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We consider the isoperimetric problem defined on the whole R" by the Allen—Cahn energy functional.
For nondegenerate double-well potentials, we prove sharp quantitative stability inequalities of quadratic
type which are uniform in the length scale of the phase transitions. We also derive a rigidity theorem for
critical points analogous to the classical Alexandrov theorem for constant mean curvature boundaries.
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1. Introduction

1A. Overview. We study the family of “Euclidean isoperimetric problems” on R"?, n > 2, given by

W (o, m) = inf{ACU(u) | Vw) =m, ue H'(R": |0, 1])}, o,m >0, (1-1)

Rn
associated to the Allen—Cahn energy functionals of a nondegenerate double-well potential W (see (1-11)
and (1-12) below)

ACg(u)zaf |Vu|2—|—é W), o >0. (1-2)
n R}’l

We analyze in particular the relation of these problems to the classical Euclidean isoperimetric problem
Wiso(m) =inf{P(E): E CR", |E| =m} =no,"m"~V/"m >0, (1-3)

in the natural regime where the phase transition length scale o and the volume constraint m satisfy
0<o <egym'" (1-4)
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for some sufficiently small (dimensionless) constant &g = go(n, W). The volume constraint in ¥ (o, m) is
prescribed by means of the potential V (1) = ( fot \/W)"/ “=D This specific choice is natural in light of the
classical estimate obtained by combining Young’s inequality with the BV-Sobolev inequality/Euclidean
isoperimetry, and showing that, if u € H ! (R™; [0, 1]), then, for ®(t) = fot VW ,

(n=1)/n
ACU(M)ZZ/ |Vu|\/W(u):2/ IV (i) >2nw}/"<f V(u)) . (1-5)
In particular, by our choice of V, W(c, m) is always nontrivial,! with
(o, m) > 2Wisx(m) forall o,m > 0. (1-6)

(The strict sign does not follow from (1-5) alone, but also requires the existence of minimizers in (1-5).)
By combining (1-6) with a standard construction of competitors for W (o, m), one sees immediately that

lin(}+ (o, m) =2Wix(m) forall m > 0. (1-7)
o—>

The relation between the Allen—Cahn energy and the perimeter functional is of course a widely explored
subject (without trying to be exhaustive, see, for example, [Modica and Mortola 1977; Modica 1987a;
Sternberg 1988; Luckhaus and Modica 1989; Hutchinson and Tonegawa 2000; Réger and Tonegawa 2008;
Le 2011; Tonegawa and Wickramasekera 2012; Dal Maso et al. 2015; Le 2015; Gaspar 2020]), and so is
the relation between the “volume-constrained” minimization of .AC, and relative isoperimetry/capillarity
theory in bounded or periodic domains (see, e.g., [Modica 1987b; Sternberg and Zumbrun 1998; 1999;
Pacard and Ritoré 2003; Carlen et al. 2006; Bellettini et al. 2006; Leoni and Murray 2016]). The goal of
this paper is exploring in detail the proximity of W (o, m) to the classical Euclidean isoperimetric problem
Wiso(m) in connection with two fundamental properties of the latter:

(i) The validity of the sharp quantitative Euclidean isoperimetric inequality [Fusco et al. 2008]: if E C R"
has finite perimeter P (E) and positive and finite volume (Lebesgue measure) £"(E), then

n n 1/n
cn | — P(E) 1> i ZEABX) (E (E)> , (1-8)
nawy " L1 (E)n=D/n xoER" LY(E) wp

where w,, denotes the volume of the unit ball in R".

(ii) Alexandrov’s theorem [1962] (see [Delgadino and Maggi 2019] for a distributional version): a bounded
open set whose boundary is smooth and has constant mean curvature is a ball; in other words, among
bounded sets, the only volume-constrained critical points of the perimeter functional are its (global)
volume-constrained minimizers.

IObViously, this is not always true with others choices of V. For example, setting V(¢) = ¢ in (1-1), which is the most
common choice in addressing diffuse interface capillarity problems in bounded containers, one has W (o, m) = 0 by a simple
scaling argument. Among the possible choices that make W (o, m) nontrivial, ours has of course the advantage of appearing
naturally in the lower bound (1-5). For this reason, and in the interest of definiteness and simplicity, we have not considered
more general options here.
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Concerning property (i), the natural question in relation to W (o, m) is if a sharp stability estimate

similar to (1-8) holds uniformly with respect to the ratio o/m'/"
1/n

€ (0, g9) for ¥ (o, m). Uniformity in
o/m"/" seems indeed a necessary feature for a stability estimate of this kind to be physically meaningful
and interesting.

Concerning property (ii), we notice that the notion of smooth, volume-constrained critical point of

W (o, m) is that of a nonzero function u € C2(R"; [0, 1]) such that the semilinear PDE
—20%Au=0rV'(u) —W'(u) onR" (1-9)

holds for a Lagrange multiplier A € R. The boundedness assumption in Alexandrov’s theorem is crucial to
avoid examples of nonspherical constant mean curvature boundaries, like cylinders and unduloids. This is
directly translated, for solutions of (1-9), into the requirement that u(x) — 0 as |x| — oo, without which
semilinear PDEs like (1-9) are known to possess nonradial solutions modeled on the aforementioned
examples of unbounded constant mean curvature boundaries; see, e.g., [Pacard and Ritoré 2003].

Under the decay assumption u(x) — 0 as |x| — oo, and without further constraints on o and A,
every solution of (1-9) will be radial symmetric thanks to the moving-planes method [Gidas et al. 1981].
However, even in presence of symmetry, possible solutions to (1-9) will have a geometric meaning (and
thus a chance of being exhausted by the family of global minimizers of W (o, m)) only if the parameters o
and A are taken in the “geometric regime” where o X is small. To explain why we consider such regime
geometrically significant, we notice that the Lagrange multiplier A in (1-9) has the dimension of an
inverse length, which, geometrically, is the dimensionality of curvature. For o to be the length of a phase
transition around an interface of curvature A, it must be that

O<o i<y (1-10)

for some sufficiently small (dimensionless) constant vy = vy(n, W). Notice that since inverse length

is volume™!/" —l/n

=m , (1-10) is compatible with (1-4). We conclude that a natural generalization of
Alexandrov’s theorem to the Allen—Cahn setting is showing the existence of constants £y and vg, depending
on n and W only, such that, if u € C 2(R"; [0, 1]) vanishes at infinity and solves (1-9) for o and X as in

(1-10), then u is a minimizer of W (o, m) for some value m such that (1-4) holds.

1B. Statement of the main theorem. We start by setting the following notation and conventions:

Assumptions on W. The double-well potential W € C21[0, 1] satisfies the standard set of nondegeneracy
assumptions
WO0)=W({1)=0, W=>0o0n(,1, W’'0)),WwW'Qd) >0, (1-11)

as well as the normalization 1
/ VW =1. (1-12)
0
Correspondingly to W, we introduce the potential V used in imposing the volume constraint in W (o, m),
by setting
t
V()= @)D, CI>(t)=/ VW, tel0,1]. (1-13)
0
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Notice that both V and @ are strictly increasing on [0, 1], with V(1) = ®&(1) =1 and ®(¢) = t? and
V(t) & t2/®=1D a5 t — 0. All the relevant properties of W, ® and V are collected in Section A3.

Classes of radial decreasing functions. We say that u : R" — R is radial if u(x) = ¢(|x|) for some
¢ : [0, 00) — R, and that u is radial decreasing if, in addition, ¢ is decreasing. We denote by

Ro, Rgs

the family of radial decreasing and radial strictly decreasing functions. For the sake of simplicity, when
u is radial we shall simply write u in place of ¢, that is, we shall use interchangeably u(x) and u(r) to
denote the value of u at x with |x| = r. Similarly, we shall write u’, u”, etc. for the radial derivatives of u.

Universal constants and rates. We say that a real number is a universal constant it is positive and can be
defined in terms of the dimension n and of the double-well potential W only. Following a widely used
convention, we will use the latter C for a generically “large” universal constant, and 1/C for a generically
“small” one. We will use &g, 8¢, Vg, £g, etc. for small universal constants whose value will be typically
“chosen” at the end of an argument to make products like Ceg “sufficiently small”. Finally, given k € N,
we will write “ f (¢) = O(eX) as ¢ — 07 if there exists a universal constant C such that | f(¢)| < Ce for
every ¢ € (0, 1/C); similar definitions are given for “O(t) as t — 00", etc.

Theorem 1.1 (main theorem). If n > 2 and W € C>'[0, 1] satisfies (1-11) and (1-12), then there exists a
universal constant gy such that setting

X(g0) = {(o,m):0 <o < gom'/™}
the following hold.:
(i) For every (o, m) € X (o) there exists a minimizer uq. ,, of WV (o, m) such that us , € R;ﬂCZ(R”; 0, 1)),
every other minimizer of V (o, m) is obtained from uy , by translation, and the Euler—Lagrange equation

—20% Attgm =0 Ao, m)V' (uom) — W' (tom) (1-14)

holds on R" for some A(o, m) > 0.

(i1) W is continuous on X (gg) and

W (o, ) is strictly concave, strictly increasing, and continuously differentiable on ((o/&g)", 00), (1-15)

A(o,-)= %(0, -) is strictly decreasing and continuous on ((o/&p)", 00), (1-16)

W (-, m) is strictly increasing on (0, egm'/™). (1-17)

Moreover, setting &€ = G/ml/”, we have

(o, m)
m(n—l)/n
m'" A (o, m) =2(n — Dowl/" 4+ 0(e), (1-19)

=2nw)/" 4+ 2n(n — Hw? "koe + O(e?), (1-18)
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as e — 07 with (o, m) € X(gg). Here kg is the universal constant defined by
Ko = / (V'(mn'+Wmn)s ds, (1-20)
R

and n is the unique solution to ' = —/W () on R with n(0) = %
[

(iii) Uniform stability: for every (o, m) € X (&) and u € HY(R"; [0, 1]) with fRn V(u) = m we have, for
a universal constant C,

ACy (1) . 1 _
C\/—2——1> inf — D (u) — D (Tt )| "D, 1-21
Wo.m) = wekem Rn| W) = (Txgttom)| (1-21)

where Ty g m(X) = g m(X —Xx0), x € RY;

(iv) Rigidity of critical points: there exists a universal constant vy such that, if o > 0, u € C*(R"; [0, 1]),
u(x) — 0% as |x| — oo, and u is a solution of

—20%Au=0AV'u)—W'(u) onR" (1-22)
for a parameter A such that
0<ol <y, (1-23)

then there exist xo € R" and m > O such that
o <em'’", A=A(o,m), u= Ty tho,m-
In particular, u is a minimizer of V (o, m).

1C. Relation of Theorem 1.1(iii) to Euclidean isoperimetric stability. We start with some remarks
connecting the (o, m)-uniform stability estimate (1-21) to the sharp quantitative Euclidean isoperimetric
inequality (1-8). To this end, it will be convenient to introduce the unit volume problem

Y(e)=V(, 1) = inf{ACg(u) : V(u)=1, ue H'(R"; [0, 1])}, >0,

Rn
and correspondingly set

ME) = A D=2 e D, we=ueg, >0,

Notice that all the information about ¥ (o, m), Uy, and A(o, m), is contained in ¥ (¢), u, and A(¢),

thanks to the identities
1/n _ g _ X
o mE Ao m) =M Ca ) tem () = g |~ )

V(o,m) ( o
which are easily proved by a scaling argument (see (A-1) and (A-2)).

ma=0/n ml/n

With this terminology at hand, we start by noticing that the right-hand side of (1-21) is bounded from
above by C(n) thanks to the volume constraint fRn V (u) = m. Therefore, in proving (1-21) with, say,
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(o, m) = (e, 1), one can directly assume that u is a “low-energy competitor for 1/ (¢)” in the sense that,
for a suitably small universal constant £,

AC.(u) < ¥ (e) + Lo. (1-24)

Now, if u is such a low-energy competitor u, then f = ®(u) is (£o+Ce)-close to being an equality case
for the BV-Sobolev inequality

IDFIR") = nwp/™ if [o, |fIY0D =1, (1-25)

where | Df| denotes the total variation measure of f € BV(R"), and |Df| = |V f|dx if f € WLI(R™);
see [Ambrosio et al. 2000]. Indeed, by an elementary comparison argument, we have

Y(e) < 2nw!/" 4+ Ce  forall & < g, (1-26)
while (1-5) gives

AC 1/n _/ ( W(M))2 {/ 1/n}
e(u) —2nw," = Je|Vu| — +2 IVI®u)]| —nw,’" ¢, (1-27)
Rn RVL

&

so that the combination of (1-24), (1-26) and (1-27) gives
IVI®@)]| —nw," < C(lo+e),
Rn

while, clearly, [i, f/" V= [, V) =1.

It is well known that (1-25) boils down to the Euclidean isoperimetric inequality if f = 1g is the
characteristic function of E C R", and that equality holds in (1-25) if and only if f =a 13, () for some
r,a > 0. A sharp quantitative version of (1-25) was proved in [Fusco et al. 2008] on sets, and then in
[Fusco et al. 2007, Theorem 1.1] on functions, and takes the following form: if n > 2, f € BV(R"),
f=0,and [, f"/"~D =1, then there exist xo € R" and r > 0 such that

C)V|Df|(R") —new!/" > inf | —a(r) g, "D, (1-28)

x0€R",r>0 Jpn

where a(r) is defined by w,r"a(r)" ™1 = 1. The uniform stability estimate (1-21) is thus modeled after
(1-28), where of course one is working with a different “deficit”, namely, AC. (1) — ¥ (&) rather than
IDf|(R") —n a),l/ " for f = ®(u), and with a different “asymmetry”, namely, the n/(n—1)-th power of
the distance of ® (1) from ® composed with u, rather than with the multiple of the characteristic function
of a ball.

The key result behind (1-21) is the following Fuglede-type estimate for ¥ (¢) (Theorem 4.1): there
exist universal constants 8 and & such that if ¢ < g9, u € H'(R"; [0, 1]) is a radial (but not necessarily
radial decreasing) function, fRn V(u) =1 and

/ u—uel> < Ce, |lu—uellL@) < o, (1-29)

then
(u— “8)2

C(AC:(u) — Y (e)) = / eIV —ue)* +

n

(1-30)
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Note carefully the restriction here to radial functions. The right-hand side of (1-30) is the natural
e-dependent Hilbert norm associated to AC.. By the usual trick based on Young’s inequality, (1-30)
implies
C(AC.(u) — ¥ (e)) = [V[(u — ug)2]| for all u radial, ]R,, V) =1, (1-31)
R)l

and, then, thanks to the H!-Sobolev inequality,

(n—1)/n
C(AC:(u) — ¥ (e)) = ( / lu —u3|2”/(”_1)> for all u radial, [, V(u) = 1. (1-32)
R

The e-independent stability estimate (1-32) (and, a fortiori, the stronger estimate (1-31)) cannot hold
on general u € H L(R™: [0, 1]) with fR” V (u) = 1: indeed, if this were the case, one could take in (1-32)
u = v, to be a family of smoothings of 1 for any set E C R", and then let ¢ — 0, to find a version of
(1-8) with linear rather than quadratic rate. However, such linear estimate is well known to be false, since
the rate in (1-8) is saturated, for example, by a family of ellipsoids converging to a ball.

We conclude that, on radial functions, one can get estimates, like (1-30), (1-31) and (1-32), that are
stronger than what is available for generic functions. We notice in this regard that the validity of stronger
stability estimates in presence of symmetries is well-known. For example, in the case of the BV-Sobolev
inequality, it was proved in [Fusco et al. 2007, Theorem 3.1] that if f € BV(R") is radial decreasing,
f =0, and fRn f”/(”_l) =1, then (1-28) can be improved to

C)(IDFI(R") —nwl/™y > | |f —a@)lp "D, (1-33)
R)l

i.e., the quadratic rate in (1-28) is refined into a linear rate.

We finally notice that (1-21) implies the sharp quantitative form of the Euclidean isoperimetric inequality
(1-8) by a standard approximation argument. However, since our proof of (1-21) exploits (1-8), we are
not really providing a new proof of (1-8). We approach the proof of (1-21) as follows. Adopting the
general selection principle strategy of [Cicalese and Leonardi 2012] we start by deducing (1-21) on
radial functions from the Fuglede-type inequality (1-30). Then we adapt to our setting the quantitative
symmetrization method from the proof of (1-8) originally devised in [Fusco et al. 2008], and thus reduce
the proof of (1-21) from the general case to the radial decreasing case. (It is in this reduction step, see
in particular Theorem 5.4, that we exploit (1-8).) In principle, one could have tried to approach (1-21) by
working on general functions in both the selection principle and in the Fuglede-type estimate steps. This
approach does not seem convenient, however, since it would not save the work needed to implement the
selection principle and the Fuglede-type estimates on radial functions, while, at the same time, it would
still require the repetition of all the work done in [Cicalese and Leonardi 2012] to prove (1-8). In other
words, an advantage of the approach followed here is that it separates neatly the two stability mechanisms
at work in (1-21), the one related to the relation with the Euclidean isoperimetric problem, and the one
specific to optimal transition profile problem (which is entirely captured by working with radial functions).

1D. Remarks on the Alexandrov-type result. We now make some comments on the proof of Theorem 1.1(iv)
and explain why this result is closely related to the stability problem addressed in Theorem 1.1(iii).
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We start by noticing that any u € C%(R"; [0, 1]), with u(x) — 0 as |x| — oo, and solving (1-22) for
some o > 0 and A € R, will necessarily be a radial function by the moving planes method of [Gidas et al.
1981]; see Theorem 6.2(i) below.

However, as explained in the overview, there is no clear reason to expect these solutions to have a
geometric meaning unless o and A are in a meaningful geometric relation, which, interpreting A as a
curvature and o as a phase transition length, must take the form of 0 < oA < vy for some sufficiently
small vg; see (1-10). In Theorem 6.2(ii) we apply to (1-22) a classical result of [Peletier and Serrin
1983] about the uniqueness of radial solutions of semilinear PDEs on R”". Interestingly, the condition
0 < oA < vp, which was introduced because its natural geometric interpretation, plays a crucial role in
checking the validity of one of the assumptions of the Peletier—Serrin uniqueness theorem.?

Once symmetry and uniqueness have been addressed by means of classical results like [Gidas et al.
1981; Peletier and Serrin 1983], proving Theorem 1.1(iv) essentially amounts to answering the following
question: what is the range of values of A in (1-22) corresponding to the minimizers u, , of W (o, m) (with
0 <o < gym'/™)? Can we show that every A satisfying 0 < o A < vy for a sufficiently small universal v
falls in that range?

Looking back at (1-14) we are thus trying to identify the range of m — A(o, m) = (dW/dm)(o, m)
for m > (0/g&p)", and to show that it contains an interval of the form (0, vo/0’). Such range is indeed
proved to be an interval in Theorem 1.1(ii), where we show that A (o, -) is decreasing and continuous.
The fact that this interval contains a subinterval of the form (0, vp/0) is also something that is established

I/n 5 0; see

in Theorem 1.1(ii), specifically when we analyze the asymptotic behavior of A(o, m) as o/m
(1-19). Here we want to stress, however, the role of the continuity of A(o, -), which is of course crucial
in showing that {A (0, m)};~ (0 /e,)n covers the interval of values between the end-points A (o, +00) =0
and A (o, (0/&0)"). In turn, the Fuglede-type stability estimate (1-30) plays a crucial role in our proof of
this continuity property: see Step 3 in the proof of Corollary 4.2.

The importance of the Fuglede-type estimate (1-30) in answering both questions of uniform stability and

of Alexandrov-type rigidity is the main reason why both problems have been addressed in a same paper.

1E. Organization of the paper and proof of Theorem 1.1. The existence of minimizers of i (¢) (for
€ < &p) and the fact that such minimizers must be radial decreasing (although not necessarily unique up to
translations) is established in Section 2 (see Theorem 2.1) through a careful concentration-compactness
argument, which exploits both the quantitative stability for the BV-Sobolev inequality (in ruling out
vanishing) and the specific properties of the Allen—Cahn energy (in ruling out dichotomy). After deducing
the validity of the Euler-Lagrange equation (which, because of the range constraint 0 < u < 1, holds
initially only as a system of variational inequalities), the radial decreasing rearrangement of a minimizer
is proved to be strictly decreasing, so that the Brothers—Ziemer theorem [1988] can be used to infer that
generic minimizers belong to Rg. This existence argument is then adapted to a more general family of
perturbations of ¥ (&), which later plays a crucial role in obtaining the main stability estimates (1-21) on

2In particular, it is not obvious to us if, outside of the “geometrically natural” regime defined by (1-10), we should expect
uniqueness of radial solutions of (1-22) with decay at infinity.
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radial decreasing functions; see Theorem 2.2. Here the notion of “critical sequence™ for v/ (¢;), ¢; € (0, &),
which mixes the notion of “low-energy sequence” to that of “Palais—Smale sequence”, is introduced.

