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Antarctic minke whales (Balaenoptera bonaerensis, AMW) are an
abundant, ice-dependent species susceptible to rapid climatic
changes occurring in parts of the Antarctic. Here, we used
remote biopsy samples and estimates of length derived from
unoccupied aircraft system (UAS) to characterize for the
first time the sex ratio, maturity, and pregnancy rates of
AMWs around the Western Antarctic Peninsula (WAP).
DNA profiling of 82 biopsy samples (2013–2020) identified
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progesterone levels indicated 59% of all sampled females were pregnant, irrespective of maturity.
When corrected for sexual maturity, the median pregnancy rate was 92.3%, indicating that most
mature females become pregnant each year. We measured 68 individuals by UAS (mean = 8.04 m)
and estimated that 66.5% of females were mature. This study provides the first data on the
demography of AMWs along the WAP and represents the first use of non-lethal approaches to
studying this species. Furthermore, these results provide baselines against which future changes in
population status can be assessed in this rapidly changing marine ecosystem.
.org/journal/rsos
R.Soc.Open

Sci.9:220724
1. Introduction
The status of biological populations can be inferred by monitoring changes in parameters such as
abundance, fecundity, mortality and age structure [1]. In the absence of direct estimates of abundance,
demographic metrics may serve as indicators of population growth, viability and response to
environmental changes [2–5]. In long-lived species, changes in demography are more likely to be
detected over shorter timescales compared with changes in abundance, particularly for large
populations such as baleen whales, where estimating abundance is difficult and often imprecise due
to their marine distribution and cryptic behaviour.

Among long-lived large vertebrates, the effects of climate change have been well-studied in ungulates,
primarily focused on how climate variability impacts births, survival and age structure [2,6,7]. For example,
in 21 populations of woodland caribou, colder temperatures and increasing snowfall increase juvenile
recruitment and population growth [8]. However, as climate anomalies (i.e. warmer temperatures, freeze–
thaw events) become more common and larger in magnitude, an overall decrease in habitat availability and
forage quality, an increase in adult energy expenditure, a decrease in pregnancy rates and an increase in
predation risk have been observed [8–10]. Similar climate-driven shifts in demography and dynamics have
been shown in elk [7], pronghorn antelope [11], moose, owls and wolves [12].

Understanding the impacts of climate-driven changes on polar species is particularly important given
the rapid changes occurring at the poles in both marine and terrestrial ecosystems [13,14]. Antarctic
minke whales (Balaenoptera bonaerensis, AMW) are an abundant ice-dependent species found year-
round in the Antarctic [15,16]. They have a circumpolar distribution, probably breeding between 7°
and 35° S [17]. AMWs have a strong affinity for ice-covered regions or sheltered bays, especially in
areas with high densities of krill, their preferred prey [15,18–23]. AMWs are well-adapted to feed on
krill under sea ice [24] and use sea-ice habitat to avoid predation by killer whales [25,26]. Due to the
logistical challenges of studying pagophilic animals, particularly a cryptic marine species like AMWs,
little is known about their life history or demography [27,28].

