

1 **Calibrating Bayesian decoders of neural spiking activity**

2
3 Ganchao Wei¹ (魏赣超), Zeinab Tajik Mansouri² (زینب تاجیک منصوری), Xiaojing Wang³ (王晓婧), and Ian
4 H. Stevenson^{2,4,5*}

5 ¹ *Department of Statistical Science, Duke University*

6 ² *Department of Biomedical Engineering, University of Connecticut*

7 ³ *Department of Statistics, University of Connecticut*

8 ⁴ *Department of Psychological Sciences, University of Connecticut*⁵ *Connecticut Institute for Brain and Cognitive*
9 *Science, University of Connecticut*

10 * *Corresponding Author: ian.stevenson@uconn.edu*

11 Abbreviated title: Calibrating Bayesian decoders

12 Number of pages: 31

13 Number of figures: 10

14 Number of words:

15 Abstract: 187

16 Introduction: 648

17 Discussion: 1137

18 Conflict of interest statement: The authors declare no competing interests.

19 Acknowledgments: This material is based upon work supported by the National Science Foundation under Grant
20 1931249 and Grant 1848451.

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45 **Abstract**

46 Accurately decoding external variables from observations of neural activity is a major challenge in
47 systems neuroscience. Bayesian decoders, that provide probabilistic estimates, are some of the most
48 widely used. Here we show how, in many common settings, the probabilistic predictions made by
49 traditional Bayesian decoders are overconfident. That is, the estimates for the decoded stimulus or
50 movement variables are more certain than they should be. We then show how Bayesian decoding with
51 latent variables, taking account of low-dimensional shared variability in the observations, can improve
52 calibration, although additional correction for overconfidence is still needed. We examine: 1) decoding
53 the direction of grating stimuli from spike recordings in primary visual cortex in monkeys, 2) decoding
54 movement direction from recordings in primary motor cortex in monkeys, 3) decoding natural images
55 from multi-region recordings in mice, and 4) decoding position from hippocampal recordings in rats. For
56 each setting we characterize the overconfidence, and we describe a possible method to correct
57 miscalibration post-hoc. Properly calibrated Bayesian decoders may alter theoretical results on
58 probabilistic population coding and lead to brain machine interfaces that more accurately reflect
59 confidence levels when identifying external variables.

60

61 **Significance Statement**

62 Bayesian decoding is a statistical technique for making probabilistic predictions about external stimuli or
63 movements based on recordings of neural activity. These predictions may be useful for robust brain
64 machine interfaces or for understanding perceptual or behavioral confidence. However, the probabilities
65 produced by these models do not always match the observed outcomes. Just as a weather forecast
66 predicting a 50% chance of rain may not accurately correspond to an outcome of rain 50% of the time,
67 Bayesian decoders of neural activity can be miscalibrated as well. Here we identify and measure
68 miscalibration of Bayesian decoders for neural spiking activity in a range of experimental settings. We
69 compare multiple statistical models and demonstrate how overconfidence can be corrected.

70

71 **Introduction**

72 Decoding, estimating external variables given observations of neural activity, is a fundamental tool in
73 systems neuroscience for understanding what information is present in specific brain signals and areas
74 (deCharms and Zador, 2000; Kriegeskorte and Douglas, 2019). Decoders have been widely used for
75 studying the representation of movement variables, such as speed, force, or position (Humphrey et al.,
76 1970; Georgopoulos et al., 1986), the representation of visual stimuli (Warland et al., 1997; Quiroga and
77 Panzeri, 2009) and the representation of sounds (Theunissen et al., 2004), touch (Diamond et al., 2008),
78 odors (Uchida et al., 2014), and tastes (Lemon and Katz, 2007). Here we examine Bayesian decoders that
79 estimate the probability of each possible stimulus or movement given neural observations (Sanger, 1996;

80 Zhang et al., 1998; Koyama et al., 2010; Chen, 2013). Bayesian models explicitly represent the
81 uncertainty about external variables, and this uncertainty may be useful for understanding
82 perceptual/behavioral confidence (Vilares and Kording, 2011; Meyniel et al., 2015) or for creating more
83 robust brain machine interfaces (Shanechi et al., 2016). However, Bayesian models are not always well
84 calibrated (Degroot and Fienberg, 1983; Draper, 1995). Here we ask whether the uncertainty estimates
85 for Bayesian decoders are correct.

86
87 With Bayesian decoders, the conditional probability of stimulus or movement variables given neural
88 responses is calculated using Bayes theorem (Quiroga and Panzeri, 2009). This posterior is the product
89 of a likelihood that describes the probability of neural activity given external variables (an encoding
90 model) and a prior that accounts for other knowledge about the external variable. This framework is
91 very general and can be used to decode categorical or continuous variables in trial-by-trial designs or
92 with continuous time series using spiking timing features or counts as well as other population neural
93 signals (van Bergen et al., 2015; Lu et al., 2021). One common likelihood model for the counts of spiking
94 activity is based on the Poisson distribution and the assumption that the neural responses are
95 conditionally independent given their tuning to the external variable. However, since neural activity has
96 shared (Arieli et al., 1996; Tsodyks et al., 1999) and non-Poisson variability (Amarasingham et al., 2006;
97 Goris et al., 2014), recent studies have focused on better modeling latent structure and dispersion (Scott
98 and Pillow, 2012). Modeling this shared and non-Poisson variability can improve decoding (Graf et al.,
99 2011; Ghanbari et al., 2019).

