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Convergence Rates of Online Critic Value
Function Approximation in Native Spaces
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Abstraci—This paper derives rates of convergence of
online critic methods for the estimation of the value func-
tion for a class of nonlinear optimal control problems.
Assuming that the underlying value function lies in re-
producing kernel Hilbert space (RKHS), we derive explicit
bounds on the performance of the critic in terms of the
kernel functions, the number of basis functions, and the
scattered location of centers used to define the RKHS. The
performance of the critic is precisely measured in terms of
the power function of the scattered bases, and it can be
used either in an a priori evaluation of potential bases or
in an a posteriori assessments of the value function error
for basis enrichment or pruning. The most concise bounds
in the paper describe explicitly how the critic performance
depends on the placement of centers, as measured by their
fill distance in a subset that contains the trajectory of the
critic. To the authors’ knowledge, precise error bounds
of this form are the first of their kind for online critic
formulations used in optimal control problems. In addition
to their general and immediate applicability to a wide range
of applications, they have the potential to constitute the
groundwork for more advanced “basis-adaptive” methods
for nonlinear optimal control strategies, ones that address
limitations due to the dimensionality of approximations.

Index Terms— Reinforcement learning, Optimal Control,
Reproducing Kernel, Native Space

[. INTRODUCTION

Optimal control has become one of the core methodologies
in modern control theory for nonlinear systems. One of its
main advantages lies in its ability to yield control laws that
achieve a compromise between the control effort expended and
the time needed to attain regulation. At the heart of nonlinear
optimal control design is the Hamilton-Jacobi-Bellman (HJB)
equation [1], a partial differential equation (PDE) that is
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notoriously difficult to solve analytically. Numerous studies
describe methods to approximate the solution of the HIB
equation, see the reviews in [2], [3] for example. One of the
most popular such tools is policy iteration (PI), which is a
process that cyclically evaluates the cost function for a given
controller, and, subsequently, improves that controller from
measurements. Nevertheless, an issue with PI is its need to
employ a neural network (NN) for the policy evaluation step,
called the “critic,” which inherently leads to approximation er-
rors that degrade performance or lead to failure of convergence
of the PI process.

Notable early efforts that study Galerkin approximations for
PI in a recursive implementation include [4]-[6]. Subsequent
papers [7], [8] use some of the theory in [4]-[6] to study
various online implementations based on learning theory.
The works referenced in [9] and [10], for example, provide
comprehensive reviews of contemporary theory underlying
many recent online and offline methods. Yet, these results
do not derive explicit descriptions of how performance is
related quantitatively to rates of convergence of value function
approximations generated by a critic. On the other hand, some
very recent efforts in [11]-[13] emphasize the importance
of examining the impact of the approximation error on the
performance of reinforcement learning methods.

This work continues the strategy started for offline repro-
ducing kernel Hilbert spaces (RKHS) methods in [14], but
now considers online approaches for the critic step in PIs. We
describe how the fill distance of the centers used to define
the bases for approximation dictates the performance of the
critic. In several case, we relate the rate of convergence in the
RKHS directly and explicitly to the performance of the critic.
To the authors’ knowledge, this is the first time that such rates
of convergence have been derived for the online critic step.
These general results and error rates have a host of potential
applications to reduce guesswork by the control designer when
using PI techniques. The derived rates also have the potential
to serve as the foundation of methods that dynamically add
or delete scattered or sparse basis functions to address cases
when dimensionality of approximations becomes an issue.

I[I. PROBLEM STATEMENT

Consider the continuous-time nonlinear system

#(t) = f(x(t) + g(x(t))u(x(t), ©(0) =z, t=0, (1)
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where = : [0,00) — R”, f : R" — R", g : R" — R"*™,
and v : R™ — R™ represent the state of the system, the
drift dynamics, the input dynamics, and the control input,
respectively. The problem is to find a continuous control input
t — wu(t) that minimizes the cost functional

