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Abstract 45 

Accurately decoding external variables from observations of neural activity is a major challenge in 46 

systems neuroscience. Bayesian decoders, that provide probabilistic estimates, are some of the most 47 

widely used. Here we show how, in many common settings, the probabilistic predictions made by 48 

traditional Bayesian decoders are overconfident. That is, the estimates for the decoded stimulus or 49 

movement variables are more certain than they should be. We then show how Bayesian decoding with 50 

latent variables, taking account of low-dimensional shared variability in the observations, can improve 51 

calibration, although additional correction for overconfidence is still needed. We examine: 1) decoding 52 

the direction of grating stimuli from spike recordings in primary visual cortex in monkeys, 2) decoding 53 

movement direction from recordings in primary motor cortex in monkeys, 3) decoding natural images 54 

from multi-region recordings in mice, and 4) decoding position from hippocampal recordings in rats. For 55 

each setting we characterize the overconfidence, and we describe a possible method to correct 56 

miscalibration post-hoc. Properly calibrated Bayesian decoders may alter theoretical results on 57 

probabilistic population coding and lead to brain machine interfaces that more accurately reflect 58 

confidence levels when identifying external variables. 59 

 60 

Significance Statement 61 

Bayesian decoding is a statistical technique for making probabilistic predictions about external stimuli or 62 

movements based on recordings of neural activity. These predictions may be useful for robust brain 63 

machine interfaces or for understanding perceptual or behavioral confidence. However, the probabilities 64 

produced by these models do not always match the observed outcomes. Just as a weather forecast 65 

predicting a 50% chance of rain may not accurately correspond to an outcome of rain 50% of the time, 66 

Bayesian decoders of neural activity can be miscalibrated as well. Here we identify and measure 67 

miscalibration of Bayesian decoders for neural spiking activity in a range of experimental settings. We 68 

compare multiple statistical models and demonstrate how overconfidence can be corrected. 69 

 70 

Introduction 71 

Decoding, estimating external variables given observations of neural activity, is a fundamental tool in 72 

systems neuroscience for understanding what information is present in specific brain signals and areas 73 

(deCharms and Zador, 2000; Kriegeskorte and Douglas, 2019). Decoders have been widely used for 74 

studying the representation of movement variables, such as speed, force, or position (Humphrey et al., 75 

1970; Georgopoulos et al., 1986), the representation of visual stimuli (Warland et al., 1997; Quiroga and 76 

Panzeri, 2009) and the representation of sounds (Theunissen et al., 2004), touch (Diamond et al., 2008), 77 

odors (Uchida et al., 2014), and tastes (Lemon and Katz, 2007). Here we examine Bayesian decoders that 78 

estimate the probability of each possible stimulus or movement given neural observations (Sanger, 1996; 79 
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Zhang et al., 1998; Koyama et al., 2010; Chen, 2013). Bayesian models explicitly represent the 80 

uncertainty about external variables, and this uncertainty may be useful for understanding 81 

perceptual/behavioral confidence (Vilares and Kording, 2011; Meyniel et al., 2015) or for creating more 82 

robust brain machine interfaces (Shanechi et al., 2016). However, Bayesian models are not always well 83 

calibrated (Degroot and Fienberg, 1983; Draper, 1995). Here we ask whether the uncertainty estimates 84 

for Bayesian decoders are correct. 85 

 86 

With Bayesian decoders, the conditional probability of stimulus or movement variables given neural 87 

responses is calculated using Bayes theorem (Quiroga and Panzeri, 2009). This posterior is the product 88 

of a likelihood that describes the probability of neural activity given external variables (an encoding 89 

model) and a prior that accounts for other knowledge about the external variable. This framework is 90 

very general and can be used to decode categorical or continuous variables in trial-by-trial designs or 91 

with continuous time series using spiking timing features or counts as well as other population neural 92 

signals (van Bergen et al., 2015; Lu et al., 2021). One common likelihood model for the counts of spiking 93 

activity is based on the Poisson distribution and the assumption that the neural responses are 94 

conditionally independent given their tuning to the external variable. However, since neural activity has 95 

shared (Arieli et al., 1996; Tsodyks et al., 1999) and non-Poisson variability (Amarasingham et al., 2006; 96 

Goris et al., 2014), recent studies have focused on better modeling latent structure and dispersion (Scott 97 

and Pillow, 2012). Modeling this shared and non-Poisson variability can improve decoding (Graf et al., 98 

2011; Ghanbari et al., 2019).  99 

 100 

In this paper, we compare Bayesian decoders with Poisson versus negative binomial noise models as well 101 

as decoders with or without latent variables with the goal of understanding how differences in model 102 

structure affect the posterior uncertainty. In well calibrated models, the posterior of the external 103 

variables should accurately reflect their true probability. For instance, a 95% credible interval – 104 

analogous to the confidence interval in frequentist descriptions – should have a 95% chance of 105 

containing the true value. However, miscalibration can occur due to model misspecification – when the 106 

data is generated by a process that does not match the model assumptions – or when there is unmodeled 107 

uncertainty about the model structure (Draper, 1995). Previous studies suggest that neural variability 108 

may be an important dimension of the neural code (Urai et al., 2022), and the uncertainty of neural 109 

population codes may determine perceptual/behavioral confidence (Knill and Pouget, 2004). Accurate 110 

descriptions of population uncertainty in experimental data may, thus, inform for theoretical 111 

understanding. In this study, we illustrate the basic problem of miscalibration through simulations and 112 

evaluate calibration for experimental data. 113 

 114 

 115 

 116 
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We focus on several experimental settings: trial-by-trial decoding of stimulus movement direction from 117 

primary visual cortex (V1) and reach direction from primary motor cortex (M1), trial-by-trial decoding of 118 

categorical natural images from multiple brain regions, and time-series decoding of animal position from 119 

hippocampal recordings (HC). We find that using negative binomial likelihoods and latent variables both 120 

improve calibration. However, even with these improvements, Bayesian decoders are overconfident. To 121 

solve this problem, we introduce a post-hoc correction for miscalibration that yields more accurate 122 

uncertainty estimates. 123 

 124 
 125 

Materials and Methods 126 

Code for the results in this paper is available at 127 

https://github.com/ihstevenson/latent_bayesian_decoding  128 

 129 

Data 130 
To assess the calibration of Bayesian decoders we use previously collected, publicly available data from 131 

1) macaque primary motor cortex during a center-out reaching task, 2) macaque primary visual cortex 132 

during presentation of drifting or static sine-wave gratings, 3) mouse multi-region recordings during 133 

presentation of static natural images, and 4) rat hippocampus during running on a linear track. 134 

 135 

Data from primary motor cortex (M1) were previously recorded from the arm area of an adult male 136 

macaque monkey during center-out reaches. Reaches were made in a 20 × 20cm workspace while the 137 

animal was grasping a two-link manipulandum, and single units were recorded using a 100-electrode 138 

Utah array (400mm spacing, 1.5 mm length, manually spike sorted manually - Plexon, Inc). On each trial, 139 

we analyzed spike counts during the window 150ms before to 350 ms after the speed reached its half-140 

max. Data and additional descriptions of the surgical procedure, behavioral task, and preprocessing are 141 

available in Walker and Kording (2013). 142 

 143 

Data from primary visual cortex (V1) were previously recorded and shared in the CRCNS PVC-11 dataset 144 

(Kohn and Smith, 2016). Single units were recorded using a 96-channel multielectrode array from an 145 

anesthetized adult male monkey (macaca fascicularis, monkey 3) during presentations of drifting sine-146 

wave gratings (20 trials for each of 12 directions). On each trial we analyzed spike counts between 200 147 

ms and 1.2 s after stimulus onset. Detailed descriptions of the surgical procedure, stimulus presentation, 148 

and preprocessing can be found in Smith and Kohn (2008) and Kelly et al. (2010). 149 

 150 

We also examine an additional previously recorded, shared dataset from primary visual cortex where 151 

stimuli were presented with multiple contrasts (Berens et al., 2012). Here single units were recorded 152 

using custom-built tetrodes from an awake male monkey (macacca mulatta). Static sine-wave gratings 153 

were presented with different contrasts. Here we use data from subject “D” recorded 2002-04-17. 154 

https://github.com/ihstevenson/latent_bayesian_decoding
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Detailed descriptions of the surgical procedure, stimulus presentation, and preprocessing can be found 155 

in Ecker et al. (2010) and Berens et al. (2012). 156 

 157 

Multi-region data (ABI) were analyzed from the Allen Institute for Brain Science - Visual Coding 158 

Neuropixels dataset (https://portal.brain-map.org/explore/circuits). Detailed descriptions of the surgical 159 

procedure, stimulus presentation, and preprocessing can be found in Siegle et al. (2021). Briefly, during 160 

the recordings, head-fixed mice were presented with visual stimuli (including Gabor patches, full-field 161 

drifting gratings, moving dots, and natural images and movies) while they were free to run on a wheel. 162 

We analyze single unit data with spikes sorted from six Neuropixels arrays using Kilosort 2 163 

