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Abstract

Accurately decoding external variables from observations of neural activity is a major challenge in
systems neuroscience. Bayesian decoders, that provide probabilistic estimates, are some of the most
widely used. Here we show how, in many common settings, the probabilistic predictions made by
traditional Bayesian decoders are overconfident. That is, the estimates for the decoded stimulus or
movement variables are more certain than they should be. We then show how Bayesian decoding with
latent variables, taking account of low-dimensional shared variability in the observations, can improve
calibration, although additional correction for overconfidence is still needed. We examine: 1) decoding
the direction of grating stimuli from spike recordings in primary visual cortex in monkeys, 2) decoding
movement direction from recordings in primary motor cortex in monkeys, 3) decoding natural images
from multi-region recordings in mice, and 4) decoding position from hippocampal recordings in rats. For
each setting we characterize the overconfidence, and we describe a possible method to correct
miscalibration post-hoc. Properly calibrated Bayesian decoders may alter theoretical results on
probabilistic population coding and lead to brain machine interfaces that more accurately reflect
confidence levels when identifying external variables.

Significance Statement

Bayesian decoding is a statistical technique for making probabilistic predictions about external stimuli or
movements based on recordings of neural activity. These predictions may be useful for robust brain
machine interfaces or for understanding perceptual or behavioral confidence. However, the probabilities
produced by these models do not always match the observed outcomes. Just as a weather forecast
predicting a 50% chance of rain may not accurately correspond to an outcome of rain 50% of the time,
Bayesian decoders of neural activity can be miscalibrated as well. Here we identify and measure
miscalibration of Bayesian decoders for neural spiking activity in a range of experimental settings. We
compare multiple statistical models and demonstrate how overconfidence can be corrected.

Introduction

Decoding, estimating external variables given observations of neural activity, is a fundamental tool in
systems neuroscience for understanding what information is present in specific brain signals and areas
(deCharms and Zador, 2000; Kriegeskorte and Douglas, 2019). Decoders have been widely used for
studying the representation of movement variables, such as speed, force, or position (Humphrey et al.,
1970; Georgopoulos et al., 1986), the representation of visual stimuli (Warland et al., 1997; Quiroga and
Panzeri, 2009) and the representation of sounds (Theunissen et al., 2004), touch (Diamond et al., 2008),
odors (Uchida et al., 2014), and tastes (Lemon and Katz, 2007). Here we examine Bayesian decoders that
estimate the probability of each possible stimulus or movement given neural observations (Sanger, 1996;
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Zhang et al., 1998; Koyama et al., 2010; Chen, 2013). Bayesian models explicitly represent the
uncertainty about external variables, and this uncertainty may be useful for understanding
perceptual/behavioral confidence (Vilares and Kording, 2011; Meyniel et al., 2015) or for creating more
robust brain machine interfaces (Shanechi et al., 2016). However, Bayesian models are not always well
calibrated (Degroot and Fienberg, 1983; Draper, 1995). Here we ask whether the uncertainty estimates
for Bayesian decoders are correct.

With Bayesian decoders, the conditional probability of stimulus or movement variables given neural
responses is calculated using Bayes theorem (Quiroga and Panzeri, 2009). This posterior is the product
of a likelihood that describes the probability of neural activity given external variables (an encoding
model) and a prior that accounts for other knowledge about the external variable. This framework is
very general and can be used to decode categorical or continuous variables in trial-by-trial designs or
with continuous time series using spiking timing features or counts as well as other population neural
signals (van Bergen et al., 2015; Lu et al., 2021). One common likelihood model for the counts of spiking
activity is based on the Poisson distribution and the assumption that the neural responses are
conditionally independent given their tuning to the external variable. However, since neural activity has
shared (Arieli et al., 1996; Tsodyks et al., 1999) and non-Poisson variability (Amarasingham et al., 2006;
Goris et al., 2014), recent studies have focused on better modeling latent structure and dispersion (Scott
and Pillow, 2012). Modeling this shared and non-Poisson variability can improve decoding (Graf et al.,
2011; Ghanbari et al., 2019).

In this paper, we compare Bayesian decoders with Poisson versus negative binomial noise models as well
as decoders with or without latent variables with the goal of understanding how differences in model
structure affect the posterior uncertainty. In well calibrated models, the posterior of the external
variables should accurately reflect their true probability. For instance, a 95% credible interval —
analogous to the confidence interval in frequentist descriptions — should have a 95% chance of
containing the true value. However, miscalibration can occur due to model misspecification — when the
datais generated by a process that does not match the model assumptions — or when there is unmodeled
uncertainty about the model structure (Draper, 1995). Previous studies suggest that neural variability
may be an important dimension of the neural code (Urai et al., 2022), and the uncertainty of neural
population codes may determine perceptual/behavioral confidence (Knill and Pouget, 2004). Accurate
descriptions of population uncertainty in experimental data may, thus, inform for theoretical
understanding. In this study, we illustrate the basic problem of miscalibration through simulations and
evaluate calibration for experimental data.
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We focus on several experimental settings: trial-by-trial decoding of stimulus movement direction from
primary visual cortex (V1) and reach direction from primary motor cortex (M1), trial-by-trial decoding of
categorical natural images from multiple brain regions, and time-series decoding of animal position from
hippocampal recordings (HC). We find that using negative binomial likelihoods and latent variables both
improve calibration. However, even with these improvements, Bayesian decoders are overconfident. To
solve this problem, we introduce a post-hoc correction for miscalibration that yields more accurate
uncertainty estimates.

Materials and Methods

Code for the results in this paper is available at
https://github.com/ihstevenson/latent bayesian decoding

Data
To assess the calibration of Bayesian decoders we use previously collected, publicly available data from

1) macaque primary motor cortex during a center-out reaching task, 2) macaque primary visual cortex
during presentation of drifting or static sine-wave gratings, 3) mouse multi-region recordings during
presentation of static natural images, and 4) rat hippocampus during running on a linear track.

Data from primary motor cortex (M1) were previously recorded from the arm area of an adult male
macaque monkey during center-out reaches. Reaches were made in a 20 x 20cm workspace while the
animal was grasping a two-link manipulandum, and single units were recorded using a 100-electrode
Utah array (400mm spacing, 1.5 mm length, manually spike sorted manually - Plexon, Inc). On each trial,
we analyzed spike counts during the window 150ms before to 350 ms after the speed reached its half-
max. Data and additional descriptions of the surgical procedure, behavioral task, and preprocessing are
available in Walker and Kording (2013).

Data from primary visual cortex (V1) were previously recorded and shared in the CRCNS PVC-11 dataset
(Kohn and Smith, 2016). Single units were recorded using a 96-channel multielectrode array from an
anesthetized adult male monkey (macaca fascicularis, monkey 3) during presentations of drifting sine-
wave gratings (20 trials for each of 12 directions). On each trial we analyzed spike counts between 200
ms and 1.2 s after stimulus onset. Detailed descriptions of the surgical procedure, stimulus presentation,
and preprocessing can be found in Smith and Kohn (2008) and Kelly et al. (2010).

We also examine an additional previously recorded, shared dataset from primary visual cortex where
stimuli were presented with multiple contrasts (Berens et al., 2012). Here single units were recorded
using custom-built tetrodes from an awake male monkey (macacca mulatta). Static sine-wave gratings
were presented with different contrasts. Here we use data from subject “D” recorded 2002-04-17.
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Detailed descriptions of the surgical procedure, stimulus presentation, and preprocessing can be found
in Ecker et al. (2010) and Berens et al. (2012).

Multi-region data (ABI) were analyzed from the Allen Institute for Brain Science - Visual Coding
Neuropixels dataset (https://portal.brain-map.org/explore/circuits). Detailed descriptions of the surgical

procedure, stimulus presentation, and preprocessing can be found in Siegle et al. (2021). Briefly, during
the recordings, head-fixed mice were presented with visual stimuli (including Gabor patches, full-field
drifting gratings, moving dots, and natural images and movies) while they were free to run on a wheel.
We analyze single unit data with spikes sorted from six Neuropixels arrays using Kilosort 2
(electrophysiology session 742951821, a male wild-type C57BL/6J). Using n=267 single units (742951821,
with SNR>3, rate>1 spike/trial) responding to 118 natural images (4873 trials in total).

Data from hippocampus were previously recorded from the dorsal hippocampus of a male Long Evans
rat and shared in CRCNS hc-3 (Mizuseki et al., 2013). Recordings were made using an 8-shank silicon
probe, each shank with 8 recording sites, while the animal ran on a linear track, and single units were
automatically spike sorted with KlustaKwik and refined with Klusters. Data from recording id ec014_468
were analyzed in 200 ms bins. Data and additional descriptions of the surgical procedure, behavioral
task, and preprocessing are available in Mizuseki et al. (2014)

Encoding Models

Our goal is to decode an external stimulus or movement variable x* based on spikes observations from
N neurons y* € NX,. Here we construct a Bayesian decoder by first fitting an encoding model with
training dataset {x,Y} where x = (x4, ..., x¢)' denotes the external variable across K trials and y;;
(entries of Y € NX*N) is the number of spikes emitted by neuron i during external variable x;. This
encoding model allows us to calculate the likelihood distribution P(y*|x*, x,Y), and we then use Bayes’
rule to evaluate the posterior distribution P(x*|y*,x,Y). In traditional Bayesian decoders, based on
generalized linear models (GLMs), the spikes of each neuron are assumed to be conditionally
independent given the external variable. Here we examine GLMs with observation models that assume
either Poisson noise or negative binomial noise. Additionally, we fit decoders based on generalized linear
latent variable models (GLLVMs) where we use the same representation for external variables, but
assume the observations are also related or influenced by low-dimensional unobserved variables (i.e.,
latent variables). GLMs and GLLVMs have been widely used in statistics for modeling count data
(McCullagh and Nelder, 1989; Skrondal and Rabe-Hesketh, 2004) and in neuroscience specifically
(Brillinger, 1988; Scott and Pillow, 2012).