J(xo,u) = /000 (Q(x(t)) + u" () Ru(t)) dt 2
(2 (t),u(t))

where Q) : z — Q(x) > 0, and R > 0. One of the main issues
with this problem is that one needs to solve a challenging
nonlinear HIB equation. A minimizer v* of (2) is called an
optimal control input, and V*(-) = J(-, u*) defines the optimal
value function. Then, to find u* and V*, in principle, one needs
to find the positive-definite solution V* of the HJIB equation

Hu= (V7 (2)) = fiVV*T(x)g(x)RflgT(x)vv*(x)
+ VvV (@) f(z) + Q(x) =0, V*(0) =0, Yz € Q, (3)

and then calculate u*(z) = —3R™1¢"(z)VV*(z) [1], where
H. (V) is the Hamiltonian function associated with v and V.
Nevertheless, (3) is generally difficult, if not impossible, to
solve analytically for V*. For this reason, PI is often employed
to solve (3) approximately [4], [6].

The most crucial and computationally demanding step of PI
is that of policy evaluation. Given a continuous feedback gain
u: R™ — R™ that stabilizes (1) on a set 2 C R"™, policy
evaluation seeks to find the value function V,,(-) £ J(-, u)
associated with that controller. Provided that this function is
continuously differentiable, it follows from [1] that it satisfies

Hyu(x) & Hyu(Vi(2) = VV, (2)(f(x) + g(a) ()
+Q(z) + ' (z)Ru(x) = 0, V,(0) =0. (4)

While an analytical solution to (4) is also difficult to obtain,
its linearity in V), — a property not present in (3) — enables
the use of the so-called critic NN as a means to approximately
solve it over a compact set {2 C R™.

To that end, note that since V), is continuous, it can be
expressed on Q as V,(z) = WTé(z) + en(z), Vo € Q,
where ¢ : R® — RY is a suitable vector of N basis
functions, W € R denote the “ideal weights” for that basis,
and ey : R™ — R denotes the approximation error. The
critic NN then uses an estimate W (t) € RN of W, and
provides an estimate of 9 (¢, -) of V,, according to the formula
on(t,z) = WT(t)¢(z). The purpose of policy evaluation is,
thus, to properly train the critic weights W(t) so that the norm
of the parameter error W (t) £ W — W (t) becomes as small
as possible. In [7], the online policy evaluation law

4 ao(t -

W(O) =~ o (UT(t)W(t)Jrr(w(t%u(w(t))))s
&)

was proposed, where o(t) £ o(z(t)) = Vo(z(t))(f(z(t)) +
g(x(t))p(x(t)), and a > 0 denotes the learning rate. Interest-
ingly, it was proved that, under a persistency of excitation
condition, the parameter estimation error W (t) under (5)
indeed converges exponentially fast to a neighborhood of
the origin, the size of which scales with the size of the

approximation error €y over (2. Nevertheless, the size of € is
rarely known beforehand and, to our knowledge, no existing
general strategy yet has been able to precisely quantify how
the basis influences the performance of the critic.

This paper lifts the analysis of the norm of the parameter
error ||W(t) — W|g~ to an analysis of ||y (t,-) — Villez@)s
which captures estimates of the error of the value function.
This analysis makes explicit the contribution of approximation
errors in a wide variety of choices of the RKHS H (£2) assumed
to contain the value function. Our goal is to ultimately use this
analysis to quantitatively relate the choice of the basis function
¢ of the critic NN to the error ||0x(Z,-) — V.| m(q) in online
critic estimates vy (¢,-) of the value function V,. A further
goal of the paper is to reduce trial-and-error in realistic impli-
cations of the critic for adaptive nonlinear optimal control.

[1I. NOTATION AND PRELIMINARIES

Denote v as a generic value function, ¢ as an estimate of
~ A ~
v, and v = v — ¥ as the error.

A. Elements of RKHS Theory

We denote by H(2) an RKHS over the set 2 C R™ that is
constructed using a Mercer reproducing kernel 8 : Q@ x Q —
R. A Mercer kernel £(-,-) is continuous, symmetric, and of
positive type. Being of positive type means that, for any N-
point subset =xy C €, the corresponding Grammian matrix
Ky £ [R(&,&;)] € RV*N is positive semidefinite. The native
space H () itself is then determined as the closure of the
linear span of the kernel sections R,(-) £ K(w,-), that is,
H(Q) £ span{&,(-) | z € N}, where the closure is taken with
respect to the candidate inner product (&, &,) £ &(z,y) for
all z,y € Q.