The extent of annual sea ice appears to be constant or expanding around most of the Antarctic, but the
Western Antarctic Peninsula (WAP) is experiencing some of the most pronounced loss of sea ice in polar
regions [29]. An estimated 1500 AMWs (95% CI: 1221–1953; [20]), inhabit the continental shelf waters
around the WAP, which has experienced significant warming [30] and substantial reductions in the
extent and duration of sea ice cover over the last 50 years [31]. These changes have resulted in a
cascade of effects throughout the WAP ecosystem, and are probably impacting the demography,
behaviour and ecology of AMWs [32]. Recent advances in both molecular ecology and unoccupied
aircraft systems (UAS) technology allow us to study the demography of these whales using non-lethal
techniques. In this study, we analysed skin and blubber biopsy samples and UAS-derived
measurements of individual AMWs around the WAP to characterize, for the first time, their maturity,
sex ratio and pregnancy rates. Our findings help fill key data gaps on the demographic structure and
population trajectory of AMWs in this rapidly changing region.
2. Methods
2.1. Biopsy collection
We collected skin and blubber biopsy samples from AMWs during the 2013–2020 austral summer and
autumn (January–July) field seasons using standard techniques [33]. Samples were collected
opportunistically during dedicated research cruises or from platforms of opportunity, including
ecotour vessels, in the nearshore waters of the WAP (figure 1). We used a crossbow to project
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Figure 1. Genetic sex of Antarctic minke whales (AMWs) sampled along the Western Antarctic Peninsula (WAP) (a) and in the
Gerlache Strait and adjacent bays (b), pregnancy status of female AMWs sampled along the WAP (c) and in the Gerlache Strait
and adjacent bays (d ), and location of AMWs imaged along the WAP (e) and in the Gerlache Strait and adjacent bays ( f ).
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modified bolts and 40 mm stainless steel biopsy tips (CetaDart) to obtain samples from a distance of 10–
30 m, targeting the area of the body below the dorsal fin. All age and sex classes of AMWs were sampled,
except dependent calves. Samples were stored frozen whole at −20°C until used for analysis. Electronic
supplementary material, data, (including location, group size) were recorded at every biopsy event.
2.2. DNA profiling
We used standard molecular methods to identify the sex of individuals from DNA extracted from
biopsies [34,35]. We used a standard DNA profile, including sex-specific markers and microsatellite



Table 1. Summary of microsatellite loci used for individual identification of Antarctic minke whales along the Western Antarctic
Peninsula. The number of alleles, observed (HO), and expected (HE) heterozygosity was calculated using cervus 3.0.1. The
expected probability of identity (PID) of each locus was calculated with the program GenAlEx v6.5.

locus source label
MgCl2
(mM)

size range
(bp)

no. of
alleles HE HO PID

Ev1 Valsecchi & Amos [37] NED 4 114–155 13 0.844 0.841 0.043

Ev37 Valsecchi & Amos [37] NED 3.5 184–220 16 0.915 0.380 0.014

Ev104 Valsecchi & Amos [37] FAM 2.5 126–160 16 0.894 0.918 0.021

GATA98 Palsbøll et al. [39] NED 2.5 80–108 8 0.772 0.758 0.082

GT23 Berube et al. [38] VIC 2.5 88–120 16 0.889 0.922 0.022

GT211 Palsbøll et al. [39] FAM 2.5 80–114 14 0.887 0.921 0.023

GT509 Berube et al. [38] HEX 2.5 179–217 31 0.952 0.967 0.004

GT575 Berube et al. [38] FAM 1.5 129–161 15 0.906 0.872 0.016

rw4–10 Waldick et al. [40] VIC 2.5 188–219 28 0.947 0.924 0.005

rw48 Waldick et al. [40] NED 3 108–133 10 0.882 0.500 0.026
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genotypes, to identify individual whales. Genomic DNA was extracted from the skin–blubber interface
using a commercially available kit (Dneasy 96 Blood & Tissue Kit, Qiagen, Hilden, Germany). The sex of
each sampled whale was determined by amplification of sex-specific markers following the protocols of
Gilson et al. [36]. Results were compared with controls for a known male and female using gel
electrophoresis. Sex ratios, depicted as the ratio of males to females (M : F), were calculated for the
entire dataset and for specific sampling years.