Poisson and Negative Binomial GLMs and GLLVMs

The Poisson GLM and negative binomial GLM model the spiking of neuron i on trial k as yy; ~
Poisson(uy;) or yii ~ NB(ugi, @;), respectively, where Poisson(u) indicates the Poisson distribution
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with the rate parameter u and NB(u, ) denotes the negative binomial distribution with mean u and
variance u + au?. The mean parameter yy; in both models is regressed as log uy; = zj,B; where z;, =
f(xx) € RP is a function (e.g. basis expansion) of the external variable x.. For the M1 and V1 decoders
we use a Fourier basis to capture the tuning over the circular variable (stimulus or movement direction)
z =[1 cosx sinx cos 2x sin 2x]. For the ABI decoder we simply fit a unique mean for each individual
image of the N natural image stimuliz = [1 1,(x) -+ 15(x)] where 1;(x) denotes an indicator function
returning 1 when i = x and 0 otherwise. We estimate f# and a by maximum likelihood estimation (MLE)
or, in most cases, maximum a posteriori (MAP) estimation, where we put a Gaussian prior
Bj>1 ~ N(0,nl) to prevent overfitting (excepting the intercept term). This prior is equivalent to L.
regularization.

Since the responses of different neurons may be correlated, the GLM does not generally capture noise
correlations - dependencies between neurons beyond what the external variable induces. The GLLVMs
extend the GLMs described above by including low dimensional latent factors in the model for the mean
parameters. In other words, the Poisson GLLVM and NB GLLVM assume yy; ~ Poisson(uy;) or Yi; ~
NB (py;, ;) with log g, = z;B; + ¢ d;, where ¢, € RY is the latent factor for trial k (with ¢ << N) and
d; is the factor loading that describes how the latent states influence neuron i. Latent variables can
capture single-trial patterns of higher than expected or lower than expected firing across the population
of neurons. For instance, the activity of pairs of neurons with positive noise correlations may be
accounted for by have similar coefficients d.

In this basic form, the latent variable model is not identifiable, and we put several constraints on {ck}’k(z1
and {d;}*, to ensure identifiability. Denote C = (¢, ...,cx)" and D = (dy,...,dy), and write the
singular value decomposition of CD as CD = UXV'. Following Miller and Carter (2020), we constrain: 1)
U and V to be orthogonal, 2) 2 to be diagonal matrix, with diagonal elements > 0 and sorted in
descending order and 3) the first nonzero entry for each column of U to be positive. Thenwelet C = UXY
and D = V', or equivalently let C = U and D = XV'. The model parameters then are estimated by
maximizing the likelihood via alternating coordinate descent algorithm, i.e. updating the “neuron” part
{B; ?’:1 and D) and the “latent” part (C) until convergence is achieved.

In cases where the number of trials is relatively small, when p is large, or when the spiking is extremely
sparse, both the GLM and GLLVM can overfit or fail to converge (Zhao and lyengar, 2010). In addition to
the Gaussian prior (i.e. L2 penalty) on  we also include a Gaussian prior C~N(0,{I), and find the
maximum a posteriori (MAP) estimates rather than the MLE. Here we use n = 1 for V1 and M1, 10 for
HC, and 100 for ABI, and { = 0.001 for the GLLVMs. These were set by hand and not extensively
optimized, since the qualitative results are robust across a wide range of values.

Approximate Bayesian Decoding
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Once the encoding model is fitted with training data x and y, we then decode the external variable x*
based on new observations of spikes y* € NV, by evaluating the posterior distribution P(x*|y*, x,Y).
For the GLM, we have

N
P(x|y*,x,Y) ﬂp(ymx*,x, p(x).
i=1

The results here all assume a flat/uniform prior on p(x™); however, in general, this term can incorporate
prior information about the external variables.

For the GLLVM we additionally need to account for the latent variables. Since the data used for fitting
the encoding model is not the same as decoding dataset, the latent state ¢, depending on specific trials,
acts as a nuisance parameter. We then obtain the posterior

Pty ) [ 1] [ Poil, 0 0p@ilx n@d@del pex)

Where 6 denotes the parameters {a, 5,d}. When the training set size K is small, the parameter
estimates for the encoding model can have substantial parameter uncertainty (Cronin et al., 2010).
However, in practice, including parameter uncertainty (via MCMC) does not typically affect the posterior
over the external variable (see results in Wei, 2023). We thus approximate the full posterior by plugging
in the MLE/MAP estimates 6.

A AN
Our goal is then to calculate the marginal predictive likelihood | P (y*, {@, By di}, ,c) n(c)dc. If we
assume the observations y™* to be conditionally independent given both stimuli and latent factors this is
given by [TV, [ P(y/|x", &;, Bi, d;)m(c)dc. Although there is no closed form solution to the integral, we
can use the Laplace approximation, such that
A n A s q 1 G o~ A A A 1
JP(}’ﬂX*' a;, By, di, O)m(c)de = P(x*, &;, By, d;, €)m (&) (2m)2|Ve|2 o< P(x*, &;, By, dy, €)1Ve |2,

-1

log P(cly; x*&;,B;.d;) |
ac? c=¢

2
where ¢ is the ML (or MAP) estimate and V, = [a

Since the posterior distribution of x* is not necessarily unimodal, we evaluate the posterior distribution
by grid approximation, which works efficiently for a one-dimensional case. In other words, we first
compute the un-normalized posterior density at a grid of values that cover effective rage of x*, and then
normalize the density.

Greedy Decoders

To better understand how the composition of the population affects our results, we compare GLM and
GLLVM decoders that use the full population of neurons to those with only a subset of neurons. Here we
select subsets of the 20 “best” or “worst” neurons using a greedy optimization (see Ghanbari et al.,
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2019). We use a beam search approach where we add neurons one at a time to the population and keep
the top (or bottom) five performing populations that minimize (or maximize) the absolute median error
on the training data for the M1 and V1 datasets or the top-1 accuracy on the training data for the ABI
dataset. Although not guaranteed to be the optimal best/worst set of 20 neurons, this approach
generates subpopulations where the decoding error is substantially better/worse than randomly
selected sets of 20 neurons.

Decoders based on Optimal Linear Estimation

For comparison, we also fit non-Bayesian decoders to trial-by-trial data M1 and V1 and continuous data
from HC (see Ghanbari et al., 2019). Briefly, we use optimal linear estimation (OLE), where the core
assumption is that the external variable on trial k can be reconstructed using a linear combination of
functions weighted by the activity of each neuron

% = argmaz, ) yihi(0)
When ¢; is the preferred direction of each neuron this is a population vector decoder, but here we use
the (Fourier or radial) basis functions described above where ¢;(x) = }.; wy;z;(x), and we optimize w
by the ridge regression
W=TYy +aD"YTz
with A = 1 for the results here.

Coverage and Constant Correction

To assess the calibration of these decoders for continuous variables we compare the frequentist
coverage (fraction of trials on which the true stimulus/movement falls within a highest density region)
to the nominal/desired probability. For a well-calibrated Bayesian model, the highest posterior density
(HPD) regions of a given size (e.g. the 95% region) should contain the true values with the nominated
probability (e.g. 95%). Here we compute the (cross-validated) proportion of trials for which the true
stimulus/movement falls within the HPD regions (the “coverage”) as we vary the size of the credible set.

For categorical posteriors, there are several scoring rules that have been previously described, such as
the Brier score (Gneiting and Raftery, 2007), but, here, to emphasize “coverage”, we extend our
calculations with continuous credible regions to use discrete credible sets. We construct the HP set, as
before, adding the highest probability categories until the probability m in the set meets the nominated
probability m* with m = m*. For continuous distributions, credible regions can be calculated so that
there are minimal errors between the desired probability (m*) and the probability in the credible set
(m), but for categorical distributions, there can be a substantial mismatch between these quantities. For
instance, suppose we want to find the coverage of a 25% credible set, but category 1 has posterior
probability 50% on average across trials. To correct for this mismatch, we adjust the empirical coverage
for categorical posteriors (ABI results below) by a factor of m*/(m) (e.g., .25/.5 for the example above),
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where (-) denotes an average across trials. However, for continuous posteriors we do not need or apply
this correction here.

Since most Bayesian decoders appear to be badly calibrated, we consider a post-hoc correction (i.e.
recalibration). This correction is similar to the “inflation factor” in ensemble probabilistic forecasting
(Wilks, 2002; Gneiting and Raftery, 2007) where similar types of overconfidence can occur (Raftery et
al., 2005). Namely, here we consider decoding with a modified posterior Q(x*|y* x,Y) «
exp(hlog P(x*|y*, x,Y)) for some constant h > 0. Decoding from the modified posterior Q(x*|y*, x,Y)
does not change the accuracy, but allows the confidence to be adjusted. Here we fit h by minimizing the
squared error between the empirical and nominal coverage probability over the full range (0, 1).

Conformal Prediction Intervals

As an alternative to the post-hoc correction, we also consider split conformal prediction based on the
MAP point-estimates in our Bayesian models and the OLE point-estimates. Here our approach is based
on Algorithm 2 from (Lei et al., 2018). Briefly, we split the data in half. Then, after fitting our models to
one half of the data, we evaluate the residuals for the other half. For a desired coverage 1 — a and a
point-estimate for the decoded variable i, the conformal prediction interval is [A(y*) — d, i(y*) + d]
where d is the [(n/2 + 1)(1 — a)]th smallest absolute residual. Here residuals are calculated based on
the circular distance.