(electrophysiology session 742951821, a male wild-type C57BL/6J). Using n=267 single units (742951821, 164 

with SNR>3, rate>1 spike/trial) responding to 118 natural images (4873 trials in total). 165 

 166 

Data from hippocampus were previously recorded from the dorsal hippocampus of a male Long Evans 167 

rat and shared in CRCNS hc-3 (Mizuseki et al., 2013). Recordings were made using an 8-shank silicon 168 

probe, each shank with 8 recording sites, while the animal ran on a linear track, and single units were 169 

automatically spike sorted with KlustaKwik and refined with Klusters. Data from recording id ec014_468 170 

were analyzed in 200 ms bins. Data and additional descriptions of the surgical procedure, behavioral 171 

task, and preprocessing are available in Mizuseki et al. (2014) 172 

 173 

Encoding Models 174 

Our goal is to decode an external stimulus or movement variable 𝑥∗ based on spikes observations from 175 

𝑁  neurons 𝑦∗ ∈ 𝑁≥0
𝑁 . Here we construct a Bayesian decoder by first fitting an encoding model with 176 

training dataset {𝑥, 𝑌} where 𝑥 = (𝑥1, … , 𝑥𝐾)′  denotes the external variable across K trials and 𝑦𝑘𝑖 177 

(entries of 𝑌 ∈ 𝑁𝐾×𝑁) is the number of spikes emitted by neuron 𝑖 during external variable 𝑥𝑘 . This 178 

encoding model allows us to calculate the likelihood distribution 𝑃(𝑦∗|𝑥∗, 𝑥, 𝑌), and we then use Bayes’ 179 

rule to evaluate the posterior distribution 𝑃(𝑥∗|𝑦∗, 𝑥, 𝑌). In traditional Bayesian decoders, based on 180 

generalized linear models (GLMs), the spikes of each neuron are assumed to be conditionally 181 

independent given the external variable. Here we examine GLMs with observation models that assume 182 

either Poisson noise or negative binomial noise.  Additionally, we fit decoders based on generalized linear 183 

latent variable models (GLLVMs) where we use the same representation for external variables, but 184 

assume the observations are also related or influenced by low-dimensional unobserved variables (i.e., 185 

latent variables). GLMs and GLLVMs have been widely used in statistics for modeling count data 186 

(McCullagh and Nelder, 1989; Skrondal and Rabe-Hesketh, 2004) and in neuroscience specifically 187 

(Brillinger, 1988; Scott and Pillow, 2012). 188 

 189 
Poisson and Negative Binomial GLMs and GLLVMs 190 
 191 
The Poisson GLM and negative binomial GLM model the spiking of neuron 𝑖  on trial 𝑘  as 𝑦𝑘𝑖 ∼192 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑘𝑖) or 𝑦𝑘𝑖 ∼ 𝑁𝐵(𝜇𝑘𝑖, 𝛼𝑖), respectively, where 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇) indicates the Poisson distribution 193 

https://portal.brain-map.org/explore/circuits
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with the rate parameter 𝜇 and 𝑁𝐵(𝜇, 𝛼) denotes the negative binomial distribution with mean 𝜇 and 194 

variance 𝜇 + 𝛼𝜇2. The mean parameter 𝜇𝑘𝑖 in both models is regressed as 𝑙𝑜𝑔 𝜇𝑘𝑖  = 𝑧𝑘
′ 𝛽𝑖 where 𝑧𝑘 =195 

𝑓(𝑥𝑘) ∈ 𝑅𝑝 is a function (e.g. basis expansion) of the external variable 𝑥𝑘. For the M1 and V1 decoders 196 

we use a Fourier basis to capture the tuning over the circular variable (stimulus or movement direction) 197 

𝑧 = [1 cos 𝑥  sin 𝑥  cos 2𝑥  sin 2𝑥]. For the ABI decoder we simply fit a unique mean for each individual 198 

image of the 𝑁 natural image stimuli 𝑧 = [1 11(𝑥) ⋯ 1𝑁(𝑥)] where 1𝑖(𝑥) denotes an indicator function 199 

returning 1 when 𝑖 = 𝑥 and 0 otherwise. We estimate 𝛽 and 𝛼 by maximum likelihood estimation (MLE) 200 

or, in most cases, maximum a posteriori (MAP) estimation, where we put a Gaussian prior 201 

𝛽𝑗>1 ~ 𝑁(0, 𝜂𝐼)  to prevent overfitting (excepting the intercept term). This prior is equivalent to L2 202 

regularization. 203 

 204 

Since the responses of different neurons may be correlated, the GLM does not generally capture noise 205 

correlations - dependencies between neurons beyond what the external variable induces.  The GLLVMs 206 

extend the GLMs described above by including low dimensional latent factors in the model for the mean 207 

parameters. In other words, the Poisson GLLVM and NB GLLVM assume 𝑦𝑘𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑘𝑖) or 𝑦𝑘𝑖 ∼208 

𝑁𝐵(𝜇𝑘𝑖, 𝛼𝑖) with 𝑙𝑜𝑔 𝜇𝑘𝑛  = 𝑧𝑘
′ 𝛽𝑖 + 𝑐𝑘

′ 𝑑𝑖, where 𝑐𝑘 ∈ 𝑅𝑞 is the latent factor for trial k (with 𝑞 ≪ 𝑁) and 209 

𝑑𝑖  is the factor loading that describes how the latent states influence neuron i. Latent variables can 210 

capture single-trial patterns of higher than expected or lower than expected firing across the population 211 

of neurons. For instance, the activity of pairs of neurons with positive noise correlations may be 212 

accounted for by have similar coefficients 𝑑. 213 

 214 

In this basic form, the latent variable model is not identifiable, and we put several constraints on {𝑐𝑘}𝑘=1
𝐾  215 

and {𝑑𝑖}𝑖=1
𝑁  to ensure identifiability. Denote 𝐶 = (𝑐1, … , 𝑐𝐾)′  and 𝐷 = (𝑑1, … , 𝑑𝑁) , and write the 216 

singular value decomposition of 𝐶𝐷 as 𝐶𝐷 = 𝑈𝛴𝑉′. Following Miller and Carter (2020), we constrain: 1) 217 

𝑈  and 𝑉  to be orthogonal, 2) 𝛴  to be diagonal matrix, with diagonal elements > 0  and sorted in 218 

descending order and 3) the first nonzero entry for each column of 𝑈 to be positive. Then we let 𝐶 = 𝑈𝛴 219 

and 𝐷 = 𝑉′ , or equivalently let 𝐶 = 𝑈  and 𝐷 = 𝛴𝑉′ . The model parameters then are estimated by 220 

maximizing the likelihood via alternating coordinate descent algorithm, i.e. updating the “neuron” part 221 

({𝛽𝑖}𝑖=1
𝑁  and 𝐷) and the “latent” part (𝐶) until convergence is achieved. 222 

 223 

In cases where the number of trials is relatively small, when p is large, or when the spiking is extremely 224 

sparse, both the GLM and GLLVM can overfit or fail to converge (Zhao and Iyengar, 2010). In addition to 225 

the Gaussian prior (i.e. L2 penalty) on 𝛽  we also include a Gaussian prior 𝐶~𝑁(0, 𝜁𝐼), and find the 226 

maximum a posteriori (MAP) estimates rather than the MLE. Here we use 𝜂 = 1 for V1 and M1, 10 for 227 

HC, and 100 for ABI, and 𝜁 = 0.001  for the GLLVMs. These were set by hand and not extensively 228 

optimized, since the qualitative results are robust across a wide range of values. 229 

 230 

Approximate Bayesian Decoding  231 
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Once the encoding model is fitted with training data 𝑥 and 𝑦, we then decode the external variable 𝑥∗ 232 

based on new observations of spikes 𝑦∗ ∈ 𝑁𝑁, by evaluating the posterior distribution 𝑃(𝑥∗|𝑦∗, 𝑥, 𝑌). 233 

For the GLM, we have 234 

𝑃(𝑥∗|𝑦∗, 𝑥, 𝑌) ∝ ∏ 𝑃(𝑦𝑖
∗|𝑥∗, 𝑥, 𝑌)𝑝(𝑥∗)

𝑁

𝑖=1

. 235 

The results here all assume a flat/uniform prior on 𝑝(𝑥∗); however, in general, this term can incorporate 236 

prior information about the external variables. 237 

 238 

For the GLLVM we additionally need to account for the latent variables. Since the data used for fitting 239 

the encoding model is not the same as decoding dataset, the latent state 𝑐𝑘, depending on specific trials, 240 

acts as a nuisance parameter. We then obtain the posterior 241 

𝑃(𝑥∗|𝑦∗, 𝑥, 𝑌) ∝ ∏[∫ ∫ 𝑃(𝑦𝑖
∗|𝑥∗, 𝜃𝑖 , 𝑐)𝑝(𝜃𝑖|𝑥, 𝑌)𝜋(𝑐)𝑑(𝜃𝑖)𝑑𝑐]  𝑝(𝑥∗)