In Section 3 we prove a resolution result for minimizers of v (¢) (and, more generally, for the above-
mentioned notion of critical sequence). In particular, in Theorem 3.1, we show, quantitatively in ¢, that
minimizers u. of ¥ (e) in Ry are close to an ansatz which is well-known in the literature (see, e.g.,
[Niethammer 1995; Leoni and Murray 2016]) and is given by

|x| — Ro 1 17

g (x) ~ "(T - ro>, Ro=—7 ™ =/ nV.(msds,
Wy R
where 7 is the unique solution of " = —/W (1) on R with n(0) = % Exponential decay rates against this
ansatz are then obtained in that same theorem. Our analysis is comparably simpler than that of [Leoni
and Murray 2016] because our solutions are monotonic decreasing, and, in particular, cannot exhibit
the oscillatory behavior at infinity also described, for positive solutions of general semilinear PDEs like
(1-22), in [Ni 1983].

Section 4 is devoted to the proof of the Fuglede-type estimate (1-30). This is crucially based on the
resolution theorem and on a careful contradiction argument based on the concentration-compactness
principle. The Fuglede-type estimate is then shown to imply the uniqueness of radial minimizers (in
particular, there is a unique minimizer u, of ¥ (¢) in Ry, and every other minimizer of ¥ (&) is obtained
from u, by translation), the continuity of A(g) on & < &g, and the expansions as ¢ — 0 for (&) and
A(e) (which, by scaling, imply (1-18) and (1-19)).

In Section 5 we prove the uniform stability inequality (1-21). As explained in the remarks above, we
first prove (1-21) on radial decreasing functions by means of the selection principle method of [Cicalese
and Leonardi 2012] (this is where Theorem 2.2 and the above-mentioned notion of critical sequence are
used), and then reduce the proof of (1-21) from the general case to the radial decreasing case by adapting
to our setting the quantitative symmetrization method introduced in [Fusco et al. 2008] for proving (1-8).

In Section 6 we prove the Alexandrov-type result along the lines already illustrated in Section 1D.

Finally, in the Appendix we collect, for ease of reference, some basic facts and results which are
frequently used throughout the paper. Readers are recommended to quickly familiarize themselves with
the basic estimates for the potentials W, ® and V contained therein before entering into the technical
aspects of our proofs.

2. Existence and radial decreasing symmetry of minimizers

We begin by proving the following existence and symmetry result for minimizers of i (e).

Theorem 2.1. If n > 2 and W € C>'0, 1] satisfies (1-11) and (1-12), then there exists a universal
constant gy such that  is continuous on (0, &g9) and, for every € < g, there exist minimizers of ¥ (¢e).
Moreover, if u. is a minimizer of (e) with & < &, then, up to a translation, u; € RN Clzo’g([R?")for
everya € (0,1), 0 <u, <1onR", and, for some ) € R, u. solves

—26*Au, = eAV' (up) — W' (up) onR", 2-1)
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where A satisfies

n

n—-1) 11 2
A= vE)+—1=- | Wue)—¢ | [Vuel . (2-2)
n & Rn Rn
Finally, ) obeys the bound
A —2(n—Dwl/"| < C/e forall e < e, (2-3)
so that, in particular, 0 < 1/C < A < C for a universal constant C.
Proof. Step 1: We show the existence of universal constants £o, My, and C such that if ¢ < gy and
u € H'(R"; [0, 1]) satisfies
ACe(u) < 2nw)/" + ¢, / V) =1, (2-4)

for some £ < £y, then, up to a translation,

/ Vu)>1—CvLe. (2-5)
By,

Moreover, in the special case when u € Ry, the factor /¢ in (2-5) can replaced by £.
Indeed, by applying (1-28) to f = ®(u) and exploiting the identity (1-27), we deduce that, up to a
translation of u, we have

n

1/2
1D () — (/") ™ 1 "D < C(n)(@ —nw‘/”) <CVt (2-6)
Rn

for suitable > 0, with £ in place of /¢ if u € Ry thanks to (1-33). Clearly, (2-6) implies
/ V(u) < CVe. @2-7)

M

Let us now define My by setting

O(Dlwy/" Mol =1.
Clearly, if r < My, then (2-7) gives
/ V) =CVE

and (2-5) follows. Assuming by contradiction that r > My, by the definition of My we find

0}/"7117" < Lo} Mol = 0(3) < @(3).
so that

/ [@(3) — oy "' < / (© () — [}/ F]' "1 5, [V,
{u>1/2}NB, w=1/2)

1
4
[{u>1}nB.| <CVeo. (2-8)
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At the same time (A-13) gives
/ V(u) < C/ W(u) <CeAC.(u) < Ce. (2-9)
{u<1/2} {u<1/2}
By using, in the order, (2-9), the fact that V is increasing with V(1) = 1, (2-8) and (2-7), we conclude
1=/ V(u)f/ V(u)+Ce < |{u %}OB,]+/ V(u)+Ce
n {u=1/2} B¢
< C(Weo+ o),

which is a contradiction provided we take £y and gy small enough.
Step 2: We show the existence of a universal constant £ such that, if ¢ < gy and {u;}; is a sequence in
H'(R"; [0, 1]) with
ACe(uj) < ¥ (e) + Lo, / V(uj)=1 forall j, (2-10)
Rn

then there exists u € H'(R"; [0, 1]) such that, up to extracting subsequences and up to translations,
®(uj) - ®(u) in LY =D(R") and, in particular, fRn Vu)=1.

We first notice that, by the elementary upper bound (1-26) and by (2-10), we have AC,(u;) < C for
every j. Next, we apply the concentration-compactness principle (see Section A2) to {V (u;) dx};. By
(2-5) in Step 1, we find that

f V(uj)>1—-Cy/ty forall j. (2-11)
BMO

This rules out the vanishing case. We consider the case that the dichotomy case occurs. To that end, it
will be convenient to notice the validity of the Lipschitz estimate

|AC, (u) — AC, ¢ (1) < C|1 —v]|AC. (1) forallv > E u e HY(R"; [0, 1]), (2-12)
which is deduced immediately from
ACpe(u) — AC.(u) = (v — 1)e |Vu|2—|—<l—1>l W(u).
R» Vv & Jrn

By (2-11), if we are in the dichotomy case, then there exists

ae(l—Cye, 1) (2-13)

such that for every 7 € (0, «/2) we can find S(r) > 0 and S;(r) — o0 as j — oo such that

o— / V(u;)
Bs(r)

We now pick a cut-off function® ¢ between Bg ;) and Bs;(r), so that ¢ € C2°(Bys;(r)) with 0 <¢ <1 and
Vol < (Sj(r) — S(r))~! <2S;(r)~! on R", and with ¢ = 1 on Bg(;). We notice that (2-14) and the

< T, ‘(l—a)—/ V(uj)

c
By r)

<t forall j. (2-14)

3Notice that ¢ depends on both j and 7. We will not stress this dependency in the notation.
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monotonicity of V give

o —f Vipuj)
Rn

We compute that

< 21, ‘(l—a)—/ V((1—9@)uj)
Rn

ACe(uj) = ACs(pu;j) + AC:((1 — @)uj) +aj + b;,
aj=2‘9f 01— @) |Vu; > —ui|Vo|* — (1= 2¢)u;Vu; - Vo,
Bs;0)\Bs()

1
b :_/ W () — W (pup) = W((1 = p)u;),
€ Bs;0)\Bs()

<2t forall j.

(2-15)

where we have taken into account that ¢ (1 — ¢) and Vg are supported in B S (1) \ Bs(), as well as that

W (0) = 0. Let us now set, for o € (0, 1),

F;F(T, 0) = (Bs;0) \ Bs(r)) N{uj > o}, T, (1,0) = (Bs;r) \ Bsr)) N{uj <o}

By (2-14), we have

V(@) £TF (1, 0) < / V) <Cr forall j.
Bs;\Bs()

Taking into account (A-11), if o < §p, then we have

C ‘ for all j.

nh+t
LT (t,0)) < CV(U) =C e

Provided 7 < t, for a suitable small universal constant t, we can thus guarantee that

/1+@n/(n=1)] _ £ (n=1)/Gn—1)

o(t):=1 < do,

and, therefore, that, setting for brevity o = o (t) as in (2-16),
L' (r,0)) < Cx" VD =Co  forall j.

At the same time, we can apply (A-5) with b =u; and a =0 to get

2

u-
‘W(uj) — W”(O)gj <Cu} <Couj on I (t,0),

and identical inequalities with gu; and (1 — ¢)u; in place of u;, thus finding

W"(0) 2 2 » Co » C
b > ui — (euj)” — (1 —u;)” — — u; ——
/ 2e I (t.0) / ! ! & Jrio e
1
ZW_(O) (p(l_(p)u]z_ﬁf MJZ,_CE
€ I (t.0) & Jri@o €
> _C

—"/ W) —c<>-cZ,
e Jmn € €

LN (z,0))

(2-16)

(2-17)



UNIFORM STABILITY IN THE EUCLIDEAN ISOPERIMETRIC PROBLEM FOR THE ALLEN-CAHN ENERGY 1773

where, in the last line, we have used W”(0) >0, ¢! fR" W(uj) < AC,(u;) < C, and the fact that (A-6)
and u; <o <y on Fj_(r, o). This gives us

u; <CW(u;) on T (t,0). (2-18)
Similarly, if we discard the first term in the expression for a; (which is, indeed, nonnegative), we find
" 2—28/ W2Vl + V|| Vgl
Bs; 1)\ Bs(r)

2
%

Z—C8||V<P||CO(RH)/ e|Vu;|* + - > —
Bs; ) \Bs(r) € Sj (7)

’

where we have used ||V coqny < 28] (v)~! and that S;(t) — oo as j — 00, as well as noticed that

ef |Vu;|* < CAC, (uj) < C,

[ = zan e

{uj=<do}

W(uj) < c/ V(uj) 4+ CeAC.(uj) < C,

{uj=do}

thanks to V() > 1/C for t € (§p, 1) and to W(¢) > IZ/C on for t € (0, §y); see (A-6) and (A-14).
Combining the lower bounds for a; and b;, we have thus proved

1
ACe(uj) > AC.(pu;j) + AC.((1 —@)uj) — C(% + 5, (r))' (2-19)

If we set
mj = /R” Vipu;), n;= fRn V(1 —9@u;),
and define
v (x) = (pup)(m,"x),  w;x) = (1 -/ x), xeR", (2-20)

then by (A-1) and (A-2) we find
/ VD=1 AC ) = AC ), (221)
with analogous identities for w;. By (2-15) and (2-12), and keeping in mind (2-13), we find
(n—1)/
ACe(puj) = m;" ”Acg/mjl_/n(vj)
= (@ —CO)" V(A= Clm; " = 1DAC (v))
>(a—Ct)" V"1 =Cla—=1]=Co)¥(e). (2-22)

Similarly, taking T small enough with respect to 1 — «, since fRn V(w;) =1 we have

AC((1=@)up) =nf" V" AC, | 1n(w)) = (1 =) = €)D" 2ney /. (2-23)

By combining (2-22) and (2-23) with (2-19) we get
ACW) o~ crym=DIn(] — Cla— 1| — €W ey - <n1)/n_L<i 1)
e =@ CD (1= Cla=1]=C7)+ 221 =) = C7) ol Tsm)
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Considering that ¥ (¢) < C for ¢ < gy, we let first j — oo and then T — 0T (recall that 0 — 0% as
7 — 07) to find
1= (1= Cla—1Da" " 4 e(m)(1 —a)"=D/"

>1—Cla—1|+cm)(1 —a)~ D/, (2-24)

Since 1 > o > 1 — C/4y, by taking £ small enough we can make « arbitrarily close to 1 in terms of n
and W, thus obtaining a contradiction with (2-24). This proves that {V (u;) dx}; is in the compactness
case of the concentration—compactness principle. Since (2-10) implies that {®(u;)}; has bounded total
variation on R" and since V (u;) = ® (u j)”/ (=1 does not concentrate mass at infinity, the compactness
statement now follows by standard considerations.

t | t{ j}j inimizi i lﬁ( ) S C & < £0. By (1-26) we can assume that for
everyj
Aca(uj) = ‘ﬁ (8) + Ce< 21”[6():!/" + Ce.

We can then apply the compactness statement of Step 2 to deduce the existence of minimizers of ¥ (¢).
To prove the continuity of v on (0, &), let &; — &, € (0, &9) as j — 00, and, for each ¢;, let u; be a
minimizer of v (¢;). By (1-26) we can apply Step 2 to {u;}; and deduce the existence, up to translations
and up to extracting subsequences, of u,. € H'(R"; [0, 1]) such that D(uj) — P(uy) in LY =D (R as
j— oo. If ve H'(R"; [0, 1]) with [, V(v) =1, then

-ACé‘j (uj) S Ang (U)
so that, letting j — oo and using lower semicontinuity,

ACe, () < liminf ACe, (uj) < lim AC,, (v) = ACe, ().
j—o00 j—00

Since fR” V(us) =1, we conclude that u, is a minimizer of ¥ (¢,); and by plugging v = u, in the previous
chain of inequalities, we find that ¥ (g;) — ¥ (&4) as j — oo.

Step 4: We now notice that, by the Pélya—Szeg6 inequality [Brothers and Ziemer 1988], once there is a
minimizer of 1y (¢g), there is also a minimizer of v (¢) which belongs to Ry, or, in brief, a radial decreasing
minimizer (more precisely, a radial decreasing minimizer with maximum at 0). In this step we prove that
every radial decreasing minimizer u. of ¥ (¢) satisfies 0 < u, <1 on R"” and u, € Clzof‘ (R™), and that in
correspondence of u. one can find A € R such that

—26?Au, = eaV'(uy) — W'(uz;) on R". (2-25)

To begin with, since u, is radial decreasing and has finite Dirichlet energy, u. is continuous on R”". In
particular, there exist 0 < a < b < 400 such that

{ug >0 =By, {us <1}=R"'\ B, ={x:|x|>a}.
A standard first variation argument shows the existence of A € R such that

—262Aup = eV (ue) — W'(ue) inD'(Q), 2= By \ B,. (2-26)
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Since (2-26) implies that Au, is bounded in €2, by the Calderon—Zygmund theorem we find that u, €
Lip,,.(€2). As a consequence, (2-26) gives that —28%Au, = f(u.) for some f € C'(0, 1), and thus, by
Schauder’s theory, u. € C 2% (Q) for every o € (0, 1). We complete this step by showing that Q2 = R".

loc
Proof that 2 = R": Considering functions of the form u + ¢ ¢ with r > 0 and either ¢ € C°(R" \ B,),
¢ >0,0rp e CX(Bp), ¢ <0, and then adjusting the volume constraint by a suitable variation localized
in By, \ B,, we also obtain the validity, in distributional sense, of the inequalities

—262Aug > €AV (u) — W'(up) inD'(R"\ By), (2-27)
—282Au, < elV'(u.) — W (us) inD'(Bp). (2-28)

We prove only (2-27) in detail: Pick any ¥ € C2°({0 < u, < 1}) with ¥ > 0 and fRn V'(ug)yr =1 (such
choice is possible since {0 < u, < 1} is nonempty and fRn V'(ue) > 0), and notice for future use that,
thanks to (2-26),

8/ Vug-Vglf—i—é W/(ug)ljf:)»f V' (u )y = A (2-29)
n RVI

n

Given ¢ € C°(R" \ B,) with ¢ >0, since R"\ B, = {u, < 1}, we can find 1y, so positive such that u+r@+sy
takes values in [0, 1] whenever (z, s) € Ag := [0, tp] x [—s0, So]. Setting h(t, s) = fRn V(e +to+sy),
we see that 1 € C2(Ag) with

h(0,0) =1, %(0, 0) :/ V' (ug)e, %(0, 0) :/ Vi(ug)y = 1. (2-30)
ot n as Rn

Moreover, by the strict monotonicity of V, we see that h(0, so) = fR" V(u+so) > h(0,0) =1, and
similarly 4(0, —sg) < 1, so that, by continuity and up to decreasing #y and sy,

h(t,so) > 1> h(t, —sg) foreveryt €[O0, ro], % > % on Ag. (2-31)
Therefore there is s(t) : [0, fo] = (—so, So) such that A(z, s(t)) = 1. Differentiating and exploiting (2-30),
we find s"(0) = — [, V' (us)g, so that, by minimality of u, and by (2-29)

d
0< I :mACg(ug +to+s)y)
=¢ | Vu.-Vo+ ! W' (ug)p +5'(0)e / Vug -V + 1 W' (ue)y
R € Jrn n € Jrn

= 8/ Vu, - Vo + l W' (ue)p — )‘f V'(ue)p.
n 8 IR” Rn

By the arbitrariness of ¢ we thus find (2-27).
Having (2-27) and (2-28) at our disposal, we now prove 2 = R". We stress that, in the rest of the
argument, the only property of

fO=erV't)-w'@), te[0,1],
that will be used is the validity of the bound

lf@)<CA4+|ADt(1—1t) forallztel0,1]. (2-32)
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This remark will be useful to avoid repetitions when we come to Step 2 of the proof of Theorem 2.2. Notice

that (2-32) indeed holds true thanks to (A-6) and (A-11), and that in (2-32) we cannot absorb |A| into C

since we do not know yet that |A| admits a universal bound (this will actually be proved in Step 5 below).
By (2-32), (2-27) implies

/

—282{ug +(n— 1)”;—8} > —C(1+[M)u, inD'(a,o0). (2-33)

Assuming by contradiction that b < oo, let r € (a, b), s be such that (r —s,r +5) C (a, b), and ¢ be
the Lipschitz function with ¢, =0o0n (0,7 —s), {g=1o0n (r+s,00),and ¢, = 1/(2s) on (r —s,r + ).
Testing (2-33) with —u.¢, > 0 (which is compactly supported in (a, 00)) we find that

(u},)
t

o0 2 (9]
g’ / (W) e +2(n—1) ¢ > C(1+|A]) f ugul gy,

so that, after integration by parts, we obtain

00 /N2 r+s ,,2 2 r+s
(ul) C(l1+ I)»I)/ u € f )
2(n — 1)e? £ty £ > 2.
(n—De /u ; &+ X 2 %) (ug)

Letting s — 0" we obtain

ua(r)z
2

2 b (u(/g)z 2.7 082
2(n—1)e / T+C(1+Ik|) > e u, (r)”.
r

Finally letting r — b~ we conclude that u,(b~) =0. This fact, combined with u, (b) =0 and the uniqueness
theorem for the second-order ODE (2-26), implies that u, = 0 on (a, b), which is in contradiction with
the continuity of u, if a > 0, and with fRn V(ue) = 1if a =0. This proves that b = +oco (and thus that
ug; > 0on R").

The proof of a = 0 (that is, of u, < 1 on R") is analogous. After the change of variables v =1 — u,,
we have v >0, v >0, v=0o0n (0, a), and, thanks to (2-28),

—282{v” +(n— 1)”7} > —C(1+ADv in D'(0, 00). (2-34)

Notice that (2-34) is identical to (2-33), and that an even reflection by r = a maps the boundary conditions
of v into those of u,: the same argument used for proving u/,(b~) = 0 will thus show that v’ (a*) =0. For
the sake of clarity we give some details. We pick r > a, introduce a Lipschitz function ¢; with £, =1 on
0,7 —s), L, =0o0n (r +s, 00), and g:s/ =—1/(2s) on (r —s, r +s), and test (2-34) with Ve >0, to get

)% -

£ = —C(l + |x|)/ w'E,.
t 0

—&? f (W) +2(n—1)
0

Integration by parts now gives

_f/r+s(v/)2—2(n—l)82/r+s W)z _CA+RD /’””_2
25 J,_s r 0T 2s s 27

a
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so that in the limit s — 0T, and then r — a™, we find v/(a™) = 0, that is to say, u,(at) =0. If a > 0

and thus u(a) = 1, this, combined with (2-26), implies u, = 1 on R", a contradiction.

