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Abstract

The rapid growth of cities worldwide is a phenomenon that has generated numerous
debates about the effects it could have on the environment and society. An issue that has
not been well addressed in the literature is the relationship between expected urban growth
and risks to natural hazards. The relationship is an important aspect for planning because
urban expansion is uncertain. In this sense, land change simulation models can be use-
ful tools to address this uncertainty, because simulation models can produce growth sce-
narios, which allow anticipation of exposure to natural threats. This article compares two
land change simulation models: the CA_Markov model in the Selva version of IDRISI and
the DINAMICA EGO model. We apply both models to extrapolate areas of future urban
gain in the coastal cities of Antofagasta and Mejillones, where there is high exposure to
tsunamis, mudslides, and steep slopes. The models can extrapolate differently in terms of
both quantity and spatial allocation of urban gain depending on the parameter settings.
CA_Markov projected urban growth adjacent to existing urban patches, while best fits to
Markov equation, and the urban form was achieved with DINAMICA EGO, according to
our parameter settings. We conclude that if modelers understand the models’ behaviors,
then applying these spatially explicit models to natural risks opens great prospects for
urban planning and risk management, especially in countries highly exposed to dangerous
natural events, such as in the case of Chile.
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Natural Hazards

1 Introduction

There is unprecedented growth in urban areas worldwide. In 2008, for the first time in his-
tory, more than 50% of the population was living in urban areas while urban population
is expected to rise steadily over time (United Nations 2019). The United Nations (2019)
estimates that by the year 2050, this percentage will reach 86% in Latin America. In Chile,
88% of the population resides in urban areas, and the northern regions of the country
exceed 91% (INE 2018).

One of the main problems with this accelerated urban growth is that it has not been
well planned or has been completed in a reactive and partial way. In many cases, slow
approval of urban planning tools makes it impossible to anticipate rapid real-estate devel-
opment dynamics or the occurrence of spontaneous and irregular settlements, and informal
housing. This creates a serious problem when the city expands in a fragmented and sprawl-
ing form outside the official city limits, especially over natural hazard zones, increasing
the risk of natural disasters. This causes an increase in exposure of the population to risk.
In the particular case of developing countries, this can increase vulnerability of the poor-
est population and decrease the ability of the precarious urban infrastructure to cope with
extreme events (Bozzolan et al. 2020; Depicker et al. 2021; Dille et al. 2022; Raju et al.
2022; Ozturk et al. 2022; Veerbeek and Denekew 2011).

Various authors (Trentin et al. 2010; National Research Council 2014; Henriquez 2014)
mention that this accelerated growth of cities requires new analytical methodologies that
can better manage the planning process. Some of the new methodologies are land change
simulation models. The ability to understand, characterize, measure, and simulate the
dynamics of urban land change provides great benefits for decision makers (Agarwal et al.
2002; National Research Council 2014). The integration of GIS, remote sensing, and envi-
ronmental modeling has led to enormous advances in the generation of future scenarios
and evaluation of environmental impacts (Weng 2001a, 2001b; Pijanowski et al. 2002;
Huong and Pathirana 2013), transportation (Waddell 2011; Pozoukidou 2014), regional
planning (Kuijpers-Linde 2011; Jacobs et al. 2011) and the land market (Dekkers and Riet-
veld 2011). Few applications evaluated natural risks (Chen et al. 2001; Zerger 2002; Mar-
tins et al. 2012). Some models allow heuristic simulation based on expert opinion and inte-
grate MultiCriteria Evaluation (MCE) with techniques such as the Markov chain analysis
and cellular automata. Other models incorporate techniques such as weight of evidence
algorithm. An example of the first case is the CA_Markov model (Clark Labs 2012), and
an example of the second case is the DINAMICA EGO model (Soares-Filho et al. 2002).

Knowing what the implications are of urban growth on natural risks is an urgent need,
especially in countries such as Chile that have high exposure to natural hazards such as
earthquakes, tsunamis, tides, and landslides, among others. This paper aims to answer the
question: How will future urban growth influence exposure to natural hazards in Antofa-
gasta and Mejillones, Chile? Our study applies two simulation models of urban land use
change to determine the future risk of the cities of Antofagasta and Mejillones. The two
models are CA_Markov (Clark Labs 2012) and DINAMICA EGO (Soares-Filho et al.
2002). We determine the major natural threats that affect cities by considering the hazards
from tsunamis and mass movements. Then, we incorporate the forcing factors of urbaniza-
tion into the models to simulate urban growth. Finally, we combine the results to evaluate
future exposure to natural threats.

The manuscript is structured in 5 parts: the first part reviews the framework of natu-
ral hazards in Chile; then the methodology of the two spatially explicit models used
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(CA_Markov and DINAMICA EGO) is explained; next, the results of the urban simula-
tions are presented; then the implications of the results on territorial risk management are
discussed; finally, the conclusions are presented.