𝑁

𝑖=1

 242 

Where 𝜃  denotes the parameters {𝛼, 𝛽, 𝑑} . When the training set size 𝐾  is small, the parameter 243 

estimates for the encoding model can have substantial parameter uncertainty (Cronin et al., 2010). 244 

However, in practice, including parameter uncertainty (via MCMC) does not typically affect the posterior 245 

over the external variable (see results in Wei, 2023). We thus approximate the full posterior by plugging 246 

in the MLE/MAP estimates 𝜃. 247 

 248 

Our goal is then to calculate the marginal predictive likelihood ∫ 𝑃 (𝑦∗, {𝛼̂𝑖, 𝛽̂𝑖, 𝑑̂𝑖}
𝑖

𝑁
, 𝑐) 𝜋(𝑐)𝑑𝑐. If we 249 

assume the observations 𝑦∗ to be conditionally independent given both stimuli and latent factors this is 250 

given by ∏ ∫ 𝑃(𝑦𝑖
∗|𝑥∗, 𝛼̂𝑖 , 𝛽̂𝑖, 𝑑̂𝑖)𝜋(𝑐)𝑑𝑐𝑁

𝑖=1 . Although there is no closed form solution to the integral, we 251 

can use the Laplace approximation, such that 252 

∫ 𝑃(𝑦𝑖
∗|𝑥∗, 𝛼̂𝑖 , 𝛽̂𝑖, 𝑑̂𝑖, 𝑐)𝜋(𝑐)𝑑𝑐 ≈ 𝑃(𝑥∗, 𝛼̂𝑖 , 𝛽̂𝑖, 𝑑̂𝑖, 𝑐̂)𝜋(𝑐̂)(2𝜋)

𝑞
2|𝑉𝑐|

1
2 ∝ 𝑃(𝑥∗, 𝛼̂𝑖 , 𝛽̂𝑖, 𝑑̂𝑖, 𝑐̂)|𝑉𝑐|

1
2, 253 

where 𝑐̂ is the ML (or MAP) estimate and 𝑉𝑐 = [
𝜕2   log 𝑃(𝑐|𝑦𝑖

∗,𝑥∗,𝛼̂𝑖,𝛽̂𝑖,𝑑̂𝑖) 

𝜕𝑐2 ∣𝑐=𝑐̂  ]
−1

. 254 

 255 

Since the posterior distribution of 𝑥∗ is not necessarily unimodal, we evaluate the posterior distribution 256 

by grid approximation, which works efficiently for a one-dimensional case. In other words, we first 257 

compute the un-normalized posterior density at a grid of values that cover effective rage of 𝑥∗, and then 258 

normalize the density. 259 

 260 
Greedy Decoders 261 
 262 
To better understand how the composition of the population affects our results, we compare GLM and 263 
GLLVM decoders that use the full population of neurons to those with only a subset of neurons. Here we 264 
select subsets of the 20 “best” or “worst” neurons using a greedy optimization (see Ghanbari et al., 265 
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2019). We use a beam search approach where we add neurons one at a time to the population and keep 266 
the top (or bottom) five performing populations that minimize (or maximize) the absolute median error 267 
on the training data for the M1 and V1 datasets or the top-1 accuracy on the training data for the ABI 268 
dataset. Although not guaranteed to be the optimal best/worst set of 20 neurons, this approach 269 
generates subpopulations where the decoding error is substantially better/worse than randomly 270 
selected sets of 20 neurons. 271 
 272 

Decoders based on Optimal Linear Estimation 273 
 274 

For comparison, we also fit non-Bayesian decoders to trial-by-trial data M1 and V1 and continuous data 275 

from HC (see Ghanbari et al., 2019). Briefly, we use optimal linear estimation (OLE), where the core 276 

assumption is that the external variable on trial 𝑘 can be reconstructed using a linear combination of 277 

functions weighted by the activity of each neuron 278 

𝑥̂𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥  ∑ 𝑦𝑘𝑖𝜙𝑖(𝑥)
𝑖

 279 

When 𝜙𝑖  is the preferred direction of each neuron this is a population vector decoder, but here we use 280 

the (Fourier or radial) basis functions described above where 𝜙𝑖(𝑥) = ∑ 𝑤𝑘𝑗𝑧𝑗(𝑥)𝑗 , and we optimize 𝑤 281 

by the ridge regression 282 

𝑊̂ = (𝑌𝑇𝑌 + 𝜆𝐼)−1𝑌𝑇𝑍 283 

with 𝜆 = 1 for the results here. 284 
 285 

Coverage and Constant Correction 286 
 287 
To assess the calibration of these decoders for continuous variables we compare the frequentist 288 

coverage (fraction of trials on which the true stimulus/movement falls within a highest density region) 289 

to the nominal/desired probability. For a well-calibrated Bayesian model, the highest posterior density 290 

(HPD) regions of a given size (e.g. the 95% region) should contain the true values with the nominated 291 

probability (e.g. 95%). Here we compute the (cross-validated) proportion of trials for which the true 292 

stimulus/movement falls within the HPD regions (the “coverage”) as we vary the size of the credible set. 293 

 294 

For categorical posteriors, there are several scoring rules that have been previously described, such as 295 

the Brier score (Gneiting and Raftery, 2007), but, here, to emphasize “coverage”, we extend our 296 

calculations with continuous credible regions to use discrete credible sets. We construct the HP set, as 297 

before, adding the highest probability categories until the probability 𝑚 in the set meets the nominated 298 

probability 𝑚∗ with 𝑚 ≥ 𝑚∗. For continuous distributions, credible regions can be calculated so that 299 

there are minimal errors between the desired probability (𝑚∗) and the probability in the credible set 300 

(𝑚), but for categorical distributions, there can be a substantial mismatch between these quantities. For 301 

instance, suppose we want to find the coverage of a 25% credible set, but category 1 has posterior 302 

probability 50% on average across trials. To correct for this mismatch, we adjust the empirical coverage 303 

for categorical posteriors (ABI results below) by a factor of 𝑚∗/〈𝑚〉 (e.g., .25/.5 for the example above), 304 
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where 〈⋅〉 denotes an average across trials. However, for continuous posteriors we do not need or apply 305 

this correction here.  306 

 307 

Since most Bayesian decoders appear to be badly calibrated, we consider a post-hoc correction (i.e.  308 

recalibration). This correction is similar to the “inflation factor” in ensemble probabilistic forecasting 309 

(Wilks, 2002; Gneiting and Raftery, 2007) where similar types of overconfidence can occur (Raftery et 310 

al., 2005). Namely, here we consider decoding with a modified posterior 𝑄(𝑥∗|𝑦∗, 𝑥, 𝑌) ∝311 

exp(ℎ log 𝑃(𝑥∗|𝑦∗, 𝑥, 𝑌)) for some constant ℎ > 0. Decoding from the modified posterior 𝑄(𝑥∗|𝑦∗, 𝑥, 𝑌) 312 

does not change the accuracy, but allows the confidence to be adjusted. Here we fit ℎ by minimizing the 313 

squared error between the empirical and nominal coverage probability over the full range (0, 1).  314 

 315 

Conformal Prediction Intervals 316 

 317 
As an alternative to the post-hoc correction, we also consider split conformal prediction based on the 318 
MAP point-estimates in our Bayesian models and the OLE point-estimates. Here our approach is based 319 
on Algorithm 2 from (Lei et al., 2018). Briefly, we split the data in half. Then, after fitting our models to 320 
one half of the data, we evaluate the residuals for the other half. For a desired coverage 1 − 𝛼 and a 321 
point-estimate for the decoded variable 𝜇̂, the conformal prediction interval is [𝜇̂(𝑦∗) − 𝑑, 𝜇̂(𝑦∗) + 𝑑] 322 
where 𝑑 is the ⌈(𝑛/2 + 1)(1 − 𝛼)⌉th smallest absolute residual. Here residuals are calculated based on 323 
the circular distance. 324 
 325 