Step 5: Given a radial decreasing minimizer u, of ¥ (&), we prove that the corresponding A € R such that
(2-25) holds satisfies

nk:(n—l)ACS(ug)—i—é/ W(ug)—ef |Vu£|2, (2-35)
Rr Re
as well as

A —2(n—Dwl/" < Ce. (2-36)

In particular, up to decreasing the value of &g, we always have 1/C < A < C for a universal constant C.
To prove (2-35), following [Luckhaus and Modica 1989], we test the distributional form of (2-25) with
¢ = X - Vu, for some X € C°(R"; R"), and get

2ef wg.vxwus]z—/ {2ev2u8[wg]+<wi”8) —AV’(u8)>Vu8} X
:/ {e|m|2+ W(EMS) —AV(ug)}DiVX. (2-37)

We now pick n € C2°(B2) with0 <n <1on B and n =1 in B;. We set ng(x) =n(x/R) and test (2-37)
with X (x) =ng(x) x. We notice that Div X =n nr+ (x/R)-(Vn)g, and that, by dominated convergence,

w
Rlim {EIVuslz-l- (ue) —kV(us)}nnR =n(ACe(ug) — 1),
— Rn
. 2 W(u,) X
lim e|Vu,|> + —AV(uy) { = - (Vg =0, (2-38)
R—00 Jn & R

lim | Vu,- (nRId + % ® (Vn)R)[Vua] = | |Vul.
R»

R—o00 JRn
In particular, (2-37) implies

nh =nACs(u;) —2¢ | |Vue|%
Rn

which can be easily rearranged into (2-35). At the same time, by (1-26) we find

20172 212
/ A 5(/ e R LA ) </ N R AL )
' ¢ R R €
1/2 2\ 1,2
= (ACE(uS) -2 |V¢(Ma)|) (/ VeIV, | + Wiug) )
R~ n

< CVeJ ACe(ue) < Ci/e,
which can be combined with (2-35) and with (1-26) to deduce (2-36).

Step 6: We are left to prove that every minimizer of v (¢) is radial decreasing. Indeed, let u be a generic,
possibly nonradial, minimizer of ¥ (¢), and let v € R denote its radial decreasing rearrangement. By
standard properties of rearrangements, fR" Vu)= fR” V(v) =1, while by the P6lya—Szeg6 inequality
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ACg(u) > AC.(v), so that v is a minimizer of ¥ (¢) and equality holds in the Pélya—Szeg6 inequality
for u, that is,

Vul>= [ Vv~ (2-39)
Rn Rn

By Steps 4 and 5, v solves the ODE

282{1)" +(n— l)v?} =W'(v) —reV'(v) on (0, 00), (2-40)

with 0 < 1/C < A < C. Multiplying in (2-40) by v’ and integrating over (0, r) for some r > 0, we obtain

r (U/)Z
t

821/(r)2 +2(n—1) / =Ww(r)) —reV(@w@)) +AreV(v(0)) forallr >0, (2-41)
0
where we have used v/(0) =0, v(1) =1, and W(1) = 0. If r is such that v(r) < 8y, then by (A-6), (A-11)
and (2-41) we find
v(r)? L u()P D ()

20 (r)? > W) —CeV(v) > -C >
evr)=W) eV(v) > C e c Z—c

which gives, in particular, v'(r) < 0; if r is such that v(r) € (8y, 1 — &p), then, by the same method and
thanks to inf(s, 1—5 W > 1/C, we find that

2V (r)? = W) —CeV(v) > % —Cs > %

so that, once again, v'(r) < 0; finally, if the interval {v > 1 — 8¢} is nonempty, then it has the form (0, a]
for some a > 0; multiplying (2-40) by r"~!, integrating over (0, r), and taking into account that W’ < 0
on(l1—28p,1), V”>00n(0,1) and A > 0, we find

2627 W (r) = /[W(v) reV' ()" Vdr <0,

that is, once again v'(r) < 0. We have thus proved that v' < 0 on (0, co). This information, combined
with (2-39), allows us to exploit the Brothers—Ziemer theorem [1988] to conclude that u is a translation
of v. This shows that every minimizer of ¥ (¢) is in R, and concludes the proof of the theorem. O

The compactness argument used in the proof of Theorem 2.1 is relevant also in the implementation
of the selection principle used in the proof of the stability estimate (1-21) in the radial decreasing case.
Specifically, an adaptation of that argument is needed in showing the existence of minimizers in the
variational problems used in the selection principle strategy. In the interest of clarity, it thus seems
convenient to discuss this adaptation in this same section. We thus turn to the proof of Theorem 2.2 below.
In the statement of this theorem we use for the first time the quantity

do(u, v) = / | (u) — D (v)[ D, (2-42)
R)‘l
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which is finite whenever u, v € H'(R"; [0, 1]) (indeed, u € H'(R"; [0, 1]) and W (¢) < Ct? for ¢ € [0, 1]
imply AC. (1) < oo, thus |D(®(u))|(R") < oo, and hence ®(u) € L"/"~D(R") by the BV-Sobolev
inequality).

Theorem 2.2. If n > 2 and W € C>'[0, 1] satisfies (1-11) and (1-12), then there exist universal constants
&0, ao, Lo and C with the following properties:

(1) If a € (0, ap), € < &9, U, is a minimizer of V¥ (€), and v, € HY(R"; [0, 1]) is such that
f V(ve) =1, AC:(ve) <V (e) +aly, do(ve,ue) <o, (2-43)
then the variational problem

y(e, a,v,) = inf{ACE(w) +ade(w, ve) : we H (R [0, 1]), V(w) = 1}

Rn
admits minimizers.
(i1) If, in addition, v, € Ry, then y (¢, a, v.) admits a minimizer w. € Ro. Every such minimizer satisfies

we € RGN cx/=b

o (R"), 0 < w, <1 o0nR", and solves

—2e*Aw, = ewp (1 — w.)E, — W (w,) onR", (2-44)
where E is a continuous radial function on R" with

sup [E¢| < C. (2-45)
R}’l

Proof. Step 1: Set y = y (¢, a, v,) for the sake of brevity, and let {u;}; be a minimizing sequence for y.
Since a > 0, we can assume that

ACe(uj) +ade(uj, ve) <y +aly forall j. (2-46)

In particular, comparing u; by means of (2-46) with v, and u, respectively, we obtain the two basic
bounds

ACe(uj) +ade(uj, ve) < ACe(ve) +alo < Y (e) + 24, (2-47)

ACe(uj) +ade(uj, ve) < ¥ (e) +ade(ue, ve) + alo. (2-48)

Subtracting v (¢) from (2-48), noticing that AC,(u;) > ¥ (¢), and using (2-43), we also find

de(uj, ve) < do(ue, ve) +4£o < 2o, (2-49)
and hence, using again (2-43),
do(uj, u;) < Cly. (2-50)

Finally, by (2-43), (2-47), and ¥ (¢) < 2na),i/ " + Ce, we can apply Step 1 of the proof of Theorem 2.1 to
uj, ug and v, to find

min{/ V(uj),/ V(ug),/ V(vg)} >1—-C\/£p+¢ey forall j, (2-51)
Bu, Bug, Bu,
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where M) is a universal constant. Since (2-51) rules out the possibility of the vanishing case for
{V(u;)dx};, we can directly assume that the dichotomy case occurs, and in particular that there exists

ae(1—-Cyly+eo, 1) (2-52)

such that for every 7 € (0, min{a/2, 7,}) (here 74 is as in (2-16)) we can find S(7) > 0, S;(r) — oo and
a cut-off function ¢ between Bg(r) and Byg;(r) such that [Ve| < ZSj(r)*1 on R”, and

a—Ct < / V(u;), Vipuj) <a+Cr, (2-53)
B n

S(v) R
(1—Ot)—CT§/ V), [ VA =-puj) <(1-a)+Cr.
BS o R
We can now verbatim repeat the argument used in Step 2 of the proof of Theorem 2.1 to deduce (2-19)
and find that, if o = t®~D/G"=D a5 in (2-16), then

1
ACe(uj) = ACe(puj) + AC((1 — @)uj) — C(% + Sj(r)>; (2-54)

in the same vein, by exactly the same argument used to deduce (2-23), we also have
ACo((1 = puj) = e(m)((1 —a) = CT) "D/, (2-55)

We now need to show that the AC, (¢ u;)-term is larger than y up to O(1 — «) and O(7) errors, but, for
reasons that will become clearer in a moment, we cannot do this by just taking a rescaling of ¢u; as done
in Theorem 2.1. We will rather need to introduce the “localized” family of rescalings which we now
describe.

We let ¢ € C2°(Bauy; [0, 11) N'Ro with £ =1 on By, and [¢'| <2/My. In particular,

x| [£'| <2 onR". (2-56)
Next, we set f;(x) =x+1¢(|x|) x and X = x/|x| for x € R" and ¢ > 0. By (2-56), if |t| <t =to(n) < 1,
then f; : R* — R” is a diffeomorphism with
filx)=x on BEMO,
fi(x) =1 +41)x on By,
Vix)=1+t)d+t|x|'x @ %,
Jfi) = (L+10)" "ML+ 15 +1x1¢) = 1+ (g +1x]¢)1 + 0.

We set v;(t) = (¢ uj) o f;, so that v;(0) = ¢ u;, and consider the functions

b= [ vao = [ Veuin. r<n.
R R
Clearly we have

b; (0) :f V(puj) € [a — Ct, a4 C1l, (2-57)
Rn

d*(Jf,)
dr?

Ib}/(t)IZ/ V(pu;) <C forall [t] < t; (2-58)
R
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more crucially, if we choose &g and £ small enough, then by (2-51) and (2-56) we find

b}(O):/Rn V(<pu,)(n;+|x|§’)zn/ V) —(n+2) V() >

n

Buy, Boyy\ B 2

As a consequence, by (2-58), we can find a universal constant #; such that
bj(t)= 5 forall 1] <. (2-59)

In particular, b; is strictly increasing on [—1y, #1], with

bj(i) 2 bj(0) + 5 za—Cr+ 30> 1= Cllo+eo+1) + 50 > 1.

3 3
n n n n
bi(=t) =bj(0) —3n =e+Cr—zh <1+Cllo+eo+1)—3h <1—7h,

so that, for every j, there exists t; € (—t1, t1) such that b;(#;) = 1: in other words,

/Rn V() = 1. (2-60)

We now compare the energy of v;(z;) = (¢ u;) o f;; to that of ¢ u;. To this end, we first notice that, by
comparing b;(0) = fRn V(puj) =a+0O(1) to b;(z;) = 1, thanks to (2-59) we conclude that

ltj| < C((1 —a)+7) forall j. (2-61)
Denoting by ||A|| the operator norm of a linear map A, we have
IVfilx)—Id| <Clt], |Jfi(x)—1]<Clt] forall x € R",
so that
AC. (v (1)) = /R n{si(sz o £, DIV (pup1* + M

W(wuj)}
€

b

< / {8(1 +CltD?|V (puj) > + (I+Clr]) = (14 Clt)AC, (pu).

Therefore if we combine (2-54), (2-55), and (2-61) with this last estimate, and take into account that
AC¢(uj), AC¢(p u;) < C, then we obtain
ACe(uj) +ade(uj, ve) > ACe(vj (1)) + ade (vj (1)), ve) +alde (1), ve) — do (v; (1)), ve))

Fe(m)((1—a) — Cr)n=D/n _ C((l —) T+

o

+ ;). (2-62)

1
Sj(7)
We notice that for every u, v € H'(R"; [0, 1]), thanks to the triangular inequality in L™~V and to

b7 —a' /| > c(n) b=""(b —a) for 0 < a < b, we have

|do (u, ve) —do (v, ve)|
max{dcb(bt, Ug), dcp(v, vs)}l/n

<dg(u,v)" =0/, (2-63)

c(n)
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We apply (2-63) with u = u; and v = u; ¢ to find

ldo (u;, ve) — do(puj, ve)| < C [ D ;) — D (pu))|"/ =D
Rn

< / V) < C((1—a)+1),
R

"\Bs(r)

where we have used (2-53). Similarly, noticing that
d d
L0 (9) = VW@ OIV(@u)o fil- 4 f
= W)V (eu)) o fl- (£ (xDx),
with ¢(x) |x]| < 2Mj for every x € R" by (2-56), we find*

|d¢<vj<rj>,vg>—d¢<¢uj,vg>|sc/R |CI>(vj(tj))—<D(gouj)|”/("1)§C/R 1D (v; (1)) — D(gpu;)]

fj
Scfo ds / W DIV u)o fil- (¢ (1x)x)
<c /O’ds /R SW@unV (ouy) - (7 £,

=< CMoIIjI/[R VW oup)IV(puj)| < Clt;| ACe (¢u;). (2-64)

We finally combine (2-61), (2-62), (2-64), and the fact that v;(#;) is a competitor for y to conclude that

AC.(uj) +ady (uj, ve) > y + c(n) (1 —a) — Cr) = D/m — C(<1 —wyrr+ 24 )
& Sj(‘L’)

Letting j — oo and then T — 07 (so that o — 0T thanks to (2-16)), we finally conclude
0>cn)(1—a)® V" _cl—a),

which gives a contradiction with (2-52) if &y and ¢ are small enough. Having excluded vanishing and
dichotomy, by a standard argument we deduce the existence of a minimizer of y.

Step 2: We now assume that v, € Ry. Since & is an increasing function on [0, 1], if #™ denotes the radial
decreasing rearrangement of u : R" — [0, 00), then ® (u*) = ®(u)*. In particular, by a standard property
of rearrangements,

doe) = [ 1060 = 0@V = [ 0" - @@ 1Y = dotu’ 0%
Rﬂ Rﬂ

This fact, combined with the Pélya—Szeg6 inequality and the fact that v} = v,, implies that the radial
decreasing rearrangement of a minimizer of y is also a minimizer of y (in brief, a radial decreasing
minimizer).

4This is the key step where using f;(x) rather than (1 +¢) x (as done when proving Theorem 2.1) makes a substantial
difference. Indeed, by using a global rescaling to fix the volume constraint of ¢ u;, we end up having to control, in the analogous
estimate to (2-64), the first moment of the energy density of g uj, i.e., fR" [x[(e|V(pu j)|2 + W(puj)/e), rather than the trivially
bounded quantity Mo.ACe (u;).
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We now show that every radial decreasing minimizer w, of y satisfies 0 < w, < 1 on R", that w, €
Clzoc1 /=) (R™), and that (2-44) holds for a radial continuous function E.; bounded by a universal constant.

Arguing as in Step 4 of the proof of Theorem 2.1, with 0 <a <b < +oo and Q= B, \ B, = {0 < w, < 1},
we see that w, solves

—2&2Aw, = eAV (we) — W (w,) —aeZe(x, we) in D' (), (2-65)
where, for x € R" and ¢ € [0, 1], we have set
Zo(r,1) = ——=[0(1) = ©)| "2 (1) = D)V ().
n —_—

By (2-65), Aw, is bounded in €2, and thus, by the Calderon—Zygmund theorem, w, € Lip;,.(£2). This
implies that Z (x, 1) € C>:1/"~V(Q), and thus, by Schauder’s theory, that w, € C="/""(Q). We now

loc loc
want to prove that 2 = R". By the same variational arguments used in deriving (2-27) and (2-28), we have

—26Aw, > f(x,1) inD'(R"\ B,), (2-66)
—2e*Aw, < f(x,t) inD(Bp), (2-67)

where f(x, t) satisfies
|f(x,0)] <Ct(l—1) forall (x,1)eR" x [0, 1], (2-68)

thanks to (A-6) and (A-11) (which, in particular, give | Z.(x, t)| < Ct(1 —1t) for every (x, ) € R" x [0, 1]).
By repeating the same argument used in Step 4 of the proof of Theorem 2.1, we thus see that Q = R™
Finally, it is easily seen that (2-65), with Q2 = R" and w, € C 2(R"), takes the form

—2¢2Aw, = ew, (1 — w,)E, — W (w,) on[R", (2-69)

for a radial function E, bounded by a universal constant on R”, as claimed. U

3. Resolution of almost-minimizing sequences

In the main result of this section, Theorem 3.1 below, we provide a sharp description, up to first order as
¢ — 0T, of the minimizers of v (¢). This resolution result is proved not only for minimizers of v/ (¢), but
also for a general notion of “critical sequence for ¥ (¢;) as &; — 07" modeled after the selection principle
minimizers of Theorem 2.2.

In the following statement,  is the solution of 7’ = —/W(#) on R with 7(0) = 1,

ro=/n’V’(n)sds, n=/ W(n)sds,
R R

and Ry = w, /" Relevant properties of n are collected in Section A4.

Theorem 3.1. If n>2and W € C 210, 1] satisfies (1-11) and (1-12), then there exist universal constants
€0, 80, and Ly with the following properties:
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Ansatz: For every € < g there exists a unique 1. € R such that if we set

_ (1xI—=Ro
@)= ———— 7). (3-1

then
/ V(ze) = 1. (3-2)
Moreover, we have |t, — 19| < Ce and, in the limit as ¢ — 0T,
ACe(z¢) = 2n0)" +2n(n — D" (19 + 11)e + O(e?). (3-3)

Resolution of critical sequences: If ¢; — 0t as j — oo, {vj}; is a sequence in Cz([R{”; [0,1]) NRy
such that

/ V) =1, (3-4)
AC,, (v)) < 2nw," + £y, (3-5)
and {E;}; is a sequence of radial continuous functions on R" with

—2¢; Avj = g;v;(1—v))E; — W'(vj) onR", (3-6)
sup [IEjlcomny = C, (3-7)
J

then, for j large enough, we have

|x| — Ro "
vj(x)=28/(x)+_fj( Py )7 XER 9 (3_8)
J
where f; € CZ(—Ro/sj, 00), and
|fi(s)] < Cej e ¥VC  forall s > —Ry/e;. (3-9)

Moreover, for j large enough, there exist positive constants b; and c; such that

v (Ro + ¢;) = do,

(3-10)
vj(Ro—bj) =14y,
and b; and c; satisfy
%5bj,cjgc8j. (3-11)
Finally, one has
C 1
—Z—v}(r)z —— forallr € [Ry—bj, Ry+¢;l, (3-12)
8j C8j

Iv;k)(r)l < E_C,;e—(r_RO)/(cgj) forallr € [Ry+cj,00), k=1,2, (3-13)

J
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1—v(r) < Ce~(Ro—n)/(Cej)

PAGIE Cmin{Lz, l}e—(Ro—r)/(Csj)’
J fon 8j

forallr € (0, Ry — b;). (3-14)
W ()] < GemRo=nice
&j
Proof. The first two steps of the proof take care of the ansatz-part of the statement, while starting from
Step 3 we address the resolution result. We use the fact that, if we set z; (x) = n([(|x| — Rg)/&] — ), then
f(r)= fRn V (z;) is strictly increasing in T with f(—o0) =0 and f(+00) = +o00. For this reason, 7, is
indeed uniquely defined by (3-2).