Approximations in this paper are constructed using the
finite-dimensional subspace Hy = span{f¢, (") | & €
En,1 < i < N}. We denote by Iy : H(Q) — Hy
the H(Q)-orthogonal projection of H () onto Hy. A key
property of orthogonal projections onto a closed subspace of
a Hilbert space is that they map an arbitrary input into the
closest element of the subspace.

The evaluation functional F, : H(2) — R is defined
so that, for each © € Q and every f € H(Q), it holds
that E,f = f(z). Thus, the evaluation functional defines
the bounded linear mapping H(2) — R. The reproducing
property, which is satisfied for any RKHS, implies that £, f =
f(z) = (f,Ry)m for any f € H(Q) and z € 2. Furthermore,
as E, is a bounded linear operator between Hilbert spaces, its
adjoint operator E* £ (F,)* : R — H () is a bounded linear
operator. This adjoint operator is expressed as E o £ R
for all & € R,z € . That is, E; can be understood as a
multiplication operator since it multiplies any real number by
the function K.

If the kernel £(,-) is bounded on the diagonal, then per
definition, there exists a constant & such that, f(x,z) <
2 for every x € . This condition guarantees that every
function within the space H({2) is continuous and bounded.
Furthermore, it ensures boundedness of the operator norm, that
is, ||[E;|| = || EZ|| < &. Itis worth noting that many commonly
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used kernels satisfy this criterion, including the inverse multi-
quadric, Sobolev-Matérn, Wendland, and exponential kernels
[15].

B. Differential Operator A on Native Spaces

We begin by introducing the differential operator A that is
defined pointwise as (Av)(z) 2 (f(z) + g(z)u(x))" Vo(z)
for all x € 2, whenever v is sufficiently smooth. Note that
(4) then corresponds to the operator equation Av = b with
b = —r, r defined in terms of the kernel r of the cost function
in (2), and v = V,,.

Theorem 1. Let the kernel R : Q2 x Q — R that defines the
native space H () be a C*™(§2, Q) function with m > 1, and
suppose that 1 and f;,g; for 1 < i < d are multipliers for
C(Q) and H(R). Then,

1) The operator A : H(Q) — C(Q), as well as the
operator A : H(Q) — L?(Q), is bounded, linear, and
compact.

2) The adjoint operator A* : L*(2) — H(Q) has repre-
sentation

A" = / (Vo2 9)" (f(z) + g(@)p(z)) hz)da
Q
é/Z*(ym)h(m)dac
Q

for any y € Q and h(-) € L*(Q).

3) Considered as a mapping A* : L*(Q2) — H (), or as
a mapping A* : L?(Q) — L*(N), the operator A* is
compact.

Proof: The proof of this theorem can be found in [14],

which uses Theorem 1 of [16]. O

Note that the assumptions in Theorem 1 imply that the basis
functions that define Hy are continuously differentiable.

C. The DPS Learning Law and Its Approximation

For developing the online learning laws, we introduce the
time-varying functional

~\ A 1 ~12 1 * Tk ~ ~
J(t7’()) = §|Ex(t)AU| = § (A Em(t)Em(t)AU,U)H,

which is defined for all o € H () that satisfy the additional
regularity condition o € {f € H(Q) | Av € H()}. The
analysis in the remainder of this paper always assumes that this
regularity condition holds. An elementary calculation shows
that the Fréchet derivative of J(t,7) is given by DJ =
A*E7 ) Ey(i)A. For a fixed time ¢, let 9(t,) € H(2) be a
time-varying approximation of the minimizer v of 7 (¢, v). An
ideal gradient learning law designs the error ¥(t, -) = v—1o(t, -)
so that it evolves in the local direction of steepest descent,
which is defined in terms of the Fréchet differential in

D0(t,) = —ad" Bl (y(0) ~ Bup Ad(t, ) € H(Q),

T

L

where y(t) = E,)Av, and a > 0. This ideal gradient law
evolves in H (), and defines a distributed parameter system.