Samples were genotyped using 10 previously published microsatellite loci to resolve the identity of
each sampled whale and remove potential replicate samples (table 1) [37–40]. Alleles were sized and
binned using the software program Genemapper v. 3.7 (Applied Biosystems). The total number of
amplified loci for a given sample was considered as an added quality control threshold. Given the
estimated probability of identity for these loci from previous studies [41], we considered samples
matching at a minimum of seven loci to be recaptures of the same individual. Samples with fewer
than seven microsatellite loci were repeated or excluded. The expected probability of identity (PID; the
probability that two individuals are drawn at random from a population will have the same genotype
by chance) for each locus was calculated in GenAlEx v. 6.5 [42]. Cervus 3.0.7 [43] was used to
compute the number of alleles (K), observed and expected heterozygosity (HO and HE), and the
probability of identity for all individual matches.
2.3. Hormone extraction and quantification
To develop an assay for pregnancy, we extracted progesterone from the blubber portion of the biopsy
samples following standard methods [44,45]. A cross-sectional subsample (approx. 0.15 g) spanning
from the epidermis–blubber interface to the most internal layer of the biopsy was subsectioned. These
subsamples were then homogenized multiple times using an automated, multi-tube homogenizer
(Omni International). Following the completion of the homogenization process, progesterone was
isolated using a series of chemical washes, evaporations and separations. The final hormone residue
was stored at −20°C until analysis. The amount of hormone in each extract was quantified using a
commercially available enzyme immunoassay. Before analysis, samples were re-suspended in
phosphate-buffered saline and then assayed. The progesterone enzyme immunoassay kit (EIA kit 900-
011, ENZO Life Sciences, Farmingdale, NY) used in this study has 100% reactivity with progesterone
and an assay detection limit between 15 and 500 pg ml−1. Two additional standard dilutions were
added to allow for a lower detection limit of the standard curve to 3.81 pg ml−1. If reliable hormone
concentrations were not obtained during the initial assay process, extracts were further diluted
and re-run.

As part of our routine quality control, we determined the extraction efficiency by spiking subsamples
of blubber from a dead animal with the target hormone [44]. The percentage of hormone recovered after
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the extraction was calculated, and each sample concentration was adjusted to this efficiency before
statistical analyses. An extraction efficiency greater than 60% was acceptable. If the extraction
efficiency was less than 60%, the sample extracts were discarded, and the blubber samples re-
extracted. Additionally, we conducted a parallelism test to gauge the performance of using the AMW
blubber extracts with the progesterone EIA kit. This was done by taking a serially diluted pool of
sample extracts and running them along with the standard controls of the assay to determine whether
the linear decrease in measured values of the pooled sample was parallel to the standard curve. This
would indicate that the assay measures the same antigens in the blubber as in the standards. Extracts
from six individual females were pooled together, and the pooled sample concentrations were made
by diluting five times from the neat preparation to 1/32, decreasing by a factor of two. Each dilution
was run two times, and the resulting curve of the concentrations as a function of the mean optical
density was then compared with the standard curve.

2.4. Pregnancy classification
To assign pregnancy in sampled AMWs, we adapted two methods used by Pallin et al. [46] for humpback
whales (Megaptera novaeangliae). Similar distributions in the progesterone concentrations were observed
for both humpback whales and AMWs and as such, we first assigned the pregnancy status of female
AMWs based on the relationship of their progesterone concentration with a reference model
developed from known pregnant humpback whales [46]. We then used the range in concentrations of
progesterone from female common minke whales (Balaenoptera acutorostrata) of known pregnancy
status as described in Mansour et al. [47] to build a second model from our sampled AMWs which
fell within those bounds. Specifically, a gap in progesterone concentrations was observed between a
maximum of 3.43 ng g−1 in not-pregnant females and a minimum of 22.84 ng g−1 in pregnant animals,
with an almost 60-fold difference observed between the mean blubber progesterone concentrations
among these two pregnancy state designations. For the AMW samples which fell between the ranges
for not-pregnant and pregnant common minkes (N = 5), we interpreted their pregnancy state based on
the relationship of their progesterone concentrations with the reference levels from the second model.
In both cases, the models determined the probability of pregnancy (point estimate) and 95%
confidence envelope. Using both the point estimate and associated error, we were then able to assess
confidence of the pregnancy assay (e.g. >99.9% is pregnant, <0.1% not-pregnant, 0.1% < p < 99.9%
undetermined (UND)) [46]. Moreover, we were also able to provide an estimate of the proportion of
pregnant females (pregnancy rate) in all samples, including those with an assignment probability
between 0.1% and 99.9%. This was accomplished by taking the sum of the probabilities for all
samples at each individual model bootstrap replicate and dividing by the sample size to obtain the
proportion pregnant. The resulting pregnancy rates from each model were compared with each other
(figure 2).