Step 1: We prove that if {w,}.~¢ is defined by
—R —R
ws(x)=n(|x| O—tg>+fg<|x| 0), xeR", ¢>0,
& e

for some 7, € R and some functions f; € C%(—Ry /€, 00) such that

/ V(we) =1, (3-15)
| fo(s)] < Cee™MVC forall s > —Ry/e, (3-16)

then
|t — 19| < Ce forall ¢ < g. (3-17)

Of course, in the particular case when f, =0, we have w, = z. and t, = 7, thanks to (3-1) and (3-2).
Indeed, setting zo(x) = n([(|x] — Ro)/e] — 19) for x € R”", and recalling (3-2) and (3-15), we consider
the quantity

= [ Vi) -veo = [ Vo -ve, (3-18)

We look at the first expression for k., passing first to the radial coordinate » = |x| and then changing
variables into s = (r — Rp)/¢. By taking into account the fact that 7y satisfies

/R(l(—oo,O)(s) —V(n(s —1)))ds =0,
see (A-19), we find

o / (10,0 (8) = V(s — 7)) (Ro+&5)" " ds

nwy —Ro/e
=eRy! /O,:O/g(l(w’o)(s) —Vn(s - fo(l))) ds
T /_R0/€(1<—oo,o> (s) = V(n(s — t))[(Ro+es)" " — RG~'1ds
=—eRy"! /_;ORO/E(l(—oo,O) (s) = V(n(s — 10))) ds

n—2 00
+e) a / (Li=00,0(8) = V(n(s — 1)) R (s&)" ' ¥ ds,
k=0 Y Ro/e
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with g, = (” ;1) Since 9 = 79(W), by the decay properties (A-16) of 1, we have

1 1(—00.0)(8) = V(n(s — 19))| < Ce™PVC  forall s € R, (3-19)

so that

—Ry/e —Ro/e
‘ / (Iicoe0y(s) — V(n(s — o)) ds| < € / e I/C gs < ComRI/(CO),
—00 -0

and, recalling that w, Rj = 1,

o0

n—1
lice| < Cee™ R/ 4 ce? >~ / 11(—00.0(8) = V(n(s — 7))l Is)/ ds < C&?,
j=1

—Ry/e

where in the last inequality we have used (3-19) again. Taking into account the second formula for «, in
(3-18), we have thus proved

Ce* > ‘/ V(we) = V(zo) |- (3-20)
Rn

With the same change of variables used before we have

Ce>

’

/R ) (V(n(s — 1) + fe(s)) = V(n(s — 70))}(Ro +&5)" " ds

while the decay properties of f; assumed in (3-16) give

‘/R / V(s — 1) + fe(s)) = V(s — 1))} (Ro + 5)" ' ds

00 1
< f £.(5)(Ro+85)" ds f V(s = 1)+ rfo(s)) dr < Ce;

Ro/e 0

by combining the last two inequalities we thus find

Csz/ (Vn(s 1)) — V(s — 1)} (Ro + £5)" " ds
—R()/é‘
_ / V(0 — 1)) = V(s — )] (Ro + e5)"~ ds, (3-21)
—Ro/e

where in the last step we have used that t — V (n(- — 7)) is strictly increasing in t. Since (3-21) implies
te — 19 as ¢ — 0T, we can choose g9 = go(n, W) so that |, — 79| < 1 and Ry + & (1o — 1) > Ry/2. Since
V on is strictly decreasing on R, we have |(V on)’| > 1/C on [—2, 2], and noticing that if |s — 7p| < 1,
then |s — #.| < 2, we finally conclude

T0+1 _ _ _ _
Ce Z/ |(s — 1) — (s TO)'(RO-I—Ss)n_lds . 170 te|’
T0—1 C C

thus proving (3-17).
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Step 2: We compute AC.(z.). Passing to the radial coordinate r = |x|, setting first ¥ = Ry + ¢ s and then
t =5 — 1, recalling that n’ = —/W (1), and exploiting the decay property (A-16) of n at —oo, we find

that, as ¢ — 0™,
o0

ACe(z¢) = no, / (1 (s — )+ W(n(s — 7)) (Ro + &) ds
—Ro/e

=2nwn/ W) (Ro+e(t+1)" ' dt
_TE_RO/S

= 2nw, f - W) (Ro+ et + 1)) dt + 0(e™ /%)

[e.0]
= 2nw, / W () (Ro + &t +10)" " dr + O(g?), (3-22)
—00
where in the last step we have used 7, = 19 + O(¢). Recalling that, by (1-12),

/RW(U) = —/R Wmn' = —/Rq)/(n)n’ = ®(n(—00)) — P(n(+00)) = (1) =1,
as well as that w, Ry = 1, we find
AC.(z¢) = 2nw!/" 4 2n(n — D" (19 + 1) + O(e?)
as ¢ — 07, that is (3-3). This proves the first part of the statement of the theorem.

Step 3: In preparation to the proof of the second part of the statement, we show that if ¢ < gy and
u € H'(R"; [0, 1]) satisfies

AC. () < 2nwl/™ + £, / V) =1, (3-23)
then
|©(u) — 1, [V < C((Vlo) "™V +g). (3-24)

Rll
Moreover, if u € Ry, then 4/£; can be replaced by £ in (3-24).
Indeed, by (3-23), as seen in Step 1 of the proof of Theorem 2.1, we have

/ 1D () — (@Y "r @) ™" 15, "D < CV/E (3-25)

for some r(u) € (0, My], where M is a universal constant. Setting f(r) = (a),i/ " r)1=", and noticing that
f(Rp) =1, it is enough to prove that
() = Rol < C((Ve) "™ ), |f(rw) — 1] < C((V0) "™/ +é). (3-26)

Since Lip(f, [Ro/2, 2Ro]) < C and f(Rp) = 1, it is enough to prove the first estimate in (3-26). To this
end, we start noticing that if 7 (1) < Ry, then f(r(u)) > f(Rp) =1 > ®(u), and (3-25) gives

C\/%z/ D () — f (r@)" "D = w,r @) (f (r(w)) — 1)/~

Br(u)

= W)"(f(rw)) — f(Ro) "™V = c(n)(1 — (r(u)/Ro)" ")/~ D
> c(n)(Ro —r(u))™ =D,
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as desired. If, instead r () > Ry, then by fR" W) <eAC.(u) <C, f(r(u)) € (0, 1) and (A-8) (that is,
&) —®(a) > (b—a)?/Cif0<a <b<1), we deduce that

ce= [ ww= fB W@ (f(rw)) — C f =& (F )]

Bg, Bg,

> [ W@ '(frw))-C / D) — f(rw))|'?

Bg, Bg,

(n—=1)/(2n)
> [ W@ (Frw) - c( A @ () — f(r(u))|"/(”1>> |

B, Ry

where in the last inequality we have used the Holder inequality with p = (2n)/(n — 1) > 1 and the fact
that £"(Bg,) is a universal constant. Hence, by Br, C B, (), (3-25) and w, Rj =1,

W™ (f(r(w))) < C((Ve) "D/ +¢).
Now, Rg < r(u) < My implies 1 > f(r(u)) > f(Mp) > 8o (provided we further decrease the value of dp).
In particular, by W(z) > (1 —1)?/C on (89, 1) (which can be assumed as done with (A-13)), we have

C((Ve) " ey > 1= ' (fF(rw))))>.
By (A-7), we have

1—o l(s) >

for all s € (0, 1),

thus concluding

C(( )™V Ly > 1 — f(r(u) = c(n)(RY™ — r(u)'™")
n—1
<o) ((@) - 1) > Sy — Ry).
M

—r@)" '\ Ro (.

This completes the proof of (3-26), and thus of (3-24).

Step 4: We now consider {¢;, v, E;}; as in the statement, and begin the proof of the resolution result. We
introduce the radius R;(¢) by setting v;(R;(¢)) =t for every ¢ in the range of v;. In this step we prove
that both 6 (defined in Section A3) and 1 — §p belong to the range of each v;, that

Ro

3Ry > R;(60) = R;(1 —68p) = 3 (3-27)
Py
Ej < R;(80) — R;j(1—8) < C¢;j, (3-28)
and that c
—— <Y< —— R:(1—35p), Ri(89)). 3-29
5 v, = ng on ( ]( 0) J( 0)) ( )

In particular, the constants b; and c; introduced in (3-10) are well-defined, they satisfy
¢j = R;j(80) — Ry, bj =Ro—R;(1-25p), (3-30)

and property (3-12) in the statement boils down to (3-29).
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By Step 3, for j large enough and considering that v; € Ro, we have
/ |15, — @M "D < Cef ™ 1 gy). (3-31)
Rn

By (3-31), if £ and &y are small enough, then both 6y and 1 — §p must belong to the range of each v;.

Now, if R;(80) < Ro, then
R — R;(8))"
/ 115, — @)D = w0, (R — Rj(80)") (1 = D(80))"/ " = o= RiGol”
BRry\BR; 59) (&

and R;(80) > Ro/2 follows by (3-31) for £y and &9 small enough; if, instead, R;(89) > Ry, then
R;(80)" — R}
/ Ly, — DI = a0, (Ry (50)" — Ry D ()0 > RO = Ro.
Br;69) \Bry c
and R;(8p) < 2Ry follows, again, for £( and &y small enough; we have thus proved Ro/2 < R;(89) < 2Ry.
Since (3-5) implies AC¢; (vj) < C we also have
Ri ()" —R;(1—=380)" R;i(6p)—Ri(1-56
ngZ/ W(Uj)Z j( 0) j( 0) > j( O) j( 0)’
R C C

where in the last inequality we have used R;(89) > Ro/2. Thus, we have so far proved (3-27) and the
upper bound in (3-28). Before proving the lower bound in (3-28), we prove (3-29). To this end, we
multiply (3-6) by vJ’., and then integrate over an arbitrary interval (0, r) to get

282 T (n)? ' /
& ((vj) +2(n— 1)/(; ; a’t) = W(;) — W(;(0)) —¢; /0 vi (1 = v))E;v;. (3-32)
By (3-7), the right-hand side of (3-32) is bounded in terms of n and W, so that (3-32) implies a}(v})z <C
on (0, 00); the lower bound in (3-29) then follows by v]/. < 0. To obtain the upper bound in (3-29),
we multiply again (3-6) by vj’., but this time we integrate over (r, 00) for r € (R;(1 — &), R; (o)), thus
obtaining

of o2 < vi(1)° oo /
&; (—vj(r) +2(n— 1)/ ; dt) =—-W(;({)) —sjf v;(1 —vj)Ejvj. (3-33)

By W(v;(r)) > infjs) 15,0 W = 1/C, (3-7), and the nonnegativity of the integral on the left-hand side of
(3-33), we deduce that

1
2670} (r)* = W(v;(r)) — Ce; = o forallr e (R;(1—30), R;(0)),

which, again by v]’. <0, implies the upper bound in (3-29). To finally prove the lower bound in (3-28), we
notice that thanks to the lower bound in (3-29) we have

C R; (80) )
SR -R-s = [ (o =1-2m.
€j R;(1—80)

We have completed the proofs of (3-27), (3-28) and (3-29).
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Step 5: We obtain sharp estimates for v; as r — oo: precisely, we prove that for every r > R; (o) one has
vj (r) < Ce_(V—Rj(S()))/(Csj)’ (3-34)
C
00 ()] = e TROD/CE =12, (3-35)
i
We first transform (3-6) to get rid of the first-order term and capture the polynomial factor of the form

r=m/2 To this end we consider the so-called Emden—Fowler change of variables. More precisely, we
set v; = g w; and notice that (3-6) gives

. 1

Thus setting g (r) =r~“ with a = (n — 1) /2 we find the following ODE for w;:
2 Wwj ( 22a(a — 1) 4 W’(Uj) —Sjvj(l — vj)Ej>
j .

EW, = — €
j 2 v;

i =3 (3-36)

Recasting (3-6) in spherical coordinates, exploiting (3-7) and (A-6), and taking j large enough to give
gj < 0y, we deduce that

,2a(a — 1) w;j
2w > ———+4+——C¢ 3-37
g]u)]_z(g 2 tC )—20* (3-37)
for some C, universal. We now notice that
wy(r) = Soef(r*Rj(fSo))/(«ﬂC*Ej)
satisfies sjzw;/ = w,/2C, and
w«(R;(80)) = 60 = w; (R;(0))-
Therefore, if r > R;(8p), then
wj (r) < wy(r) = dge~ TRV, (3-38)

from which we deduce

8o e TeN
vj(r) < ROESTYE e~ RGO/ (V2CE)  for all r > R; (80),
that is, (3-34). By combining (3-36) with (3-38) we first find

C e
()| < — e "TRICDIVEE) for all r = R;(80),

and then, by integration,

o0

C

mwns/|@hmms—e“&wmﬂwﬂfmmrz&%x
r €

these last two estimates, combined with v; = =072, ; and the Leibniz rule, yield (3-35) for k =1, 2.
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Step 6: We obtain sharp estimates for v; (r) when r — 07; precisely, we prove that for every r < R;(1—8o)

one has
1— vj (r) < Ce_(Rj(l_(sO)_r)/(CEj), (3-39)
IGIEYe min{%» i}e“f“‘“)”” e, (3-40)
g7 &
J
()] < Ezef(le,«(lfso)fr)/(Cej)‘ (3-41)
o

J
To this end, it is convenient to recast (3-6) in terms of w; = 1 —v;, so that

/

w'
2812{w}/ + (n— 1)71} = —W/(l - u)j) + Sjwj(l - wj)Ej. (3-42)

By (A-6) and (3-7), if r < R;(1 — &), then
—W/(l—wj)—l-ijj(l—wj)Ej §C(1—wj), (3-43)

so that (3-42) implies in particular
/

w
2e}{wj’.’+(n— 1)—1} <Cw; on (0, R;(1—&)). (3-44)
r

Multiplying by w]/ > 0 and integrating on (0, r) C (0, R;(1 —&p)) we deduce
, 2
82{w<(r)2+/ () } < C(w;(r)? —w;(0)?) < Cw;(r)?
J J 0 t — J J — J ’

that is,

’
ij~

;< Cwj on (0, R;(1—8)). (3-45)

Combining (3-45) with (3-42), (A-6) and (3-7), we find that

n—1
2.1 2 4 /
28] w] C&‘] wj 28] {w] w] }

=—W'{—w)j)+ewj(l —w)E,; = % — Ceju;

on [Ro/4, R;j (1 —8)), so that, for j large enough and for a constant C, depending on n and W only, we
have
2w > 2L on [Ro/4, R (1 —8p)) (3-46)
jWi = C, 0/ I\ 0))-
Correspondingly to C,, we introduce the barrier

W, () = So{e (RID=INCie] 4 (r=Ri=3oDNCoeTy 1 ).

By the monotonicity of w; and by R;(1 — &) > Ro/3 (recall (3-27)),
w«(Ro/4) = 3o = w;(R; (1 —30)) = w;(Ro/4),
Wy (R; (1 —380)) = 8o = wj(R; (1 —dp)),
2./ Wi

gjw, = C_* on [0, 00).
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We thus find w; < w, on [Ro/4, R;(1 —8p)); that is, for every Ry/4 <r < R;(1 — o),
1— v (r) < 50{6((R0/4)—r)/\/ C*Sf + e =R (1=80))/+/ C*Sf}.

By testing (3-47) with
__ Ro/4+Ry/3
- 2

and exploiting the monotonicity of v;, we find that for r € (0, r]

*

1 —vj(r) < 8pe” /€ forall r € (0, r,]

(3-47)

(3-48)

(thus obtaining the crucial information that, for j large enough and, for every k €N, |[1—v;|lcop .1 = 0(8}()
as j — 00). At the same time, for r, <r < R;(1 — §p), the second exponential in (3-47) is bounded from

below in terms of a universal constant, while the first exponential is bounded from above by e~!/€% so

that (3-47) and (3-48) can be combined into
1 —vj(r) < Ce” RIU0=D/CE)  forall r € (0, R (1 — )],

that is, (3-39). By combining (3-39) and (3-45) we also find

C
—vj(r) < —e” R®IU=00=D/CE) for all r € (0, R;(1— 80)],
&j

which is half of the estimate for |v]/.| in (3-40). Multiplying (3-44) by r"~! we find
267 (r"'w)) < Cr"'w; forall r € (0, R (1 —8)],

which we integrate over (0, ) C (0, R;(1 —dp)) to conclude that
r
g (=vi(r) < C/O w; (1" dt < C(1—v;(r)r" forall r € (0, R;(1—8p)];

in particular, by combining this last inequality with (3-39) we find

—v)(r) < C—e~RIU=20-n/Ceh  for all 1 € (0, R; (1 — 80),
&4
J
that is, the missing half of (3-40). Finally, by (3-42) with (3-43) we find
| /

fl} on (0, Rj(1—8)).

r

&7 1v]| sc{<1—v]~>+

and then (3-41) follows from (3-39) and (3-40).
Step 7: We now improve the first set of inequalities in (3-27), and show that

R()—C:S‘j < Rj(l —50) < R,((s()) < R0+C8j.

ajzf V(vj), ﬁj=/ V(v)), Vj:/ V().
BRj<1—50) BRj((SO)\BRj(I—SO) BRj(a())C

Let us set

(3-49)

(3-50)



UNIFORM STABILITY IN THE EUCLIDEAN ISOPERIMETRIC PROBLEM FOR THE ALLEN-CAHN ENERGY 1793
By (A-11), (3-39) and (3-27) we have

loj — wa Rj (1= 80)"| = f

BRJ-(I—SO)

1—V(u,~)5cf (1—v))?

BRJ-(I—SO)

< C/ e~ Ri(1=80)=IxD/(Cé&))
BRI-<1750)

R; (1—3¢)
_ C/ o~ (Ri(1=30)=n)/(Cep) pn=1 g,
0

0
:Csj/ e/ (Rj(1—80) +¢;9)" ' ds < Ce;.
—Rj(1-80) /¢

Similarly, by (A-11), (3-27) and (3-34) we find

o0
il =/ V() = C/ p/ 07 < C/ e UTRIODNCeD =l gy
B¢ R; (3)° R;(0)

}j(ao) B
o0
= Ce, / e C(R;(80) +e5)" 1 ds < Ce;.
0
Finally, thanks to (3-27),
1= [ V(1y) < C(R;(30) — Ry(1 = 80)) = Céy.
BR;(50)\BR; (1-5))

Combining the estimates for «;, B; and y; with the fact that

wn Ry =1 =/ V() =aj+ B+ v,
we conclude that
[Ro — R; (1 —dp)]

Cej = wp| Ry — R;j (1 —80)"| < C )

so that (3-50) follows by (3-27).

Step 8: We conclude the proof of the theorem: (3-29), (3-30) and (3-50) imply (3-10) and (3-12), as
well as
1bjl, Icj| < Ce;, (3-51)

which is a weaker form of (3-11); (3-34) and (3-35) imply (3-13), while (3-39), (3-40), and (3-41) imply
(3-14). We are thus left to prove the full form of (3-11) (which includes a positive lower bound in the
form ¢;/C for both b; and c;), as well as (3-8): that is, we want to show that if v; satisfies (3-4), (3-5),
(3-6) and (3-7), then, for every x € R" and j large enough, we have

0i0) = 2 ) + (P ROY (IR0 o (R0 (3-52)
£ &

J J €j

with functions f; € C%(I;) such that

1fi(s)] < Ceje #VC forall s € I; = (—Ro /¢, 00), (3-53)
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and with 7; = 7, for 7, defined by (3-1) and (3-2). In fact, (3-52) and (3-53) imply the full form of (3-11):
for example, combined with (3-12) and (3-17), they give

b; Ro
cL> / (—v}) = v;(Ro — bj) — vj(Ro) = (1 = 80) — n(—7) — £;(0)
€j Ro—b;

>1-380—n(—10) — C¢j,

where the latter quantity is positive provided j is large enough and we further decrease the value of 3y to
have §p < 1 — n(—1gp).
We can thus focus on (3-52) and (3-53), which we recast by looking at the functions

nj(s) =vj(Ro+¢js), selj
in terms of which f;(s) = n;(s) — n(s — t;). Thus, our goal becomes proving that
Inj(s) —n(s —1;)| < Ceje ¥/C foralls e I,. (3-54)

We start noticing that, by (3-12), (3-13) and (3-14), we have

C=—n(s) > % for all s € (—b;/ej, c;/€;), (3-55)
n{(s) < Ce™/€ for all s € (¢j /g, 00),k =0, 1,2, (3-56)
(1 =nj(s)) + [nf(s)| < Ce’/C,
I}l < Cmin: = Jgr.g—j -, 1} pic foralls e (=Rofey, =bifep) G->7
J

(while the analogous estimates for n are found in (A-16) and (A-18)). In order to estimate fj(s) =
n;(s) —n(s — t;), we introduce

gj(s) =nj(s) —n(s —t;)
for #; defined by the identity

n(—(bj/e)) —1;) =1 &. (3-58)

(Notice that the definition is well-posed by 1’ < 0 and n(R) = (0, 1).) We claim that the proof of (3-53)
can be reduced to that of
gj(s)| < Ceje 1V/C  forall s € I;. (3-59)

Indeed, by (3-4), if (3-59) holds, then we are in the position to apply Step 1, and deduce from (3-17) that
|t; — to| < Cé¢;. Having also (by the same argument) |t; — 79| < C¢;, we deduce that

|‘L'j —l‘j| < C&‘j,
which we exploit in combination with (3-56) and (3-57) to deduce
1
[fi(s) —gi )| =1Inls =) =n(s— 1) < C/ In'(s — 7 —1(tj — 7)) | dt
0

< Ceje_lsl/c forall s € I;.
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We are thus left to prove (3-59). To this end, we preliminarily notice that, since ;(—b;/e;) =v;(Ro—b;) =
1 — 8o, the definition of #; is such that
gi(—=bj/ej) =0. (3-60)
Moreover, by the decay properties (A-16) of n and by |b;| < Ce¢;, (3-58) implies
|1l = C. (3-61)
We now divide the proof of (3-59) in three separate arguments:

We prove (3-59) for |s| > Clog(1/¢;): This is trivial from the decay properties of n and n;. Indeed, by
(A-16), (3-61), (3-56) and (3-57) we find that

lgi ()| < K1e VK forall s € I;. (3-62)
for a universal constant K. In particular, we trivially have

185()| < K1eje VKD foralls € I, |s| > 2K, 1og<8i). (3-63)
J

We will later increase the value of K in (3-62) so that (3-74) below holds too.