In the usual way, we define the ideal evolution law for the
estimate 9(t, ) as

a ~ * Tk ~ * Tk

av(t, ) = —aA By By AD(L, ) +aA By yy(t) € H(S).
Note that, in contrast to [7], the critic state evolves in a
function space and this evolution law can be understood
as a PDE. Finite-dimensional approximations of this PDE
are obtained by choosing iy (t,) £ Zjvzl W;(t)Re, () and
seeking a solution of

d
(L. -
dtUN( ) )
= —aHNA*E;(t)Ez(t)AHNﬁN(t7 ) —+ CLHNA*E;(t)y(t).
(6)

These finite-dimensional equations evolve in H, and they are
equivalent to a system of ODEs.

D. Online Coordinate Realizations

The critical step in deriving coordinate realizations
of (6) must examine representations of the operator
IINyA*EXE,Ally. The finite-dimensional approximation
HyA*E;E, Ally can be deduced by considering g = £,
and h = K¢, to obtain

[An(2)]i; = (IINA*EfE, AllN) Re,, Re, ) s
- [(PT(%EN)w(m)z/J(a:)TCI)(x,EN)LJ.

After taking the inner product of (6) with an arbitrary £, €
Hy, we therefore obtain the system of ODEs

Ky W (t) = —ahn (2(8)W(t) + a¥ (£),

where W £ [Wl t),..., WN(t)]T, Y(t) = By Av = b(x(t))
denotes the output, Y;(t) = (A"E7 y(t), Re, ) r (o) and
Y(t)=[Y1,....Yn ()"

Remark 1: Interestingly, Y'(-) is essentially equivalent to the
right-hand-side of (5), with a slight difference being that the
normalization with (0T + 1)? in (5) is not introduced here.
Remark 2: It is well-known that, in practice, the gradient
learning law in (6) must use a robust modification whenever
external noise, numerical noise, or approximation error appears
in Y'(+). This is the reason for the normalization ordinarily used
in PI and reinforcement learning. In the following, we discuss
a dead-zone robust modification for this purpose. The dead-
zone modification is advantageous since it enables a simpler
proof of rates of convergence in some cases.

E. Rates of Convergence and Online Performance
Bounds

In our first error analysis of online algorithms, we employ
the gradient learning law (6). This analysis is based on
modifying the approach in [7] and carefully tracking the
dependence of expressions on the number of bases N and the
approximation error. The theorem below develops an ultimate
bound on vy £ IIyony = HN(U — ﬁN)

Theorem 2. Suppose that the kernel R(-,-) that defines the
RKHS H(RQ) is bounded on the diagonal by a constant £2.
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In addition assume that the family of subspaces {HN}neN
and trajectory t — x(t) are PE in the sense that there are
constants A(N),v1(N) depending on N and 5 > 0 such
that

t+A(N)
Y (N ny < / N A E; ) Eo(r)AllNdT < 72lmy
t

SN(t)

for each N € N, where Sy (t) : Hy — Hy. Then,

[on (t, ) m@) = Ty — on ()| @)
Y2 A(N)
N max 5 max max 7
ST (VN max + 672a(YN max + €Nmax))-  (7)
where
jN,max £ sup ‘EI(T)AHN,DN(t’ )|7 3
TE[tt+A(N)]
eNmar = sup  en(7). ©)
TE[t,t+A(N))]

Proof: The consistent approximation of the gradient law
can be written as
d
&@N(t ) = — aHNA E* (t)ErL-(f)AUN( )
- aHNA*Ex(t)Ez(t)A(I - HN)U.