Dynamic Models 326 
 327 
The GLM and GLLVM described above assume that trials are independent. However, in many cases, it is 328 

more appropriate or desirable to decode with a dynamic model. Rather than decoding the external 329 

variable on trial 𝑘, we wish to decode the external variable 𝑥𝑡  at time 𝑡 and to incorporate smoothness 330 

assumptions relating 𝑥𝑡  to previous time points. Such state space models have been previously 331 

described for Poisson observations (Smith and Brown, 2003; Paninski et al., 2010; Vidne et al., 2012), 332 

and applied for decoding (Lawhern et al., 2010). Here we describe decoding with a dynamic NB GLLVM, 333 

for which the Poisson model is a special case (see Wei (2023) for additional detail). We apply this dynamic 334 

model to hippocampal position decoding (see Results, Fig 8). 335 

 336 

Briefly, we assume that the observation for neuron 𝑖 at time 𝑡 follows   337 

𝑦𝑖𝑡 ∼ 𝑁𝐵(𝜇𝑖𝑡, 𝛼𝑖), 𝑙𝑜𝑔 𝜇𝑖𝑡  = 𝛽𝑖
′𝑧𝑡 + 𝑑𝑖

′𝑐𝑡,    𝑧𝑡 = 𝑚𝑧 + 𝐴𝑧𝑧𝑡−1 + 𝜂𝑧 ,      𝑐𝑡 = 𝑚𝑐 + 𝐴𝑐𝑐𝑡−1 + 𝜂𝑐 , 338 

where 𝑧𝑡 = 𝑓(𝑥𝑡), 𝛽𝑖 ∈ 𝑅𝑝, 𝑑𝑖 ∈ 𝑅𝑞 and (𝜂𝑧 , 𝜂𝑐) ∼ 𝑁𝑝+𝑞(0, 𝑑𝑖𝑎𝑔(𝑄𝑧, 𝑄𝑐)). With initial conditions given 339 

by 𝑧1 ∼ 𝑁(𝑧0, 𝑄𝑧0)  and 𝑐1 ∼ 𝑁(𝑐0, 𝑄𝑐0) . To make the model identifiable, we put the same set of 340 

constraints on the model parameters as above. Denote 𝐶 = (𝑐1, … , 𝑐𝑇)′ and 𝐷 = (𝑑1, … , 𝑑𝑁)′, let 1) 𝐶′𝐶 341 

be diagonal, with diagonal elements sorted in the descending order, 2) 𝐷′𝐷 = 𝐼𝑝 and 3) the first non-342 

zero entry for each column of 𝐶 is positive. 343 
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 344 

When fitting the encoding model, {𝑧𝑡} is observed and {𝑧0, 𝑄𝑧0, 𝑚𝑧, 𝐴𝑧 , 𝑄𝑧} do not need to be estimated. 345 

We fit the remaining model parameters by a cyclic coordinate descent algorithm, i.e., alternatively 346 

updating the “neuron” part {𝛽𝑖, 𝑑𝑖}𝑖=1
𝑁  and “latent” part {{𝑐𝑡}𝑡=1

𝑇 , 𝑐0, 𝑄𝑐0, 𝑚𝑐, 𝐴𝑐 , 𝑄𝑐}. The “latent” part 347 

is fitted via an expectation maximization (EM) algorithm with a normal approximation in the E-step, 348 

following (Lawhern et al., 2010). For decoding, we plug in the fitted {𝛽̂𝑖}𝑖=1

𝑁
 and {𝑑̂𝑖}𝑖=1

𝑁
 and refit 349 

{{𝑧𝑡
∗, 𝑐𝑡}𝑡=1

𝑇 , 𝑧0
∗, 𝑄𝑧0, 𝑚𝑧 , 𝐴𝑧 , 𝑄𝑧, 𝑐0, 𝑄𝑐0, 𝑚𝑐, 𝐴𝑐, 𝑄𝑐}  via an EM algorithm again using a normal 350 

approximation at E-step. Note that here, {𝑐𝑡}𝑡=1
𝑇  are not treated as nuisance parameters. For the results 351 

decoding position from hippocampal activity, we assume that 𝑚𝑧 = 0, 𝑚𝑐 = 0, 𝐴𝑧 = 𝐼 , and 𝐴𝑐 = 𝐼 . 352 

Additionally, rather than a direct grid approximation for the posterior over 𝑥∗ , the posterior is 353 

approximated as a multivariate normal distribution over 𝑧𝑡
∗ . To assess accuracy and coverage, we 354 

evaluate the multivariate normal distribution along a grid in 𝑥∗  for each 𝑡 separately and normalize, 355 

𝑝(𝑥𝑡
∗) ≈  𝑝(𝑧𝑡

∗(𝑥𝑡
∗)). 356 

  357 

 358 

 359 

Results 360 

Bayesian decoders are based on first fitting tuning curves for each neuron using training data. The 361 

encoding model determines the likelihood distribution, and, for traditional (naïve) Bayesian models, 362 

neurons are assumed to be conditionally independent given the external variables. During decoding we 363 

then use Bayes’ rule to calculate the posterior distribution over possible stimuli or movements given the 364 

observed neural activity. Here we focus on assessing not just the decoding accuracy but the uncertainty 365 

of the posterior under different models and experimental settings. Our goal is to determine to what 366 

extent the traditional models, as well as more recently developed latent variable models, have well-367 

calibrated posterior estimates (i.e., where the posterior probabilities match the true probabilities of the 368 

external variable taking specific values). 369 

 370 

To illustrate the problem of model calibration we consider a hypothetical set of Bayesian decoders (Fig 371 

1A). The average error is the same for each of these decoders, since the maximum and means of the 372 

posteriors are identical, but the uncertainty of the decoders varies. There is underconfidence or 373 

overconfidence on single trials, and, across trials, the posterior distributions do not necessarily match 374 

the distribution of errors. When errors occur an overconfident decoder will not have proper coverage of 375 

the true value. On the other hand, an underconfident decoder will cover the true value too often for the 376 

desired confidence level. In our example case, imagining 5 trials and an 80% credible interval, a well-377 

calibrated decoder correctly covers the true value for 4 of 5 trials, while the overconfident decoder only 378 

covers 1 of 5 and the underconfident decoder covers 5 of 5. In general, overconfident decoders will have 379 
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lower coverage than desired, while underconfident decoders will have higher coverage than desired (Fig 380 

1B). 381 

 382 

Bayesian models can have poor calibration when the model is misspecified. To illustrate how such 383 

misspecification could occur with neural data we simulate the impact of latent variables on a traditional 384 

Bayesian decoder. Here noisy spike observations are generated by a population of identically tuned 385 

neurons (Fig 1D, top) with Poisson variability. However, in addition to their stimulus/movement tuning 386 

neurons receive a common one-dimensional latent input that increases or decreases activity on 387 

individual trials. Since this input is shared by the entire population (of 20 neurons in this case), it 388 

produces correlated variability. A traditional Bayesian decoder first fits tuning curves for each individual 389 

neuron (here using a Generalized Linear Model - GLM - with Poisson observations). The posterior is 390 

calculated assuming that neural responses are conditionally independent given the stimuli, and, as 391 

before, we can quantify the coverage by identifying the highest posterior density (HPD) regions. In this 392 

more realistic simulation, the posterior can be multimodal resulting in multiple credible regions rather 393 

than just a single credible interval. However, since the GLM decoder does not account for the latent 394 

variable, the decoder is over-confident (Fig 1C, top) and less accurate (Fig 1D, bottom). When the latent 395 

variable has a larger impact on neural responses relative to the impact of the stimulus, errors increase, 396 

and the decoder is increasingly overconfident. Hence, traditional Bayesian decoders used in the 397 

literature by assuming the independence between responses given the stimuli can have high error and 398 

over-confidence in the presence of latent variables.  399 

 400 

Modeling the latent variable reduces error and provides well-calibrated posteriors. Here we use a 401 

Poisson Generalized Linear Latent Variable Model (GLLVM, see Methods) where the encoding model is 402 

fit to account for the tuning curve, as well as the contribution of a shared low dimensional latent variable. 403 

Under the GLLVM, neural responses are not conditionally independent given the stimulus. Rather, for 404 

each trial the latent variable is estimated, and, during decoding, the latent variable is marginalized over 405 

in order to generate the posterior distribution over stimuli. The error for the GLLVM decoder still 406 

increases as the latent variable has a larger relative impact on neural responses (Fig 1D, bottom), but the 407 

coverage closely follows the desired credibility level (Fig 1C, bottom). Well calibrated decoders (such as 408 

the GLLVM in this simulation) have the advantage that the posterior appropriately covers the true 409 

stimulus. 410 

 411 
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 412 
 413 

Figure 1: Bayesian decoders can misestimate uncertainty. A) Examples of posteriors for three toy 414 

Bayesian decoders: an under-confident (blue), over-confident (red), and a well-calibrated (black) 415 

decoder provide posterior estimates for each trial. Curves denote single-trial posteriors and lines below 416 

each posterior denote 80% the credible intervals, and credible intervals for an additional four trials. Dots 417 

denote MAP estimates. Coverage is measured by whether the highest posterior density regions cover 418 

the true value (Error=0, in this case). B) Coverage as a function of the desired confidence level for each 419 

decoder. C) In a simulation of homogeneous neurons receiving latent input in addition to their tuning to 420 

an external variable, we find that a GLM-based decoder is increasingly over-confident as the contribution 421 

of the latent input increases (top). Modeling the latent input with a GLLVM, even though it is unknown, 422 

reduces over-confidence (bottom). For clarity, curves are averages of multiple simulations. D) Tuning 423 

curves for the simulated population (top) and median cross-validated error for the MAP estimates 424 

(bottom) for the GLM (red) and GLLVM (gray) averaged across multiple simulations. Error bars denote 425 

standard deviation across simulations. 426 

 427 

 428 

To further illustrate how overconfidence arises we consider a single tuned neuron in the GLLVM (Fig 2). 429 