2.5. Unoccupied aircraft systems image collection and photogrammetry
To determine the distribution of size classes of AMWs in the population, high-resolution aerial images
were collected using unoccupied aircraft systems (UAS, or drones) and analysed to estimate the total
length of AMWs. These images were collected during the 2017–2019 austral summer (January–March)
field seasons using three different hexacopters: APH-22 (Aerial Imaging Solutions), Alta 6 (FreeFly)
and LemHex-44 (Mikrokopter). The APH-22 was fitted with an Olympus E-PM2 camera with a Micro
Four Thirds (17.3 × 13 mm) sensor, 4608 × 3456 pixel resolution, and an Olympus M. Zuiko 25 mm f1.8
focal length lens. Both the LemHex-44 and Alta 6 were equipped with a Sony Alpha a5100 camera
with an APS-C (23.5 × 15.6 mm) sensor, 6000 × 4000 pixel resolution and either 35 or 50 mm f1.8 Sony
SEL focal length lens. Each aircraft had an onboard barometer, while the LemHex-44 and Alta 6 were
also equipped with a LightWare SF11/C laser altimeter to determine the altitude of each image.
Details for flight operations and image collection are described in Kahane-Rapport et al. [48] for the
Alta 6 and LemHex-44 and in Durban et al. [49] for the APH-22. Individuals were identified from
external marking and pigmentation patterns that were visible in the aerial and/or boat-based photo-
identification images.

Images were selected for each individual and ranked for quality in measurability following
Christiansen et al. [50], in which a score of 1 (good quality), 2 (medium quality) or 3 (poor quality)
was applied to seven attributes: camera focus, straightness of body, body roll, body arch, body pitch,
total length measurability and body width measurability. Images with a score of 3 in any attribute
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Figure 2. Logistic regression models for the probability of pregnancy in Antarctic minke whales (AMWs) relative to blubber
progesterone concentration. (a) Model based on the relationship of AMW progesterone concentration with a reference model
developed from known pregnant humpback whales adapted from Pallin et al. [46] and (b) Mansour et al. [47] adapted model
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iterations. x-axis values are log10 transformed.
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were removed from the analysis, together with any images that received a score of 2 in both roll and arch,
roll and pitch or arch and pitch [50]. Measurements from up to five images were used per individual. We
used MorphoMetriX open-source photogrammetry software to measure (in pixels) total length, from the
tip of the rostrum to the fluke notch (figure 4) [51]. MorphoMetriX outputs were collated using CollatriX
open-source software [52].

To account for measurement uncertainty associated with each UAS, we used the Bayesian statistical
model described in Bierlich et al. [53], in which training data of known-sized objects measured at various
altitudes are used to predict length measurements and associated uncertainty of objects of unknown size
(e.g. each individual whale). For the Alta 6 and LemHex-44, we employed the dataset used by Bierlich
et al. [53] for training the model with measurements from images of known-sized floating objects (n = 110)
collected between 10 and 120 m altitude along the WAP (length = 1.33 or 1.40 m), Monterey, California
(length = 1.27) and Beaufort, North Carolina (length = 1.48). For the APH-22, we used images of the
rail on the rigid-hull inflatable boat (RHIB; length = 2.95 m) collected at altitudes of 22–47 m as
training data. The training data encompassed the range in altitude that images of AMWs were
collected for each aircraft (Alta 6 and LemHex-44 : min = 15, max = 83 mean = 42.30, s.d. = 16.92;
APH-22; min = 30, max = 42, mean = 36.67, s.d. = 2.85). Rather than a single-point estimate, the model
generated a posterior predictive distribution for the total length (m) of each individual (figure 3). We
then estimated the total length of each individual as the mean of its posterior predictive distribution
and assessed measurement uncertainty by constructing the 95% highest posterior density (HPD)
intervals, which is an interval that represents the region with a 95% probability of encompassing the
parameter of interest (e.g. total length; figure 4). Model development and analyses were conducted in
R (v. 3.6.1 [54]), as described in Bierlich et al. [53].
2.6. Estimating proportion of mature females using an undifferentiated sample of animals of
known length