2 Natural threats in northern Chile

Most cities in Chile, especially the coastal cities, are subject to substantial exposure to
extreme natural hazards. In particular, coastal cities in the Antofagasta region are exposed
to a permanent seismic risk, and therefore, also to the threat of tsunamis. In general, these
cities present topographic, geological, and climatic characteristics that trigger intense and
violent mass movement processes (Hauser 1997).

Major threats include tsunamigenic earthquakes that are concentrated mainly in the
Pacific Ocean basin, in what is known as the “Pacific Ring of Fire”. Chile is located on the
edge of an active subduction, therefore Chile experiences 74% of seismic activity in South
America (Pararas-Carayannis 2010). In particular, the north of Chile is a seismically active
zone where the 1877 earthquake occurred, whose magnitude was estimated to be close to
8.3 Mw (Pritchard and Simons 2002).

More recent events include the 2007 earthquake with the epicenter in Tocopilla having
a magnitude of 7.7 M,, (Béjar-Pizarro et al. 2013), and the 8.2 M,, earthquake in Iquique
on April 1, 2014 (Barrientos 2014). This last event partially changed the trajectory for the
north of the country. According to the National Seismological Service of Chile, the north-
ern seismic gap was divided into three seismic zones. The first is located to the north of the
rupture zone of the earthquake, between the towns of Ilo in Peru and Cuya in Chile. This
first zone has a length of approximately 200 km and has remained a seismic gap. The sec-
ond zone is in the 2014 earthquake zone between Pisagua and Punta Patache, which did not
release all of the energy from the superficial part of the fault. The third zone, also a seismic
gap, is between the towns of Punta Patache and Tocopilla-Mejillones (Barrientos 2014).
This would cause two seismic events in the north of the country. The first is where the seis-
mic gaps to the north and south of the 2014 rupture zone would generate earthquakes with
an approximate magnitude of 8.2 M,, The second possibility is where both seismic gaps
would be simultaneously activated, generating an event exceeding 8.5 M,, (Hayes et al.
2014; Schurr et al. 2014). This means that cities such as Antofagasta and Mejillones could
be exposed to a possible seismic event of no less than 8.2 M,,. These types of events also
expose the zone to tsunamis.

Regarding these types of events, the tsunamis that occurred in southern Chile in 1960
were linked to the world’s largest earthquake with a magnitude of 9.0 M,,, and the 2010
tsunami from the 8.8 M,, earthquake that struck south-central of the country from the
Arauco Peninsula to Pichilemu (Barrientos 2014; Pararas-Carayannis 2010). The north
of the country has not experienced a tsunami of large-scale proportions in recent years.
According to the Oceanographic Service of the Chilean Navy (SHOA), based on a worst-
case scenario of a magnitude 9 M,, event, the north and especially the south of the urban
area of Antofagasta would expect dangerous tsunami heights. In the case of Mejillones,
flood levels are estimated to be more than six meters, which would cover almost the entire
urban area. That simulation was based on the historical event of 1877 (SHOA 2012, 2013),
which was an approximate 8.3 M,, earthquake.

Finally, other dangerous events are mass movement processes. The north of Chile
has one of the driest deserts in the world. Scarce vegetation cover, steep slopes, low
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precipitation, and intensity of earthquakes make this territory highly exposed to events
such as flooding, mudslides, debris flow, rockfall, and coastal cliff landslides. For exam-
ple, an extreme precipitation event in March 2015 in the Atacama Desert caused damaging
stream flows due to precipitation greater than 45 mm (Henriquez et al. 2019). There were
18 floods and overflows of watercourses and mudslides (ONEMI 2015a, 2015b). A low-
pressure system combined with unusual oceanic and atmospheric conditions produced a
heavy precipitation event (Barrett et al. 2016). This event generated catastrophic disasters
(Barrett et al. 2016; Wilcox et al. 2016), with 31 deaths, 16 missing persons, 30,000 dis-
placed persons, 164,000 people affected, and widespread damage to homes, roads, bridges,
and railways (ONEMI 2015a, 2015b).

This research includes the cities of Antofagasta and Mejillones located in the northern
coastal plain between latitudes 23°00’ S and 23°03’ S, and longitudes 70°17" W and 70°37'
W, Antofagasta region (see Fig. 1). The city of Antofagasta is the fifth largest city in Chile
and has experienced rapid growth linked to mining. Mejillones is located close to Antofa-
gasta as it is an important industrial city port. Both cities have been chosen since they pre-
sent little information on risk management and urban growth.