Dynamic Models

The GLM and GLLVM described above assume that trials are independent. However, in many cases, it is
more appropriate or desirable to decode with a dynamic model. Rather than decoding the external
variable on trial k, we wish to decode the external variable x; at time t and to incorporate smoothness
assumptions relating x; to previous time points. Such state space models have been previously
described for Poisson observations (Smith and Brown, 2003; Paninski et al., 2010; Vidne et al., 2012),
and applied for decoding (Lawhern et al., 2010). Here we describe decoding with a dynamic NB GLLVM,
for which the Poisson model is a special case (see Wei (2023) for additional detail). We apply this dynamic
model to hippocampal position decoding (see Results, Fig 8).

Briefly, we assume that the observation for neuron i at time t follows

Yie ~ NB(uye, ay), log wie = Pize +dicy, ze=m,+ A,z 1+n;, cc=mc+ A1+,
where z, = f(x;), B; € R?, d; € R and (1,,1c) ~ Np4q(0,diag(Q;, Q.)). With initial conditions given
by z; ~ N(zy,Q50) and ¢; ~ N(cy, Qs0). To make the model identifiable, we put the same set of
constraints on the model parameters as above. Denote C = (¢4, ...,c7) and D = (d4, ...,dy)", let1) C'C
be diagonal, with diagonal elements sorted in the descending order, 2) D'D = I,, and 3) the first non-
zero entry for each column of C is positive.
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When fitting the encoding model, {z;} is observed and {z,, Q,o, m,, 4,, @,} do not need to be estimated.
We fit the remaining model parameters by a cyclic coordinate descent algorithm, i.e., alternatively
updating the “neuron” part {£;, d;}_, and “latent” part {{c;}1—1, ¢co, Qco, M¢, Ac, Qc}. The “latent” part
is fitted via an expectation maximization (EM) algorithm with a normal approximation in the E-step,

following (Lawhern et al., 2010). For decoding, we plug in the fitted {ﬁ’i}il and {ﬁi}il and refit

{({z}, c. 3 -1, 25, Qz0, Mz Ay, Qg Co, QeoyMe, A, Q) via an EM  algorithm again using a normal
approximation at E-step. Note that here, {c,}'_, are not treated as nuisance parameters. For the results
decoding position from hippocampal activity, we assume thatm, =0, m, =0,A4, =1, and A, = 1.
Additionally, rather than a direct grid approximation for the posterior over x*, the posterior is
approximated as a multivariate normal distribution over z;. To assess accuracy and coverage, we
evaluate the multivariate normal distribution along a grid in x* for each t separately and normalize,

p(x;) = p(z;(x¢)).

Results

Bayesian decoders are based on first fitting tuning curves for each neuron using training data. The
encoding model determines the likelihood distribution, and, for traditional (naive) Bayesian models,
neurons are assumed to be conditionally independent given the external variables. During decoding we
then use Bayes’ rule to calculate the posterior distribution over possible stimuli or movements given the
observed neural activity. Here we focus on assessing not just the decoding accuracy but the uncertainty
of the posterior under different models and experimental settings. Our goal is to determine to what
extent the traditional models, as well as more recently developed latent variable models, have well-
calibrated posterior estimates (i.e., where the posterior probabilities match the true probabilities of the
external variable taking specific values).

To illustrate the problem of model calibration we consider a hypothetical set of Bayesian decoders (Fig
1A). The average error is the same for each of these decoders, since the maximum and means of the
posteriors are identical, but the uncertainty of the decoders varies. There is underconfidence or
overconfidence on single trials, and, across trials, the posterior distributions do not necessarily match
the distribution of errors. When errors occur an overconfident decoder will not have proper coverage of
the true value. On the other hand, an underconfident decoder will cover the true value too often for the
desired confidence level. In our example case, imagining 5 trials and an 80% credible interval, a well-
calibrated decoder correctly covers the true value for 4 of 5 trials, while the overconfident decoder only
covers 1 of 5 and the underconfident decoder covers 5 of 5. In general, overconfident decoders will have

10
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lower coverage than desired, while underconfident decoders will have higher coverage than desired (Fig
1B).

Bayesian models can have poor calibration when the model is misspecified. To illustrate how such
misspecification could occur with neural data we simulate the impact of latent variables on a traditional
Bayesian decoder. Here noisy spike observations are generated by a population of identically tuned
neurons (Fig 1D, top) with Poisson variability. However, in addition to their stimulus/movement tuning
neurons receive a common one-dimensional latent input that increases or decreases activity on
individual trials. Since this input is shared by the entire population (of 20 neurons in this case), it
produces correlated variability. A traditional Bayesian decoder first fits tuning curves for each individual
neuron (here using a Generalized Linear Model - GLM - with Poisson observations). The posterior is
calculated assuming that neural responses are conditionally independent given the stimuli, and, as
before, we can quantify the coverage by identifying the highest posterior density (HPD) regions. In this
more realistic simulation, the posterior can be multimodal resulting in multiple credible regions rather
than just a single credible interval. However, since the GLM decoder does not account for the latent
variable, the decoder is over-confident (Fig 1C, top) and less accurate (Fig 1D, bottom). When the latent
variable has a larger impact on neural responses relative to the impact of the stimulus, errors increase,
and the decoder is increasingly overconfident. Hence, traditional Bayesian decoders used in the
literature by assuming the independence between responses given the stimuli can have high error and
over-confidence in the presence of latent variables.

Modeling the latent variable reduces error and provides well-calibrated posteriors. Here we use a
Poisson Generalized Linear Latent Variable Model (GLLVM, see Methods) where the encoding model is
fit to account for the tuning curve, as well as the contribution of a shared low dimensional latent variable.
Under the GLLVM, neural responses are not conditionally independent given the stimulus. Rather, for
each trial the latent variable is estimated, and, during decoding, the latent variable is marginalized over
in order to generate the posterior distribution over stimuli. The error for the GLLVM decoder still
increases as the latent variable has a larger relative impact on neural responses (Fig 1D, bottom), but the
coverage closely follows the desired credibility level (Fig 1C, bottom). Well calibrated decoders (such as
the GLLVM in this simulation) have the advantage that the posterior appropriately covers the true
stimulus.

11
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Figure 1: Bayesian decoders can misestimate uncertainty. A) Examples of posteriors for three toy
Bayesian decoders: an under-confident (blue), over-confident (red), and a well-calibrated (black)
decoder provide posterior estimates for each trial. Curves denote single-trial posteriors and lines below
each posterior denote 80% the credible intervals, and credible intervals for an additional four trials. Dots
denote MAP estimates. Coverage is measured by whether the highest posterior density regions cover
the true value (Error=0, in this case). B) Coverage as a function of the desired confidence level for each
decoder. C) In a simulation of homogeneous neurons receiving latent input in addition to their tuning to
an external variable, we find that a GLM-based decoder is increasingly over-confident as the contribution
of the latent input increases (top). Modeling the latent input with a GLLVM, even though it is unknown,
reduces over-confidence (bottom). For clarity, curves are averages of multiple simulations. D) Tuning
curves for the simulated population (top) and median cross-validated error for the MAP estimates
(bottom) for the GLM (red) and GLLVM (gray) averaged across multiple simulations. Error bars denote
standard deviation across simulations.

To further illustrate how overconfidence arises we consider a single tuned neuron in the GLLVM (Fig 2).
Here a neuron is tuned with a preferred stimulus/movement direction of 0 deg. However, a latent
variable that changes from trial to trial can shift the tuning curve up or down. This latent variable creates
an additional source of ambiguity when a specific spike count is observed. We cannot distinguish
between a situation where the neuron is spiking during the presence of a preferred stimulus and a
situation where the neuron is spiking during a non-preferred stimulus that coincides with an excitatory
latent input. For stimulus x and neural responses y, the key difference between the GLM and GLLVM
decoders is that instead of using the posterior p(x|y) based only on a tuning curve model, we model an
additional latent variable z and decode from the marginal posterior distribution [ p(x|y, z2)p(2)dz.
Since marginalizing, in general, increases uncertainty, the posterior distributions for individual neurons
under the GLLVM will be more uncertain than those of a GLM with the same noise model.
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Figure 2: Latent variables increase posterior uncertainty when modeled. A single neuron tuned to reach
direction may additionally be impacted by a latent variable (left) with the tuning curve scaled up or down
depending on the latent state (yellow to blue curves). After fitting the encoding model, we can find the
joint posterior over the value of the latent variable and the reach direction given an observed spike count
(middle). Left panels show “slices” of the joint posterior evaluated at specific latent values (colors
correspond to tuning curves), and the heatmaps show the full joint posterior. To decode the reach
direction, we marginalize/integrate over the latent variable (right). The full model (blue) has higher
uncertainty for reach direction than a model that does not take the latent variable into account (black).

Trial-by-Trial Experimental Data
For experimental data we do not know the true model. However, the calibration and accuracy of

Bayesian decoders can be assessed empirically. Here we compare GLM and GLLVM Bayesian decoders
in three experimental settings: 1) decoding reach direction during a center-out task using recordings
from primary motor (M1), 2) decoding sine-wave grating movement direction using recordings from
primary visual (V1) cortex, and 3) decoding the identity of a natural image stimulus using multi-region
Neuropixels recordings from the Allen Brain Institute (ABI). These data were previously collected and
publicly shared (see Methods), and for each setting we evaluate decoding accuracy as well as coverage
— the fraction of trials where the true stimulus falls within the highest density regions of the posterior
(HPD).