Following the proof of Technical Lemma 2, part b in [7], we
rewrite this equation as the system

X (1) = By (HUN (1),
IYn(t) = Cn () Xn (1),

where By(t) = —aHNA*E*(t), Cyt) = E.Ally,
XN(t) £ @N(t, '), GN(t) £ F aj(t)A(I — HN)’U, and Z/[N(t) £
—YVn(t) + en(t). Both By(t) and Cn(t) are bounded linear
operators, and their bounds can be chosen independently of NV
sicne the kernel &(-, -) is bounded on the diagonal, and, hence,
[Ezyll = [IE5 )|l < K Also, it holds that Xy (t) € Hy
and yN( ) € R. The proof of Technical Lemma 2 part b in
[7] holds for states, controls, and observations in Euclidean
spaces, like R? or R. Since all the operators above are
bounded, each step in the proof of Equation (A.9) in Technical
Lemma 2 part b in [7] can also be applied without change in
the current setting. In particular, it holds that

V1AN)
(V)

t+A(N)

I [ B R (r) o

for a constant § of order one. Furthermore, ||By(t)]|
a||A*||R and [|Un(®)|| < VN ,max + |en(t)]. We conclude that
the rate in (7) holds with

eNmax < sup By AL —Hy)v. O

7>0

HX(t)”HN < meax

(10)

The next theorem bounds the ultimate output error () =
y(t) — gn(t), where y(t) = EypnAv and gn(t) =
E,#)Adn(t,-), in terms of the approximation error € max
in the case whereby we use a hard dead-zone version of the

learning law with a properly sized dead-zone. We emphasize
how the next result does not require a PE condition, and the
error bound on performance is more readily tied to just the
approximation error €y max as described in Section IV. On
the other hand, in principle, an oracle must define a dead-zone
that is a tight bound for the approximation error. In practice,
the size of the dead-zone is defined iteratively.

Theorem 3. Consider a learning law for On(-,-), such that
ifin(t) E 1yAON(t,-) > € > €N max for some t > 0, then
(6) is verified, and, if Yn(t) < €N max for some t > 0, then
d%f)N(t, -) = 0. Then, for any arbitrarily small constant n > 0,
there exists T = T(n) > 0 such that | E, ) (H,—Hn(t,)| =
[n (t)| < 1€ for all t > T(n), where the Hamiltonian H,,
is defined in (4) and Hy(t,z) & Adn(t,z) + r(x) denotes
the approximate Hamiltonian with x € 0. If we choose € =
M (N)en max for some (small) integer M(N), and To > 0
is the time that the measurement error §y (t) spends outside
the dead-zone, then we an ultimate bound on the decrease
of the value function error is given by ||vUy(t, )||H(Q <
||’UN(t(), )HH () 2aTO(1+M(N))M(N)6N maxfor all t 2 0
large enough.

Proof: In this proof we choose the Lyapunov function
V(in) £ 3(On,0n) (). When [gn(t)] > € the derivative
of the Lyapunov function along trajectories of the learning law
satisfy

Svin(t, )
=—a( x(t)Av (t,-), ExnyAon (L))
+ a (B An(t, ), =By AL = TIn)on ()
< —aljn(t )‘(| N ()] = €Nmax) -
Because |gn (t)| > € > €N max. We have
d

V(on(t,-) < —algn ()] (|95 ()] — €N max)

—a€ (€ — €N,max) < 0,

dt

IN

while the trajectory is outside the dead-zone. Following stan-
dard convergence arguments, we conclude that the time spent
outside the dead-zone is finite, and, thus, the norm of the
output g(¢) is ultimately bounded by the dead-zone. The bound
on the value function error [|3(t,-)||(q) can be derived by
evaluating the Lyapunov function at the time the observations
7(t) enters the dead-zone [17, Ch. 10]. O

IV. EXPLICIT ERROR BOUNDS AND FILL DISTANCES

In this section, we describe how some techniques used to
describe rates of convergence of approximations in a native
space can be applied to the bounds in Theorems 2 and 3 on
the online critic. Note that a bit more can be said about the
errors € (t) and € max that appear in these theorems. It holds
that

en(O) =By A(I-TIn)v| = |(€(, (1)), (I = N)v) i (o)l
Szug 10, N a @ IU=TN)v || 7(Q) <lmax | (I-TIN)v| 5(0),
S

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 21,2024 at 14:22:16 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2024.3417178

where {(z,y) = ¢*(y,z) and £*(y,z) is defined in Theorem
1.