Here a neuron is tuned with a preferred stimulus/movement direction of 0 deg. However, a latent 430 

variable that changes from trial to trial can shift the tuning curve up or down. This latent variable creates 431 

an additional source of ambiguity when a specific spike count is observed. We cannot distinguish 432 

between a situation where the neuron is spiking during the presence of a preferred stimulus and a 433 

situation where the neuron is spiking during a non-preferred stimulus that coincides with an excitatory 434 

latent input. For stimulus 𝑥 and neural responses 𝑦, the key difference between the GLM and GLLVM 435 

decoders is that instead of using the posterior 𝑝(𝑥|𝑦) based only on a tuning curve model, we model an 436 

additional latent variable 𝑧  and decode from the marginal posterior distribution ∫ 𝑝(𝑥|𝑦, 𝑧)𝑝(𝑧)𝑑𝑧 . 437 

Since marginalizing, in general, increases uncertainty, the posterior distributions for individual neurons 438 

under the GLLVM will be more uncertain than those of a GLM with the same noise model. 439 
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 440 

 441 
 442 
Figure 2: Latent variables increase posterior uncertainty when modeled. A single neuron tuned to reach 443 

direction may additionally be impacted by a latent variable (left) with the tuning curve scaled up or down 444 

depending on the latent state (yellow to blue curves). After fitting the encoding model, we can find the 445 

joint posterior over the value of the latent variable and the reach direction given an observed spike count 446 

(middle). Left panels show “slices” of the joint posterior evaluated at specific latent values (colors 447 

correspond to tuning curves), and the heatmaps show the full joint posterior. To decode the reach 448 

direction, we marginalize/integrate over the latent variable (right). The full model (blue) has higher 449 

uncertainty for reach direction than a model that does not take the latent variable into account (black). 450 

 451 
 452 
Trial-by-Trial Experimental Data 453 
For experimental data we do not know the true model. However, the calibration and accuracy of 454 

Bayesian decoders can be assessed empirically. Here we compare GLM and GLLVM Bayesian decoders 455 

in three experimental settings: 1) decoding reach direction during a center-out task using recordings 456 

from primary motor (M1), 2) decoding sine-wave grating movement direction using recordings from 457 

primary visual (V1) cortex, and 3) decoding the identity of a natural image stimulus using multi-region 458 

Neuropixels recordings from the Allen Brain Institute (ABI). These data were previously collected and 459 

publicly shared (see Methods), and for each setting we evaluate decoding accuracy as well as coverage 460 

– the fraction of trials where the true stimulus falls within the highest density regions of the posterior 461 

(HPD). 462 

 463 

We compare four models 1) Poisson-GLM, 2) negative binomial-GLM, 3) Poisson-GLLVM, and 4) negative 464 

binomial GLLVM. For M1 and V1, we model tuning curves using a Fourier basis. For ABI, we model the 465 

spike counts in response to each of 118 images and regularize to prevent overfitting (𝜂 = 100). For the 466 

GLLVMs, we model a one-dimensional latent variable that co-modulates the responses of each neuron 467 

in the recorded population in addition to the tuning curves. That is, we fit an encoding model which 468 
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predicts the response of each neuron on each trial as conditionally independent Poisson or negative 469 

binomial observations. During decoding we evaluate the posterior distribution over possible external 470 

variables and marginalize over the latent variable in the case of the GLLVM. All results are cross-validated 471 

(10-fold) such that the decoders are trained on one set of trials and error/accuracy and uncertainty are 472 

evaluated on test data. 473 

 474 

 475 
Figure 3: Experimental decoding tasks and example posteriors. A) For M1 data, we aim to decode target 476 

direction in single trials of a center-out reaching task, B) For V1 data, we aim to decode stimulus (full-477 

field grating) movement direction in single trials, and C) For ABI data, we aim to decode the identity of a 478 

natural image stimulus on single trials. For each case, example stimuli (top) and tuning curves for 479 

individual neurons (bottom) from the Poisson GLM fits. (D-F) show example posteriors for single trials 480 

(left) as well as the average posterior aligned to the MAP estimate (right). For ABI, note that the 481 

posteriors are discrete distributions and, for clarity, only a subset of images are shown. In (F), black 482 

triangles denote the true image stimulus. 483 

 484 
 485 
For experimental data, there is substantial heterogeneity in tuning curves (Fig 3A-C), and posteriors may 486 

be continuous or discrete depending on the experimental context. However, as with the toy examples 487 
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above, the GLLVM (in this case, with a negative binomial observation model) tends to have posteriors 488 

with higher uncertainty compared to the GLM (Fig 3E-F). On single trials, the posteriors tend to be wider 489 

and to have lower probabilities for the (MAP) point estimate for the GLLVM. In both continuous and 490 

discrete cases, outcomes that were assigned near-zero probability under the GLM are assigned non-zero 491 

probability under the GLLVM. 492 

 493 

As with the simulations above, we find that Bayesian decoders tend to be over-confident (Fig 4A-C). For 494 

all three experimental settings (M1, V1, and ABI), the highest posterior density (HPD) regions cover the 495 

true stimulus/movement less often than desired for all credible levels when decoding from all recorded 496 

neurons. For the Poisson GLM, for example, when we specify a 95% credibility level, the posteriors from 497 

M1 only include the true target direction 70% of the time, posteriors from V1 only include the true 498 

stimulus direction 51%, and posteriors from ABI only include the true natural image stimulus 31% of the 499 

time. The negative binomial GLM has better coverage than the Poisson GLM, while adding latent 500 

variables improves coverage even more. The best-calibrated model of these four is the negative binomial 501 

GLLVM - here when we specify a 95% credibility level, the posteriors from M1 include the true target 502 

direction 81% of the time, posteriors from V1 include the true stimulus direction 82%, and posteriors 503 

from ABI include the true natural image stimulus 86% of the time. Traditional Bayesian decoders can 504 

thus have substantial over-confidence, and calibration is improved by adding latent variables. 505 

 506 

As previous studies have noted, non-Poisson observation models and latent variables can alter, and in 507 

many cases improve, decoding accuracy. Here, for M1 and V1, we calculate the absolute circular distance 508 

between the true target/stimulus direction and the maximum a posteriori (MAP) estimate of the 509 

target/stimulus direction from the Bayesian decoders on each trial. For ABI, we assess the accuracy 510 

based on whether the top-1 or top-5 categories of the discrete posterior include the true stimulus image 511 

on each trial. For the full populations of M1 data, the models do not have substantially different errors 512 

(median across trials 9.8 deg, 9.5 deg, 9.8 deg and 9.8 deg for the P-GLM, NB-GLM, P-GLLVM, and NB-513 

GLLVM, respectively). For the V1 data, the Poisson GLM outperforms the NB-GLM (median error 3.8 deg 514 

vs 4.5 deg, Wilcoxon signed rank test, p<10-12, z=7.5), and the Poisson GLLVM outperforms the NB-515 

GLLVM (median error 2.8 deg vs 3.0 deg, Wilcoxon signed rank test p<10-12, z=7.7). For ABI data, 516 

however, the NB models out-perform the Poisson models (top-1 accuracy 15.6% [14.6, 16.7] for P-GLM 517 

vs 23.0% [21.9, 24.2] for NB-GLM). For V1, the GLM-based models have slightly lower error than the 518 

GLLVM (p<10-12, z=17.0, Wilcoxon signed rank test for Poisson GLM vs GLLVM), but for the ABI data, the 519 

GLLVM models improve accuracy substantially (22.3% [22.1, 24.5] for P-GLLVM and 30.1% [29.2, 31.8] 520 

for NB-GLLVM). In all cases, for randomly sampled subnetworks, we find that the cross-validated error 521 

decreases (or accuracy increases) as a function of how many neurons are included in the decoder for all 522 

models (Fig 4D-F). 523 

 524 



 16 

These error and accuracy measures are based on the MAP estimates of the external variable; however, 525 

there are also differences across models in the dispersion of the posteriors. The NB models have higher 526 

circular standard deviations than the Poisson models for the M1 and V1 data and substantially higher 527 

entropy for ABI (Fig 4G-I). For M1, the circular standard deviation of the posterior is 7.2 deg for the 528 

Poisson GLM (median across trials) compared to 8.8 deg for the NB-GLM (p<10-12, z=14.3, two-sided 529 

Wilcoxon signed rank test), and 7.7 deg and 9.0 deg for the P-GLLVM and NB-GLLVM (p<10-12, z=13.9, 530 

two-sided Wilcoxon signed rank test). For V1, the median circular standard deviation is 2.0 deg for the 531 

P-GLM compared to 4.0 deg for the NB-GLM (p<10-12, z=38.8) and 2.0 deg vs 3.3 deg for the P-GLLVM 532 

and NB-GLLVM (p<10-12, z=-35.0, two-sided Wilcoxon signed rank test). For ABI, the average entropy is 533 

1.26 bits for the P-GLM and 2.7 bits for NB-GLM (t(4872)=136.4, p<10-12, paired t-test), 1.8 bits for P-534 

GLLVM, 4.0 bits for NB-GLLVM (t(4872)=19.6, p<10-12, paired t-test compared to NB-GLM). In the case of 535 

decoding natural images from ABI, the GLLVMs are less certain and more accurate than the GLMs. 536 