We compare four models 1) Poisson-GLM, 2) negative binomial-GLM, 3) Poisson-GLLVM, and 4) negative
binomial GLLVM. For M1 and V1, we model tuning curves using a Fourier basis. For ABI, we model the
spike counts in response to each of 118 images and regularize to prevent overfitting (n = 100). For the
GLLVMs, we model a one-dimensional latent variable that co-modulates the responses of each neuron
in the recorded population in addition to the tuning curves. That is, we fit an encoding model which
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predicts the response of each neuron on each trial as conditionally independent Poisson or negative
binomial observations. During decoding we evaluate the posterior distribution over possible external
variables and marginalize over the latent variable in the case of the GLLVM. All results are cross-validated
(10-fold) such that the decoders are trained on one set of trials and error/accuracy and uncertainty are
evaluated on test data.
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Figure 3: Experimental decoding tasks and example posteriors. A) For M1 data, we aim to decode target
direction in single trials of a center-out reaching task, B) For V1 data, we aim to decode stimulus (full-
field grating) movement direction in single trials, and C) For ABI data, we aim to decode the identity of a
natural image stimulus on single trials. For each case, example stimuli (top) and tuning curves for
individual neurons (bottom) from the Poisson GLM fits. (D-F) show example posteriors for single trials
(left) as well as the average posterior aligned to the MAP estimate (right). For ABI, note that the
posteriors are discrete distributions and, for clarity, only a subset of images are shown. In (F), black
triangles denote the true image stimulus.

For experimental data, there is substantial heterogeneity in tuning curves (Fig 3A-C), and posteriors may
be continuous or discrete depending on the experimental context. However, as with the toy examples
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above, the GLLVM (in this case, with a negative binomial observation model) tends to have posteriors
with higher uncertainty compared to the GLM (Fig 3E-F). On single trials, the posteriors tend to be wider
and to have lower probabilities for the (MAP) point estimate for the GLLVM. In both continuous and
discrete cases, outcomes that were assigned near-zero probability under the GLM are assigned non-zero
probability under the GLLVM.

As with the simulations above, we find that Bayesian decoders tend to be over-confident (Fig 4A-C). For
all three experimental settings (M1, V1, and ABI), the highest posterior density (HPD) regions cover the
true stimulus/movement less often than desired for all credible levels when decoding from all recorded
neurons. For the Poisson GLM, for example, when we specify a 95% credibility level, the posteriors from
M1 only include the true target direction 70% of the time, posteriors from V1 only include the true
stimulus direction 51%, and posteriors from ABI only include the true natural image stimulus 31% of the
time. The negative binomial GLM has better coverage than the Poisson GLM, while adding latent
variables improves coverage even more. The best-calibrated model of these four is the negative binomial
GLLVM - here when we specify a 95% credibility level, the posteriors from M1 include the true target
direction 81% of the time, posteriors from V1 include the true stimulus direction 82%, and posteriors
from ABI include the true natural image stimulus 86% of the time. Traditional Bayesian decoders can
thus have substantial over-confidence, and calibration is improved by adding latent variables.

As previous studies have noted, non-Poisson observation models and latent variables can alter, and in
many cases improve, decoding accuracy. Here, for M1 and V1, we calculate the absolute circular distance
between the true target/stimulus direction and the maximum a posteriori (MAP) estimate of the
target/stimulus direction from the Bayesian decoders on each trial. For ABI, we assess the accuracy
based on whether the top-1 or top-5 categories of the discrete posterior include the true stimulus image
on each trial. For the full populations of M1 data, the models do not have substantially different errors
(median across trials 9.8 deg, 9.5 deg, 9.8 deg and 9.8 deg for the P-GLM, NB-GLM, P-GLLVM, and NB-
GLLVM, respectively). For the V1 data, the Poisson GLM outperforms the NB-GLM (median error 3.8 deg
vs 4.5 deg, Wilcoxon signed rank test, p<10?, z=7.5), and the Poisson GLLVM outperforms the NB-
GLLVM (median error 2.8 deg vs 3.0 deg, Wilcoxon signed rank test p<1072, z=7.7). For ABI data,
however, the NB models out-perform the Poisson models (top-1 accuracy 15.6% [14.6, 16.7] for P-GLM
vs 23.0% [21.9, 24.2] for NB-GLM). For V1, the GLM-based models have slightly lower error than the
GLLVM (p<10*2, z=17.0, Wilcoxon signed rank test for Poisson GLM vs GLLVM), but for the ABI data, the
GLLVM models improve accuracy substantially (22.3% [22.1, 24.5] for P-GLLVM and 30.1% [29.2, 31.8]
for NB-GLLVM). In all cases, for randomly sampled subnetworks, we find that the cross-validated error
decreases (or accuracy increases) as a function of how many neurons are included in the decoder for all
models (Fig 4D-F).
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These error and accuracy measures are based on the MAP estimates of the external variable; however,
there are also differences across models in the dispersion of the posteriors. The NB models have higher
circular standard deviations than the Poisson models for the M1 and V1 data and substantially higher
entropy for ABI (Fig 4G-I). For M1, the circular standard deviation of the posterior is 7.2 deg for the
Poisson GLM (median across trials) compared to 8.8 deg for the NB-GLM (p<10?, z=14.3, two-sided
Wilcoxon signed rank test), and 7.7 deg and 9.0 deg for the P-GLLVM and NB-GLLVM (p<107?, z=13.9,
two-sided Wilcoxon signed rank test). For V1, the median circular standard deviation is 2.0 deg for the
P-GLM compared to 4.0 deg for the NB-GLM (p<10-*2, z=38.8) and 2.0 deg vs 3.3 deg for the P-GLLVM
and NB-GLLVM (p<10?*?, z=-35.0, two-sided Wilcoxon signed rank test). For ABI, the average entropy is
1.26 bits for the P-GLM and 2.7 bits for NB-GLM (t(4872)=136.4, p<10'?, paired t-test), 1.8 bits for P-
GLLVM, 4.0 bits for NB-GLLVM (t(4872)=19.6, p<107'?, paired t-test compared to NB-GLM). In the case of
decoding natural images from ABI, the GLLVMs are less certain and more accurate than the GLMs.

Differences in the dispersions of the posteriors are reflected in differences in coverage. As more neurons
are used for decoding the models become increasingly overconfident and badly calibrated (Fig 4J-L),
even as the error decreases (Fig 4D-E) or accuracy improves (Fig 4F). The negative binomial GLLVM has
the best coverage across datasets and population sizes but note that the coverage is still less than desired
(95% for Fig 4J-L).

Interpreting latent variable models
Including a latent variable allows the GLLVMs to account for variation in neural responses to the same

stimulus/movement. Here, with a one-dimensional model, the GLLVM primarily accounts for the overall
fluctuations in population activity from trial-to-trial (Fig 5). While the GLM only predicts variation
between stimuli/movements for both M1 (Fig 5A) and V1 (Fig 5B), the GLLVM accounts for the fact that
some trials tend to have higher overall activity across the population while other trials have lower
activity. This trend is apparent when examining the overall population activity — here calculated as the
sum of the log activity. We also examine correlations between responses of pairs of neurons (Fig 5, right).
Here we calculate stimulus and noise correlations by shuffling responses to the same
stimuli/movements. Stimulus correlations reflect the average on shuffled data, while noise correlations
are given by the observed correlations minus the shuffled correlations, and, for the models, we sample
spike counts to mimic the observed data. Since the GLM assumes that neurons are conditionally
independent given the stimulus/movement, it accounts for stimulus correlations but tends to
underestimate noise correlations. The GLLVM, on the other hand, accurately accounts for both stimulus
and noise correlations. This pattern is present in the overall correlation matrices, as well as, when
averaging over pairs of neurons based on the differences in their preferred directions (APD).

16



563
564

565
566
567
568
569
570
571
572
573
574
575
576

100 . 100 Ly 100 -
s B s
!,, !,,
M1 V1 K - ABI K
7 ’
K4 K4
g [ R o L
D ()] ’ ()] k4
® ® s’ (] ?
— —_ K4 P k4
g g P g P
/3] 5 . 5 ’
o O Re () .
II I" l,
g Poisson GLM »” 1 )
Poisson GLLVM Lo ] W
NB GLM R
NB GLLVM % 1
r— (O e RS o
0 Credibility Level 100 0 Credibility Level 100 0 Credibility Level 100
D 4« E F
5,201 5.10 §
s 5 g
101 <
G— . H_10c I ,
g i o [
5,40 k) 2 ]
3 3 = ]
1 g
5% 5" g -
8 5 £ |
310— 2 w
o oo 0
J 1007 K 100.._...._._._..__._._..__._....__._...._._._...._._._.._ L100 — - -
2 \ : :
=) =) TooS—— =)
) © o
[5) \ o \ [} ]
> > >
o o o
O O o |
50 50 20
0 Number of Neurons 70 0 Number of Neurons 100 0 Number of Neurons 250