If length, sex and pregnancy data were available from the same individual AMW, it would be possible to
estimate the length at maturity directly and use this to calculate the total number of mature animals in the
sample. However, this was not possible for AMWs imaged in this study, and as such, the pregnancy rate
presented here was based solely on hormonal estimates, and these data do not distinguish between
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sexually immature and mature not-pregnant females. Unfortunately, sex and maturity status were not
available for our sample of whales whose lengths have been estimated via UAS imaging. However,
the lengths of whales can be used to estimate the expected proportion of mature females in our
sample if the probabilities that an animal of a given length is both female and mature can be
calculated from other sources. This is possible for the Antarctic Peninsula region using data from
historical commercial whaling catches (1972–1987) in the region bounded by the longitudes 55° W to
70° W (data provided by International Whaling Commission (IWC) archives). It is not necessary that
the distributions of lengths in our samples and from the commercial data are comparable, only that
the proportions of animals that are female and mature are similar at a given length. The methods for
estimating the sex ratios and maturity status at given lengths are described in electronic
supplementary material, Appendix I. These calculations include Bayesian estimates of the sex ratio
and maturity at-length distributions, and consequently, the distributions of the sex ratio and
pregnancy rates based on our length and pregnancy data can be estimated.

2.7. Data preparation and statistical analyses
We used a two-tailed exact binomial test [55] to test for deviations from a 1 : 1 sex ratio (parity) across the
entire dataset and within a given year. Additionally, to avoid re-sample bias in our analyses, we removed
all within-year replicates. In both cases, the most recent sample was retained for the analyses. For all
statistical tests, we considered a p-value of less than 0.05 to be significant. All values are expressed as
mean ± s.d. unless otherwise stated.
3. Results
3.1. Individual identification and sex
We collected 82 skin and blubber biopsy samples along the WAP from 2013 to 14 and 2016 to 20 (figure 1).
Samples were collected from January to July, with most (64%) collected in February. An average of 9.4
microsatellite loci were successfully genotyped per individual. Fifteen samples failed the initial genotype
quality control and were re-analysed. Three samples (2013, one male, one female; 2018, one male) never
yielded a high-quality genotype and were not included in further analyses. The average PID for any given
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Table 3. Progesterone concentrations (ng g−1) of presumed pregnant and not-pregnant Antarctic minke whales biopsied along
the Western Antarctic Peninsula. β Does not include samples that yielded a poor genotype quality score (2013, one female).

mean (ng g−1) s.d. Min max N

not-pregnant 1.98 1.58 0.36 5.92 13

pregnant 144.86 96.53 18.85 307.01 20β

undetermined 10.20 1

total 34β
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combination of seven loci ranged from 5.74 × 10–14 to 1.57 × 10–11, consistent with similar studies [45]. DNA
profiling was sufficient to identify and determine the sex of 69 individual whales from these samples
(table 2). In total, we sampled 29 individual males and 40 individual females throughout the study. Details
on annual sampling can be found in table 2. We resampled nine individuals within the same year. Five
individuals were resampled on the same day (2014, two females; 2020, two males, one female), including
one female that was sampled three times (2014, one female). Additionally, one individual was resampled
one day apart (2017, one male), one individual was sampled three days apart (2013, one female), one
individual was sampled six days apart (2019, one female) and one individual was sampled 24 days apart
(2020, one male). We did not recapture any individuals across years. Overall, we sampled more females
than males (0.73 M : F), but this deviation from parity was not significant (p = 0.228, exact binomial test,
table 2). In addition, the sex ratios did not differ from unity in any sampling year (table 2).