100
101 In this paper, we compare Bayesian decoders with Poisson versus negative binomial noise models as well
102 as decoders with or without latent variables with the goal of understanding how differences in model
103 structure affect the posterior uncertainty. In well calibrated models, the posterior of the external
104 variables should accurately reflect their true probability. For instance, a 95% credible interval –
105 analogous to the confidence interval in frequentist descriptions – should have a 95% chance of
106 containing the true value. However, miscalibration can occur due to model misspecification – when the
107 data is generated by a process that does not match the model assumptions – or when there is unmodeled
108 uncertainty about the model structure (Draper, 1995). Previous studies suggest that neural variability
109 may be an important dimension of the neural code (Urai et al., 2022), and the uncertainty of neural
110 population codes may determine perceptual/behavioral confidence (Knill and Pouget, 2004). Accurate
111 descriptions of population uncertainty in experimental data may, thus, inform for theoretical
112 understanding. In this study, we illustrate the basic problem of miscalibration through simulations and
113 evaluate calibration for experimental data.

114

115

116

117 We focus on several experimental settings: trial-by-trial decoding of stimulus movement direction from
118 primary visual cortex (V1) and reach direction from primary motor cortex (M1), trial-by-trial decoding of
119 categorical natural images from multiple brain regions, and time-series decoding of animal position from
120 hippocampal recordings (HC). We find that using negative binomial likelihoods and latent variables both
121 improve calibration. However, even with these improvements, Bayesian decoders are overconfident. To
122 solve this problem, we introduce a post-hoc correction for miscalibration that yields more accurate
123 uncertainty estimates.

124

125

126 Materials and Methods

127 Code for the results in this paper is available at

128 https://github.com/ihstevenson/latent_bayesian_decoding

129

130 Data

131 To assess the calibration of Bayesian decoders we use previously collected, publicly available data from
132 1) macaque primary motor cortex during a center-out reaching task, 2) macaque primary visual cortex
133 during presentation of drifting or static sine-wave gratings, 3) mouse multi-region recordings during
134 presentation of static natural images, and 4) rat hippocampus during running on a linear track.

135

136 Data from primary motor cortex (M1) were previously recorded from the arm area of an adult male
137 macaque monkey during center-out reaches. Reaches were made in a 20 × 20cm workspace while the
138 animal was grasping a two-link manipulandum, and single units were recorded using a 100-electrode
139 Utah array (400mm spacing, 1.5 mm length, manually spike sorted manually - Plexon, Inc). On each trial,
140 we analyzed spike counts during the window 150ms before to 350 ms after the speed reached its half-
141 max. Data and additional descriptions of the surgical procedure, behavioral task, and preprocessing are
142 available in Walker and Kording (2013).

143

144 Data from primary visual cortex (V1) were previously recorded and shared in the CRCNS PVC-11 dataset
145 (Kohn and Smith, 2016). Single units were recorded using a 96-channel multielectrode array from an
146 anesthetized adult male monkey (*macaca fascicularis*, monkey 3) during presentations of drifting sine-
147 wave gratings (20 trials for each of 12 directions). On each trial we analyzed spike counts between 200
148 ms and 1.2 s after stimulus onset. Detailed descriptions of the surgical procedure, stimulus presentation,
149 and preprocessing can be found in Smith and Kohn (2008) and Kelly et al. (2010).

150

151 We also examine an additional previously recorded, shared dataset from primary visual cortex where
152 stimuli were presented with multiple contrasts (Berens et al., 2012). Here single units were recorded
153 using custom-built tetrodes from an awake male monkey (*macacca mulatta*). Static sine-wave gratings
154 were presented with different contrasts. Here we use data from subject “D” recorded 2002-04-17.

155 Detailed descriptions of the surgical procedure, stimulus presentation, and preprocessing can be found
156 in Ecker et al. (2010) and Berens et al. (2012).

157

158 Multi-region data (ABI) were analyzed from the Allen Institute for Brain Science - Visual Coding
159 Neuropixels dataset (<https://portal.brain-map.org/explore/circuits>). Detailed descriptions of the surgical
160 procedure, stimulus presentation, and preprocessing can be found in Siegle et al. (2021). Briefly, during
161 the recordings, head-fixed mice were presented with visual stimuli (including Gabor patches, full-field
162 drifting gratings, moving dots, and natural images and movies) while they were free to run on a wheel.
163 We analyze single unit data with spikes sorted from six Neuropixels arrays using Kilosort 2
164 (electrophysiology session 742951821, a male wild-type C57BL/6J). Using n=267 single units (742951821,
165 with SNR>3, rate>1 spike/trial) responding to 118 natural images (4873 trials in total).