Figure 4: Coverage results for three experimental datasets and four decoders. Decoding reach direction
from neurons in M1 during a center-out task (A), decoding stimulus direction from neurons in V1 during
presentation of drifting gratings (B) and decoding the identity of a natural image from multiple brain
regions (C), Bayesian decoders tend to be over-confident. Latent variable models (P-GLLVM and NB-
GLLVM) are better calibrated than their GLM equivalents, and negative binomial models tend to be
better calibrated than their Poisson equivalents. Cross-validated error/accuracy (D-F), uncertainty (G-1),
and coverage (J-L) each change as a function of how many neurons are included in the model. Accuracy
increases with increasing numbers of neurons and uncertainty decreases. However, calibration (the
degree of over-confidence) gets worse as more neurons are included in the model. Error in D and E,
denotes median error. SD in G and H is circular standard deviation. Dashed line in () denotes maximum
entropy over the natural images. Dashed lines in J-L denote a nominated 95% coverage. M1 results in D,
G, and J are averaged across 200 sets of neurons, V1 results in E, H, and K are averaged across 100 sets
of neurons, and ABI results are averaged across 20 sets of neurons.
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Figure 5: Encoding models for reach direction in M1 and grating direction from V1. A) Spike counts for
all neurons recorded from M1 and trials for each of 8 directions of a center-out reaching task (top).
Neurons are sorted by their preferred directions, and trials are sorted first by the target direction and
then by the value of the latent state. The color scale is transformed (log(y/efo + 10)) to highlight the
differences across neurons and trials. Model fits for the GLM (Poisson observations) and GLLVM (1D
latent, Poisson observations) are shown below, as well as the population activity. The observed and
modeled stimulus and noise correlations are shown at right. B) Spike counts and model fits for neurons
recorded from V1 responding to drifting full-field gratings in 12 directions (sorted as in A).
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The dimensionality of the latent variable may have some impact on the encoding and decoding accuracy
and on the calibration of Bayesian decoders. To characterize the potential effects of dimensionality we
fit GLLVMs with 1 to 5 dimensional latent states for the M1, V1, and ABI datasets. We find that, in most
cases, the GLLVMs with >1 dimensionality have similar error and coverage to the models with 1
dimension, with the exception of the Poisson GLLVM, which tends to have better coverage with more
dimensions (Fig 6). In all cases the coverage of the NB models is better than that of the Poisson models.
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Figure 6: Increasing latent dimensionality does not fully correct over-confidence. Error/accuracy (left)
and coverage at 95% credibility level (right) for GLLVMs with different latent dimensionality. GLM and
GLLVM results reflect the full population of neurons for each experimental setting. For comparison,
results with reduced populations of 20 neurons are included here for the GLM and one-dimensional
GLLVM, selected using a greedy optimization to create the “best” and “worst” error/accuracy. Error bars
denote 95% confidence intervals. Dashed lines denote nominated coverage of 95%. Light and dark colors
for the best/worst greedy decoders denote results from the GLM and 1D GLLVM, respectively.
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Since the size of the population appears to have an impact on coverage, we also examine how the
composition of the population impacts accuracy and decoding. Here we use a greedy optimization (see
Methods) to find the population of size N neurons that minimizes the error (M1 or V1) or maximizes the
top-1 accuracy (ABI) of the Poisson GLM creating the greedy “best” subpopulation. And for comparison
we also consider maximizing the error (M1 or V1) or minimizing the top-1 accuracy (ABI) of the Poisson
GLM to create the greedy “worst” subpopulation. Like previous studies, we find that the full population
is often unnecessary for accurate decoding — a greedy best subpopulation of N=20 often has
error/accuracy comparable to the full population. Here we additionally show that these greedy best
models often have better coverage than the models based on the full population (Fig 6). However, the
population size is not the only factor determining coverage, since the greedy best and greedy worst
populations have substantial differences in coverage despite both consisting of 20 neurons.

Post-hoc correction for miscalibration
Since even decoders based on GLLVMs are over-confident, it may be useful to consider calibration as a

distinct step in neural data analysis in situations where accurate uncertainty estimation is needed. One
approach to correcting calibration errors is to simply inflate the posterior uncertainty post-hoc. That is,
rather than decoding using p(x|y) use q(x|y). Here we consider the transformation q(x|y) «
exp(hlogp(x|y)) with h > 0. This transformation preserves the MAP estimate and the relative log-
probabilities of all x, but h allows the uncertainty to be modified. Note that if p(-) is a normal
distribution with standard deviation g, q(-) is a normal distribution with standard deviation o /Vh, but
this transformation can be used for general distributions.

For the over-confident examples above, we estimate a single constant h using the full data for each case
(see Methods) and find that this transformation produces well-calibrated decoding distributions at all
desired confidence levels (Fig 7A-C). The transformation does not change the decoding accuracy (based
on MAP estimates) but allows for substantially more accurate uncertainty estimation. In the examples
above, we showed that over-confidence depends on the encoding model and the number of neurons
used in the decoder. The optimal value of h, thus, also depends on the model as well as the size and
composition of the population with higher overconfidence needing greater correction (smaller h). We
also note that, at least in some cases, underconfidence is possible (Fig 7D), but can be similarly corrected
byh > 1.

Within a given experimental setting, there is a consistent relationship between the degree of
over/under-confidence and the optimal correction parameter (here optimized by minimizing the mean
squared error in the nominated coverage vs empirical coverage plots). Across models (GLM, GLLVM,
Poisson, and NB) and populations (full population and greedy best), the correction parameters are well
predicted by a power law, h = (2p)?%, where p denotes the area under the curve for the uncorrected
coverage and we find @ =2.7, 2.5, 1.3, 2.5 for M1, V1, ABI, and HC (see below), respectively (Fig 7E).
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Figure 7: Post hoc corrected coverage. (A-C) results for full populations in each of the three experimental
settings from Fig 3A-C. For each model and experiment there is a distinct correction parameter optimized
to produce well calibrated results. D) Under-confidence is rare, but can occur, such as when decoding
from the best 20 neurons (greedy selection) from the ABI dataset using NB models. Dashed lines in C and
D decode the uncorrected results, while solid lines denote the post-hoc corrected results (dashed lines
in C are repeated from 4C for reference). E) The optimal correction parameter as a function of original

miscalibration. Dashed lines denote power law fits for each dataset.

For some settings, rather than trial-by-trial decoding of spike counts, the goal is to decode a continuous,
typically smoothly varying, external variable. To illustrate how general the problem of over-confidence
in Bayesian decoders is, we consider continuous estimates of an animal’s position from hippocampal
activity (Fig 8A). Here, rather than distinct trials with a controlled stimulus/behavior, a rat runs freely on
a linear track. GLM and GLLVMs can still be used to decode the animal’s position. We fit encoding models
based on place fields (direction-selective cubic B-spline bases with 10 equally spaced knots), and for the
GLLVMs, we additionally include a one-dimensional latent variable. However, to more accurately decode
the continuous behavior, we also add a process model that ensures that the position and latent state
vary smoothly from one time to the next (see Methods).
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As before, we assess the coverage of each model. Here we find that, decoding the time series of animal
position, the Poisson GLM is the most overconfident and the NB-GLLVM is the most well-calibrated. The
95% credible regions for the posterior include the true position only 48% of the time for Poisson GLM,
while the NB-GLLVM covers the true position 63% of the time (Fig 8B). All four models have better
calibrated posteriors following post-hoc correction (Fig 8C). The coverage of 95% credible regions
increases to 91% for the P-GLM and 94% for the NB-GLLVM, for example.
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Figure 8: Continuous decoding and coverage for position in hippocampus (HC). A) The true position along
the linear track (black line), along with 95% credible regions for three Bayesian decoders: 1) the
traditional Poisson GLM, 2) a negative binomial GLM, and 3) the Poisson GLM after post-hoc correction.
Note that, in some cases, the posterior (or post-hoc corrected distribution) is multimodal, resulting in
multiple HPD regions. B) Empirical coverage as a function of the desired credibility level for the four
Bayesian decoders. C) Empirical coverage after post-hoc correction.

Conformal prediction intervals

One potential alternative to the post-hoc correction described above that may be useful for continuous
decoding is conformal prediction (Shafer and Vovk, 2008; Lei et al., 2018). Rather than using a posterior
distribution, this approach constructs prediction intervals by using the quantiles of the distribution of
residuals (see Methods). Here we evaluate split conformal prediction (Lei et al., 2018) and find that this
approach produces well-calibrated intervals around the point estimates of both the GLM and GLLVM
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(one latent dimension) on trial-by-trial stimulus direction or movement direction in the V1 and M1
datasets and position in the HC dataset (Fig 9).

Conformal prediction has the advantage that it is parameter free and can also be used for non-Bayesian
decoders. To illustrate this possibility, here we fit additional decoders to the M1, V1, and HC data using
optimal linear estimation (OLE, see Methods). These decoders do not have explicit measures of
uncertainty but, in some cases, perform on par with the Bayesian models in terms of accuracy — here
with (10-fold) cross-validated median absolute errors of 9.8 deg for M1 and 3.5 deg for V1. And for HC
the dynamic Poisson GLM has median absolute error of 4.7 cm and the dynamic NB GLLVM has 4.6 cm,
compared to median absolute error of 7.8 cm for OLE. Using split conformal prediction, the intervals are,
like the Bayesian decoders, well-calibrated (Fig 9). However, since the conformal prediction intervals are
based only on point-predictions and the residuals across all trials, they do not capture changes in
uncertainty across stimuli/movements or from trial to trial.
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Figure 9: Coverage for conformal prediction intervals. For M1 and V1 trial-by-trial data as well as
continuous decoding of position for HC, split conformal prediction produces well-calibrated intervals for
all models. Here the results show the full data. These uncertainty estimates are based on the distribution
of residuals (insets) and can also be calculated for non-Bayesian decoders such as optimal linear
estimation (OLE, gray).

Posterior uncertainty and task variables

From trial to trial there are substantial variations in both posterior uncertainty and accuracy. The exact
relationship between error/uncertainty and accuracy depends somewhat on the decoder, since different
models have different uncertainties. However, in the data examined above, we find that for all models
error increases with increasing posterior uncertainty (M1 and V1) or accuracy decreases with increasing
posterior uncertainty (ABI) (Fig 10). Fitting a linear model (in the log-log domain) for the post-hoc
corrected Poisson GLM, M1 error increases 252% [187, 340] (95% Cl) for each doubling of posterior
(circular) standard deviation. For V1 with the post-hoc corrected Poisson GLM, error increases 160%
[150, 169] for each doubling of the posterior (circular) standard deviation. Fitting a logistic model for
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ABI, accuracy decreases with OR=0.75 [0.68, 0.83] per bit of posterior entropy. These results are for the
posteriors of the post-hoc corrected Poisson GLM, but all models show statistically significant
dependencies between error/accuracy and uncertainty both with and without post-hoc correction.
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Figure 10: Uncertainty predicts accuracy. For reference, dots denote averages calculated in deciles. Error
bars for M1 and V1 denote standard deviation. Error bars for ABI denote 95% confidence intervals. Lines
for M1 and V1 denote linear, least-squares fit for single trials in the log domain. Curves for ABI denote
logistic regression.