We prove (3-59) on arbitrary compact subsets of 1;: More precisely, we show that for every K > 0 we can
find Cx = Cg (n, W) (that is, a constant that depends on n, W and K only) such that

lgi(s)| < Cge; forallsel;, |s|<K. (3-64)
To this end, setting Ej (s) =E;(Ro + ¢ 5), we deduce from (3-6) that n; satisfies the ODE
—1
2r]J +28]r =W ) — gjnj(l—nj)E}k on I;. (3-65)
€js
Multiplying (3-65) by —17]. and integrating over (s, co) we find

"J

nj(s)* — 28,(n—1)f t:W(nj(S))+5j/ n; (1 = np)niE;. (3-66)

Since n'(s — tj)2 = W(n(s —t;)) for every s € R, we find that

i (s)* —1'(s —1))> = W(n;(5)) = W(n(s — 7)) + &L (s),

00 2
where L;(s) :/ <2(n — 1) AL +77/(1 n{,-)n]’.E;‘) dt. (3-67)
s Ry
Setting
W)= Was—t) ()
GO == Sy YOSy, Ty =2,
and noticing that d; < 0 on I}, (3-67) takes the form
: &Lj(s)
gj(s) —Tj(s)gj(s) =———— foralls €. (3-68)

dj(s)
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Multiplying (3-68) by exp(— f(; I'j), integrating over an interval (—b;/¢;, s), and taking into account
(3-60), we find

S S eff()r T
gj(s)e*f0 = sj/ ———L;(t)dt forallsel;. (3-69)
—b;/e; dj(t)
We now notice that by (3-7), (3-56) and (3-57),
[L;(s)] §Cmin{1,efs/c} for all s € I;. (3-70)

Moreover, by Lip W < C we have |{;| < C on I;, while n} <0 and (3-61) give
1
di(s) <n'(s—t) < e for all |s| < K, (3-71)
K

and, in particular, |I';(s)| < Ck for |s| < K. Now, assuming without loss of generality that K is large
enough to give K > |b;|/¢; (as we can do since |b;| < Ceg; for a universal constant C), we can combine
(3-69), (3-70), (3-71) and |T';| < Cg on [—K, K] to get (3-64).

Finally, we prove (3-59) in the remaining case: Having in mind (3-63) and (3-64), we are left to prove the
existence of a sufficiently large universal constant K, such that (3-59) holds (provided j is large enough)
for every s € I; with K, < |s| < 2K;log(1/¢;). To this end, we start by subtracting 2n” = W () from
(3-65), and obtain

/

"j
2] —mjg; = Sjinj(l —n)Ej —2(n — ])R()Tejs} for all s € I;, (3-72)

where
W (nj(s)) =W (s —1))
n;j(s) —n(s —t)

m;i(s) = , sS€lj.

The coefficient m; is uniformly positive: indeed, the decay properties of 1 and 7; at infinity, combined
with |#;| < C, imply the existence of a universal constant K5 such that if |s| > K>, then n;(s) and n(s —1;)
are both at distance at most 8y from {0, 1}, and since W” > 1/C on (0, §9) U (1 — 8, 1) by (A-6), we
conclude that, up to further increasing the value of K>,

mj(s)ZKi2 foralls € I}, |s| > K». (3-73)

At the same time, the right-hand side of (3-72) has exponential decay: indeed, by (3-7), (3-55), (3-56)
and (3-57), if |s| <log(1/¢;), s € I;, then we get
n'
nj(1—n)E; —2(n— 1)1eoTjsjs < Kygje WK (3-74)
up to further increasing the value of the universal constant K introduced in (3-63). Let us thus consider

g:(s) = Crgje BIIVI2 s e R,
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for C| and C; universal constants to be determined. By combining (3-72) with (3-73) and (3-74) we find

that, if s € I; with K, < |s| < 2K log(1/¢;), then

2(gj — g —mj(g; — 8x) = mjg. —2g] — Kgje” PI/K

Z L_i g*_Klgje_‘sl/Kl
K, C

Ci(1 1
_ 8j{_1< _ _)e[a/m)—(l/ﬁcz)ns _ 1}K1e"5'/’“,

KiI\K, G,

where the latter quantity is nonnegative for every |s| > K, provided
C1 > 3K Kye X0/CKD ) > max{2K,, 2K 7).

At the same time, by (3-63),
|g; (£2K 1 log(1/¢)))| < Ki¢7,

while C, > 2K 12 gives

8+ (£2K log(1/e))) = Cigje K118 /eNINV2E > g2,

Upon further requiring C; > K| we thus have

8«(s) = |gj(s)| ats==2K;log(l/e;).
Similarly, by (3-64),
1gj (£K2)| = Ck, ¢,
while C>2K> gives
g.(£Ky) = Cigje K20 > g VK2,
Upon requiring that C; > C Kzem/ 2 we find that

g+(s) = |gj(s)| ats==%K>.

(3-75)

(3-76)

(3-77)

In summary, we have proved that if K satisfies (3-62) and (3-74), K, satisfies (3-73), and C; and C;
are taken large enough in terms of Ky and K>, then (3-76) and (3-77) holds. In particular, h; = g; — g«
is nonpositive on the boundary of the intervals [-2K log(1/¢;), —K>] and [K>, 2K log(1/¢;)], with
h}’ —mjh >0, m; > 0, on those intervals thanks to (3-75) and (3-73); correspondingly, by the maximum

principle, h; < 0 there, that is,

gi(s) < Clsje_l“"/vzcz forall s € I;, K> < |s| <2Kjlog(l/s;).

To get the matching lower bound we notice that, again by (3-74),

(g« —8)) —mj(—gu—gj) = mjgu — g — K1gje Pk

so that, by the same considerations made before, the maximum principle can be applied to k; = —g,—g; on
[—2K;log(1/¢j), —K2]U[K>, 2K log(1/¢j)] to deduce g; > —g,. This completes the proof of (3-59). [
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4. Strict stability among radial functions

In this section we are going to exploit the resolution result in Theorem 3.1 to deduce a stability estimate
for (&) on radial (not necessarily decreasing) functions. More precisely, we shall prove the following
statement.

Theorem 4.1 (Fuglede-type estimate). Ifn > 2 and W € C>'[0, 1] satisfies (1-11) and (1-12), then there
exist universal constants 8o and gy with the following property: if € < g, us € R is a minimizer of ¥ (¢),
and u € H'(R"; [0, 1]) is radial and such that

/ Vu) =1, 4-1)
(u—ue)? < Ce, (4-2)

Rn
lu —ugll L@ < do, 4-3)

then, setting h = u — u,,

2
ACg(u)—llf(S)z%/ e|vh+ 1 (4-4)

n e
Before entering into the proof of Theorem 4.1, we show how it can be used to improve on the
conclusions of Theorem 2.1. In particular, it gives the uniqueness of minimizers in ¥ (&) and, together
with the resolution result in Theorem 3.1, allows us to compute the precise asymptotic behavior of ¥ (¢)
and A(g) up to second and first order in & — 0T respectively. Notice in particular that (4-7) sharply
improves (2-3).

Corollary 4.2. If n > 2 and W € C 2110, 1] satisfies (1-11) and (1-12), then there exists a universal
constant gy such that, if € < &y, then ¥ (¢) admits a unique minimizer (modulo translations). In particular,
for every € < &y, A(e) is unambiguously defined as the Lagrange multiplier of the unique minimizer

us € Ro of W(e) by the identity (2-2), i.e.,

Ae) = (1 — %)1//(8) n %{% W)~ f |Vu5|2}. (4-5)

Finally, € € (0, &9) — A(¢) is continuous and the following expansions hold as ¢ — 07
V(e) =2nwl" +2n(n — ¥ ke + O(?), (4-6)
Ae) =2(n— Dawl/" +0Ce), 4-7)

where ko =19+ 171 = fR[n’V’(n) + W(n)ls ds and n is the unique solution to n’ = —/W () on R with
n(0) = 1.

Proof of Corollary 4.2. Step 1: Let € € (0, &9) and let u, and v, be two minimizers of v (¢), so that, up to
translations, u,, ve € Ry thanks to Theorem 2.1. By Theorem 3.1, if we set s, = v — u,, then

hg(x>=f8('x'_R°),

&
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where f, € C2(—Ry/e, o0), and
| fo(s)] < Cee /€ forall s > —Ry/e. (4-8)

We thus see that u = v, satisfies (4-1) and (4-3). Moreover, by (4-8),

o0
f h? = nw/ fo ()} (Ro+es)" eds < Ce?,
n —Ro/e

so that (4-2) holds too. We can thus apply (4-4) with u = v,, and exploit the minimality of v, to deduce that
2

1 2 ha
0=ACe(vs)—W(8)ZE/ e|Vhe| +?,

that is, 7, = 0 on R”, as claimed.

Step 2: We prove (4-6) and (4-7). If u. is the minimizer of i/ (¢) in R, then by Theorem 3.1 we have
us(x) = z.(x) + fe((Jx| — Rp)/¢) for every x € R”, and with f; satisfying (4-8). Moreover, as proved in
(3-3), we have

ACe(z¢) = 2nw!/™ 4+ 2n(n — D/ "o + O(e?).

Since AC, (us) < AC,(z;), we are left to prove that AC, (u,) > AC,(zs) — Ce>. Setting |x| = Ry + s, we

have

w0 = (s — T+ fols),  Viag(r) = LO T A X

e x|’
while z. satisfies the same identities with f, = 0, so that
ACe () — ACe (ze) = / (20 (s = 1) £1(5) + £1(5)*) (Ro+ £)" " dis
—Ro/e 0o
+f (Wn(s — 7o) + fo(s) — Wn(s — 7)) (Ro + £5)" ' ds.  (4-9)
—Ro/e

Integration by parts and 2" = W’(n) give

o0

/ 20/ (s — 7o) f1(s) (Ro + &5)" ' ds = — / W' (n(s — 7)) fe(s) (Ro +&5)"~ ' ds

Ro/e —Ro/e

—2(n—1e / 0 (s — 7o) fo (s)(Ro + £5)" 2 ds.
—Ro/e

Dropping the nonnegative term with f/ (s)% in (4-9), and noticing that, by (A-5) and (4-8), we have

(W (s — ) + fo(8)) = W(n(s — 7)) — W (n(s — 7)) fu(s)| < Cfils)?
for every s > —Ry/¢, we thus find

ACg(ue) — ACe(z¢)

o0

(o]
> —2(n— 1)8/ 0 (s — 1) fo(s)(Ro+ €5)" 2 ds — C[ fo($)*(Ry+e5)" 1 ds > —Ce?,
—Ro/e —Ry/e
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where in the last inequality we have used (4-8), |t.| < C and the decay estimate for n’ in (A-18). Coming
to (4-7), rearranging terms in (4-5) we have

2 21
Mo = (1= )@+ o | W, (+10)
By (4-8)
L wao =1 [ we+oe =¥+ o)
R € Jrn 2
where in the second identity we have used (3-22). Hence A(¢) = (1 — (1/n)) ¥ (¢) + O(¢) and (4-7)
follows from (4-6).

Step 3: We prove the continuity of A on (0, &9). Let ¢; — &4 € (0, &9) as j — oo and set h; = Ug; — Us,.
By the resolution formula (3-8) we have

|x| — Ro lx[ — Ro |x[ — Ro |x| — Ro
77( —Tg | —1 =T )|t fsj — fe.
&j Ex Ej Ex
< Ce,e(XI=R0)/Cer | ’n<|)€| — Ry B ‘L'O) _ ’7(|XI — Ry . TO)
8]' Ex

where we have used (3-17), (3-9) and (A-16). Similarly, since &; — &, > 0, for j large enough we see that
'n('x'_RO—ro>—n<'x'_R°—ro> </1 n,< x| = Ro _TO)
&j Ex ~Jo ex+1(gj —&4)

< T8 mtu-ROCo )y Ryl < Cope(HI-RO/CE.
= 2 =
Setting hj = u,; — u,, we see that (4-1), (4-2) and (4-3) hold with ¢ = ¢, and for j large enough, thus
deducing that

|u€j (x) = ute, (x)]| <

’

[lx] — Rol
(ex +1(gj — £4))?

| j_8*|

*

h? ,
%/ 8*|th|2+ L = Acs*(usi) — V(&) < maX{S_J» 8—*}1“8]) — Y (&s).
n Ex ’ SJ'

Ex

From the continuity of ¥ on (0, &g) (Theorem 2.1) we conclude that

lim | |Vug —Vu,,[*=0, lim W(ug)_/ W (ue,),

]—)OO Rn j—)OO
and thus A is continuous on (0, gg) thanks to (4-10). U

We now turn to the proof of Theorem 4.1. This is based on a series of three lemmas, each containing a
different stability estimate, coming increasingly closer to (4-4).

Lemma 4.3 (first stability lemma). Let n be the unique solution to n' = —/W (n) on R with n(0) = 5
Letn >2, let W € C>'[0, 1] satisfy (1-11) and (1-12), and let

Qu) = f 2w+ W' mu?, ueH'R).
R

Then Q(u) > 0 on H'(R), and Q(u) =0 if and only if u = tn' for some t € R.
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Proof. Let us consider the variational problem

y:inf{Q(u):/zﬂ: 1}.
R

By (A-18) we have n’ € H'(R). Differentiating 2" = W’(n) we find 2(y')" = W”(5)n/, and then
integration by parts gives Q (') = 0. At the same time we clearly have Q(u) > —[|W"||co(.1) J u? for
every u € H'(R), so that

— W llco,1y < v <0.

We now prove that y is attained. Let {w;}; be a minimizing sequence for y. By the concentration-
compactness principle, { wj2 dx}; is in the vanishing case if

lim [ w;=0 forall R>0, (4-11)

j—o0 Ir

where we have set /g = (—R, R). By (A-16) and (A-6) there exists Sp such that

Wiz L onR\ s, (4-12)
Therefore by applying (4-11) twice with R = Sy we find
lim sup/ wj2 = lim sup/ wj2 < Clim sup W”(n)wj2
j—ooo JR j—oo JR\Ig, j—oo JR\Ig,

= Climsupf W"(n)wj2 < lim Q(w;) =y <0,

j—o0
a contradiction to fR w]2 = 1. If, instead, {w]z dx}; is in the dichotomy case, then there is « € (0, 1) such
that for every T € (0, a/2) there exist R > 0 and R; — 00 as j — 0o such that

‘1—0{—[ w]z a—f ng
Ir R\7g,

where, without loss of generality, we can assume R > Sy for Sy as in (4-12). In particular, if ¢ is a cut-off

<T, <T, (4-13)

function between Ig and Iy ;» then we have

Q(wj) = Q(pw)) + O((1 —p)w;) + Ej, (4-14)

where, taking into account that ¢’ and (1 — ¢) ¢ are supported in 7 r; \ Ir, we have

E; =2/I . w”(m( —(p)(pw]z+4/ (pw) (1 —p)w;)". (4-15)

Trj\Ir
The first integral in (4-15) is nonnegative by (4-12), while the second integral contains a nonnegative
term of the form ¢ (1 — ga)(wj’.)z; therefore, by (4-13),

Ej z4f wjw; (1 — @)’ — wjwipe' —w; (¢
IR\ IR

1/2 1/2
> —C/ w; — C(/ w}) </ (w;.)z) > —CW/, (4-16)
IR\ IR Ir\Ig R
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where we have also used Q(w;) — y as j — o0 to infer

/(U{;)z < Q(w;) + [[Wll¢opo,1; = C.
R

We can take ¢ supported in /g4 1. In this way, up to extracting a subsequence, we have that ¢ w; admits a
weak limit w in H'(R). By lower semicontinuity, homogeneity of Q and (4-13) we have

liminf Q(pw;) > Q(w) > )// w?>(1—a)y —Cr. (4-17)
j—oo R

Finally, since (1 — ¢) is supported on R\ I5,, by (4-12) we have
/Q((l ) )>1f(1 Yw=2_c
— Q) = — —p)w;>—=-—Cr,
R q) ]/ = C R (p J = C
so that, combining (4-14), (4-16), and (4-17) we find
o
Y z(l—a)y+E—Cﬁ-

Letting T — 0" we find a contradiction with y <0 and « > 0. Having excluded vanishing and dichotomy,
we have proved the existence of minimizers of y.

Let now u be a minimizer of y. Up to replacing u with |u| we can assume u > 0. By a standard
variational argument there exists A € R such that

/2u/v/+W”(n)uv=k/ uv forallve H'(R). (4-18)
R R

Testing with v = n’ and recalling that 2(n")” = W”(n)n’, we deduce that

A/n/uzo,
R

and, since u > 0, fR u?> =1, and <0, we find A = 0. From here, if we test (4-18) with the same
minimizer u, we conclude that Q (#) = 0 and, therefore, that y = 0. We remark that this latter observation
also implies that n’ is a minimizer of y .

We claim now that any minimizer of y has to be either positive or negative on the whole line. Indeed,
let v be any minimizer of y. Therefore, u = |v| is a nonnegative minimizer satisfying (4-18) with A = 0.
Thus, u is a C2-solution of the ODE

2u// — W//(n)u

on R. If 0 = v(rg) = u(ro) for some ro € R, then u’(rg) # 0 (otherwise we would have u =0 on R, against
fR u?=1), and v’ (rp) # 0 contradicts # > 0 on R. Hence, u > 0 on R, and, therefore, v must have one
sign too.

If u is also minimizer of y, then, again by (4-18),

QW +sn)=0wu)+s*0(n')=0 forallseR.
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2
L2(R)
mizer of y, and thus u+sn’ is either positive or negative on the whole R. Let so =inf{s :u +sn’ < 0 on R}.

In particular, if s € R is such that u+sn’ is not identically zero on R, then (u+sn’)/||u-+sn’|| is a mini-
If, say, u is a negative minimizer (like n’ is), then 5o < 0; while, clearly, so > —o0, since, for s negative
enough, we must have u + sn’ > 0 at at least one point, and thus everywhere. Since u + son’ <0 on R
with u 4+ son’ = 0 at at least one point, we deduce that u + son’ =0 on R. O

Lemma 4.4 (second stability lemma). If n >2and W € cZ10, 1] satisfies (1-11) and (1-12), then there
exists a universal constant gy with the following property. If u, € R is a minimizer of ¥ (&) for e < &g
and h € H'(R") is a radial function such that

/ V'(u)h =0, (4-19)

then
2

w” 1 h
f 26V + ( (1) —A(S)V”(us)>h2 = [t (4-20)
n £ Rn &

where \(¢) is the Lagrange multiplier of u. as in (4-5).

Proof. Step 1: We show that is enough to prove the lemma with

w” 1 [ n
/ 28|Vh|2—|—( 8(”8)—,\(8)\/“(%))}1235 e (4-21)

in place of (4-20). Indeed, if g¢ is small enough, then |A(¢)| < c(n) thanks to (2-3), and thus we can find
a universal constant C,. such that

J,

whenever u, is a minimizer of ¥ (¢), € <gp,and h € H L(R™). Let us now fix a radial function # € H'(R")
satisfying (4-19). If Cy [g, h?/e < Jre £|Vh|?, then we trivially have

W// /’l2
/28|V/’l|2+( (”5)—x(5)v”(;g)>hzz/ 25|Vh|2—C*/ —3/ e|Vh|*;
n 8 Rn n & n

if, instead, Cy [p. h?/& > [g, €|Vh|?, then we deduce from (4-21)

w” 1 h? 1
/ 2eivnp+ (V4D s ovran s L[ s / e|Vh].
n & C Rr € CC* R

2

lW”(M:s) —Me)V" (ue)
& Rt &

In both cases, (4-20) is easily deduced.