The city of Antofagasta is located on a narrow marine abrasion plain between the
Coastal mountain range and the Pacific Ocean. The city’s average width varies between
2.5 and 3.0 km, and its length from north to south reaches 16 km. The Coastal moun-
tain range consists of a chain of eroded hills that rise abruptly in elevation, reaching up to
1300 m. This city is the capital of the II region of Antofagasta with 348,517 inhabitants
(INE 2018) and strong urban growth towards hillsides (Fig. 2) and north and south sectors.
Lately, Antofagasta is experiencing immigration of people who come in search of better
job opportunities associated with copper mining activities.

The town of Mejillones is in the Bay of Mejillones on an extensive coastal plain. The
city of Mejillones has 12,784 inhabitants and its main economic activities are port and
industrial activities. Both cities have copper mining as their main economic activity.

Both cities are in the Atacama Desert, which has an extremely dry climate. According
to the Koppen-Geiger classification system, Antofagasta has a cold desert climate (BWk)
with an average of 1.7 mm/year and Mejillones has a warm desert climate (BWh) (Sarri-
colea et al. 2017).

The Intercommunal Regulatory Plan of coastal border land use of the Antofagasta
Region (SEREMI MINVU 2004) identifies areas at risk from steep slopes, especially in
the Coastal mountain range. In Antofagasta, the most severe disaster was a mudslide that
occurred in the early hours of June 8, 1991 (Hauser 1997). A sudden and violent rain-
fall, between 17 and 47 mm, caused mudslides and flooding. The city was declared a dis-
aster zone. There were 91 dead, 16 missing, 715 injured, 65,000 homeless, and 190,000
affected (Vargas et al. 2000). The disaster caused US$ 70.000.000 in losses, 600 homes
were destroyed and 6,000 homes were affected, becoming the most-costly disaster for the
city (La Red/DesInventar 2009). Garreaud and Rutllant (1996) state that the extraordinary
precipitation of 24 mm/hr that caused the event of 1991 has a return period of 100 years.
Nevertheless, Vargas et al. (2000) assert that the return period of these types of events is
30 years. In the twentieth century, at least six events exceeding 20 mm/hr were identified
when at least four mudslides occurred (Vargas et al. 2000). All of these events are closely
related to heavy rainfall events associated with ENSO (INE 2013; NOAA 2014; Vargas
et al. 2000).

This background demonstrates that these types of events are recurrent and have
affected the entire coastal section near the city of Antofagasta. During June 6-7, 2017
there was heavy rainfall of 20.6 mm in Antofagasta. The historical mudslides and
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Fig.1 Study area

landslides deposits identified by Vargas et al. (2000), the deposits from the 1991 mud-
slide identified by Hauser (1997), and the risk studies completed in the last revision of
the Municipal Regulatory Plan (MRP) of Antofagasta (Ilustre Municipalidad de Antofa-
gasta 2012) show the fragility of the urban system.

In Mejillones, the landslide risk is lower because the Coastal mountain range is fur-
ther away, nonetheless, the MRP identifies potential risk zones (Ilustre Municipalidad
de Mejillones 2013). In addition, the city is fully exposed to tsunamis due to its position
in the bay. Therefore, both cities could expect a high level of exposure in the future.
This translates into a high level of risk for the population and the infrastructure, espe-
cially in light of the rapid growth dynamics of these cities.
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Fig.2 Urban growth of Antofa-
gasta city over Coastal mountain
range

3 Materials and methods
3.1 Materials

The land use maps were extracted from Landsat satellite images and the Thematic Map-
per sensor for the years 1990, 2000, and 2010. Land use was classified visually using
false color compositions, bands 742 in RGB, and historical maps of the zone as reference
(Hauser 1997; Vargas and Ortlieb 1997; Vargas et al. 2000). For each year, we produced a
map of two categories: urban and non-urban. If a pixel is urban at a particular time point,
then the pixel remains urban at all subsequent time points. The definition of urban is indus-
trial, commercial, residential, or recreational uses. Figure 3 shows that almost all urban
growth in Antofagasta occurs adjacent to existing urban patches, while a substantial por-
tion of urban growth in Mejillones derives from patches that are not connected to exist-
ing urban patches. The size of urban growth accelerated from 1990-2000 to 2000-2010 in
both cities.

Also included in the analysis is the urban boundary cover that is defined by the Munici-
pal Regulatory Plans existing in both cities (Ilustre Municipalidad de Antofagasta 2012;
Ilustre Municipalidad de Mejillones 2013) and Regional Secretariat of the Ministry of
Housing and Urbanism of Antofagasta (SEREMI MINVU 2004). All coverage was digi-
tized and georeferenced in ArcGIS 9.3. Cell size for GIS analysis is 10-by-10 m.

We compiled materials concerning the major factors of urban land use change, which
we drew from the literature review (Huong and Pathirana 2013; Mahiny and Clarke 2012;
Pijanowski et al. 2002; Puertas et al. 2014; Trentin et al. 2010; Weber and Puissant 2003)
and expert consultations from the Regional Secretariat of the Ministry of Housing and
Urban Planning of Antofagasta (SEREMI MINVU). We included slope & elevation, and
also proximity factors such as distance to roads, shoreline, city center, and sanitary facili-
ties. Table 1 summarizes these factors.