In experiments where a task variable is expected to influence behavioral/perceptual uncertainty, we may
also expect Bayesian decoders to reflect differences in this uncertainty. Here, for instance, we examine
V1 data from an additional experiment with static oriented grating stimuli, where the contrast of the
stimulus was explicitly varied. Fitting separate (categorical) Poisson GLMs to the different time points
(50ms window) and contrast conditions, we find that accuracy for decoding categorical stimulus
orientation increases following stimulus onset and increases with increasing stimulus contrast (Fig 11A
top). Accuracy for the high contrast trials is substantially higher than for low contrast trials (66% for high,
43% for low, z=7.4, p<10?, two-sided test for difference of proportions, 200ms following stimulus
onset). Additionally, posterior entropy decreases following stimulus onset, and is lowest for high contrast
stimuli (Fig 11A middle). In this example, since the population is relatively small (18 units), the degree of
over-confidence for the Poisson GLM (Fig 11A bottom) is not as extreme as the previous V1 population.
Here, the post-hoc corrected posteriors for the Poisson GLM (corrected separately for each time point
and contrast) show a similar pattern with high contrast trials having lower entropy than low contrast
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trials (1.3 bits for high, 2.1 bits for low, two-sided unpaired t-test t(955.4)=21.0, p<10'2, at 200ms
following stimulus onset). As in Fig 10, we find that single trial accuracy is well predicted by the posterior
uncertainty (Fig 11B). The relationship between entropy and accuracy is consistent across contrasts, and
the logistic fits do not differ substantially for the different contrasts (OR=0.18/bit [0.12, 0.27] 95% CI for
high contrast, OR=0.21/bit [0.14, 0.31] for low contrast). These trends mirror recent results from
Boundy-Singer et al. (2023) also characterizing stimulus orientation uncertainty in macaque V1.
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Figure 11: Accuracy, uncertainty, and coverage vary with stimulus contrast in V1 and with movement
speed in M1. A) For static, oriented gratings, cross-validated decoding accuracy increases following
stimulus onset (white triangle) but depends on stimulus contrast (top). Posterior entropy decreases, with
lower entropy for higher contrast stimuli, and coverage (at 90% nominated) also varies. Dashed lines
denote chance (top), maximum entropy (middle), and nominated coverage (bottom). B) At 200ms after
stimulus onset (black triangles in A), we find that the (post hoc corrected) posterior entropy for the
Poisson GLM varies with contrast. Dots denote averages in deciles, error bars denote 95% confidence
intervals, and curves denote logistic regression fits. C, D) Analogous results for recordings from M1
during center-out reaching with maximum movement speed split by terciles. Cross-validated decoding
accuracy increases shortly before movement onset (white triangle) but depends on reach speed (top).
Posterior entropy decreases with lower entropy for higher speeds. Results in (D) are for 100ms after
movement onset (black triangles in C).

We use a similar analysis to assess the impact of reach speed in M1. Just as stimulus contrast may impact
uncertainty when decoding visual stimuli, movement features beyond reach direction may impact
uncertainty when decoding behavior. Here we use the M1 data during center-out reaching examined
above. We fit a single decoder for reach direction at each time point (50ms window), but assess accuracy,
entropy, and coverage separately for different trials based on the peak movement speed. Splitting the
trials into speed terciles (Fig 11C), we find that accuracy increases shortly before movement onset, and
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trials with the fastest reaches are decoded more accurately than those with slower reaches (80% for fast,
64% for slow, z=2.6, p=0.01, two-sided test for difference of proportions, 100ms following movement
onset). Posterior entropy also decreases shortly before movement onset and is lowest for the fast
reaches (Fig 11C middle). Here, as before, the Poisson GLM tends to be overconfident. The post-hoc
corrected posteriors have substantially higher entropy, but show the same pattern where fast reaches
have the lowest entropy (0.8 bits for fast, 1.4 bits for low, two-sided unpaired t-test t(184.5)=7.8, p<10
12 at 100ms following movement onset). The entropy on single trials again predicts single trial accuracy
(Fig 11D), and the logistic fits do not differ substantially for the different speeds (OR=0.16/bit [0.06, 0.44]
95% ClI for fast, OR=0.35/bit [0.13, 0.94] for slow).

Discussion

Using data from a range of brain regions and experimental settings, we have shown how Bayesian
decoders of neural spiking activity are often miscalibrated. In particular, the posterior estimates tend to
be overconfident. Overconfidence increases with increasing numbers of neurons, is reduced by using
negative binomial observation models (compared to Poisson) and is reduced by modeling latent
variables. However, since even the best calibrated models tested here are not well calibrated, we
introduce a post-hoc correction and show how it can be used, in multiple settings, to recalibrate
uncertainty estimates. Finally, we present results illustrating how the posterior uncertainty of Bayesian
decoders can vary substantially from trial-to-trial. Single trial posterior uncertainty predicts single trial
accuracy and may be useful for understanding variation in perceptual or behavioral confidence due to
task variables such as stimulus contrast or movement speed.

Similar to previous work (Macke et al., 2011), we show here how latent variables (GLLVMs) can better
account for noise correlations and shared variability in the simultaneously recorded neurons.
Correlations are known to play an important role in population coding, generally (von der Malsburg,
1994; Nirenberg, 2003), and failing to accurately account for these dependencies can lead to decoding
errors (Ruda et al.,, 2020). Latent variable models represent one approach to describing shared
variability. Fitting latent variables alone, without explicit tuning to external variables often reveals
interesting task structure (c.f. Gao et al., 2016; Zhao and Park, 2017), and the latent states fit here may
reflect both internal as well as unmodeled external, task-related effects. Previous work has shown how
these models can improve encoding and decoding accuracy (Santhanam et al., 2009; Chase et al., 2010;
Lawhern et al., 2010). Here we additionally show how latent variable models increase the uncertainty of
Bayesian decoders and improve their calibration.

Bayesian decoders have advantages over other decoding methods in that they provide probabilistic
predictions and can flexibly incorporate prior assumptions, such as sparseness and smoothness.
However, many non-Bayesian decoders exist, including vector decoders (Georgopoulos et al., 1986;
Salinas and Abbott, 1994), nearest-neighbor methods, support vector machines, and artificial neural
networks (Quiroga and Panzeri, 2009). Although, well-tuned Bayesian methods can often out-perform
non-Bayesian approaches (e.g. Zhang et al.,, 1998). Machine learning and recent deep learning
approaches to decoding have been shown to be more accurate than simple Bayesian models in many
settings (Pandarinath et al., 2018; Glaser et al., 2020b; Livezey and Glaser, 2021). Since calculating the
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full posterior distribution can be computationally expensive, these methods can also be substantially
faster for situations where predictions are time-sensitive. AlImost all work with non-Bayesian decoders
of neural activity focuses on the accuracy of point predictions. Here we show how conformal prediction
can be used to generate well-calibrated uncertainty estimates for OLE. However, miscalibration is a
known problem in work on artificial neural networks (Guo et al., 2017) and recent work on Bayesian
neural networks and conformal prediction (Shafer and Vovk, 2008) could potentially be used to create
and calibrate uncertainty estimates for these models as well.

Accurate uncertainty estimates may potentially be useful for robust control of brain machine interfaces
(BMs). For instance, although many BMls directly control effectors, such as a cursor position (decoding
movement) or a desired word (decoding speech), based on point predictions (Nicolelis, 2003), it may be
beneficial to distinguish between predictions based on their confidence level. Here, we find substantial
variation in uncertainty for trial-by-trial offline decoding, and we also illustrate how contrast (in V1) and
speed (in M1) might impact decoding uncertainty. These results are limited by the fact that we do not
explicitly include contrast or speed in the encoding model (Moran and Schwartz, 1999) or decode these
variables directly (Inoue et al.,, 2018), but they suggest how uncertainty may be a separate and
worthwhile consideration for decoding problems. Additionally, our results suggest that recalibration
could be necessary to avoid overconfidence in BMIs that make use of posterior uncertainty during
control.

The uncertainty estimates from Bayesian decoders of neural activity may also be useful for studying
behavioral and perceptual uncertainty. Normative models of population coding (Ma et al., 2006) and
broader descriptions of uncertainty in the brain (Knill and Pouget, 2004) often directly relate neural
activity to probabilistic descriptions of the external world. Although several features of neural activity
have been proposed as indicators of behavioral/perceptual uncertainty (Vilares and Kording, 2011), the
posteriors from Bayesian decoders represent a principled framework for translating noisy, high-
dimensional data into a single probabilistic description (Zemel et al., 1998; Dehaene et al., 2021;
Kriegeskorte and Wei, 2021). The impacts of tuning curve shapes (e.g. Pouget et al., 1999; Zhang and
Sejnowski, 1999) and correlations between neurons (Averbeck et al., 2006; Lin et al., 2015; Kohn et al.,
2016) on the uncertainty of population coding have been well studied, and here we add to this work by
demonstrating how different encoding models (GLM vs GLLVM and Poisson vs negative binomial) have
systematically different degrees of overconfidence in experimental recordings across many settings.

Since even the best Bayesian models (negative binomial latent variable models up to five dimensions)
are overconfident, recalibration appears to be necessary to ensure that the uncertainty of Bayesian
decoders matches the distribution of errors. On one hand, this may suggest that there is additional
mismatch between the GLLVM and the data generating process. It may be that low-dimensional latent
variable models only partially capture noise correlations (Stevenson et al.,, 2012), that there is
unmodeled nonstationarity in the tuning curves (Cortes et al., 2012; Rule et al., 2019), that responses
are underdispersed (DeWeese et al., 2003; Stevenson, 2016), or some combination of these factors. On
the other hand, humans and other animals are often over- or underconfident during perceptual and
cognitive judgements (Baranski and Petrusic, 1994; Kepecs and Mainen, 2012; Mamassian, 2016). It is
possible that the original (miscalibrated) uncertainty estimates better predict psychophysical
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uncertainty or metacognitive reports of confidence, even if recalibrated uncertainty estimates better
predict the distribution of external variables.