Step 2: We prove (4-21). We argue by contradiction, and consider ¢; — 07 as j — oo, u; € R{; minimizers
of ¥ (¢;), and radial functions h; € H I(R™) such that

/ V/(uy)h; =0, (4-22)
Rn
W (u: 1 h2
/ 2e;|Vhj|* + ( (u;) —Ajv’/(uj))h} < | =, (4-23)
n 8]' ] Rn 8]'
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where A; are the Lagrange multipliers corresponding to u;. By the homogeneity of (4-22) and (4-23) we
can also assume that

h?
1. (4-24)
R» 8j
Therefore, setting
Ro
nj(S)=I/tj(R()+8jS), ﬁj(S)=hj(R()+8jS), SZ—;,
J
we can recast (4-23) and (4-24) as
oo
f (208> + (W' (n) — 52 V" (ny)B?) (Ro+ ;9" ds <+, (4-25)
—R()/&‘j ’ 00 ]
/ Bi(s)*(Ro+e;s)" ' ds = 1. (4-26)
—Ro/¢j

By ¢; — 0™ and by (2-3) we know A; — c(n) as j — 0o, which combined with |[|V"[|cofo.17 < C and
g — 0" shows that (4-25) and (4-26) imply

lim sup f (208)% + W' ()3} (Ro +£;5)" " ds <. (4-27)

j~>OO R()/Sj

Since W” is bounded on [0, 1], by (4-26) and (4-27) we deduce that {8;}; is bounded in H (=s0, s0) for
every sg > 0. In particular there exists 8 € HILC([R{) such that, up to extracting subsequences, S is the weak
limit of {B;}; in H'(—s0, so) for every sy > 0. By ,B]f — B’ in L?(—so, so) for every so > 0 we easily find

lim inf / ” 2B/(5)*(Ro+¢js)" " ds > Ry~ / 2(8))%. (4-28)
R

j—o00 —Ro/¢;

We now apply the concentration-compactness principle to the sequence of measures
1) = 1Ry /e;.00) ($)Bj ()*(Ro + £;5)" ' ds,
which satisfy u;(R) = 1 thanks to (4-24). We claim that, if the compactness case holds, and thus
lim sup w;(R\ [—s0, so]) =0, (4-29)
50— +00 j
then we can reach a contradiction, and complete the proof of the lemma. To prove this claim, let us set
no(s) = n(s — 7o)

for 1g as in (A-19), and let us notice that, for every sy > 0 we have

lim sup
j—o0

50
< limsup / [W" ()8 (5)*(Ro +j5)" ™" — Ry~ W (o) B°|
j—oo —50
+ W[l oo, 13 Sup 14 (R \ [=50, s01) + Ry~ W [l coo. 1 f B> (4-30)
JEN R\[—s0,50]

/ W (nj)Bj(s)*(Ro+ ;)" ds — Ry~ /R W’ (n0)8°

7R0/£j
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Since g; — B in leoc(R) and n; — no locally uniformly on R thanks to Theorem 3.1, the first term on

the right-hand side of (4-30) is equal to zero. Letting now sy — 00, the second term goes to zero thanks
to (4-29), while the third term goes to zero thanks to the fact that (4-29) implies in particular

Rl / B =1, (4-31)
R

We can combine this information with (4-28) and finally deduce from (4-27) that
[ 267+ wraws <o 4-32)
R

By Lemma 4.3 we deduce that, if we set Bo(s) = B(s + 10), then By =t ' for some # # 0 (t = 0 being
ruled out by (4-31)). In particular, 8 = tné, and therefore

/R V'mo)B=tVo)TL=tV(1) =1 #0.

However, by (4-22), we see that
o
0:/ V'(uj)h; :/ V'(n))B;(s)(Ro+se)" ' ds forall j,
" —Ro/¢j
and we can thus obtain a contradiction by showing that
o
lim / V'(nj)Bj(s)(Ro —|—sej)"_1 ds = Rg_l / V' (no)B. (4-33)
J=00 J_Ry/e; R

This is proved by noticing that (A-11), (A-16), (3-56) and (3-57) give
0 < max{V'(n;), V'(no)} < Ce /€

for every s € R (or for every s > —Ry/¢;, in the case of 7;). In particular,

—s0 00
lim 1imsup|: —l—/ i|v/(7)j)|,3j|(R0+S8j)n_lds
_ "

50700 j—o0 Ro/ej

1/2
<C lim lim sup(/ e FIVC(Ry+sg;)" ! ds) 1 (R\ [—s0, so) /> =0,
0700 o0 {Is>s0} '
so that a similar argument to the one used in (4-30) can be repeated to prove (4-33).
We are thus left to prove that the sequence of probability measures {i;}; cannot be in the vanishing
case nor in the dichotomy case of the concentration-compactness principle.

To exclude that {j1;}; is in the vanishing case: Since 1; — n locally uniformly on R, up to take j large
enough and for Sy as in (4-12) we have W”(n;(s)) > 1/C for |s| > So, s > —Ro/¢;. Since we are in the
vanishing case, it holds

So
lim Bi()*(Ro+¢;5)" ' ds =0, (4-34)

j=o J s,
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so that, by using first the lower bound on W”, and then (4-34), we get

o0
—11m sup[/ / },Bj(S)Z(RO‘i‘SjS)n_I ds
Jj—00 Ro/ej So 00
< limsup|:/ —l—/ 1|W"(r]j)/3j(s)2(Ro—H?js)”1 ds
Ro/gj So

j—0o0

0
:limsup/ W”(nj)ﬂj(s)z(Ro+8js)"*lds <0,

j—oo —Ro/¢j

where in the last inequality we have used (4-27). Combining this information with (4-34) we obtain a
contradiction to (4-26), thus excluding the vanishing case.

To exclude that {j1;}; is in the dichotomy case: With Sy as above, if we are in the dichotomy case, then
there exists o € (0, 1) such that for every 7 € (0, «/2) there exist R > Sy and R; — o0 such that

lwi(Ig) — (1 —a)| <7, |u;j(R\Ig)—ca| <t forall,. (4-35)
Setting A; = ¢f;, Bj = (1 —¢)B;, where ¢ is a cut-off function between B and B, and setting for

the sake of brevity

Q‘/(A,B)=/ / {2A'B"+ W' () ABNRo+¢;5)" ' ds,  Qj(A) = Q;(A, A),
—RO £j

we can rewrite (4-27) as
limsup Q;(A;)+ Q;(B;) +2Q;(A;, Bj) <0. (4-36)

j—o00o

Now, since ¢’ and (1 — @)@ are supported in Ig; \ Ig, we see that

0;(A;. B =2 /I 2000 BB Rt egsy s+ /I W) @) R e .

where, thanks to (4-27) and the Holder inequality,
| =208 R+ ds = Cynin \ 1) = VR,
Tr+1\IR
[ = @8R+ )" ds = oy \ i) = C
Trt1\IR

We thus conclude that Q;(A;, Bj) > —C /7 for every j, and thus, by (4-36), that

limsup Q;(A;) + Q;(Bj) < C/T. (4-37)

j—oo

Now, since the supports of the A; are uniformly bounded, we easily see that there exists A € H '(R) such
that A; — A weakly in H '(R); in particular,

fiminf 0;(4)) = [ 247+ W' (ro)4” 0
j—>00 R
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where in the last inequality we have used Lemma 4.3. By combining this last inequality with (4-37),
W”(n;) = 1/C on R\ Is,, and R > Sy, we conclude that

o

C+/T > limsup Q;(B;) > L fim sup/ (1—@)*B}(R+se)" " ds
j—o00 Jj—=0o J—Ro/e;

and thus, by (4-35), that C/T > (a/C) — Ct. Letting T — 01 we obtain a contradiction with « > 0. [J

Lemma 4.5 (third stability lemma). If n > 2 and W € C>'[0, 1] satisfies (1-11) and (1-12), then

there exist universal constants 8o and &y such that, if u, € R is a minimizer of Y (e) for & < &y and
ue HY(R"; [0, 1]) isa radial function with

/n V) =1, (4-38)
/ - ug)? < Ce, (4-39)
lu — uellLoo®ny < o, (4-40)
then, setting h = u — u,,
/n 2 |Vh|? + (W”:”S) - A(S)V”(ug))hz > é ; e|Vh|? + h; (4-41)

where \(¢) is the Lagrange multiplier of u. as in (4-5).

Proof. 1t will be convenient to set

uv
P.(u,v) = / eVu-Vv+ —,
n 8

W”(”s)
&

Q¢ (u,v) =/ eVu-Vv+ ( — k(s)V”(ug))uv,

as well as P.(u) = P.(u,u) and Q. (u) = Q.(u, u). Let us start noticing that by Theorem 3.1 we have

/n V' (ve)ve — R) ™! /R V’(n)n' =0,

where v, runs over all radial minimizers of ¥ (¢). Since fR V'(n)n is a positive constant depending on n

lim sup sup
0->0¢c<o Vg

and W only, this shows in particular that

% E/ V'(ug)us < C  forall e < g. (4-42)

By (4-42), given h = u — u, as in the statement, we can always find ¢ € R such that
. fRn V/(MS)h
fRn V/(us)”s '
By (A-12), (4-40), and since 0 < u, + h < 1, we have that, on R”,
h2
‘V(us +h) = V(ue) = V'(ue)h — V”(%); < Cooh’, (4-44)

/ V'(ue)(h+tus) =0, ie, t= (4-43)
R»
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so that, by (4-38),

h2
/ V' (ue)h + v”(ug)7 < Cd f h?, (4-45)
n Rf’l
and thus, thanks to | V" copo.1; < C, (4-42), (4-39), and (4-43),
lt] < c/ h? < Ce min{P.(h), 1}. (4-46)
By (4-43) we can apply Lemma 4.4 to u, + th and find that
P.(h+tu
Qc(h+tug) > u,
C
which can be more conveniently rewritten as
P.(h P.(h,u P.(u
RO iy LGSR, N ) ECCRR Wt (4-47)
C C C
By Theorem 3.1, we see that P, (u.) +| Q¢ (u:)| < C (uniformly on & < gg), so that (4-47) and (4-46) give
P.(h P.(h,
Qs(h)z%)+2t{M—Qe(h,u8)}. (4-48)
By the Holder inequality, ab < (a”® +b%)/2, P.(u;) < C, and (4-46) we see that
||
|t Pe(h, ue) < ?(Pg(h) + Pe(ug)) < CePe(h), (4-49)
while by |V'| 4+ |W”| < C and |A(¢)| < C for ¢ < gy we find, arguing as in (4-49),
C
[11Qe(h, ue) < Itl{s IVh[|Vue| + ;f Ihlue} < CeP:(h). (4-50)
Rn n
By combining (4-48), (4-49), and (4-50) we conclude that Q.(h) > P.(h)/C, as desired. U
We are finally ready to prove Theorem 4.1.
Proof of Theorem 4.1. We are given u, and h as in Lemma 4.5, and now want to prove that
1 , h?
ACg(ug—I—h)—w(s)zE e|Vh| —i—? (4-51)
Rn

holds. By (A-5) and (4-40) we have

2
‘W(ua ) — W) — W (ug)h — W”(ug)%‘ < Csoh® on R":
therefore
W/(ue)

AC.(ug +h) — ACe(ug) > f 2eVu,-Vh+

n

W//
h+/ 8|Vh|2+#h2—c&)/ h%. (4-52)
n 8 Rn

By the Euler-Lagrange equation for u,, see (2-1), we have

W/(MS) /
h=A(e) Vi(ug)h. (4-53)
& R®

/ 2eVu, -Vh+
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h2
/V/(us)h+/ VU(”E)?

On combining (4-52), (4-53), and (4-54) with (4-41) we find that

Moreover, by (4-45),

< C$ / h2. (4-54)

Acu+m = =5

hZ
2/ 8|Vh|2+——C50/ h?,
n 8 n

so that (4-51) follows by taking §p small enough. O

1
28|Vh|2+iEW”(ug)—A(E)V”(ug)}hz—CSO/ h?
Rn

5. Proof of the uniform stability theorem

In this section we prove Theorem 1.1(iii), i.e., we prove (1-21). We focus directly on the case (o, m) =
(e, 1), from which the general case follows immediately by scaling.

Theorem 5.1. If n > 2 and W € C>'[0, 1] satisfies (1-11) and (1-12), then there exist universal constants
g0 > 0 and C such that if ¢ < g9 and u € H'(R"; [0, 1]) with fRn V(u) =1, then

CVAC () =y (e) = inf | |®(u) — O (Tyue) "D, (5-1)
x0€R" Jpn

where Ty ug(x) = us(x —xo), x € R", and u, denotes the unique minimizer of ¥ (¢) in Ro.
In order to streamline the exposition of the proof of Theorem 5.1, we introduce the isoperimetric deficit
and asymmetry of u € H'(R"; [0, 1]) with fRn V(u) =1, by setting
8e(u) = ACe(u) — ¥ (¢),
a:(u) = inf do(u, Ty ue).
xoeR”
Here, as in Theorem 2.2,
do(u, v) = / |Du) — D)V forall u,ve H' (R [0, 1]).
With this notation, Theorem 5.1 states the existence of universal constants C and g such that if € < gy, then
C/8:(u) > a,(u) forallue H'®R";[0,1]), | V@) =1. (5-2)
RH

In the following subsections we discuss some key steps of the proof of Theorem 5.1, which is then
presented at the end of this section.

5A. Reduction to the small asymmetry case. Thanks to the volume constraint fRn V(u) =1 and to the
triangular inequality in L/~ we always have o (1) < 2"/"~=D, In particular, in proving (5-2), we can
always assume that §.(#) < &g for a universal constant dg. This is useful because, by the following lemma,
by assuming §. (1) < §y we can take o, (1) as small as needed independent of n and W.
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Lemma 5.2 (¢-uniform qualitative stability). If n > 2 and W € C 2110, 1] satisfies (1-11) and (1-12),
then there exists a universal constant gy with the following property: for every o > 0 there exists § > 0
such that

u e HY(R"; [0, 1]), /V(u):l, e<ey, O:(m)<$é

imply
ag(u) <a.

Proof. We pick gg such that Theorem 2.1 and Corollary 4.2 hold. If the lemma is false for such &g, then
there exists o, > 0 and a sequence {u;}; in H'(R"; [0, 1]) with fR" V(uj) =1 such that

8;(uj) > 07 as j — oo, (5-3)
for some ¢; — &4 € [0, g9] and with &, (u;) > a. By (5-3), there is £; — 0" as j — oo such that
ACe; (uj) < ¢r(e;) +¢; forall j, (5-4)
We now distinguish two cases:
Case 1: ¢, > 0. In this case, by the continuity of ¥ (see Theorem 2.1) and since
ACe. (up) — Y (es) < bj(AC, () — Yr()) + b (g) —W(e), bj= max{i—‘i, i—]}

we can assume that AC,, (u;) — ¥ (e4) < £y for £y as in Step 2 of the proof of Theorem 2.1. We
can thus apply that statement and conclude that, up to translations and up to subsequences, there is
u € H' (R"; [0, 1]) with fRn V(u) =1 such that dg (u;, u) — 0 as j — oo. In particular, u is a minimizer
of ¥ (e,), and therefore, up to a translation, we can assume that u = u,, € Ry. Now, by repeating this
same argument with the minimizers u,; of ¥ (¢;) in Ry in place of u;, we see that

dq>(u€j, ug,,)—0 asj— oo,
so that, thanks to (2-63), we find the contradiction
o < ot (1)) < do(uj, ug) < douj, ue,) + Cdo(ug, up) "/ — 0F
as j — oo.

Case 2: g, = 0. In this case, thanks to (5-4),
2ID[® u)]I(R") < ACq,; (u)) < ¥ (g)) + £ < 2nwl/" + Cej + ¢,

so that {®(u;)}; is asymptotically optimal for the sharp BV-Sobolev inequality. By the concentration-
compactness principle (see, e.g., [Fusco et al. 2007, Theorem A.1]), up to subsequences and up to
translations, ® (u;) — alp, in L"/"~D(R") as j — oo for some a and r such that a”/ =D, r" = 1. The
fact that AC; (v;) is bounded implies that v; — {0, 1} a.e. on R"; therefore, by ®(0) =0 and ®(1) =1, it
must be @ = 1 and R = Ry for w, R = 1. By Theorem 3.1, if Ug; is a the minimizer of ¥ (¢;) in Ry, then

dq;(ugj, IBRO) —0 asj— oo,
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which gives the contradiction

oty < o, () < do(uj, ug) < do(uj, 15, )+ Cdo(ug;, 15, )" "/" — 0F
as j — oo. (I

5B. Proof of Theorem 5.1 in the radial decreasing case. We start by noticing that, thanks to the results
proved in the previous sections, we can quickly prove Theorem 5.1 for functions in Ry.
Theorem 5.3. If n>2and W e C 2110, 1] satisfies (1-11) and (1-12), then there exist universal constants C
and &g such that, for every € < gy, denoting by u. the unique minimizer of W (¢) in Ry, one has

CVée(u) = do(u, ue), (5-5)
whenever u € H'(R"; [0, 1]) N Ro with fRn V) =1
Proof. Arguing by contradiction, we can find ¢; — 0™ and {v;}; in H'(R"; [0, 17) N Ry with

AC,. (vi) — V¥ (g
/V(Uj)=l, aj = () wz(j)—>0 as j — 0o,
n dq>(vj, u j)

where u; = u; and, thanks to Lemma 5.2 and to a; — 0%, we have

lim do (v, uj) =0. (5-6)
J—> 00
Correspondingly we consider the variational problems
vi=v(&,a;,v) = inf{Acgj(w) +ajde(w, vj) 1w € HI(R”; [0, 1D, V(w) = 1}.
RV!

With ay, £ and &g as in Theorem 2.2, we notice that, for j large enough, we have a; € (0, ao), &; < &9, and
ACe; (vj) < ¥ (gj) +ajlo,  do(vj, uj) < Lo. (5-7)

In particular we can apply Theorem 2.2, and deduce the existence of minimizers w; of y;. We claim that,
as j — 0o,
. AC (w)) — Y (g))
lim 5
j=oo  deo(wj, uj)

=0. (5-8)
To show this, we first notice that, by comparing w; to u; we have
ACe; (w)) +aj do(wj, vj) <V (g;) +ajdo(uj, vj),

so that (5-6) gives d¢; (w;) — 0, and then Lemma 5.2 implies

Jlin;o do(wj, u;) =0. 5-9)
Next, comparing w; to v; we find that

ACe; (w)) +a; do(wj, vj) < ACe; (v)),

so that ¥ (¢) < AC¢; (w;) and the definition of a; give
_ AC W) — (&)

do(wj, vj) <

=dq>(vj,uj)2. (5'10)
aj
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By (2-63), (5-6), (5-9), and (5-10) we find
do(w;, u;) — do(vj, uj)| < C max{de(w;, u;), do(v;, u;))}"'" do(w;, v;) =/
= o(dg (v}, uj)**=1/m),
where 2(n — 1)/n > 1 thanks to n > 2. Thus, de(w;, u;) > do(vj,u;)/C for j large enough, and
ACe; (w;) < ACe; (v)) gives
ACe; (wj) — ¥ (e;) - CAng (v)) — ¥ (&)

dq;(ll)j,btj)z o dq;(vj,uj)z

— 0%,
as claimed in (5-8).

We now derive a contradiction to (5-8). By Theorem 2.2, we know that w; € RN Clz()’cl/("_l)(R”),
0 <w; <1onR" and

—2¢7 Aw; = gjw; (1 — w))E; — W(w;) onR", (5-11)
where E; is a continuous radial function on R" with

sup [E;| < C. (5-12)
RV!