3.2 Methods

Each land use model, CA_Markov and DINAMICA EGO, was run for a single box that
includes the two cities.
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Table 1 Description of urban driving forces

Driving forces Unit Source Year
Elevation m ASTER global Digital Elevation Model v.2 2011
Slope % ASTER global Digital Elevation Model v.2 2011
Distance to main roads m SEREMI MINVU and MRP 2008-2012
Distance to shoreline m SEREMI MINVU and MRP 2008-2012
Distance to CBD m SEREMI MINVU and MRP 2012
Distance to sanitary facilities m Antofagasta Superintendent of Water and 2013

Sanitary Services

3.2.1 CA_Markov model

We used the CA_Markov model in the Selva version of the GIS software IDRISI (Clark
Labs 2012). We simulated the single transition from non-urban to urban. Figure 4 shows
the flows of information in CA_Markov for two runs. The first run uses 1990 and 2000
as the calibration interval to extrapolate to the 2000-2010 validation interval. A valida-
tion procedure compares the simulated urban growth to the actual urban growth during
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2000-2010. The second run uses 1990 and 2010 as the calibration interval to extrapolate
during three sequential time intervals: 2010-2030, 2030-2050, and 2050-2100.

Any land change simulation model must specify two types of information called quan-
tity and allocation. For our case study, quantity concerns the size of urban growth during
each time interval; allocation concerns the spatial distribution of the urban growth across
the map. A CA_Markov model uses a Markov chain to specify the quantity and then uses
Cellular Automata to determine the allocation of the specified quantity.

A Markov chain extrapolates the size of urban through time in a trajectory equivalent
to Eq. (1), which uses the following notation. U(Y,) is the size of urban area at year Y, of
time point ¢ where t=0, 1, 2, ... The calibration time interval is from Y, to Y,. E is the
size of the extent, which is the constant union of urban and non-urban areas at any time
point. The size of the extent depends on how the user defines the non-urban size at Y.
Larger non-urban sizes cause slower extrapolations. The ratio in the square brackets is a
constant Markov proportion, which is in the interval (0, 1) because 0< U(Y,)) < U(Y)<E.
As Y, increases, U(Y,) increases at a decelerating area per year asymptotically towards E.

E_ U(Yl) {[¥-v)/[vi-1]}

U(v,) =E-[E-U(Y,)] EZU(Ty)

D
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The Cellular Automata part of IDRISI’s CA_Markov model has two parts (Clark Labs
2012). The first part is a spatial filter that constrains the urban growth to be within a par-
ticular distance of existing urban pixels. The size of the filter dictates the particular dis-
tance. We used a spatial filter of size eight and a filter shape of the Moore’s neighborhood.
Cellular Automata’s second part is a MCE, which uses a weighted combination of the five
factors in Table 1. Table 2 and Fig. 5 shows how we used a fuzzy membership function to
standardize each factor depending on its relationship with urban growth. The fuzzy func-
tions derived from discussions with the regional planning team of the MINVU Regional
Secretariat.

An analytic hierarchy process (AHP) weighted each factor based on expert opinion
(Saaty 1980). Professionals from the MINVU Regional Secretariat compared the impor-
tance of each pair of factors according to a scale from 1/9 to 9. The AHP computed that
the distance to sanitary facilities is the most important variable (43%) and especially in
extremely arid regions. Second is the distance to main roads (24%). AHP applies smaller
weights to distance to CBD (11%), distance to the shoreline (10%), slope (7%), and eleva-
tion (5%). Then, the normalized and weighted factors are added to produce a map of suit-
ability that guides the spatial allocation of simulated urban growth.

3.2.2 DINAMICA EGO model

The DINAMICA EGO model was developed by the Centro de Sensoriamento Remoto da
Universidade Federal de Minas Gerais—CSR/UFMG, Brazil. DINAMICA EGO’s docu-
mentation claims that the model uses a Markov chain to extrapolate the quantity of urban
growth, which implies that urban growth would decelerate in terms of area per year accord-
ing to Eq. (1). DINAMICA EGO simulates the spatial allocation by using cellular autom-
ata and transition probability maps that are based on the weights of evidence and a genetic
algorithm (Mas et al. 2012). The simulation process works iteratively to model any type
of transition, as well as encompass any duration of time and any number of time intervals
(Soares-Filho et al. 2002: 233). This model is based on three main stages: the calcula-
tion of a land use transition matrix, weights of evidence to create a probability map, and
the application of cellular automata and spatial stochastic feedback (patcher and expander)
during each time increment of the simulation (Soares-Filho et al. 2002). Figure 6 shows the
flow of information in DINAMICA EGO.

