

ADVERTISEMENT

[RETURN TO ISSUE](#)< PREV **PERSPECTIVE** NEXT >[Get e-Alerts](#)

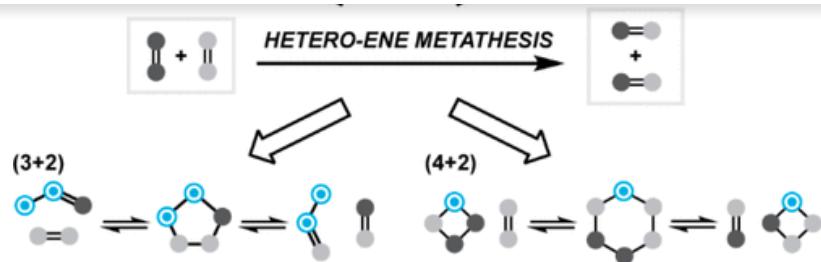
Hetero-ene Metathesis

J. Drake Johnson and Aleksandr V. Zhukhovitskiy*

 Cite this: *ACS Catal.* 2024, 14, 1, 21–33Publication Date: December 8, 2023 <https://doi.org/10.1021/acscatal.3c04135>**Copyright © 2023 American Chemical Society**[Request reuse permissions](#)

Article Views Altmetric Citations

2025 5


-

[LEARN ABOUT THESE METRICS](#)

Share Add to Export

[Access Through Your Institution](#)[Other access options](#)**SUBJECTS:** [Catalysts](#), [Cyclization](#), [Hydrocarbons](#), [Metathesis](#), [Olefin metathesis](#)

Abstract

Metathesis of double bonds has enabled innovation in a broad range of fields: from materials science to medicine. However, this chemistry has largely focused on alkenes rather than hetero-enes, or heteroatom-containing double bonds. Yet, the ability to do hetero-ene metathesis could grant access to valuable heteroatom-rich molecules. Catalysis of double bond metathesis has classically, though not exclusively, relied on the [2+2] cycloaddition/elimination mechanism, which in the case of olefins involves transition metal alkylidenes. However, this mechanism may not be ideal for some hetero-enes, nor is it uniquely suited for the purposes of metathesis: other mechanisms are feasible and, in some cases, precedented. In this Perspective, we present a general framework for mechanistic design that would apply to hetero-ene metathesis, with examples of reported transformations that justify this classification. Advantages, challenges, and opportunities within each class of mechanisms are also outlined. We hope that this Perspective will catalyze further research in this burgeoning field.

KEYWORDS: metathesis, hetero-ene, mechanism, cycloaddition, cycloelimination, insertion, elimination, pseudosymmetry

Read this Article

To access this article, please review the available access options below.

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. [Read the ACS privacy policy.](#)

[CONTINUE](#)

Purchase Access[Restore my guest access](#)**Recommended****Access through Your Institution**

You may have access to this article through
your institution.

Access Through Your Institution**Log in to Access**

You may have access to this article with your
ACS ID if you have previously purchased it or
[have ACS member benefits. Log in below](#)

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. [Read the ACS privacy policy.](#)

CONTINUE

Cited By

This article has not yet been cited by other publications.

[Download PDF](#)

Partners

1155 Sixteenth Street N.W.
Washington, DC 20036
Copyright © 2024
American Chemical Society

About

[About ACS Publications](#)
[ACS & Open Access](#)
[ACS Membership](#)
[ACS Publications Blog](#)

Resources and Information

[Journals A-Z](#)
[Books and Reference](#)
[Advertising Media Kit](#)

Support & Contact

[Help](#)
[Live Chat](#)
[FAQ](#)

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. [Read the ACS privacy policy.](#)

CONTINUE

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. [Read the ACS privacy policy.](#)

CONTINUE