3.2. Variation in progesterone concentrations
Based on the concentrations observed from a series of spiked controls, our average extraction efficiency
for the progesterone assay was 82.77% ± 14.46 (minimum 65.78%, maximum 100.81%). Additionally, our
calculated intra-assay and inter-assay coefficient of variation from a series of replicated samples was
3.10% and 7.21%, respectively. The EIA standards and the pooled serially diluted blubber extracts
exhibited statistical parallelism (figure 3, r2 = 0.982, slope = 0.997); an indication that the assay is
measuring the same antigens in the blubber as in the standards and therefore is suitable for use with
AMW blubber tissues extracts.

We measured progesterone concentrations in 39 samples obtained from 34 individual female AMWs
(figure 1). A small number of samples were excluded from the analysis due to within-year re-sampling,
insufficient blubber for extraction, or a poor-quality genotype. In both probability assignment methods, 13
individual females were estimated to have a probability of being pregnant of less than 0.1% (assigned as
not-pregnant; p< 0.1%; blubber progesterone: mean = 1.98 ± 1.58 ng g−1) and 20 were estimated to have a
higher than 99.9% probability of being pregnant (assigned as pregnant, p> 99.9%; blubber progesterone:
mean = 144.86 ± 96.53 ng g−1; table 3; figure 2). Additionally, one individual whose progesterone
concentrations fell within the 95% confidence envelope in both models (blubber progesterone: 10.20 ng g−1),
received a mean probability of being pregnant of 0.53%, with a lower CI of 0.00% and an upper CI of
99.30%; table 3; figure 2). This individual received an undetermined pregnancy assignment. The mean
estimated proportion of pregnant females, across both models, across all 34 samples was 58.84% (CI =
58.82–61.74%). The within-year replicate samples provided further validation of the assay by demonstrating
that re-sampled females continued to fall within the same pregnancy designation. Specifically, two females
were consistently classified as not-pregnant (gBbo19AP006: mean = 3.43 ± 0.68 ng g−1, six days between
resampling; gBbo20AP08: mean = 2.48 ± 2.16 ng g−1, sampled same day) and two females as pregnant
(gBbo14AP001: mean = 391.66 ± 123.36 ng g−1, sampled same day; gBbo14AP005: mean = 110.60 ±
99.39 ng g−1, sampled same day). Lastly, the distribution in progesterone concentrations across our two
designated pregnancy states for female AMWs sampled along the WAP was distributed similarly to
common minke whales as outlined in Mansour et al. [47], as well as to samples collected from female
humpback whales also sampled along the WAP [45].

3.3. Group compositions
The group composition of AMWs sampled throughout this study varied from single animals, pairs, to
large aggregations of up to 25 individuals. Of the whales sampled with reliable sighting data in this
study, 24 were encountered as singletons (16 M and 8 F), seven were found in pairs and 36 were
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found in groups of three or more. Additionally, we fully sampled all individuals present in four groups,
including two pairs (FF, MF), one group of three (MFF) and one group of four (MMMM). No calves were
observed during this study.

3.4. Length frequencies
A total of 68 AMWs were photographed by UAS along the WAP between January and March during the
2017–2019 field seasons (figures 1, 4, 5; mean = 8.04 m, s.d. = 1.06, min = 4.65, max = 9.74). Measurement
uncertainty, measured as the width (m) of the 95% HPD interval for each individual (figure 4), was
similar across each UAS aircraft: mean = 0.45, s.d. = 0.28, min = 0.15, max = 1.55. No individual was
measured more than once during the study period, nor did we observe any behavioural responses of
the AMWs toward the UAS.