First, the transition matrix depicts the quantity of change in a system of discrete time
increments, where the number of pixels of urban growth during an increment is a fixed per-
centage of the number of non-urban pixels at the beginning of the time increment (Soares-
Filho et al. 2009). Like with the CA_Markov applications, the first model run has cali-
bration during 1990-2000 and validation during 2000-2010, while the second model run
has calibration during 2000-2010 and extrapolation during 2010-2030, 2030-2050, and
2050-2100.

In the second stage of modeling, the same factors identified in the CA_Markov model
are used. DINAMICA EGO uses weights of evidence (WoE) to combine the factors into
a probability map. WoE is a Bayesian inference method that identifies the posterior prob-
ability of an occurrence of an event according to a spatial test pattern (Ferreira et al. 2013).
This process allows the revision and modification of the results based on expert opinion
(Pérez-Vega et al. 2012; Ferreira et al. 2013; Mas et al. 2012). Therefore, the WoE were
partially modified to improve the model adjustment by leveraging the analytical hierarchy
analysis used in the MCE of the CA_Markov model. The transition matrix is transformed
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into an annual transition rate to project the changes on an annual basis by applying a matri-
cial calculation.

In the final stage of the modeling process, the model uses two complementary transi-
tion functions: Patcher and Expander (Mas et al. 2012; Soares-Filho et al. 2002). The first
function creates new patches through a seeding mechanism, while the second focuses on
stochastic expansion processes of the existing patches. The Patcher option was used to dif-
ferentiate the urban growth pattern from the result obtained from the CA_Markov model,
that is, to generate more patches on the periphery of the consolidated urban area. A model
with the Expander option was also developed to compare the performance of the urban
shape and size in relation to the other models in the calibration phase. The patch isometry,
and patch mean, and variance were established according to the pattern of real changes in
the calibration period (Garcia-Alvarez 2018), using the FRAGSTAT program (McGarigal
et al. 2015) as support. In addition, the simulation used the corroded probabilities option
to test the difference between the amount of change according to the Markov method and
cellular automata.

3.3 Validation method

The calibration time interval is 1990-2000 for the method to compare the simulated
change to the reference change during the 2000-2010 validation time interval. The simula-
tion includes distance to main roads and distance to sanitary facilities as independent vari-
ables. Those two variables are from after 2010; however, many of those roads and facili-
ties existed before the start of the validation time interval. The validation derives from the
methodology proposed by Pontius Jr et al. (2008, 2011, 2018) and illustrated by several
others (Liu et al. 2014; Varga et al. 2019). This validation method compares three maps
of urban versus non-urban: the reference map at 2000, the reference map at 2010, and the
simulation map at 2010. The misses, hits, and false alarms show how the reference change
compares to the simulated change (Pontius Jr 2022). Misses are errors due to reference
urban growth simulated as persistence. Hits are correct due to reference urban growth sim-
ulated as urban growth. False Alarms are errors due to reference persistence simulated as
urban growth.
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3.4 Future threats

We overlaid the simulated urban growth with maps of the risks of three types of natural
hazards: Tsunamis, Mudslides, and Steep Slopes. The tsunami risk map comes from the
Hydrographic and Oceanographic Service of the Chilean Navy (SHOA 2012). The mud-
slides risk map derives from the Land-Use Planning Instruments (LUPI) and previous
studies (Hauser 1997; Vargas et al. 2000). The steep slopes map derives from LUPI and
the Intercommunal Regulatory Plan of coastal border land use of the Antofagasta Region
(SEREMI MINVU 2004; Ilustre Municipalidad de Antofagasta 2012; Ilustre Municipali-
dad de Mejillones 2013).

4 Results
4.1 Reference data and simulation outputs

Figure 6 shows how the two models simulate the urban size of each city during three time
intervals: 2010-2030, 2030-2050, and 2050-2100. For each series in Fig. 7, if the slope
during a time interval is steeper than the slope during the previous time interval, then the
urban growth has accelerated across the two time intervals; if the slope during a time inter-
val is flatter than the slope during the previous time interval, then the urban growth has
accelerated across the two time intervals. Each model applied to each city shows that urban
growth accelerates across some time intervals and decelerates across other time intervals.

Neither model extrapolates urban growth consistently from years 1990-2010
8000
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Fig. 7 Extrapolation of the quantity of urban growth based on the 1990-2010 calibration time interval
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Each city has a dashed line that interpolates Eq. (1) through the urban area at 2000 and
2010. If the models would have extrapolated the quantity according to a Markov chain,
then the extrapolation would match the dashed line. Results show that neither model fol-
lows a pure Markov chain.

Figure 8 shows how each model allocates the quantity of urban growth. Growth occurs
near the interior of Mejillones. In Antofagasta, growth is allocated along the coast. Inclu-
sion of the spatial filter causes the CA_Markov model to allocate a ribbon of urban growth
near the edges of existing urban areas. DINAMICA EGO allocates some of the urban
growth as a leap-frog pattern.