 537 

Differences in the dispersions of the posteriors are reflected in differences in coverage. As more neurons 538 

are used for decoding the models become increasingly overconfident and badly calibrated (Fig 4J-L), 539 

even as the error decreases (Fig 4D-E) or accuracy improves (Fig 4F). The negative binomial GLLVM has 540 

the best coverage across datasets and population sizes but note that the coverage is still less than desired 541 

(95% for Fig 4J-L).  542 

 543 
Interpreting latent variable models 544 
Including a latent variable allows the GLLVMs to account for variation in neural responses to the same 545 

stimulus/movement. Here, with a one-dimensional model, the GLLVM primarily accounts for the overall 546 

fluctuations in population activity from trial-to-trial (Fig 5). While the GLM only predicts variation 547 

between stimuli/movements for both M1 (Fig 5A) and V1 (Fig 5B), the GLLVM accounts for the fact that 548 

some trials tend to have higher overall activity across the population while other trials have lower 549 

activity. This trend is apparent when examining the overall population activity – here calculated as the 550 

sum of the log activity. We also examine correlations between responses of pairs of neurons (Fig 5, right). 551 

Here we calculate stimulus and noise correlations by shuffling responses to the same 552 

stimuli/movements. Stimulus correlations reflect the average on shuffled data, while noise correlations 553 

are given by the observed correlations minus the shuffled correlations, and, for the models, we sample 554 

spike counts to mimic the observed data. Since the GLM assumes that neurons are conditionally 555 

independent given the stimulus/movement, it accounts for stimulus correlations but tends to 556 

underestimate noise correlations. The GLLVM, on the other hand, accurately accounts for both stimulus 557 

and noise correlations. This pattern is present in the overall correlation matrices, as well as, when 558 

averaging over pairs of neurons based on the differences in their preferred directions (Δ𝑃𝐷). 559 

 560 

 561 

 562 
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 563 
Figure 4: Coverage results for three experimental datasets and four decoders. Decoding reach direction 564 

from neurons in M1 during a center-out task (A), decoding stimulus direction from neurons in V1 during 565 

presentation of drifting gratings (B) and decoding the identity of a natural image from multiple brain 566 

regions (C), Bayesian decoders tend to be over-confident. Latent variable models (P-GLLVM and NB-567 

GLLVM) are better calibrated than their GLM equivalents, and negative binomial models tend to be 568 

better calibrated than their Poisson equivalents. Cross-validated error/accuracy (D-F), uncertainty (G-I), 569 

and coverage (J-L) each change as a function of how many neurons are included in the model. Accuracy 570 

increases with increasing numbers of neurons and uncertainty decreases. However, calibration (the 571 

degree of over-confidence) gets worse as more neurons are included in the model. Error in D and E, 572 

denotes median error. SD in G and H is circular standard deviation. Dashed line in (I) denotes maximum 573 

entropy over the natural images. Dashed lines in J-L denote a nominated 95% coverage. M1 results in D, 574 

G, and J are averaged across 200 sets of neurons, V1 results in E, H, and K are averaged across 100 sets 575 

of neurons, and ABI results are averaged across 20 sets of neurons. 576 
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 577 

 578 
Figure 5: Encoding models for reach direction in M1 and grating direction from V1. A) Spike counts for 579 

all neurons recorded from M1 and trials for each of 8 directions of a center-out reaching task (top). 580 

Neurons are sorted by their preferred directions, and trials are sorted first by the target direction and 581 

then by the value of the latent state. The color scale is transformed (𝑙𝑜𝑔(𝑦/𝑒𝛽0 + 10)) to highlight the 582 

differences across neurons and trials. Model fits for the GLM (Poisson observations) and GLLVM (1D 583 

latent, Poisson observations) are shown below, as well as the population activity. The observed and 584 

modeled stimulus and noise correlations are shown at right. B) Spike counts and model fits for neurons 585 

recorded from V1 responding to drifting full-field gratings in 12 directions (sorted as in A). 586 
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 587 
The dimensionality of the latent variable may have some impact on the encoding and decoding accuracy 588 

and on the calibration of Bayesian decoders. To characterize the potential effects of dimensionality we 589 

fit GLLVMs with 1 to 5 dimensional latent states for the M1, V1, and ABI datasets. We find that, in most 590 

cases, the GLLVMs with >1 dimensionality have similar error and coverage to the models with 1 591 

dimension, with the exception of the Poisson GLLVM, which tends to have better coverage with more 592 

dimensions (Fig 6). In all cases the coverage of the NB models is better than that of the Poisson models. 593 

 594 

 595 

 596 
Figure 6: Increasing latent dimensionality does not fully correct over-confidence. Error/accuracy (left) 597 

and coverage at 95% credibility level (right) for GLLVMs with different latent dimensionality. GLM and 598 

GLLVM results reflect the full population of neurons for each experimental setting. For comparison, 599 

results with reduced populations of 20 neurons are included here for the GLM and one-dimensional 600 

GLLVM, selected using a greedy optimization to create the “best” and “worst” error/accuracy. Error bars 601 

denote 95% confidence intervals. Dashed lines denote nominated coverage of 95%. Light and dark colors 602 

for the best/worst greedy decoders denote results from the GLM and 1D GLLVM, respectively. 603 
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Since the size of the population appears to have an impact on coverage, we also examine how the 606 

composition of the population impacts accuracy and decoding. Here we use a greedy optimization (see 607 

Methods) to find the population of size N neurons that minimizes the error (M1 or V1) or maximizes the 608 

top-1 accuracy (ABI) of the Poisson GLM creating the greedy “best” subpopulation. And for comparison 609 

we also consider maximizing the error (M1 or V1) or minimizing the top-1 accuracy (ABI) of the Poisson 610 

GLM to create the greedy “worst” subpopulation. Like previous studies, we find that the full population 611 

is often unnecessary for accurate decoding – a greedy best subpopulation of N=20 often has 612 

error/accuracy comparable to the full population. Here we additionally show that these greedy best 613 

models often have better coverage than the models based on the full population (Fig 6). However, the 614 

population size is not the only factor determining coverage, since the greedy best and greedy worst 615 

populations have substantial differences in coverage despite both consisting of 20 neurons. 616 

 617 

Post-hoc correction for miscalibration 618 
Since even decoders based on GLLVMs are over-confident, it may be useful to consider calibration as a 619 

distinct step in neural data analysis in situations where accurate uncertainty estimation is needed. One 620 

approach to correcting calibration errors is to simply inflate the posterior uncertainty post-hoc. That is, 621 

rather than decoding using 𝑝(𝑥|𝑦)  use 𝑞(𝑥|𝑦) . Here we consider the transformation 𝑞(𝑥|𝑦) ∝622 

exp(ℎ log 𝑝(𝑥|𝑦)) with ℎ > 0. This transformation preserves the MAP estimate and the relative log-623 

probabilities of all 𝑥 , but ℎ  allows the uncertainty to be modified. Note that if 𝑝(⋅)  is a normal 624 

distribution with standard deviation 𝜎, 𝑞(⋅) is a normal distribution with standard deviation 𝜎/√ℎ, but 625 

this transformation can be used for general distributions. 626 

 627 

For the over-confident examples above, we estimate a single constant ℎ using the full data for each case 628 

(see Methods) and find that this transformation produces well-calibrated decoding distributions at all 629 

desired confidence levels (Fig 7A-C). The transformation does not change the decoding accuracy (based 630 

on MAP estimates) but allows for substantially more accurate uncertainty estimation. In the examples 631 

above, we showed that over-confidence depends on the encoding model and the number of neurons 632 

used in the decoder. The optimal value of ℎ, thus, also depends on the model as well as the size and 633 

composition of the population with higher overconfidence needing greater correction (smaller ℎ). We 634 

also note that, at least in some cases, underconfidence is possible (Fig 7D), but can be similarly corrected 635 

by ℎ > 1. 636 

 637 

Within a given experimental setting, there is a consistent relationship between the degree of 638 

over/under-confidence and the optimal correction parameter (here optimized by minimizing the mean 639 

squared error in the nominated coverage vs empirical coverage plots). Across models (GLM, GLLVM, 640 

Poisson, and NB) and populations (full population and greedy best), the correction parameters are well 641 

predicted by a power law, ℎ = (2𝑝)𝑎, where 𝑝 denotes the area under the curve for the uncorrected 642 

coverage and we find 𝑎̂ =2.7, 2.5, 1.3, 2.5 for M1, V1, ABI, and HC (see below), respectively (Fig 7E). 643 
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 644 

 645 

 646 
Figure 7: Post hoc corrected coverage. (A-C) results for full populations in each of the three experimental 647 

settings from Fig 3A-C. For each model and experiment there is a distinct correction parameter optimized 648 

to produce well calibrated results. D) Under-confidence is rare, but can occur, such as when decoding 649 

from the best 20 neurons (greedy selection) from the ABI dataset using NB models. Dashed lines in C and 650 

