacterial transcript
pool and rates of BCP and growth [62, 63] were elevated, altogether
indicating a fast-growing bacterial community where carbon lim-
itation had been relieved. Under these conditions, POC:dFe ratios
exceeding values of 20 pmol:nmol would be consistent with a
nutrient regime indicative of Fe limitation, driven by the relatively
high Fe demands (lower C:Fe ratio) of copiotrophic members of the
microbial community. Although there are no current estimates
available for the cellular Fe demand of the SAR11 clade, this group
also responded to Fe additions at POC:dFe ratios >20 umol:nmol,
suggesting similar Fe requirements for this ubiquitous clade of
heterotrophic bacteria. The reported cellular C:Fe quotas of copi-
otrophic bacteria are similar to those of marine diatoms [64],
further highlighting the competition for Fe between the dominant
microbial groups present during P1706. In contrast, the lack of a
transcriptional response from Prochlorococcus during P1408 is con-
sistent with the lower cellular Fe requirements reported for this
cyanobacterial group [65, 66]. A better understanding of cellular
quotas of Fe and carbon in specific groups of heterotrophic marine
bacteria will be critical to furthering our understanding of the
nutritional status of the microbial community throughout the
marine environment.

Determining bioavailable pools of both organic carbon and
Fe will be another important consideration in establishing an
appropriate biogeochemical proxy for in situ Fe limitation of het-
erotrophic bacteria. Although POC is a combination of both living
microbial biomass as well as detrital organic material—a portion
of which will be available for degradation and consumption by
heterotrophic bacteria, POC concentrations have been shown to
be a reliable indicator of freshly produced carbon within the CCS
[67]. In contrast, labile dissolved organic carbon, accounting for
~50% of marine net primary production [68], is processed via
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the microbial loop on the timescale of minutes to days [69] —
making it difficult to capture fluctuations in the availability of
this pool of organic matter. Thus, although POC is not necessarily
a direct measure of the carbon available to heterotrophic bacteria,
we propose that its production and accumulation in the surface
ocean is an accurate reflection of the amount of labile carbon
within the system. Likewise, the dFe pool is a complex mixture
of different forms of Fe, which are not uniformly available to
microorganisms. However, changes in the concentration of dFe are
thought to broadly correlate with the bioavailability of Fe within
a system [70]. Furthermore, a wide range of taxa exhibited signs
of Fe stress across this study, regardless of niche specialization
in transport capacity for either inorganic Fe or FelL complexes.
The applicability of the POC:dFe ratio as an indicator of Fe stress
within the heterotrophic bacterial community across other ocean
ecosystems will require further testing (Fig. S6). However, the CCS
encompasses a wide range of environmental conditions and asso-
ciated microbial communities, spanning multiple orders of mag-
nitude in productivity from the edge of the oligotrophic subtrop-
ical gyre to highly productive coastal upwelling environments—
making this study a promising starting point.

Potential consequences of heterotrophic bacterial
Fe limitation on carbon cycling in the marine
environment

Feis animportant cofactor of carbon metabolism in heterotrophic
bacteria [16]. Therefore, given that heterotrophic bacteria are
major facilitators of particle degradation and organic matter rem-
ineralization in the marine environment, Fe availability to this
community may be expected to have downstream effects on
remineralization processes and carbon export efficiencies. This
may be particularly relevant in environments like the CCS, where
sinking particles are the main contributor to carbon export [71].
Although the bulk growth response to Fe additions was not mea-
sured, changes in gene expression in this study suggest Fe avail-
ability impacted central carbon metabolism and growth via mech-
anisms consistent with previous work. For example, the reduced
expression of Fe-containing enzymes within glycolysis, the citric
acid cycle, and the electron transport chain under low Fe condi-
tions has been observed in cultured isolates where it has been
associated with reduced rates of cellular respiration and growth
[13, 30, 72-75]. Additionally, expression of the glyoxylate shunt is
linked to Fe-limiting conditions [13, 29, 30, 76-78]. The glyoxylate
shunt bypasses the two steps within the citric acid cycle where
carbon is lost as CO, and additional reducing agents are gener-
ated (Fig. 1). Typically, the glyoxylate shunt is associated with the
metabolism of fatty acids and allows intermediates from the citric
acid cycle to be diverted to biosynthesis pathways [79, 80]. Its role
under Fe-limiting conditions remains intriguing. Previous culture
work suggests that the glyoxylate shunt helps cells to compensate
for the reduction in growth resulting from Fe limitation, perhaps
by directing electron flow through succinate dehydrogenase while
bypassing Complex I of the electron transport chain [29]. Complex
I has the highest Fe requirement of all respiratory proteins and
can potentially harbor up to 50% of the total cellular Fe quota
[16].

Whether due to the reallocation of carbon from respiration
to biomass production or simply an overall reduction in total
carbon demand due to reduced growth, bacterial Fe limitation
would be expected to impact the fate of fixed carbon within
an Fe-limited ecosystem, possibly leaving a higher percentage of
organic carbon available for export or transfer to higher trophic
levels. Fe limitation of phytoplankton is currently linked to higher

export efficiencies within the CCS [53], including during P1706
[54], and has been attributed to increased silica ballasting of
diatoms under Fe limitation [81]. Reduced rates of respiration due
to Fe limitation of heterotrophic bacteria offers a complementary
mechanism by which export efficiencies could be increased in Fe-
limited systems, which will merit further investigation.

Conclusion

Carbon and Fe are tightly coupled in the metabolism of marine
heterotrophic bacteria. A thorough understanding of the bacterial
requirements of both of these nutrients will be a challenging yet
important step in understanding the cycling of organic matter in
the marine environment. Based on the transcriptional response of
the heterotrophic bacterial community in a series of Fe-addition
incubations, we suggest that this community is subject to in situ
Fe stress. We found that the potential for Fe limitation within the
heterotrophic bacterial community is the greatest during periods
of high productivity with elevated organic matter availability but
low Fe concentrations, as indicated by the ratio between POC:dFe.
We hypothesize that this is largely driven by an increase in
the activity of copiotrophic taxa that respond to high levels of
available organic matter, thereby increasing the Fe demand of
the heterotrophic bacterial community in support of increased
levels of carbon metabolism. Patterns of gene expression under
Fe limitation were characterized by high expression of Fe trans-
port systems but also by shifts in the expression of enzymes
within central carbon metabolism, suggesting that Fe limitation
of heterotrophic bacteria results in changes to respiration and
growth. Future work will be needed in order to determine the
exact relationship between carbon and Fe requirements for given
heterotrophic groups and, ultimately, the effects of these dynam-
ics on the efficiency of the marine biological carbon pump.
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