Table 3 links the simulated urban areas with the areas of natural hazards, which reveals
a clear trend towards increased exposure. For the year 2010 in Antofagasta, 1336 hectares
are exposed to natural disasters, 83% of which are mudslides. In Mejillones, the main
threat is the tsunami with 200 ha exposed, which is equivalent to nearly 100% of all exist-
ing threats in the city. When compared to the year 2100, the simulations in CA_Markov
and DINAMICA EGO show that exposure to natural hazards is extrapolated to increase
between 722 and 580% from 2010. For both models, the most important hazard is Mud-
slide, then steep slope, and finally tsunami (Table 3; Fig. 7).

In Mejillones, the threat of a tsunami is most prominent in the city and will increase to
312 ha by 2100. The mass movements turn more relevant, from 1.5 ha in 2010 to almost
30 ha in 2100. The areas of steep slope become especially important because steep slope
does not register in 2010 but is expected to reach 79 ha in 2100.

In both Antofagasta and Mejillones, urban growth is projected outside the current urban
boundary (Plan Regulador Comunal and Intercomunal, see Fig. 7). In Antofagasta, 9 ha is
outside the urban limits for 2030, which increases to 30 ha by 2050 and 130 ha by 2100.
By 2030 in Mejillones, an estimated 75 ha outside the urban limits is exposed to the threat
of steep slopes, which increases to 1193 ha in 2100.

4.2 Validation

Figure 9 shows the calibration and validation of the quantity of urban growth. Both cities
experience accelerating urban growth according to the reference data across two decades.
Therefore, the reference data do not follow a Markov chain because a Markov chain does
not extrapolate accelerating growth from the calibration interval to the validation interval.
The dashed lines show how a pure Markov chain calibrated during 1990-2000 extrapo-
lates during 2000-2010 according to Eq. (1). Neither simulation model generates simu-
lated maps that portray a pure Markov chain. We set the parameter for proportional error
to 0.15 in the Markov module of the CA_Markov model based on the recommendation
of IDRISI’s documentation. It would have been helpful for the documentation to describe
more clearly the effect of a positive parameter for proportional error, which is to increase
the size of the simulated change beyond what a pure Markov chain would extrapolate. Con-
sequently, CA_Markov simulates more urban growth than DINAMICA EGO, which allows
for an insightful comparison between the validation of models that vary in the quantity of
simulated change.

In order to expand the comparison of the software concerning the quantity projected
by the Markov matrix, two new simulation models were made in the calibration process.
The first one in CA_MARKOV with proportional error 0 and the other one in DINAM-
ICA EGO with Expander option (Fig. 9). The model that bests fits with the pure Markov
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Table 3 Areas of urban exposure to natural threats (hectares) 2010-2100

Year & Model Tsunami Mudslide Steep slope
Mejillones  Antofagasta ~ Mejillones  Antofagasta  Mejillones  Antofagasta

2010

Reference 200 88 1 1,117 0 131

2030

CA_Markov 484 187 20 3,965 0 300

DINAMICA EGO 387 198 9 4,264 6 414

2050

CA_Markov 564 217 51 5,367 7 1056

DINAMICA EGO 432 227 28 5,103 10 698

2100

CA_Markov 625 236 132 7,366 104 2517

DINAMICA EGO 493 234 150 6,770 58 1378

Neither model extrapolates as a pure Markov chain from years 1990-2000
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Fig. 9 Quantity of urban growth during 1990-2000 and 2000-2010 according to a pure Markov process

equation is DINAMICA EGO (Expander), with 0.4 and 4.3% quantity difference for Antof-
agasta and Mejillones, respectively.

Figure 10 shows the Misses, Hits, and False Alarms for each model during the
validation time interval. CA_Markov predicts more urban growth than the reference
urban growth in each city, thus False Alarms are greater than Misses for CA_Markov.
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Fig. 10 Validation of urban growth during 2000-2010. Miss: observation for which diagnosis is Absence
and truth is Presence for a category, also known as a False Negative and Type II error. Hit: observation for
which diagnosis and truth are Presence, also known as a True Positive. False Alarm: observation for which
diagnosis is Presence and truth is Absence, also known as False Positive and Type I error (Pontius Jr 2022)

DINAMICA EGO predicts less urban growth than the reference urban growth in each
city, thus False Alarms are fewer than Misses for DINAMICA EGO. False Alarms are
greater than Hits for all four applications, which means both models predict at wrong
locations more often than at correct locations when the model simulates urban growth.
CA_Markov simulates more urban growth than DINAMICA EGO thus CA_Markov has
more Hits, more False Alarms, and fewer Misses than DINAMICA EGO for these par-
ticular model runs.