We can thus apply Theorem 3.1 to w;. In particular, since both u; and w; obey the resolution formula
(3-8), we have that h; = w; — u; satisfies

Ro

|hj(Ro+&js)| < Ceje /€ forall s > ——. (5-13)
€j
In particular,
Il ey < Ce. /R e,
and we can thus apply Theorem 4.1 to deduce
! 2 1
ACS_/.(wj)—W(sj)ZE/ 8j|th| +—
R~ 81
> — V(h?)| > = hi| 7 , 5-14
_CAH|<,>|_C(An|J| ) (5-14)

where we have also used the BV-Sobolev inequality. By (5-13), and by applying (3-14) to #; in combination
with (A-6), we find that, if A; = B Ro+e; \ B Ro—b;>» then, for every x € R" \ A;, we have

1
| (uj(x)) — @ (wj(x)| < |hj(x)] / VW (x) +thj(x))dt < Clhj(x)|e”WI=Ral/(Cep)
0

and, therefore,

12
/ |q>(uj)_q>(wj)|n/<n—1>§(;/ |hj|n/<n—1)e—||x|—Ro/Cs,-Scﬁ(/ |hj|2"/<"—1>) . (5-15)
R™\A; R™\A; Re

If, instead, x € A;, then by |®(u;) — ®(w;)| < C|h;| and L"(A;) < Ce; we find

1/2
f|<I>(u,~)—d>(wj)|"/<"‘”SC@U |h,|2"/<"—‘>) . (5-16)
Aj R
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By combining (5-14), (5-15) and (5-16), and thanks to &; < 1, n/(n — 1) > 1, and &, (w;) < I, we
conclude that

do(uj, wy) < C /578 (w)"'*"~ < CVs,, (w)),
in contradiction to (5-8). O

Remark. The argument we have just presented provides further indication that (5-5) should not provide
a sharp rate on radial decreasing functions. The sharp stability estimate on small radial perturbations
of u, is clearly given in Theorem 4.1, but it is not clear what form the sharp stability estimate should take
on Ry (or, more generally, on arbitrary radial functions).

5C. Reduction to radial decreasing functions. We now discuss the reduction of (5-2) to the case of
radial decreasing functions. We do this by adapting to our setting the “quantitative symmetrization”
strategy developed in [Fusco et al. 2007; 2008] in the study of Euclidean isoperimetry.

Givenn > 2 and k € {1, ..., n}, we say that u : R" — R is k-symmetric if there exist k mutually
orthogonal hyperplanes such that u is symmetric by reflection through each of these hyperplanes. The
class of n-symmetric functions is particularly convenient when it comes to quantifying sharp inequalities
involving radial decreasing rearrangements. Consider for example the Pélya—Szeg6 inequality

IVul> = | |V, (5-17)

R" R

where u* is the radial decreasing rearrangement of u. A classical result of [Brothers and Ziemer 1988]
shows that equality can hold in (5-17) without u being a translation of #*; in general, the additional
condition that (#*)" < 0 a.e. must be assumed to deduce symmetry from equality in (5-17) (compare with
Step 6 in the proof of Theorem 2.1). However, if u is n-symmetric, then equality in (5-17) automatically
implies that u is radial decreasing. A quantitative version of this statement is proved in [Fusco et al. 2007,
Theorem 2.2] in the BV-case of (5-17), and in [Cianchi et al. 2009, Theorem 3] in the Sobolev case. The
following theorem is an adaptation of those results to our setting.

Theorem 5.4 (reduction from n-symmetric to radial decreasing functions). If n >2and W € C 210, 1]
satisfies (1-11) and (1-12), then there exists a universal constant C with the following property. If u €
H'(R"; [0, 1]) is an n-symmetric function with fR" V(u) =1 and u* is its radial decreasing rearrangement,

then
1/2 1/2
dq;(u,u*)fC(f W(u)) ( |Vul|> — |Vu*|2> ) (5-18)
n R}’l R)‘l

Moreover, for every ¢ > 0 we have

e () < C (o (U*) + (AC, ()8, (u))'/?). (5-19)
Proof. We first claim that

1
do(u, u*) < Ll / LYENONY D W () dt, (5-20)
n— 0

1 n 2 2(n—1)/n
|Vu|2—/ |Vu*|> > ! / (E (E’)> 0 dt, (5-21)
Rn n Cn) Jo \ () —u' ()
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where E, = {u > t}A{u* > t}, u(t) = L"({u > t}), and p/(¢) denotes the absolutely continuous part of
the distributional derivative of the decreasing function p. To prove (5-20) we recall that, by [Cianchi
et al. 2009, Lemma 5], we have

do(u, 1) < —— 1 L"(Fy)s'"=D ds,
n—1Jy
provided Fy = {®(u) > s}A{P(u*) > s}. Since P is strictly increasing, we have Fo () = E;, so that the
change of variables s = ®(¢) gives (5-20). To prove (5-21) we just notice that this is [Cianchi et al. 2009,
equation (3.18)]. Now, by the Holder inequality and (5-20), we find that

1 1 prn m—)/n (_,,n1/2
L'(E
/c"(Es)cl>”<"WW=/ e
0 o m (=pHE ot

< (/I(E"(ES))ZMZ(”1)/”>1/2 (/1 —1 q)2/(n—1)W>1/2.
~\UJo w - 0 pom

By l= fu@" V(u) = V(t)u(t) for every t € (0, 1), we have

1 _ ., 1 1
/—’j/cbz/("—”vvs/ —M’(VM)Z/”WS/ —u'w= [ W,
0o mn 0 0 R

where in the last inequality we have used —u’ d£! < — Dy, integration by parts and Fubini’s theorem to

deduce
u(x)

1 1
—/ Wa'[DM:/ W/(t),u(t)dtzf dx W'(t)dt = W (u).
0 0 Rn 0

RVI
By combining (5-20), (5-21) and these estimates we find (5-18). To prove (5-19), we notice that, by
Jn W) = [ W(*) and [, V(u*) =1, (5-18) gives

do (u, u*) < CAC: (1) *(ACe (u) — AC: (u*))'/? < CACe ()25, w)'/? (5-22)
and then (5-19) follows by the triangular inequality in L™/ =D (R"). O
Next we discuss the reduction from generic functions to n-symmetric ones.

Theorem 5.5 (reduction to n-symmetric functions). If n > 2 and W e C>'[0, 1] satisfies (1-11) and
(1-12), then there exist universal constants gy and 8y with the following property. If u € H (R"; [0, 1),
./[R" V(u) =1and 8,(u) < 8y for some & < gy, then there exists v e H' (R"; [0, 1]) with fRn V(v) =1 such
that v is n-symmetric and

oe(u) < Cap(v), 3:(v) < Coe(u). (5-23)

Proof. Without loss of generality we can assume that 8. («) < §¢ for a universal constant §p. By Lemma 5.2
we can choose &g so that o (1) < g for g a universal constant of our choice. We divide the proof into a
few steps.

Step 1: We prove that, if u is k-symmetric, {Hi}f.‘: | are the mutually orthogonal hyperplanes of symmetry
of u,and J = ﬂle H;, then
ag(u; J) = ing do(u, Trug) < C(n)og (u). (5-24)
Xe
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In other words, in computing the asymmetry of u in the proof of an estimate like (5-2), we can compare u
with a translation of u, with maximum on J.

Indeed, let xo € R" be such that a, (1) = do (u, Ty u.). Without loss of generality, we can assume
xo & J. In particular, if yo denotes the reflection of x¢ with respect to J, then yg # xo and

do(u, Tyyue) = do(u, Teyue) = ap(u), (5-25)

that is, also yg is an optimal center for computing o, (u). Let zo = (xo + yo)/2, so that zg € J, let
v = (x0 — ¥0)/|xo — yo| (which is well-defined by xq # yo), and let H be the open half-space orthogonal
to v, containing x¢, and such that zo € 0H. By T, 4/ ug(x) = ue(x —z0 — tv), we have

X —zp0—1tv

%T10+tvu€(x) =—v- u,(Jx —xo—1tv]) >0 forallx e H,r <0,

|x —z0— V|
since u,, < 0, and since the fact that v points inside H gives
(z—z0)-v>0 forallzeH,

z=x—tveH forallxe H, t <O.
We thus find that, if # < 0,

d -
o / | (Tytt) = @ (T gpe) "7V
H n
n—1

- d
/ D) = (T |0 W (Tegputte) - Teganite > 0,
H

so that

/H 1@ (Tyyu) — D(Tyoue) /"D = / (D (Tagtt) = DTyttt )@l

< f | D (Tygtt) — D (i vite) " Vg
H

< / | D (Tgut) = D (Tygue) "1, (5-26)
H
Now, since both u and T, u, are symmetric by reflection with respect to d H, we have
D () = @(Tyue) |70 =2 f | D (u) — D (Typue) [0 (5-27)
R H

therefore, by (5-25), (5-26) and (5-27) we conclude that

ae(u; J) < do(u, Tyyue) =2 / | (u) — (Tyyue)|™
H
< c<n>( / | (u) — @ (Toue) "~V + f |D(Tue) — <1><Tzoua>|"/<"—“)
H H

=C(n) (ag(u)+/ |®(Tyyue) — CD(TxOug)l”/(”_‘))
H

=< C(n)(otg(u) +d®(Ty0u8’ Txoué‘))

< Cn)(ae(u) +do(Tyyue, u) +do(u, Tyyue)) = C(n)og(u),
that is, (5-24).
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Step 2: Let H; and H, be two orthogonal hyperplanes through the origin, let H l.i be the half-spaces
defined by H;, and let xii € d0H;. Fori =1, 2, consider the functions

Ulue, Hy, x5 1= 1+ Torste + 1 - To-uie
obtained by “gluing” the restriction of u, to Hl.Jr translated by x1+ to the restriction of u, to H,;” translated
by x]Jr (notice that translating by xijE brings HZ.Jr and H; into themselves). Setting for brevity

US,i = U[”S? Hl’ xl_'—’ xl_]v

we claim that, for every a € (0, 1) there is « = «(a, n, W) > 0 such that if

max{|x” — x|, [y — x5 |, [x” — x|} <k, (5-28)
then, for every ¢ < &,

8
max{do (Trtte, Ty-ue), do(Toptts, Tyrup)) < = do(Ue1, Us2). (5-29)

Indeed, since H; and H, are hyperplanes through the origin and u. € Rg, we have

1 1
/I:I:t V(Txitu"?) = 5, /I:I; V(Txg:l/ts) = E

1

It is in general not true that, say, Hfr N H;r has measure i for either V(Txliug) dx or V(Txliug) dx.
However, provided we choose « sufficiently small, thanks to Theorem 3.1, we can definitely ensure that,
for every ¢ < gp and B, y € {+, —}, we have

- 1—
f |(I)(Txﬂl/tg) — q)(Tx;’Me)I"/(" D> Tad¢(Txﬂu€’ szyug)‘
HnH] ! i
Correspondingly,

d(D(U&‘,lv Us,2) > / |®(Ua,1) — Q)(U&Z)Vl/(n—l)
H/nH]

_ 1—
= / |CD(Txﬁu5) _ CD(Tx;us)ln/(n 1) Z Tad,:D(TxﬁMg, Tx%’ug),
HPnH] ' i

and thus
do(Tystte, Tyoute) "™/ < do(Tortte, Topue) ™" 4 dop(Tsute, Tomue) "D/

’

8 (n=1)/n
=< (1_ d@(Ue,l, Us,Z))
—a

as claimed.

Step 3: Givenu € H L(R"; [0, 1]) with fR,, V(1) = 1, we now consider a hyperplane H such that, if H*
and H~ denote the two open half-spaces defined by H, then

l
‘/ = [/ = —.
/[-1+ (u) / - (u) 2

Denoting by pp the reflection with respect to H, we let

ut =1gru+lyg-(wopy), u =lg-u+lg+(wopy), (5-30)
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and notice that u* € H'(R"; [0, 1]), with
2AC, () = AC.(u™) + AC.(u™), / Vu™) :/ Viu)=1. (5-31)

We claim that

max{8e(uh), 8 (u™)} <28 (),  e(u) < C(n), {@e (™) + (™) +do(Tyrue, Te-ue)},  (5-32)
provided T +u, = and Ty-u, = T,-u, are such that x*, x~ € H, with

O‘s(“Jr; H) = d<1>(”+, Tivug), oc(u s H)=dou, Ti-ug).
The first inequality in (5-32) is obvious from (5-31). To prove the second one we notice that
ag(u) <do(u, Tyru,)

= / |(D(Lt) — CD(TX_,_MENH/(Hfl) +f |CD(M) _ @(Tx+u€)|n/(n71)
H+

= / |CD(1,¢+) — ('I)(TX+M8)|H/(H71) +f | D) — @(Tx+us)|n/(n71)
H+

= C(”){dQ(”+’ Torug) +do(u™, Ti-ug) +do(T-ug, Terug)},

that is, the second inequality in (5-32).
With these preliminary considerations in place, we now prove that if u € H'(R"; [0, 1]) with
fRn V(u) = 1, if H; and H; are orthogonal hyperplanes such that the corresponding half-spaces Hl.jE

1
V) ==,
/H =7

and if uf as in (5-30) starting from H;, then there is at least one v € {uf, uy, u;r, u, } such that (5-23)

satisfy

holds. Given that 8. (v) < 28, (u) for every v € {uf, up, u;“, u, }, we need to show that
there exists v € {uT, ug, u;r, u, } such that ag () < Co, (v). (5-33)
Denoting by xijE the points in H; such that
e (uis Hy) = do(u;, Tyue),
we notice that (5-33) follows if we can show that, provided « is small enough,

either dq;(Txrug, Tx]—ug) < M{ag(uf“; Hy) +a.(u; Hy)} (5-34)
or d@(Tx;us, Tx;ue) = M{as(ug—; H) +a; (”2_; H)} (5-35)

for a constant M (as it turns out, any M > 16 works). Indeed, if, for example, (5-34) holds, then (5-24)
and (5-32) with H = H, give

e () < Cloe u) +ae ) + el H) +a:(uy; Hy)} < Cloe(ul) +ae(u))},

and then either Co, (u]L) > o, (u) or Cayg (u;r) > o (u); in particular, (5-33) holds. We now want to prove
that either (5-34) or (5-35) holds. We argue by contradiction. Recalling that ¢, (u?[; H;)=do (u?[, T=u.),
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let us thus assume that both
dq>(Tx1+Mg, Txl’MS) > M{dcb(u-li_, TXTMS) +do (ul_, Txfue)}, (5'36)
d(b(Tx;ua’ Tx; ug) > M{d<I>(u-2i_9 Txgrus) +do (uz_a Tx;ue)} (5-37)

hold for M to be determined. In particular, if U, ;, i = 1, 2, are defined as in Step 2, and o is small
enough that (5-28) holds, then, by (5-29), we have

maX{d<1>(Tx]+ug, Txl—ug), d(I)(Tx;'ug, sz—ué‘)}(n—l)/n

8 (n=1)/n I (n—1)/n 2 1)/
n— n
< (1_add>(Ug,1,Us,2)> < (1_a> ;dd)(Us,i»”)

8 (n—1)/n 2 5 (n—1)/n
— _ n/(n—1)
—(1_0) §:< > fHﬂ|d><Txiﬂu8) o(uf) )
i=1 \p=+,— "

8 (n=1)/n 2
-1
<(diims) L Tou

i=1

16 (n=1)/n
< (m> max{de (T,+ue, To-tte), do(Tyrue, Tomue) J" =0/,

We fix M > 16 and apply the above with a € (0, 1) such that M (1 —a) > 16. We find that either xfr =x;

(a contradiction to (5-36)) or x;“ = x, (a contradiction to (5-37)).

Step 4: We now pick a family of n mutually orthogonal hyperplanes {H;};_, such that, denoting by HijE
the corresponding half-spaces, we have

/ V(u):l foralli=1,...,n.

H* 2

Considering the hyperplanes in pairs and arguing inductively on Step 3, up to a relabeling we reduce to a
situation where there exists a function v, symmetric by reflection with respect to each H;, i =1,...,n—1,
and such that

() < Cap(v),  6:(v) < 2" 8. (v), / V)= 1.
Hf 2
We can thus consider the functions v* obtained by reflecting v with respect to H, as in Step 3. By (5-32)
we have
max{8e(vF), 8 (V7)) <28:(v),  @e(u) < C(){ae (™) + 0 (V) +do(Tr+tte, Te-ute)},
where x* and x~ are optimal centers for o, (vT; (/_; H;) and o (v™; (/_; H;). However, (\/_, H; is
a point; therefore x* = x~ and we have actually proved
@e(u) < C(m){ae (™) + e (v7)).

Either vt or v~ is an n-symmetric function with the required properties. (Il
5D. Proof of Theorem 5.1. We finally prove Theorem 5.1. By Theorem 5.5 we can directly assume

that u is n-symmetric. Hence, by Theorem 5.4, we can directly assume that u € Rg. For u € Ry, the
conclusion follows from Theorem 5.3. Theorem 5.1 is proved.
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6. Proof of the Alexandrov-type theorem

In this section we complete the proof of Theorem 1.1, including in particular proof of the Alexandrov-type
result of part (iv) of the statement. We begin by proving some of the properties of W (o, m) stated in
Theorem 1.1(ii) and not yet discussed. We then review, in Section 6B, some classical uniqueness and
symmetry results for semilinear PDEs in relation to our setting. Finally, in Section 6C we review how the
various results of the paper combine into Theorem 1.1.

6A. Some properties of ¥ (o, m). We prove here the properties of W (o, m) stated in Theorem 1.1(ii).
As explained in the Introduction, these properties will be crucial in proving Theorem 1.1(iv).

Theorem 6.1. If n > 2 and W € C*>'[0, 1] satisfies (1-11) and (1-12), then there exists a universal
constant gy such that, setting

X(go) = {(o,m):0 <o < egym'/"},
the following hold:

(1) For every o > 0, W(o, -) is concave on (0, 00); it is strictly concave on (0, 00) in n > 3 and on
((0/e0)", 00) if n =2.

(2) A(o, m) is continuous on X (gg) and

Im'/" Ao, m) —2(n — o™ < c% for all (o, m) € X(go). (6-1)
m n
) Y(o, ) is differentiable with
AW
a—(a, m) = A(o,m) forall (o,m) € X(&p). (6-2)
m

In particular, for every o >0

W (o, -) is strictly increasing on ((o/&p)", 00),

A(o, -) is strictly decreasing ((o/&g)", 00).
(4) For everym > 0, W(-, m) is increasing on (0, ggm'/™).

Proof. We recall for convenience the scaling formulas
1
flomy =1 | fw, (6-3)
R R
f IV () |? = 1/~ / |Vul?,
R R

1
AC.(pu) = et®M=1 | \VulP+— | W) =
R~ et Jmpn

qj(()., m) — m("—l)/”w(L)’

ml/n

Acetl/n (u)

t(ﬂ*l)/n ) (6_4)

where p;u(x) = u(t'/"x) for x € R” and ¢ > 0, and the divide the argument in a few steps.
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Step 1: We prove the concavity of W(o, -). Given my > m; > 0, t € (0, 1), o > 0, and a minimizing
sequence {w;}; for W(o, tm + (1 —1)my), we set

tmi+ (1 —t)ymy tmy+ (1 —t)my
o) = , Q= )
mq my
so that /oy + (1 —t)/ay = 1. Since po, w; and pg,w; are competitors for W(o, m1) and W (o, my)

respectively, by the concavity of ¢ > t"=2/7 (strict if n > 3), we see that

tW(o,m)+(1-1)¥ (o, my) <t ACqy (po, wj)+(1—1)ACs (par w)) (6-5)

t W (w; 1—¢ W (w:
:—(f Gaf/n|ij|2+M)+_(f (I(xg/n|ij|2+ (wj))
o1 n o o " P

1 (n—2)/n 1 (n—2)/n
=ACa(wj)+(t<—> +(1—z)(—) —1)0/ IVw; 2 (6-6)
o] (%] R

< AC, (w)). (6-7)

Letting j — oo we deduce the concavity of W (o, -) on (0, 0o) (strict, if n > 3). If n =2 and m| > (0 /¢9)",
then by Theorem 2.1 we can replace the minimizing sequence {w;}; in the above argument with a
minimizer w of W(o, t m; 4+ (1 —t) my). Since w solves the Euler—Lagrange equation (1-9), there cannot
be a t # 1 such that p,w solves (1-9) with the same o and some ¢ € R. Thus, p,, w cannot be a minimizer
of W(o, m;), and therefore we have a strict inequality in (6-5), and no need to take a limit in (6-7) (since
ACy(w) =¥ (o, tm; + (1 —1)my)).