Finally, it is important to note that when Bayesian models are recalibrated post-hoc they are no longer
following a coherent Bayesian framework (Dawid, 1982). From a practical standpoint, such as when
developing BMIs, model calibration may be more important than model coherence. However, additional
work is needed to better understand the alignment of perceptual/behavioral uncertainty and decoder
posterior uncertainty (Panzeri et al., 2017). Models with more accurate descriptions of single neuron
variability (Gao et al., 2015; Ghanbari et al., 2019), with nonstationarity (Shanechi et al., 2016; Wei and
Stevenson, 2023), additional stimulus/movement nonlinearities (Schwartz and Simoncelli, 2001), state-
dependence (Panzeri et al., 2016), and with more complex latent structure (Glaser et al., 2020a; Williams
et al., 2020; Sokoloski et al., 2021; Williams and Linderman, 2021) may all show better coverage while
maintaining coherence. Our results here indicate that Bayesian decoders of spiking activity are not
necessarily well calibrated by default.

28



875
876
877

878
879

880
881

882
883

884
885

886
887
888

889
890

891
892

893
894

895
896

897
898

899

900
901

902
903

904
905

References

Amarasingham A, Chen T-L, Geman S, Harrison MT, Sheinberg DL (2006) Spike count reliability and the
Poisson hypothesis. ] Neurosci Off J Soc Neurosci 26:801-809.

Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of Ongoing Activity: Explanation of the Large
Variability in Evoked Cortical Responses. Science 273:1868-1871.

Averbeck BB, Latham PE, Pouget A (2006) Neural correlations, population coding and computation. Nat
Rev Neurosci 7:358-366.

Baranski JV, Petrusic WM (1994) The calibration and resolution of confidence in perceptual judgments.
Percept Psychophys 55:412-428.

Berens P, Ecker AS, Cotton RJ, Ma WJ, Bethge M, Tolias AS (2012) A Fast and Simple Population Code for
Orientation in Primate V1. J Neurosci 32:10618-10626.

Boundy-Singer ZM, Ziemba CM, Hénaff OJ, Goris RLT (2023) How does V1 population activity inform
perceptual certainty? :2023.09.08.556926 Available at:
https://www.biorxiv.org/content/10.1101/2023.09.08.556926v1 [Accessed January 3, 2024].

Brillinger DR (1988) Maximum likelihood analysis of spike trains of interacting nerve cells. Biol Cybern
59:189-200.

Chase SM, Schwartz AB, Kass RE (2010) Latent Inputs Improve Estimates of Neural Encoding in Motor
Cortex. J Neurosci 30:13873-13882.

Chen Z (2013) An overview of bayesian methods for neural spike train analysis. Comput Intell Neurosci
2013:1.

Cortes JM, Marinazzo D, Series P, Oram MW, Sejnowski TJ, van Rossum MCW (2012) The effect of neural
adaptation on population coding accuracy. ] Comput Neurosci 32:387-402.

Cronin B, Stevenson IH, Sur M, Kording KP (2010) Hierarchical Bayesian Modeling and Markov Chain
Monte Carlo Sampling for Tuning-Curve Analysis. J Neurophysiol 103:591.

Dawid AP (1982) The Well-Calibrated Bayesian. J Am Stat Assoc 77:605-610.

deCharms RC, Zador A (2000) Neural representation and the cortical code. Annu Rev Neurosci 23:613—
647.

Degroot MH, Fienberg SE (1983) The Comparison and Evaluation of Forecasters. J R Stat Soc Ser Stat
32:12-22.

Dehaene GP, Coen-Cagli R, Pouget A (2021) Investigating the representation of uncertainty in neuronal
circuits. PLOS Comput Biol 17:e1008138.

29



906
907

908
909

910
911

912
913

914
915
916
917
918

919
920

921
922

923
924

925
926
927
928
929

930
931

932
933

934

935
936

DeWeese MR, Wehr M, Zador AM (2003) Binary spiking in auditory cortex. J Neurosci Off J Soc Neurosci
23:7940-7949.

Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar E (2008) “Where” and “what” in the
whisker sensorimotor system. Nat Rev Neurosci 9:601-612.

Draper D (1995) Assessment and Propagation of Model Uncertainty. J R Stat Soc Ser B Methodol 57:45—
70.

Ecker AS, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS (2010) Decorrelated neuronal firing in
cortical microcircuits. Science 327:584.

GaoY, Archer EW, Paninski L, Cunningham JP (2016) Linear dynamical neural population models through
nonlinear embeddings. In: Advances in Neural Information Processing Systems. Curran
Associates, Inc. Available at:
https://proceedings.neurips.cc/paper_files/paper/2016/hash/76dc611d6ebaafc66cc0879c71b5
db5c-Abstract.html [Accessed January 12, 2024].

Gao Y, Buesing L, Shenoy KV, Cunningham JP (2015) High-dimensional neural spike train analysis with
generalized count linear dynamical systems. In: NIPS.

Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction.
Science 233:1416-1419.

Ghanbari A, Lee CM, Read HL, Stevenson IH (2019) Modeling stimulus-dependent variability improves
decoding of population neural responses. J Neural Eng 16.

Glaser J, Whiteway M, Cunningham JP, Paninski L, Linderman S (2020a) Recurrent Switching Dynamical
Systems Models for Multiple Interacting Neural Populations. In: Advances in Neural Information
Processing Systems, pp 14867-14878. Curran Associates, Inc. Available at:
https://proceedings.neurips.cc/paper/2020/hash/aalf5f73327ba40d47ebcel55e785aaf-
Abstract.html [Accessed March 22, 2023].

Glaser JI, Benjamin AS, Chowdhury RH, Perich MG, Miller LE, Kording KP (2020b) Machine Learning for
Neural Decoding. eNeuro 7:ENEURO.0506-19.2020.

Gneiting T, Raftery AE (2007) Strictly Proper Scoring Rules, Prediction, and Estimation. ] Am Stat Assoc
102:359-378.

Goris RLT, Movshon JA, Simoncelli EP (2014) Partitioning neuronal variability. Nat Neurosci 17:858—-865.

Graf ABA, Kohn A, Jazayeri M, Movshon JA (2011) Decoding the activity of neuronal populations in
macaque primary visual cortex. Nat Neurosci 14:239-245.

30



937
938
939

940
941

942
943

944
945

946
947

948
949

950
951

952
953

954
955

956
957

958
959

960
961

962
963

964

965
966

Guo C, Pleiss G, Sun Y, Weinberger KQ (2017) On Calibration of Modern Neural Networks. In: Proceedings
of the 34th International Conference on Machine Learning, pp 1321-1330. PMLR. Available at:
https://proceedings.mlr.press/v70/guol7a.html [Accessed September 12, 2023].

Humphrey DR, Schmidt EM, Thompson WD (1970) Predicting measures of motor performance from
multiple cortical spike trains. Science 170:758-762.

Inoue Y, Mao H, Suway SB, Orellana J, Schwartz AB (2018) Decoding arm speed during reaching. Nat
Commun 9:5243.

Kelly RC, Smith MA, Kass RE, Lee TS (2010) Local field potentials indicate network state and account for
neuronal response variability. ] Comput Neurosci 29:567-579.

Kepecs A, Mainen ZF (2012) A computational framework for the study of confidence in humans and
animals. Philos Trans R Soc B Biol Sci 367:1322-1337.

Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation.
Trends Neurosci 27:712-719.

Kohn A, Coen-Cagli R, Kanitscheider |, Pouget A (2016) Correlations and Neuronal Population
Information. Annu Rev Neurosci 39:237-256.

Kohn A, Smith MA (2016) Utah array extracellular recordings of spontaneous and visually evoked activity
from anesthetized macaque primary visual cortex (V1). CRCNS.org.

Koyama S, Eden UT, Brown EN, Kass RE (2010) Bayesian decoding of neural spike trains. Ann Inst Stat
Math 62:37-59.

Kriegeskorte N, Douglas PK (2019) Interpreting encoding and decoding models. Curr Opin Neurobiol
55:167-179.

Kriegeskorte N, Wei X-X (2021) Neural tuning and representational geometry. Nat Rev Neurosci 22:703—
718.

Lawhern V, Wu W, Hatsopoulos N, Paninski L (2010) Population decoding of motor cortical activity using
a generalized linear model with hidden states. J Neurosci Methods 189:267-280.

Lei J, G'Sell M, Rinaldo A, Tibshirani RJ, Wasserman L (2018) Distribution-Free Predictive Inference for
Regression. ] Am Stat Assoc 113:1094-1111.

Lemon CH, Katz DB (2007) The neural processing of taste. BMC Neurosci 8:S5.

Lin I-C, Okun M, Carandini M, Harris KD (2015) The Nature of Shared Cortical Variability. Neuron 87:644—
656.

31



967
968

969
970

971
972

973
974

975

976

977
978

979
980

981
982
983

984
985
986

987
988

989
990

991
992

993
994
995

996
997

Livezey JA, Glaser JI (2021) Deep learning approaches for neural decoding across architectures and
recording modalities. Brief Bioinform 22:1577-1591.

Lu H-Y, Lorenc ES, Zhu H, Kilmarx J, Sulzer J, Xie C, Tobler PN, Watrous AJ, Orsborn AL, Lewis-Peacock J,
Santacruz SR (2021) Multi-scale neural decoding and analysis. J Neural Eng 18:045013.

Ma WJ, Beck JM, Latham PE, Pouget A (2006) Bayesian inference with probabilistic population codes.
Nat Neurosci 9:1432-1438.

Macke JH, Buesing L, Cunningham JP, Yu BM, Shenoy KV, Sahani M (2011) Empirical models of spiking in
neural populations. Adv Neural Inf Process Syst 24.

Mamassian P (2016) Visual Confidence. Annu Rev Vis Sci 2:459-481.
McCullagh P, Nelder JA (1989) Generalized Linear Models. CRC Press.