A popular summary metric is the Figure of Merit, which is the ratio of Hits to the sum
of Misses, Hits, and False Alarms (Pontius Jr et al. 2008, 2011, 2018; Varga et al. 2019).
The Figure of Merit is 10 and 25% for CA_Markov in Mejillones and Antofagasta, respec-
tively. The Figure of Merit is 1% and 11% for DINAMICA EGO in Mejillones and Antofa-
gasta, respectively. The Figure of Merit is a single summary metric that fails to give insight
concerning whether the specification of quantity or allocation is responsible for most of
the errors. The interpretation of the sizes of Misses, Hits, and False Alarms reveals that
the overprediction of the quantity of urban growth causes False Alarms to be larger than
Misses for CA_Markov, while the underprediction of the quantity of urban growth is
responsible for False Alarms being smaller than Misses in DINAMICA EGO. Both models
allow the user to modify the parameter settings for quantity separately from the parameter
settings for allocation therefore the results for Figure of Merit do not imply that one model
is inherently more accurate than another model. Figure 11 shows the spatial allocation of
Misses, Hits, and False Alarms in each model for each city.
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Fig. 11 Validation map for CA_Markov and DINAMICA EGO models

5 Discussion
5.1 Comparing CA_Markov and DINAMICA EGO models
According to Mas et al. (2014), the CA_Markov model has been applied to several stud-

ies such as landscape modeling (Houet and Hubert-Moy 2006), rural land use planning
(Kamusoko et al. 2009), land cover prediction in Mediterranean mountains (Paegelow et al.
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2008), spatial pattern changes of land use in towns and villages (Sang et al. 2011), forest
cover changes (Adhikari and Southworth 2012), among others (Pontius Jr and Malanson
2005). In Chile, the model has been applied to Chillan and Los Angeles cities (Henriquez
et al 2006a, b; Henriquez 2014). Viana et al. (2023) give a case study where CA_Markov
simulated less change than a pure Markov chain would imply. In any case, the authors state
that “cellular automata’s allocation fails to follow the quantity of change that the Markov
module computes” (Viana et al. 2023: 11).

DINAMICA EGO has been used mainly for studies of deforestation in the Amazon and
tropical zones (Soares-Filho et al. 2002, 2006), fire regimes (Silvestrini et al. 2011), among
others research related to forest degradation (Mas et al. 2014). The DINAMICA EGO
model has also been applied to modeling urban growth such as the city of Bauru, west
of Sao Paulo, Brazil (Almeida et al. 2005, 2003) or the metropolis of Kathmandu, Nepal
(Thapa and Murayama 2011). The literature (Mas et al. 2014; Garcia-Alvarez et al. 2022)
shows that the amount of land use change using Markov matrix does not show impor-
tant differences between DINAMICA EGO and IDRISI (CA_Markov and Land Change
Modeler).

Both models share common characteristics and some differences (Paegelow et al.
2014; Camacho et al. 2015). First, the documentation of CA_Markov and DINAMICA
EGO indicates that both models use a Markov chain to determine the quantity of urban
growth from the calibration time interval. Neither model followed a pure Markov chain
given the parameter settings for our applications. Extrapolation assumes that the growth
rates observed during the calibration period will remain the same during the simulation
period, which is an erroneous assumption in many cases (Mas et al. 2014: 108). Second,
CA_Markov uses heuristic MCE while DINAMICA EGO uses probabilistic WoE to deter-
mine the spatial allocation of urban growth. Third, the input of expert knowledge in the
calibration stage was introduced through AHP and fuzzy process, which was the case for
CA_Markov through SEREMI MINVU professional interviews. Fourth, the selection of
a strong spatial filter causes CA_Markov to allocate urban growth exclusively adjacent to
existing urban while our parameter settings for DINAMICA EGO caused patches of urban
growth that are not connected to existing urban patches. DINAMICA EGO shows a spatial
distribution more in line with the real urban pattern. For example, DINAMICA EGO pro-
jects a process of urbanization around the Juan Lopez beach town (northwest) and airport
(north of Antofagasta), which in fact has grown in the last few years. Moreover, slums have
grown substantially in the peripheral sectors of many Chilean cities during the most recent
years. Our choice to apply a spatial filter caused CA_Markov to project urbanization near
the previous urban area, while the DINAMICA EGO projects fragmented urbanization in
the desert area near the coast.

Many authors have used CA_Markov and DINAMICA EGO to evaluate the impacts
of future urbanization on biodiversity, agriculture, hydrology, and the atmosphere. How-
ever, we have found few applications of these models in the evaluation of natural risks. For
example, the relationship between urban development modeling and the effects of the 2011
earthquake in Turkey is an interesting study that used the Cellular Automata Markov Chain
(Satir et al. 2023). Young (2013) simulated the expansion of the Sdo Paulo Metropolitan
Area in relation to risk using DINAMICA EGO. A recent publication (Reimuth et al. 2024)
links the future urban modeling and climate change threats, demonstrating the importance
for decision-making and scientific advancement.