Step 2: By Theorem 2.1 and Corollary 4.2 for every m > 0 and o < ggm /"

there exists a unique u, , € Ro
such that u, ,, is a minimizer of W (o, m) and every other minimizer of W (o, m) is a translation of u, .
Moreover, there is A (o, m) > 0 such that

—202 Aty =0 Ao, m)V' (tgm) — W (gm) on R

Hence, if u. denotes as usual the unique minimizer of i (¢) in Ry, then by (6-3) and (6-4) we find

o
Ugm = Pl/m Ue, 8:W,
and thus
A(e) o
A(O', m)=m, 8=m. (6-8)
By combining (6-8) with Corollary 4.2 and with (4-7) we thus find that A is continuous on X (gg), with
1/n
2(n — Dw, o
‘A(o, m) — i/ < sz/n. (6-9)

Step 3: We prove statement (iii). For (o, m) € X (gg), we set

a(t) = ACs (1 +Dutg,m), m(t)Zf V(I +Dugm).
[Rn
Then

m/(O) = 1 / q)(ua,m)l/(nil)\/ W(ua,m)ua,m >0
Rﬂ

n—1
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and thus there exist ¢, > 0 and an open interval I of m such that m is strictly increasing from (—#,, t,)
to I with m(0) = m. From W (o, m(t)) < a(t) for every |t| < t, and from that fact that a is differentiable
on (—t,, t,) we deduce that, if m is such that W (o, -) is differentiable at m, then

a/(O) . fRn 20 vl't(r,m : v”a,m + (I/G)W/(“a,m)u(r,m
m'(0) S V' (o) thm

Now, by statement (i), W(o, -) is differentiable a.e. on ((o/&g)", 00), as well as absolutely continuous,

= A(o, m).

ow
_(O’ m) =
om

while A (o, -) is continuous on ((o/&g)", 00): by the fundamental theorem of calculus we thus conclude
that (0W/0m)(o, - ) exists for every m > (o /gp)" and agrees with A (o, m).

Step 4: We prove statement (iv). Recalling that

(o, m) = m<"1>/"¢<%> for all o, m > 0, (6-10)
ml/n

we see that, since W (o, - ) is differentiable on ((o/€g)", 00), we know 1 is differentiable on (0, gg). Since
Y is differentiable on (0, &g, by (6-10) we see that W( -, m) is differentiable on (0, gom'/™) for every

m > 0, with
ov

o (n=2)/n g/ o
oo 4 (ml/")'

Statement (iv) will thus follow by proving that ¥' > 0 on (0, &y). To derive a useful formula for ¥ we
differentiate (6-10) in m and use (6-2) and A(c/m'/") =m'/" A (o, m) to find that

n—1 1 o 1 ¢ ,( o _)»(o/ml/”)
n ml/nw ml/n _;mZ/nw mi/n ) = gln

eV (&)= -y —nie) =¢ | V=L [ wa.
R & R

In particular, by (4-5),

By (3-8), if we set n.(s) = n(s — 7.) and change variables according to |x| = Ry + &s we find
o
') = [ LD W f)Ro+ s s (611
—R()/S
Multiplying by u, and then integrating on (r, oo) the Euler-Lagrange equation

_282{ug +(n— 1)%} = eA(e)V' (us) — W'(uy),

we obtain as usual
00 2
e2(uL)* —2(n— e f (u p) dp = W(ue) —er(e)V (ue)

for every r > 0; by the change of variables r = Ry + s we thus find

00 2
L+ £)? —2(n — 1)[ M dt = Wte + f2) = M)V (ns + )
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for every s € (—Rp/¢e, 00). We combine this identity into (6-11) to find

oo ) I "2
sw’(s):fR/ {2(11—1)8/ %dr—k(s)eV(ng+f8)}(R0+es)”_1ds. (6-12)

We now notice that, by (A-16), (A-18), and (3-9) (that is, by the exponential decay of 1, n, n” and by
| fo(s)| < Cee™8I/CE for s > —Ry/¢), we have

e8] ’ N2 (/)2 [es] Iy
f (e + £ — () dtzZ/ nefe .

Ro+ et Ro+ et
/ o0 /7 /
_ oM@ fe(s) 2/ Foisy( =T dt > —Cee /€
Ro+es s Ro+et

so that (6-12) gives

/ /00 { /OO (né)z dt } n—1 2
eY'(e) > 2(n— De ——— —X)eV(ne+ fo) { (Ro+es)" " ds —Ce~. (6-13)

—Ro/e Ry + et
By (4-7), (3-9), Ry = w;, /" and (6-13), we have
¥/ (e) = 2(n — Dawl/" / {f (nl)*dt — V(ns)}(Ro +es5)"ds — Ce. (6-14)
—Rop/e U

Since [°(n,)* = ®(n:(s)) thanks to 1, = —/W(n,) = —®'(n,), by (6-14) we have
¥'(€) = 2(n — Do," fR (©(e) — V(ne)) (Ro +£5)" ' ds — Ce
>2(n — Do,/ "Ry~ /R (@(n) = V(1) ds — Ce.
Since ® takes values in (0, 1), V = ®"/"~D < & on (0, 1), and

/R (D) — V(n)) ds

is a universal constant. In particular, ¥'(¢) > 1/C for every ¢ < &. ]

6B. General criteria for radial symmetry and uniqueness. In this brief section we exploit two classical
results from [Gidas et al. 1981; Peletier and Serrin 1983] to deduce a symmetry and uniqueness result for
the kind of semilinear PDE arising as the Euler—Lagrange equation of ¥ (o, m).

Theorem 6.2. Letn > 2, let W € C*'[0, 1] satisfy (1-11) and (1-12), and consider £ € R and o > 0.
M Ifuce C%(R"; [0, 1]) is a nonzero solution to

—20%Au=0tV'u)—W'@u) onR", (6-15)
withu(x) — 0 as |x| — o0, then 0 <u <1 onR" and u € Ry,

(2) There exists a universal constant vy such that, if 0 < o £ < vy, then, modulo translation, (6-15) has a
unique solution among functions u € R, with u(x) - 0 as |x| > coand 0 <u < 1 on R".
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Remark. Notice that the smallness of o ¢ is required only for proving statement (ii).

Proof. Step 1: We prove statement (i). We intend to apply the following particular case of [Gidas et al.
1981, Theorem 2]: if n > 2, u € C2(R™; [0, 1), u>00nR", u(x) > 0as |x| > 0o, —Au+mu=gu)
onR", withm >0and g € C0, 1] with gt)= O(t1+°‘) ast — 07 for some a > 0, then, up to translations,
u €Rg.
To this end we reformulate (6-15) as
—Au+mu=gm) onR" (6-16)
where m = W”(0)/(26%) > 0 and
LV (t) W0y — W)

g(1) = e T 57 ,
As noticed in Section A3, V € C%7[0, 1] for some y € (0, 1], while W € C?*![0, 1]: in particular
g €C'[0,1]. By W € C>![0, 1] with W’(0) = 0 we have |W'(t) — W”(0)t| < Ct?, while (A-11) states
that |V'(r)| < Ct'*% for ¢ € [0, 1] for some o > 0, so that

t €10, 1].

lg(®)| <C(n, W, ¢, a)tH" for all ¢ € [0, 1]. (6-17)

To check that u > 0 on R”, we notice that, by (6-17), for every m’ € (0, m), we can find #y > 0 such that
(6-16) implies that —Au +m’ u > 0 on the open set {u < to}. Since u > 0 and u is nonzero, we conclude
by the strong maximum principle that # > 0 on {u# < #}, and thus, on R”. We are thus in the position to
apply the stated particular case of [Gidas et al. 1981, Theorem 2] and conclude that u € R.

We prove that u < 1 on R". Let us set

LV (t)y W)

0= " 207

and notice that (6-15) is equivalent to —Au = f(u) on R”". Since f is a Lipschitz function on [0, 1] with
f(1) =0, we can find ¢ > 0 such that f(¢) + ct is increasing on [0, 1], and rewrite —Au = f(u) as

tel0,1], (6-18)

—A(l—u)+c(l—u) = (f@) +c)]'=) > 0.

We thus conclude that v = 1 — u is nonnegative on R" and such that —Av + cv > 0. Since v is nonzero
(thanks to u(x) — 0 as |x| — 00), by the strong maximum principle we conclude that v > 0 on R”, i.e.,
u<1onR"

Step 2: We prove statement (ii). We intend to use [Peletier and Serrin 1983, Theorem 2]: if
(a) f locally Lipschitz on (0, 00),
(b) f(t)/t > —mast— 0" where m > 0,
(c) setting F(t) = fot f(s)ds, there exists § > 0 such that F(§) > 0,

(d) setting B =inf{t > 0: F(t) > 0} (so that by (b) and (c), B € (0, 8)), the functiont — f(t)/(t — B) is
decreasing on (8, o0) N{f > 0},

then there is at most one u € C*(R") NRy, with u > 0 on R"* and u(x) — 0 as |x| — oo, solving
—Au = f(u) on R".
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Since, by statement (i), solutions to (6-15) satisfy 0 < u# < 1 on R", in checking that f as in (6-18)
satisfies the above assumptions it is only the behavior of f on (0, 1) (and not on (0, 0co)) that matters.
Evidently (a) holds, since f € C'*[0, 1] for some « € (0, 1). Assumption (b) holds with m = W"(0)/ (202).
Property (c) holds (with § € (0, 1)) since

Lve) W@

20_ - 20_2 5 € [O’ 1]7

F(t) =/ F(s)ds =
0

and F(1) =V (1)/20) =¢/20 > 0by £ > 0 and W (1) = 0. We finally prove (d). Notice that, clearly,
B € (0, 1) and, by the continuity of F, F(B) =0, so that, taking (A-3) and (A-6) into account, and using
ol <vypand V(1) =1,

min{g%, (1 — B)*}

c <W(B)=0otV(B) <. (6-19)
If vg < 1, then by (A-6) and (A-11) we find
2
202F (1) =alV ()= W) < V()= W) < Ct?/ =D — c< 0 forallt e (0,8). (6-20)

By (6-20) it must be 8 > §g. Hence, by (6-19), if vy is sufficiently small, then (1 — B)* < Cwy. Up to
further decreasing the value of vy, we can finally get that (8, 1) C (1 — dg, 1), with &g as in Section A3.
We are now going to check property (d) by showing that

@ —p) < f(r) forallre(B,1) (6-21)

(recall that 0 < u < 1 on R”, so we can use a version of [Peletier and Serrin 1983, Theorem 2] localized
to (0, 1)). Using the explicit formula for f, (6-21) is equivalent to

alV' ()t —B) <otV'e)—W @)+ W'@t)t—pB) forallre (B, 1). (6-22)

By (A-6), we have W (t)(t —B) >0 on (B8, 1) C (1 =38, 1), and since V' > 0 on [0, 1], (6-22) is implied
by checking that, for every r € (8, 1),

) by n 40) n ' Vo= w @)
W) =0tV (t)—UE{ T (T 1)+n_1(f0 «/W) ZJW}'

In turn, since W <0 on (1 —6p, 1) and o £ < vy < 1, it is actually enough to check that
W)

—2)/(n—1

(fot \/W)(n )/ (n—1)

But, up to further decreasing the value of 8, this is obvious: indeed (A-6) gives —W'(¢r) > (1 —¢)/C and
W(t) < C(1 —1)* forevery t € (1 — &, 1). O

for all € (1 — &, 1).

W)z —
(n— 1)

6C. Proof of Theorem 1.1. Theorem 2.1, Corollary 4.2, Theorem 6.1 and a scaling argument show the
validity of statements (i) and (ii), while statement (iii) follows similarly by scaling and by Theorem 5.1.
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To prove the Alexandrov-type theorem, that is, statement (iv)5 we consider u € C 2([Ri”; [0, 1]), with
u(x) — 0 as |x| = oo, and solving

—20%Au=00V'(u)— W'(u) onR", (6-23)

for some o and ¢ with 0 < o€ < vy. By Theorem 6.2(i), u € R}, and by Theorem 6.2, provided vy is
small enough, we know that there is at most one radial solution to (6-23). Since we know that u, ,, is a
radial solution of (6-23) with £ = A (o, m), we are left to prove that for every £ € (0, vg/o’) there exists a
unique m € ((o/&p)", 00) such that A(o, m) = ¢.

To this end, we first notice that, by (4-7) and by scaling, for every o > 0 we have

1 o .
A(a,m):mk Y —0 as m — +00.
In particular, since, by Theorem 6.1, A(o, -) is continuous and strictly decreasing on ((o/&g)", 00), we
o\" o)’
Alo,m):m>|— =0, Alo, | — .
&0 &0

Now, setting m = (0/gg)" in (6-1), that is, in

have

m'/" Ao, m) —2(n — Deol/"| < C——,
ml/n
we find that ;
o 1/n 2
aA(cr, (—) ) —2(n—Dw,"eo| < Cegy,
&0

which implies

n 1 1/n
A(a, (5> ) S (= Don"e0 e =0,

&) o

provided &g is small enough. Up to further decreasing the value of vy so to have vy < (n — 1) a),ll/ " g0, We

Vo o'
<0, —) C {A(o*, m):m > <—) },
o €0

and that for each £ € (0, vg/0) there is a unique m > (o/&p)" such that £ = A (o, m), as claimed. This

have proved that

completes the proof of Theorem 1.1.

Appendix: Frequently used auxiliary facts

Al. Scaling identities. If u € H'(R"; [0, 00)), t > 0, we set

pru(x) =u@/"x), xeR",
and notice that
1 _
Flpay=— | fa. [ 1V =1®""1 ] |vul?, (A-1)
Rﬂ R)l Rn Rﬂ

5Notice that we are using £ in (6-23) rather than X (as done in (1-22)) to denote the Lagrange multiplier of u. This is meant to
avoid confusion with the function A(e) = (W /dm)(e, 1) appearing in the argument.
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1 Acgtl/n(u)

_ p2/m—1 2 _
AC,(p;u) = et |Vul|”+ W) = —Dn

— (A-2)
R» et R~

whenever f : R — R is continuous.

A2. Concentration-compactness principle. Denoting by B, (x) the ball of center x and radius r in R", and
setting B, = B,(0) when x = 0, we provide a reference statement for Lions’ concentration-compactness
criterion, which is repeatedly used in our arguments: if {i;}; is a sequence of probability measures
in R", then, up to extracting subsequences and composing each (; with a translation, one of the following
mutually excluding possibilities holds:

Compactness case: for every T > 0 there exists R > 0 such that

lnf[,l,](BR) >1—r1.
J

Vanishing case: for every R > 0,
lim sup p;(Br(x)) =0.

]%OOxERn

Dichotomy case: there exists a € (0, 1) such that for every T > 0 one can find S > 0 with §; — 00 such that

suplar — 2 (Bs)| < 7. sup|(1—a) — ;R\ Bs))| <.
J J

Notice that the formulation of the dichotomy case used here is a bit more descriptive than the original one
presented in [Lions 1984, Lemma I]. Its validity is inferred by a quick inspection of the proof presented
in the cited reference.

A3. Estimates for W, ® and V. Throughout the paper we work with a double-well potential W e
C?110, 1] satisfying (1-11) and (1-12), that is,

W) =W({1)=0, W=>0o0n(0,1), W'0),w'd) >0, (A-3)
1

f VW =1. (A-4)
0

Frequently used properties of W are the validity, for a universal constant C, of the expansion

PRY)
W(b) — W(a) — W' (a)(b—a) — W”(a)(b%‘ <Clb—al® foralla,bel0,1], (A-5)
and the existence of a universal constant 5y < % such that
1 w W
—<—,—, W<cC on (0, 8],
C~ 1t (A-6)
1 w -W

< ,— W' <C 1—6p, 1).
c UiV =¢ onli=d b

We can use (A-6) to quantify the behaviors near the wells of ® and, crucially, of V. We first notice that,
by (A-3), ® € C2 (0, 1), with

loc
W/ W// (W/)z
' =vW, "= , ®'=—+ ——- on(0,1).
2JW 2JW  AW3/2
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By (A-6) and (A-4) we thus see that @ satisfies

1 o 9
<, —,d'<C on (0, 8],
C 2 ¢t (A7)
L e P <C [1—350,1)
- -1 0 1 . = on - ) )
C- -0 1-1 0
from which we easily deduce
(b —a)?
|®(h) —DP(a)| > c forall a, b € [0, 1]. (A-8)
Moreover, by exploiting (A-7) and setting for brevity a = W”(0), we see that as t — 0
" — 2W'W — (W) _ 2a+ 0())(a(1?/2) + O(t?)) — (at + O(t%))* _ o)
4W3/2 4(a(t?/2) +O(13))3/? 4a3/2t3 + o(r3)’
and a similar computation holds for t — 17, so that
|®"] <C on (0,38)U (1 -, 1). (A-9)

By (A-7) and (A-9) we see that ® € C>'[0, 1] with a universal estimate on its C>![0, 1]-norm: in
particular,

N2
®(b) — d(a) — ' (a)(b—a) — Q//(a)%‘ <Clb—al® foralla,be(0,1). (A-10)
Since V = &' fora = 1/(n — 1) € (0, 1] (recall that n > 2) and & (¢) = 0 if and only if =0, we easily
see that V € C}, (0, 1), with
(cD/)Z (q)/)3 cb/lcbl/l
Vi=(1+a)®* @, V= +a>{“m+¢“¢” o V= C@O g+ g T OIPT

By (A-10), and keeping track of the sign of ®” and of the fact that negative powers of ®(¢) are large
only near ¢t = 0, but are bounded near ¢ = 1, we find that
1 14 Vv "
ESM’m’tESC’ V7 =
1 1-v v
<

—,—<
C (1=-021—t"—

5z on (0.5],
(A-11)

C, Vv =c on [1—3p, 1).

In particular, V € czrmio, 1], y(n) =min{l, 2/(n — 1)} € (0, 1], with second-order Taylor expansions
of the form

Vb)—V(a)—V'(a)b—a)— v”(a)@ <Clb—al*"™ foralla,be(0,1). (A-12)

We finally notice that we can find a universal constant C such that

t2
C <W@), V@) <Cr*, V(E)<CW() forallte (0,1—8) (A-13)
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(as it is easily deduced from the bounds on W and V in (A-6) and (A-11) and from the fact that W > 0
on (0, 1)), and that we can also find C so that

1
V() > v for all r € (8o, 1). (A-14)

Ad. Estimates for the optimal transition profile . A crucial object in the analysis of the Allen—Cahn
energy is of course the optimal transition profile 1, defined by the first-order ODE

{n’ =—VW(m) onR,
n(0) = 3,
which can be seen to satisfy (see, e.g., [Leoni and Murray 2016]) n € C*>'(R), n” < 0 on R (and

(A-15)

—C <n' <—1/C for|s| < 1), n(—o0) = 1, and n(+00) = 0, with the exponential decay properties
1—n(s) <Ce’C foralls <0, n(s) < Ce™/¢ foralls >0, (A-16)

for a universal constant C. Similarly, by combining (A-16) with (A-15), with the second-order ODE
satisfied by 1, namely,
2" =W'(n) onR, (A-17)

and with (A-6) we see that also the first and second derivatives of n decay exponentially
'), ()] < Ce™MV/C forall s e R. (A-18)
Combining again (A-16) and (A-6) we also see that
SERM 1(—oo,00(s) = V(n(s — 1))

belongs to L' (R) for every T € R, with

TeERH / (L(—o0,0(8) = V(n(s — 1)) ds

increasing in t and converging to FFo0 as T — F00. In particular, there is a unique universal constant 7
such that

f (Lio0.0)(s) — V(s — 1)) ds = 0. (A-19)

The constant Ty appears in the computation of the first-order expansion of ¥ (g) as ¢ — 0T and can be
characterized, equivalently, to be

0 =/ n'V'(n)sds. (A-20)
R
Indeed, (A-19) gives

0= / (1 o0/ ($) — V(n(s — 0))) ds
0 00
=/ (1—V(77(S—To)))ds—/0 Vns — 7)) ds

0 S—T0 [ee) 00
=—/ Mfi wmwmmm+ﬁ M/ n' @V (n())dr.
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Both integrands are nonnegative; therefore by Fubini’s theorem

—70 0 oo 410
02—/ dl/ ﬂ/(f)V/(n(f))dS—f dt/o n' (V' (n(1)) ds
—00 t+10 —10

o0

=/_ (l+f0)77/(t)V/(77(l))dl+/ (t+ )0 )V (n()) dt,

o0 -1

that is,
/ n'V'(mntdt = —TO/ n'V'n) =Vt =1,
R R

as claimed.
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