D decode the uncorrected results, while solid lines denote the post-hoc corrected results (dashed lines 651 

in C are repeated from 4C for reference). E) The optimal correction parameter as a function of original 652 

miscalibration. Dashed lines denote power law fits for each dataset. 653 

 654 
For some settings, rather than trial-by-trial decoding of spike counts, the goal is to decode a continuous, 655 

typically smoothly varying, external variable. To illustrate how general the problem of over-confidence 656 

in Bayesian decoders is, we consider continuous estimates of an animal’s position from hippocampal 657 

activity (Fig 8A). Here, rather than distinct trials with a controlled stimulus/behavior, a rat runs freely on 658 

a linear track. GLM and GLLVMs can still be used to decode the animal’s position. We fit encoding models 659 

based on place fields (direction-selective cubic B-spline bases with 10 equally spaced knots), and for the 660 

GLLVMs, we additionally include a one-dimensional latent variable. However, to more accurately decode 661 

the continuous behavior, we also add a process model that ensures that the position and latent state 662 

vary smoothly from one time to the next (see Methods). 663 
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As before, we assess the coverage of each model. Here we find that, decoding the time series of animal 665 

position, the Poisson GLM is the most overconfident and the NB-GLLVM is the most well-calibrated. The 666 

95% credible regions for the posterior include the true position only 48% of the time for Poisson GLM, 667 

while the NB-GLLVM covers the true position 63% of the time (Fig 8B). All four models have better 668 

calibrated posteriors following post-hoc correction (Fig 8C). The coverage of 95% credible regions 669 

increases to 91% for the P-GLM and 94% for the NB-GLLVM, for example. 670 

 671 

 672 

 673 
Figure 8: Continuous decoding and coverage for position in hippocampus (HC). A) The true position along 674 

the linear track (black line), along with 95% credible regions for three Bayesian decoders: 1) the 675 

traditional Poisson GLM, 2) a negative binomial GLM, and 3) the Poisson GLM after post-hoc correction. 676 

Note that, in some cases, the posterior (or post-hoc corrected distribution) is multimodal, resulting in 677 

multiple HPD regions. B) Empirical coverage as a function of the desired credibility level for the four 678 

Bayesian decoders. C) Empirical coverage after post-hoc correction. 679 

 680 
 681 

Conformal prediction intervals 682 

 683 

One potential alternative to the post-hoc correction described above that may be useful for continuous 684 

decoding is conformal prediction (Shafer and Vovk, 2008; Lei et al., 2018). Rather than using a posterior 685 

distribution, this approach constructs prediction intervals by using the quantiles of the distribution of 686 

residuals (see Methods). Here we evaluate split conformal prediction (Lei et al., 2018) and find that this 687 

approach produces well-calibrated intervals around the point estimates of both the GLM and GLLVM 688 
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(one latent dimension) on trial-by-trial stimulus direction or movement direction in the V1 and M1 689 

datasets and position in the HC dataset (Fig 9). 690 

 691 

Conformal prediction has the advantage that it is parameter free and can also be used for non-Bayesian 692 

decoders. To illustrate this possibility, here we fit additional decoders to the M1, V1, and HC data using 693 

optimal linear estimation (OLE, see Methods). These decoders do not have explicit measures of 694 

uncertainty but, in some cases, perform on par with the Bayesian models in terms of accuracy – here 695 

with (10-fold) cross-validated median absolute errors of 9.8 deg for M1 and 3.5 deg for V1. And for HC 696 

the dynamic Poisson GLM has median absolute error of 4.7 cm and the dynamic NB GLLVM has 4.6 cm, 697 

compared to median absolute error of 7.8 cm for OLE. Using split conformal prediction, the intervals are, 698 

like the Bayesian decoders, well-calibrated (Fig 9). However, since the conformal prediction intervals are 699 

based only on point-predictions and the residuals across all trials, they do not capture changes in 700 

uncertainty across stimuli/movements or from trial to trial. 701 

 702 

 703 
Figure 9: Coverage for conformal prediction intervals. For M1 and V1 trial-by-trial data as well as 704 

continuous decoding of position for HC, split conformal prediction produces well-calibrated intervals for 705 

all models. Here the results show the full data. These uncertainty estimates are based on the distribution 706 

of residuals (insets) and can also be calculated for non-Bayesian decoders such as optimal linear 707 

estimation (OLE, gray). 708 

 709 
Posterior uncertainty and task variables 710 
 711 

From trial to trial there are substantial variations in both posterior uncertainty and accuracy. The exact 712 

relationship between error/uncertainty and accuracy depends somewhat on the decoder, since different 713 

models have different uncertainties. However, in the data examined above, we find that for all models 714 

error increases with increasing posterior uncertainty (M1 and V1) or accuracy decreases with increasing 715 

posterior uncertainty (ABI) (Fig 10). Fitting a linear model (in the log-log domain) for the post-hoc 716 

corrected Poisson GLM, M1 error increases 252% [187, 340] (95% CI) for each doubling of posterior 717 

(circular) standard deviation. For V1 with the post-hoc corrected Poisson GLM, error increases 160% 718 

[150, 169] for each doubling of the posterior (circular) standard deviation. Fitting a logistic model for 719 

Conformal Interval

|err| [deg]

C
D
F

|err| [deg]

M1 V1 HC

0 100
Conformal Interval

0 100
Conformal Interval

0 100

0

100

C
o
v
e
ra
g
e

Poisson GLM

NB GLM
Poisson GLLVM

NB GLLVM

OLE

0
0

1

60 0 30 0 40|err| [cm]



 24 

ABI, accuracy decreases with OR=0.75 [0.68, 0.83] per bit of posterior entropy. These results are for the 720 

posteriors of the post-hoc corrected Poisson GLM, but all models show statistically significant 721 

dependencies between error/accuracy and uncertainty both with and without post-hoc correction. 722 

 723 

 724 

 725 
Figure 10: Uncertainty predicts accuracy. For reference, dots denote averages calculated in deciles. Error 726 

bars for M1 and V1 denote standard deviation. Error bars for ABI denote 95% confidence intervals. Lines 727 

for M1 and V1 denote linear, least-squares fit for single trials in the log domain. Curves for ABI denote 728 

logistic regression. 729 

 730 

 731 

In experiments where a task variable is expected to influence behavioral/perceptual uncertainty, we may 732 

also expect Bayesian decoders to reflect differences in this uncertainty. Here, for instance, we examine 733 

V1 data from an additional experiment with static oriented grating stimuli, where the contrast of the 734 

stimulus was explicitly varied. Fitting separate (categorical) Poisson GLMs to the different time points 735 

(50ms window) and contrast conditions, we find that accuracy for decoding categorical stimulus 736 

orientation increases following stimulus onset and increases with increasing stimulus contrast (Fig 11A 737 

top). Accuracy for the high contrast trials is substantially higher than for low contrast trials (66% for high, 738 

43% for low, z=7.4, p<10-12, two-sided test for difference of proportions, 200ms following stimulus 739 

onset). Additionally, posterior entropy decreases following stimulus onset, and is lowest for high contrast 740 

stimuli (Fig 11A middle). In this example, since the population is relatively small (18 units), the degree of 741 

over-confidence for the Poisson GLM (Fig 11A bottom) is not as extreme as the previous V1 population. 742 

Here, the post-hoc corrected posteriors for the Poisson GLM (corrected separately for each time point 743 

and contrast) show a similar pattern with high contrast trials having lower entropy than low contrast 744 
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trials (1.3 bits for high, 2.1 bits for low, two-sided unpaired t-test t(955.4)=21.0, p<10-12, at 200ms 745 

following stimulus onset). As in Fig 10, we find that single trial accuracy is well predicted by the posterior 746 

uncertainty (Fig 11B). The relationship between entropy and accuracy is consistent across contrasts, and 747 

the logistic fits do not differ substantially for the different contrasts (OR=0.18/bit [0.12, 0.27] 95% CI for 748 

high contrast, OR=0.21/bit [0.14, 0.31] for low contrast). These trends mirror recent results from 749 

Boundy-Singer et al. (2023) also characterizing stimulus orientation uncertainty in macaque V1 . 750 

 751 

 752 

 753 
Figure 11: Accuracy, uncertainty, and coverage vary with stimulus contrast in V1 and with movement 754 

speed in M1. A) For static, oriented gratings, cross-validated decoding accuracy increases following 755 

stimulus onset (white triangle) but depends on stimulus contrast (top). Posterior entropy decreases, with 756 

lower entropy for higher contrast stimuli, and coverage (at 90% nominated) also varies. Dashed lines 757 

denote chance (top), maximum entropy (middle), and nominated coverage (bottom). B) At 200ms after 758 

stimulus onset (black triangles in A), we find that the (post hoc corrected) posterior entropy for the 759 

Poisson GLM varies with contrast. Dots denote averages in deciles, error bars denote 95% confidence 760 

intervals, and curves denote logistic regression fits. C, D) Analogous results for recordings from M1 761 

during center-out reaching with maximum movement speed split by terciles. Cross-validated decoding 762 

accuracy increases shortly before movement onset (white triangle) but depends on reach speed (top). 763 