Some studies simulate the threats using other types of models. For example, the study
by Liu et al. (2015) evaluated the interaction between the wildland—urban interface and
the spatial patterns of fire risk, in Colorado, USA. Also, a study by Pathirana et al. (2014)

@ Springer



Natural Hazards

investigated the impact of urban growth on the changes in the extreme rainfall in and
around Mumbai, India. The literature distinguishes some applications such as the TOPSIS
method, which has been heuristically developed in combination with AHP techniques to
deal with the problem of evaluating and prioritizing urban areas according to natural haz-
ards but without using a spatial focus (Mahdavi et al. 2016).

5.2 Opportunities for risk management and decision-makers

The urban areas of Antofagasta and Mejillones show trends in growth towards the Atacama
Desert territory that is potentially exposed to natural threats. The growth of these urban
areas not only leads to an increase in the amount of surface exposure to these phenomena
but also brings to the forefront threats that are not a priority in current territorial planning,
as in the case of Antofagasta where landslides are associated with steep slope areas. This
presents decision-makers opportunities such as the incorporation of preventive elements in
the urban planning process that prevent potentially hazardous areas from being occupied
by the population, as well as regularizing the construction that is in a current risk situation.
In Mejillones, where there are known threats such as the danger of tsunami, this allows the
most efficient management of resources and efforts to mitigate those risks.

According to this study, for the years 2030, 2050, and 2100 in Antofagasta, a part of
the urbanization that is developed outside of the current urban boundary will be exposed
to the threat of steep slopes. This highlights the issue that urban planning instruments can
use inputs from spatially explicit model scenarios to assist risk management, especially
in areas that could transform into risk zones. The need to consider these threats in land-
use planning is not only necessary to prevent the new resident population and infrastruc-
ture from being exposed to these events, but also to plan safety zones, escape routes, and
infrastructural roads that decrease vulnerabilities to the interior of the existing urban area.
Although progress has been made in planning for climate change threats in cities in the
developed world, gaps still exist between Urban Emergency Plans and Land Use Plans
(Pirlone et al 2020), and the connection between future urban simulations and current and
future hazard areas.

At a local level, the General Law of Urbanism and Construction approved under Decree
with Force of Law 458 on April 13, 1976, defines in Article 60° that any MRP “will iden-
tify lands that are not buildable due to their special nature and location” (LGUC 1976).
These non-buildable areas and risk areas are “areas restricted to urban development since
they constitute a potential danger to human settlements.” But frequently, these are defined
without sufficient depth and without considering the urban dynamic.

At a general level, the application of both models is an important input for decision
makers involved in land use planning and socio-natural risk management, especially to
evaluate scenarios and reduce vulnerability. Fundamental to this is knowing if, where
and how cities are growing into or into hazard-prone areas (Reimuth et al. 2024). Along
with knowing how hazards will unfold in space-time. The combination of both perspec-
tives, i.e. prospective risk assessment, is one of the main challenges for decision-makers to
avoid future catastrophes (Raju et al. 2022; Reimuth et al. 2024). According Reimuth et al.
(2024: 19) it is essential to consider: “(1) urban morphology patterns and potential link-
ages to exposure as well as vulnerability, (2) long-term time horizons to consider long-term
developments, (3) feedbacks between urbanization trajectories and hazard trends, (4) the
integration of future urban growth drivers and adaptation responses, (5) feedbacks between
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adaptation and urbanization, and (6) scenarios, which are developed within a commonly
defined scenario framework”.

If urban growth simulations inspire decision-makers to stop expansive urban growth
into the hazard zone, then humans might achieve more resilient and sustainable cities,
especially in developing countries like Chile that are subject to extreme natural hazards.

6 Conclusions

The models allow for various behaviors concerning the simulation of the quantity and spa-
tial allocation of landscape change. For our applications, the CA_Markov model allocates
simulated urban growth near previous urban areas more so than DINAMICA EGO does.
DINAMICA EGO simulates urbanization processes in the peripheric fringe, highlighting
the fragmented nature that characterizes these types of cities. The use of heuristic tech-
niques, such as the AHP and fuzzy setting process in the CA_Markov model, reflect the
expert’s experience in the calibration and weighting of the factors and the suitability map,
to express what might be suitable for urban growth.

Spatially-explicit land change models are crucially important in the management of
socio-natural risks. Most of the previous applications that we have seen are aimed toward
urban scopes (transport, market, segregation, etc.) or environmental issues (loss of agricul-
tural land, changes in runoff, degradation of biodiversity, etc.). These and other models are
essential to understanding patterns, trends, and configuring scenarios for land planning and
risk management in fast-growing cities.
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