3.5. Adjusted demographic parameters using commercial catch data
Applying the proportions of sex at length from the catch data to our length data provides a median value
for the sex ratio of 1.04 M : F (49% female, 95% credible interval 44%–54%). Figure 6a shows the
maximum-likelihood estimate from the commercial catches of the probabilities at each length that an
animal is a mature female. The median estimate of the female length at 50% sexual maturity from the
catch data was 8.20m (95% credible interval 8.10–8.28; electronic supplementary material,
Appendix I). Applying the product of this curve with the maximum-likelihood estimates of the
commercial catch length at maturity to our length data gives the proportion of females that are
mature as 66.5%. Thus, the maximum-likelihood estimate for the number of mature whales in our
sample of 33 females is 22. Twenty of the known sampled females were pregnant and hence the
estimated pregnancy rate of adult females is 90.09% under the assumption that the length frequency
distribution of the UAS-measured animals is the same as the unknown length frequency distribution
of the biopsied animals. Uncertainty in the estimates of the proportion of mature females was
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calculated using a Monte Carlo Markov chain (MCMC) analysis (see electronic supplementary material,
Appendix I) for the two functions. This produced the distribution for pregnancy rate shown in figure 6b.
This distribution had a median pregnancy rate of 92.3% (95% credible interval 83.8%–102.8%). The
distribution has a tail above 100%, reflecting the uncertainty in the estimated proportion of mature
females as shown in the distribution given in figure 6c.
4. Discussion
Our results provide the first estimates of sex ratio, maturity status and pregnancy rates for Antarctic
minke whales (AMWs) inhabiting the waters surrounding the Western Antarctic Peninsula (WAP), a
region undergoing rapid environmental change. Our comparisons may have more uncertainty than
we can account for as we adjusted our data using data collected during commercial whaling
operations that occurred 40 years earlier. This study also represents the first demographic study of this
species using non-lethal techniques.
4.1. Variation in sex ratios
The sex ratio of the sampled population was biased towards females (0.73 M : F), but this was not
statistically different from parity. In addition, the Bayesian estimated sex ratio for this region was 1.04
M : F. Similar sex ratios (mean: 1.18 M : F, range: 0.48–3.26) were observed among 4383 individual
AMWs lethally sampled between 1990 and 2006 in East Antarctica [56]. Sex ratio biases occur in other
parts of the Antarctic that seem to be related to latitude: in a study of minke whales killed under a
Special Permit whaling programme, females represented 80% of the catch near the ice edge, but males
dominated in waters north of 65° S, further from the ice edge [57]. Similarly, skewed sex ratios have
been observed as a result of demographic segregation in common minke whales off Greenland [58].
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Population segregation is found in a wide variety of species [59]. In cetaceans, spatial sex segregation is
broadly observed [60,61], with adaptive advantages to social structure, environmental constraints, niche
selection and timed with life-history events. Our samples come from a small region of the WAP relative to
the range of the species in this region [21]. AMWs satellite-tagged in our study area maintained a coastal
distribution along a large latitudinal gradient that affords them coastal shelter and proximity to available
sea ice [21,23]. If there is spatial segregation related to distance from shore or ice shelf (i.e. sea ice versus
open water), then our sample population could be skewed toward females, which show a strong affinity
toward structure in other areas of the Antarctic.

4.2. Variation in pregnancy rates
We calculated an unadjusted pregnancy rate of 58.84% for all females sampled during this study and a
corrected pregnancy rate (including only sexually mature females) of 92.3%, which is similar to East
Antarctica (mean 90%) [62]. It is likely that the high abundance of krill along the WAP [63,64] in
combination with AMWs’ unique ecological niche [24] supports the high observed reproductive rates
within this population. Similar high rates of pregnancy among other baleen whales in this region have
also been attributed to the high productivity of the WAP [45] and lack of other baleen whales that
have yet to recover from commercial whaling (i.e. blue and fin whales). Unfortunately, it is not
possible to reconstruct the demographic trajectory of these whales over the last half-century because
there is no good historical baseline for this population. However, continued demographic monitoring
will allow us to understand how this population is responding to climatic change which will probably
lead to a decline in the amount of physical habitat and prey available to them over time [23,64].

4.3. Variation in length frequencies and sexual maturity
Our overall mean length of AMWs was 8.04 m and we estimated that 66.5% of females were sexually
mature. Both our mean calculated length and the proportion of presumed sexually mature female
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AMWs from this study were lower than the reported mean length (8.59 m) [57] and reported proportion
of sexually mature female AMWs (76%) [27] killed under the Special Permit whaling programmes. This is
not surprising given that these whaling programmes may have been biased toward catching larger
individuals near the ice edge [65]. The East Australian humpback whale, a closely related long-lived
species, has a high proportion of young and sexually immature individuals, indicative of a rapidly
growing population [66]. Continued monitoring of AMWs along the WAP is needed to better
understand their age structure in the context of a rapidly changing environment.