The remainder of this section describes how |[(I —

N)V||a@) can be explicitly bounded in terms of the
placement of centers in Zpn. The power function of
the subspace Hy in the RKHS H(Q) is defined as

VA(z,z) — Ay(z,z) with Ry the reproducing

kernel of the subspace Hy [15], [18]. It can be proven
that Ry(z,y) 2 Rz, (2)TKy' 8z, (y) where fz(z) =
[Re, (2), ..., Rey (2)]T € RY denotes the column vector of
N basis functions defined in terms of the set of centers
=n C Q. The power function is useful for generating point-
wise bounds on the projection error such as |E, (I —IIy)v| <

N (@) (I = TIn)v|[ g for all z € Q and v € H(Q2) and
any native space whatsoever [15], [18].

We use this well-known identity to bound the error ||(I —
N )v|| (o) that appears in the ultimate bound of the critic.

Theorem 4 (Modification of Theorem 11.23 in [15]). Suppose
that v satisfies the regularity condition v = Lu, where L :
LQ(Q) —> H (Q) is the bounded, linear, compact operator

fQ y)dy. Then, there is a constant C' > 0
e ot (LTl ||H<m < Csupgeq [Pa(©lIIL 0] 120y
provides an error bound.

Proof: This proof is based on that of Theorem 11.23
of [15], and for completeness we summarize the simple
modifications here. First note that

(w, Lu) () :/(w L) Q)u( )dy = (w,u)Lz(Q).
Now we can write

11 = TIn)ol By = (I = HN)U V) (),
( )1} U)Lz(g),
< (I = IIn)vl 2oy llull 2 @)

But we also have
1 =TI )o 20 = /Q B, (I — Ty )of*de
< 192 sup P (O = T ol

Substituting this bound above completes the proof of the
theorem. (]

Since the centers =y, kernel K, and power function Py
are known, Theorem 4 can be used, in either a priori or a
posteriori estimation of the value function estimate error that
results from using a collection of centers =.

The geometric nature of the bound in Theorem 4 is often
emphasized by relating the power function to the fill distance
of the centers Zy in the set 2, which is defined as hz, o £
Sup, cq ming, ez ||y —&ll2. For a variety of kernel functions,
which can be applied to the problem addressed in this paper,
[15], [18] provide bounds on the power function in the form
Py(z) S /N(hzy.a), where N : RT — RT depends on
the kernel function. The following lemma summarizes three
common examples of such bounds.

Lemma 1. Suppose that v is contained in the uncertainty class
Crr 2 {g=Luec HQ) | |ulr2q < R} € H(Q), and

that the assumptions of Theorem 3 holds with the minimum
size dead-zone € X €N max. For the Sobolev-Matérn kernel of
a high enough smoothness k in Table 11.1 in [15], then there
exists T > 0 such that, for all t > T,

D= ly(t) — g (1) = O(
For the Wendland compactly supported kernel m, p,
|Epy(Hy — Hn(t, )| = O 211{22) For the exponential
kernel, |Eq ) (H, — ’}:lN(t, N =0

a constant « that depends on the hyperparameters of the
exponential kernel.

’Cf’I’L/Q)

| Bty (Hy — H(t En,Q

e—clhzal/hzy o for

Proof: This result follows from Theorems 3 and 4. [

V. NUMERICAL RESULTS

In this section, we present numerical validation studies
for the system of the form (1) studied in [7], with f(x) =

T
[—xl + 29, —0.521 — 0.52> (1 — (cos (2x1) + 2)2)}

and g(z) = [0,cos(2x1)+2]". The cost function for
this problem sets R = 1 and Q = Is, with Iy the
identity matrix in R2X2. The optimal value function is
V*(x) = 0.52% + 23, which generates the optimal feedback
controller u*(xz) = —(cos(2z1) + 2)z3. The numerical
validation studies in [7] are based on a very low-dimensional
system of polynomial bases, whose span contains the exact
optimal value function.