Meyniel F, Sigman M, Mainen ZF (2015) Confidence as Bayesian Probability: From Neural Origins to
Behavior. Neuron 88:78-92.

Miller JW, Carter SL (2020) Inference in generalized bilinear models. Available at:
http://arxiv.org/abs/2010.04896 [Accessed April 18, 2023].

Mizuseki K, Diba K, Pastalkova E, Teeters J, Sirota A, Buzsaki G (2014) Neurosharing: large-scale data sets
(spike, LFP) recorded from the hippocampal-entorhinal system in behaving rats. FLOOOResearch
3:98.

Mizuseki K, Sirota A, Pastalkova E, Diba K, Buzsaki G (2013) Multiple single unit recordings from different
rat hippocampal and entorhinal regions while the animals were performing multiple behavioral
tasks.

Moran DW, Schwartz a B (1999) Motor cortical representation of speed and direction during reaching.
J Neurophysiol 82:2676—2692.

Nicolelis M a L (2003) Brain-machine interfaces to restore motor function and probe neural circuits. Nat
Rev Neurosci 4:417-422.

Nirenberg S (2003) Decoding neuronal spike trains: How important are correlations? Proc Natl Acad Sci
100:7348-7353.

Pandarinath C, O’Shea DJ, Collins J, Jozefowicz R, Stavisky SD, Kao JC, Trautmann EM, Kaufman MT, Ryu
SI, Hochberg LR, Henderson JM, Shenoy KV, Abbott LF, Sussillo D (2018) Inferring single-trial
neural population dynamics using sequential auto-encoders. Nat Methods 15:805-815.

Paninski L, Ahmadian Y, Ferreira DG, Koyama S, Rahnama Rad K, Vidne M, Vogelstein J, Wu W (2010) A
new look at state-space models for neural data. J Comput Neurosci 29:107-126.

32



998
999

1000
1001
1002

1003
1004

1005
1006

1007
1008

1009
1010

1011
1012

1013

1014
1015

1016
1017

1018
1019

1020
1021

1022

1023
1024

1025
1026

1027
1028

Panzeri S, Harvey CD, Piasini E, Latham PE, Fellin T (2017) Cracking the neural code for sensory perception
by combining statistics, intervention and behavior. Neuron 93:491-507.

Panzeri S, Safaai H, De Feo V, Vato A (2016) Implications of the Dependence of Neuronal Activity on
Neural Network States for the Design of Brain-Machine Interfaces. Front Neurosci 10 Available
at: https://www.frontiersin.org/articles/10.3389/fnins.2016.00165 [Accessed April 26, 2023].

Pouget A, Deneve S, Ducom J-C, Latham PE (1999) Narrow Versus Wide Tuning Curves: What’s Best for
a Population Code? Neural Comput 11:85-90.

Quiroga RQ, Panzeri S (2009) Extracting information from neuronal populations: information theory and
decoding approaches. Nat Rev Neurosci 10:173-185.

Raftery AE, Gneiting T, Balabdaoui F, Polakowski M (2005) Using Bayesian Model Averaging to Calibrate
Forecast Ensembles. Mon Weather Rev 133:1155-1174.

Ruda K, Zylberberg J, Field GD (2020) Ignoring correlated activity causes a failure of retinal population
codes. Nat Commun 11:4605.

Rule ME, O’Leary T, Harvey CD (2019) Causes and consequences of representational drift. Curr Opin
Neurobiol 58:141-147.

Salinas E, Abbott LF (1994) Vector reconstruction from firing rates. J Comput Neurosci 1:89-107.

Sanger TD (1996) Probability density estimation for the interpretation of neural population codes. J
Neurophysiol 76:2790-2793.

Santhanam G, Yu BM, Gilja V, Ryu SI, Afshar A, Sahani M, Shenoy KV (2009) Factor-Analysis Methods for
Higher-Performance Neural Prostheses. J] Neurophysiol 102:1315-1330.

Schwartz O, Simoncelli EP (2001) Natural signal statistics and sensory gain control. Nat Neurosci 4:819—-
825.

Scott J, Pillow JW (2012) Fully Bayesian inference for neural models with negative-binomial spiking. In:
Advances in Neural Information Processing Systems, pp 1898.

Shafer G, Vovk V (2008) A Tutorial on Conformal Prediction. J Mach Learn Res 9:371-421.

Shanechi MM, Orsborn AL, Carmena JM (2016) Robust Brain-Machine Interface Design Using Optimal
Feedback Control Modeling and Adaptive Point Process Filtering. PLOS Comput Biol 12:1004730.

Siegle JH et al. (2021) Survey of spiking in the mouse visual system reveals functional hierarchy.
Nature:1-7.

Skrondal A, Rabe-Hesketh S (2004) Generalized Latent Variable Modeling: Multilevel, Longitudinal, and
Structural Equation Models. CRC Press.

33



1029
1030

1031
1032

1033
1034

1035
1036

1037
1038
1039
1040

1041
1042

1043
1044

1045
1046

1047
1048

1049
1050

1051
1052
1053

1054
1055

1056
1057
1058
1059

1060
1061

Smith AC, Brown EN (2003) Estimating a State-Space Model from Point Process Observations. Neural
Comput 15:965-991.

Smith MA, Kohn A (2008) Spatial and temporal scales of neuronal correlation in primary visual cortex. J
Neurosci 28:12591-12603.

Sokoloski S, Aschner A, Coen-Cagli R (2021) Modelling the neural code in large populations of correlated
neurons Pillow JW, Gold JI, Harris KD, eds. eLife 10:e64615.

Stevenson IH (2016) Flexible models for spike count data with both over- and under- dispersion. J
Comput Neurosci 41:29-43.

Stevenson IH, London BM, Oby ER, Sachs NA, Reimer J, Englitz B, David SV, Shamma SA, Blanche TJ,
Mizuseki K, Zandvakili A, Hatsopoulos NG, Miller LE, Kording KP (2012) Functional Connectivity
and Tuning Curves in Populations of Simultaneously Recorded Neurons. PLoS Comput Biol
8:€1002775.

Theunissen FE, Woolley SM n., Hsu A, Fremouw T (2004) Methods for the Analysis of Auditory Processing
in the Brain. Ann N Y Acad Sci 1016:187-207.

Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity of single cortical neurons
and the underlying functional architecture. Science 286:1943-1946.

Uchida N, Poo C, Haddad R (2014) Coding and Transformations in the Olfactory System. Annu Rev
Neurosci 37:363—-385.

Urai AE, Doiron B, Leifer AM, Churchland AK (2022) Large-scale neural recordings call for new insights to
link brain and behavior. Nat Neurosci 25:11-19.

van Bergen RS, Ji Ma W, Pratte MS, Jehee JFM (2015) Sensory uncertainty decoded from visual cortex
predicts behavior. Nat Neurosci 18:1728-1730.

Vidne M, Ahmadian Y, Shlens J, Pillow JW, Kulkarni J, Litke AM, Chichilnisky EJ, Simoncelli E, Paninski L
(2012) Modeling the impact of common noise inputs on the network activity of retinal ganglion
cells. ] Comput Neurosci 33:97-121.

Vilares |, Kording K (2011) Bayesian models: the structure of the world, uncertainty, behavior, and the
brain. Ann N'Y Acad Sci 1224:22-39.

von der Malsburg C (1994) The Correlation Theory of Brain Function. In: Models of Neural Networks:
Temporal Aspects of Coding and Information Processing in Biological Systems (Domany E, van
Hemmen JL, Schulten K, eds), pp 95-119 Physics of Neural Networks. New York, NY: Springer.
Available at: https://doi.org/10.1007/978-1-4612-4320-5_2 [Accessed April 28, 2023].

Walker B, Kording K (2013) The Database for Reaching Experiments and Models Lytton WW, ed. PLoS
ONE 8:e78747.

34



1062
1063

1064
1065

1066
1067

1068
1069

1070
1071

1072
1073
1074
1075

1076
1077

1078
1079
1080

1081

1082
1083

1084
1085

1086

Warland DK, Reinagel P, Meister M (1997) Decoding Visual Information From a Population of Retinal
Ganglion Cells. J Neurophysiol 78:2336-2350.

Wei G (2023) Bayesian Dynamic Modeling of Neural Spiking Activity. Available at:
http://hdl.handle.net/11134/20002:860745905.

Wei G, Stevenson IH (2023) Dynamic Modeling of Spike Count Data With Conway-Maxwell Poisson
Variability. Neural Comput 35:1187-1208.

Wilks DS (2002) Smoothing forecast ensembles with fitted probability distributions. Q J R Meteorol Soc
128:2821-2836.

Williams AH, Linderman SW (2021) Statistical neuroscience in the single trial limit. Curr Opin Neurobiol
70:193-205.

Williams AH, Poole B, Maheswaranathan N, Dhawale AK, Fisher T, Wilson CD, Brann DH, Trautmann EM,
Ryu S, Shusterman R, Rinberg D, Olveczky BP, Shenoy KV, Ganguli S (2020) Discovering Precise
Temporal Patterns in Large-Scale Neural Recordings through Robust and Interpretable Time
Warping. Neuron 105:246-259.e8.

Zemel RS, Dayan P, Pouget A (1998) Probabilistic Interpretation of Population Codes. Neural Comput
10:403-430.

Zhang K, Ginzburg I, McNaughton BL, Sejnowski TJ (1998) Interpreting neuronal population activity by
reconstruction: unified framework with application to hippocampal place cells. J Neurophysiol
79:1017-1044.

Zhang K, Sejnowski TJ (1999) Neuronal Tuning: To Sharpen or Broaden? Neural Comput 11:75-84.

Zhao M, lyengar S (2010) Nonconvergence in logistic and poisson models for neural spiking. Neural
Comput 22:1231-1244.

Zhao Y, Park IM (2017) Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from
Population Spike Trains. Neural Comput 29:1293-1316.

35