4.4. Potential effects of spatial and temporal heterogeneity
In the present study, we sampled whales opportunistically and avoided re-sampling individuals whenever
possible. The distribution of AMWs is segregated by sex, age and reproductive status. Specifically, in the
East Antarctic, immature whales are normally solitary and occur in lower latitudes further offshore. Mature
males are more abundant in middle latitudes, and mature females occur in greater frequency in higher
latitudes near the marginal pack ice zone [57]. For the subset of whales that migrate for reproductive
purposes, males tend to arrive in the Antarctic in November, with females on average arriving one month
later as a result of weaning their calves in lower latitudes [67] and then remain in the region. By February,
mature females dominated 85% of the catch south of 65 degrees [57]. Mature females’ high affinity for the ice
zones may make them susceptible to changes in their environment, and as a result they are likely to be the
best indicators of changing population dynamics. Although data on the spatial and temporal segregation of
AMWs comes from East Antarctica, it is possible that similar spatial and temporal dynamics exist for this
species along the WAP, and that our results reflect a similar distribution pattern. Almost two-thirds of our
tissue samples and 50% of our UAS images were collected in February, and spatially, our sampling was
focused within a subset of the known range of AMWs in this region. To better understand these potential
biases, a more systematic and comprehensive spatio-temporal sampling effort is required. For example, we
suggest future work to pair remote biopsy sampling and UAS imaging of individual whales across the
entire continental shelf during a more protracted summer season. Finally, this study has successfully
demonstrated the ability to assess the length, sex, maturity and pregnancy status of AMWs sampled
non-lethally, and these methodologies can now be employed in more comprehensive, long-term studies.

4.5. Climate change effects on population dynamics of Antarctic minke whales
The rates of population decline in birds andmammals globally are greater in locations where the temperature
has increased at higher rates [68]. The marine environment of the WAP is experiencing some of the most
significant warming on Earth, resulting in a rapidly diminishing extent and duration of sea ice. Taken
together, these climatic changes represent some of the most dramatic changes in the physical environment
on the planet [29]. The distribution and ecology of AMWs are directly tied to sea ice and prey availability,
and changes that impact both the quantity and quality of their habitat and food availability may result in
significant effects on fitness. We are already witnessing temporal contraction of critical habitat for AMWs in
this region [29], as shown by satellite tracking data [21]. The WAP population of humpback whales, which
is growing at rates at or near maximum values [45], and AMWs partition prey by feeding in different
habitats (sea ice versus open water, and vertically in the water column) [69], but with continued declines in
sea ice, the ability to successfully partition foraging habitat may also decline, and competition for prey
could increase between the two species. If AMWs are forced to broaden their distribution to suboptimal
areas, they would be at higher predation risk from Type A killer whales in open water [26]. Similar
population-level responses among other ice-dependent krill consumers along the WAP have been
documented in response to environmental change. Over the last 50 years, Adélie penguin populations have
decreased dramatically and ice-intolerant chinstrap and gentoo penguin populations have increased
substantially [70]. In the light of the better-documented population responses of penguins to changes in
physical substrates, such as sea ice, it is not implausible that WAP marine mammal populations (e.g.
AMWs and killer whales [71,72]) that are similarly associated with these variables have responded or will
respond in the same way.
5. Conclusion
Our study provides the first data on the demographics and population structure of AMWs along the
WAP and the first non-lethal study of the demography of this species. Our results provide key
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information for the population status of AMWs in a rapidly changing system. As the extent of seasonal
sea ice and krill continues to decline around the WAP, AMWs may become displaced by lack of preferred
habitat and/or increasingly susceptible to competition and predation, as has been observed in other
baleen whales [73] and ice-obligate marine predators [32].
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