Figure 1 depicts the error norm [[V* — On(t,-)| L (q)
for two Matérn kernels and an exponential kernel. Since
|E5|| < &, it holds that |E, oy (t, )| < &lon(t, )| r(q) and
o (t. Y=y < Rl (t, ). and Lemma 1 implies
the corresponding convergence in the norm of L>°(2). The
ultimate approximate value function 9 (¢, ) closely matches
the analytical expression for the optimal value function V* as
the dimension N — oo. Note that Theorem 1 only guarantees
that O (¢, -) converges to V,,, not V*, and, indeed, this plot is
a more stringent empirical test of the performance of the critic.
Figure 1 illustrates that the online critic estimates Oy (t,-)
for the Sobolev-Matérn kernels converge at a rate that is
theoretically determined by the fill distance as described in
the paper in Lemma 1.

T T T T
—B— Gaussian
% Sobolev-Matern, k = 1.5
{ Sobolev-Matern, k = 2.5 4
Theoretical Upper Bound

-0.7 -0.8 -0.9 -1.1 -1.2 -1.3
Logarithm Fill Dmanc(‘ logio(hzy.0)

Fig. 1. The L°(2) error norm of the online critic estimates of the
value function V'* using the dead-zone rule described in Lemma 1.
The steady-state value function approximations using Sobolev-Matérn
kernels of smoothness k = 1.5,2.5 and exponential kernels are
plotted above. Note that the rates of convergence for the Sobolev-
Matérn kernels closely follow the theoretical bounds derived in Lemma
1.
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Fig. 2. The L°°(2) error norm of the online critic estimates of the
control input w* with Sobolev-Matérn kernels of smoothness k = 2.5.
Note that the rates of convergence for the Sobolev-Matérn kernels
closely follow the theoretical bounds derived in Theorem 4.

We should emphasize that these studies make use of regular
arrays of centers to verify and validate the derived error
bounds. The proposed method does not require that centers
be selected using regular grids. Suppose for example that the
state trajectory of interest is embedded in a high-dimensional
state space, but its evolution resides on a low-dimensional
submanifold embedded in that high-dimensional space. Since
the approach in this paper uses scattered bases that are not
confined to any a priori grids or triangulations, their locations
can be tailored to locations on the submanifold. Such a strategy
can be pursued to address issues related to the curse of
dimensionality. An in-depth study of how to execute this
strategy in practice far exceeds the limits of this introductory
paper. However, in principle, the proposed method is not
restricted to regular grids of bases that scale like N.

A bit more can be deduced about the value function error
in L>°(Q)) when the regularity condition in Lemma 1 holds.
This is referred to as the “doubling trick” in the literature on
approximations in RKHS; see Theorem 11.23 of [15] that en-
ables the conclusion |E, (I —ILy)f| < O((supgcq Pn(£))?).
A line having this slope for the Sobolev-Matérn kernel with
k = 2.5 is labeled in Figure 1 as the “theoretical upper bound.”

Often, in implementations, it is of vital concern to establish
the rates of convergence of the error p — iy where iy is the
control approximation based on ¥x(¢,-) of the ideal control
u*. We can proceed exactly as in the proof of Theorem 3 of
[19] in the case at hand to conclude that

[u* —an(t, e < ClIVF =in(t)lm@
<O (IV* = Villa@ + llon )l a@)

for some fixed constant C' > 0. Thus, if ||[V* — V,[[g(q) is
sufficiently small, say of O(€n max), then we expect the same
rate of convergence for the control convergence in C'(2) as in
Lemma 1 for [[on(t, )| r(0)-

VI. CONCLUSIONS

This paper has formulated the online critic for estimating the
optimal value function in terms of evolution laws for a wide
variety of RKHSs. The paper lifts conventional approaches,
which focus on studies of the convergence of parameter errors
|[W — W(t)||[gv in RN, to instead focus on the norms of
the value function error ||[V* — 0(t, )| g(q). A wide variety
of the performance bounds on the error in the value function

/
{
! —_—u*
I

-1 — —ux,N =16[]
——uy,N=20
un, N =25
15 \ \ \ \ \ \ \ ; ;
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Fig. 3. Feedback control u by learned W with Sobolev-Matérn kernels
of smoothness k = 2.5.

estimates are derived in terms of the power function of the
scattered basis. This basic result is subsequently refined to
obtain performance guarantees on the critic in terms of the fill
distance of the centers in the subset of interest 2.
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