Posterior entropy decreases with lower entropy for higher speeds. Results in (D) are for 100ms after 764 

movement onset (black triangles in C). 765 

 766 

We use a similar analysis to assess the impact of reach speed in M1. Just as stimulus contrast may impact 767 

uncertainty when decoding visual stimuli, movement features beyond reach direction may impact 768 

uncertainty when decoding behavior. Here we use the M1 data during center-out reaching examined 769 

above. We fit a single decoder for reach direction at each time point (50ms window), but assess accuracy, 770 

entropy, and coverage separately for different trials based on the peak movement speed. Splitting the 771 

trials into speed terciles (Fig 11C), we find that accuracy increases shortly before movement onset, and 772 
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trials with the fastest reaches are decoded more accurately than those with slower reaches (80% for fast, 773 

64% for slow, z=2.6, p=0.01, two-sided test for difference of proportions, 100ms following movement 774 

onset). Posterior entropy also decreases shortly before movement onset and is lowest for the fast 775 

reaches (Fig 11C middle). Here, as before, the Poisson GLM tends to be overconfident. The post-hoc 776 

corrected posteriors have substantially higher entropy, but show the same pattern where fast reaches 777 

have the lowest entropy (0.8 bits for fast, 1.4 bits for low, two-sided unpaired t-test t(184.5)=7.8, p<10-778 
12, at 100ms following movement onset). The entropy on single trials again predicts single trial accuracy 779 

(Fig 11D), and the logistic fits do not differ substantially for the different speeds (OR=0.16/bit [0.06, 0.44] 780 

95% CI for fast, OR=0.35/bit [0.13, 0.94] for slow). 781 

 782 

Discussion 783 

Using data from a range of brain regions and experimental settings, we have shown how Bayesian 784 
decoders of neural spiking activity are often miscalibrated. In particular, the posterior estimates tend to 785 
be overconfident. Overconfidence increases with increasing numbers of neurons, is reduced by using 786 
negative binomial observation models (compared to Poisson) and is reduced by modeling latent 787 
variables. However, since even the best calibrated models tested here are not well calibrated, we 788 
introduce a post-hoc correction and show how it can be used, in multiple settings, to recalibrate 789 
uncertainty estimates. Finally, we present results illustrating how the posterior uncertainty of Bayesian 790 
decoders can vary substantially from trial-to-trial. Single trial posterior uncertainty predicts single trial 791 
accuracy and may be useful for understanding variation in perceptual or behavioral confidence due to 792 
task variables such as stimulus contrast or movement speed. 793 
 794 
Similar to previous work (Macke et al., 2011), we show here how latent variables (GLLVMs) can better 795 
account for noise correlations and shared variability in the simultaneously recorded neurons. 796 
Correlations are known to play an important role in population coding, generally (von der Malsburg, 797 
1994; Nirenberg, 2003), and failing to accurately account for these dependencies can lead to decoding 798 
errors (Ruda et al., 2020). Latent variable models represent one approach to describing shared 799 
variability. Fitting latent variables alone, without explicit tuning to external variables often reveals 800 
interesting task structure (c.f. Gao et al., 2016; Zhao and Park, 2017), and the latent states fit here may 801 
reflect both internal as well as unmodeled external, task-related effects. Previous work has shown how 802 
these models can improve encoding and decoding accuracy (Santhanam et al., 2009; Chase et al., 2010; 803 
Lawhern et al., 2010). Here we additionally show how latent variable models increase the uncertainty of 804 
Bayesian decoders and improve their calibration.  805 
 806 
Bayesian decoders have advantages over other decoding methods in that they provide probabilistic 807 
predictions and can flexibly incorporate prior assumptions, such as sparseness and smoothness. 808 
However, many non-Bayesian decoders exist, including vector decoders (Georgopoulos et al., 1986; 809 
Salinas and Abbott, 1994), nearest-neighbor methods, support vector machines, and artificial neural 810 
networks (Quiroga and Panzeri, 2009). Although, well-tuned Bayesian methods can often out-perform 811 
non-Bayesian approaches (e.g. Zhang et al., 1998). Machine learning and recent deep learning 812 
approaches to decoding have been shown to be more accurate than simple Bayesian models in many 813 
settings (Pandarinath et al., 2018; Glaser et al., 2020b; Livezey and Glaser, 2021). Since calculating the 814 
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full posterior distribution can be computationally expensive, these methods can also be substantially 815 
faster for situations where predictions are time-sensitive. Almost all work with non-Bayesian decoders 816 
of neural activity focuses on the accuracy of point predictions. Here we show how conformal prediction 817 
can be used to generate well-calibrated uncertainty estimates for OLE. However, miscalibration is a 818 
known problem in work on artificial neural networks (Guo et al., 2017) and recent work on Bayesian 819 
neural networks and conformal prediction (Shafer and Vovk, 2008) could potentially be used to create 820 
and calibrate uncertainty estimates for these models as well. 821 
 822 
Accurate uncertainty estimates may potentially be useful for robust control of brain machine interfaces 823 
(BMIs). For instance, although many BMIs directly control effectors, such as a cursor position (decoding 824 
movement) or a desired word (decoding speech), based on point predictions (Nicolelis, 2003), it may be 825 
beneficial to distinguish between predictions based on their confidence level. Here, we find substantial 826 
variation in uncertainty for trial-by-trial offline decoding, and we also illustrate how contrast (in V1) and 827 
speed (in M1) might impact decoding uncertainty. These results are limited by the fact that we do not 828 
explicitly include contrast or speed in the encoding model (Moran and Schwartz, 1999) or decode these 829 
variables directly (Inoue et al., 2018), but they suggest how uncertainty may be a separate and 830 
worthwhile consideration for decoding problems. Additionally, our results suggest that recalibration 831 
could be necessary to avoid overconfidence in BMIs that make use of posterior uncertainty during 832 
control. 833 
 834 
The uncertainty estimates from Bayesian decoders of neural activity may also be useful for studying 835 
behavioral and perceptual uncertainty. Normative models of population coding (Ma et al., 2006) and 836 
broader descriptions of uncertainty in the brain (Knill and Pouget, 2004) often directly relate neural 837 
activity to probabilistic descriptions of the external world. Although several features of neural activity 838 
have been proposed as indicators of behavioral/perceptual uncertainty (Vilares and Kording, 2011), the 839 
posteriors from Bayesian decoders represent a principled framework for translating noisy, high-840 
dimensional data into a single probabilistic description (Zemel et al., 1998; Dehaene et al., 2021; 841 
Kriegeskorte and Wei, 2021). The impacts of tuning curve shapes (e.g. Pouget et al., 1999; Zhang and 842 
Sejnowski, 1999) and correlations between neurons (Averbeck et al., 2006; Lin et al., 2015; Kohn et al., 843 
2016) on the uncertainty of population coding have been well studied, and here we add to this work by 844 
demonstrating how different encoding models (GLM vs GLLVM and Poisson vs negative binomial) have 845 
systematically different degrees of overconfidence in experimental recordings across many settings. 846 
 847 
Since even the best Bayesian models (negative binomial latent variable models up to five dimensions) 848 
are overconfident, recalibration appears to be necessary to ensure that the uncertainty of Bayesian 849 
decoders matches the distribution of errors. On one hand, this may suggest that there is additional 850 
mismatch between the GLLVM and the data generating process. It may be that low-dimensional latent 851 
variable models only partially capture noise correlations (Stevenson et al., 2012), that there is 852 
unmodeled nonstationarity in the tuning curves (Cortes et al., 2012; Rule et al., 2019), that responses 853 
are underdispersed (DeWeese et al., 2003; Stevenson, 2016), or some combination of these factors. On 854 
the other hand, humans and other animals are often over- or underconfident during perceptual and 855 
cognitive judgements (Baranski and Petrusic, 1994; Kepecs and Mainen, 2012; Mamassian, 2016). It is 856 
possible that the original (miscalibrated) uncertainty estimates better predict psychophysical 857 
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uncertainty or metacognitive reports of confidence, even if recalibrated uncertainty estimates better 858 
predict the distribution of external variables. 859 
 860 
Finally, it is important to note that when Bayesian models are recalibrated post-hoc they are no longer 861 
following a coherent Bayesian framework (Dawid, 1982). From a practical standpoint, such as when 862 
developing BMIs, model calibration may be more important than model coherence. However, additional 863 
work is needed to better understand the alignment of perceptual/behavioral uncertainty and decoder 864 
posterior uncertainty (Panzeri et al., 2017). Models with more accurate descriptions of single neuron 865 
variability (Gao et al., 2015; Ghanbari et al., 2019), with nonstationarity (Shanechi et al., 2016; Wei and 866 
Stevenson, 2023), additional stimulus/movement nonlinearities (Schwartz and Simoncelli, 2001), state-867 
dependence (Panzeri et al., 2016), and with more complex latent structure (Glaser et al., 2020a; Williams 868 
et al., 2020; Sokoloski et al., 2021; Williams and Linderman, 2021) may all show better coverage while 869 
maintaining coherence. Our results here indicate that Bayesian decoders of spiking activity are not 870 
necessarily well calibrated by default. 871 
 872 
 873 

  874 
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