166

167 Data from hippocampus were previously recorded from the dorsal hippocampus of a male Long Evans
168 rat and shared in CRCNS hc-3 (Mizuseki et al., 2013). Recordings were made using an 8-shank silicon
169 probe, each shank with 8 recording sites, while the animal ran on a linear track, and single units were
170 automatically spike sorted with KlustaKwik and refined with Klusters. Data from recording id ec014_468
171 were analyzed in 200 ms bins. Data and additional descriptions of the surgical procedure, behavioral
172 task, and preprocessing are available in Mizuseki et al. (2014)

173

174 **Encoding Models**

175 Our goal is to decode an external stimulus or movement variable x^* based on spikes observations from
176 N neurons $y^* \in N_{\geq 0}^N$. Here we construct a Bayesian decoder by first fitting an encoding model with
177 training dataset $\{x, Y\}$ where $x = (x_1, \dots, x_K)'$ denotes the external variable across K trials and y_{ki}
178 (entries of $Y \in N^{K \times N}$) is the number of spikes emitted by neuron i during external variable x_k . This
179 encoding model allows us to calculate the likelihood distribution $P(y^*|x^*, x, Y)$, and we then use Bayes'
180 rule to evaluate the posterior distribution $P(x^*|y^*, x, Y)$. In traditional Bayesian decoders, based on
181 generalized linear models (GLMs), the spikes of each neuron are assumed to be conditionally
182 independent given the external variable. Here we examine GLMs with observation models that assume
183 either Poisson noise or negative binomial noise. Additionally, we fit decoders based on generalized linear
184 latent variable models (GLLVMs) where we use the same representation for external variables, but
185 assume the observations are also related or influenced by low-dimensional unobserved variables (i.e.,
186 latent variables). GLMs and GLLVMs have been widely used in statistics for modeling count data
187 (McCullagh and Nelder, 1989; Skrondal and Rabe-Hesketh, 2004) and in neuroscience specifically
188 (Brillinger, 1988; Scott and Pillow, 2012).

189

190 **Poisson and Negative Binomial GLMs and GLLVMs**

191

192 The Poisson GLM and negative binomial GLM model the spiking of neuron i on trial k as $y_{ki} \sim$
193 $Poisson(\mu_{ki})$ or $y_{ki} \sim NB(\mu_{ki}, \alpha_i)$, respectively, where $Poisson(\mu)$ indicates the Poisson distribution

194 with the rate parameter μ and $NB(\mu, \alpha)$ denotes the negative binomial distribution with mean μ and
195 variance $\mu + \alpha\mu^2$. The mean parameter μ_{ki} in both models is regressed as $\log \mu_{ki} = z_k' \beta_i$ where $z_k =$
196 $f(x_k) \in R^p$ is a function (e.g. basis expansion) of the external variable x_k . For the M1 and V1 decoders
197 we use a Fourier basis to capture the tuning over the circular variable (stimulus or movement direction)
198 $z = [1 \cos x \sin x \cos 2x \sin 2x]$. For the ABI decoder we simply fit a unique mean for each individual
199 image of the N natural image stimuli $z = [1 1_1(x) \dots 1_N(x)]$ where $1_i(x)$ denotes an indicator function
200 returning 1 when $i = x$ and 0 otherwise. We estimate β and α by maximum likelihood estimation (MLE)
201 or, in most cases, maximum a posteriori (MAP) estimation, where we put a Gaussian prior
202 $\beta_{j>1} \sim N(0, \eta I)$ to prevent overfitting (excepting the intercept term). This prior is equivalent to L₂
203 regularization.

204
205 Since the responses of different neurons may be correlated, the GLM does not generally capture noise
206 correlations - dependencies between neurons beyond what the external variable induces. The GLLVMs
207 extend the GLMs described above by including low dimensional latent factors in the model for the mean
208 parameters. In other words, the Poisson GLLVM and NB GLLVM assume $y_{ki} \sim Poisson(\mu_{ki})$ or $y_{ki} \sim$
209 $NB(\mu_{ki}, \alpha_i)$ with $\log \mu_{kn} = z_k' \beta_i + c_k' d_i$, where $c_k \in R^q$ is the latent factor for trial k (with $q \ll N$) and
210 d_i is the factor loading that describes how the latent states influence neuron i . Latent variables can
211 capture single-trial patterns of higher than expected or lower than expected firing across the population
212 of neurons. For instance, the activity of pairs of neurons with positive noise correlations may be
213 accounted for by have similar coefficients d .

214
215 In this basic form, the latent variable model is not identifiable, and we put several constraints on $\{c_k\}_{k=1}^K$
216 and $\{d_i\}_{i=1}^N$ to ensure identifiability. Denote $C = (c_1, \dots, c_K)'$ and $D = (d_1, \dots, d_N)$, and write the
217 singular value decomposition of CD as $CD = U\Sigma V'$. Following Miller and Carter (2020), we constrain: 1)
218 U and V to be orthogonal, 2) Σ to be diagonal matrix, with diagonal elements > 0 and sorted in
219 descending order and 3) the first nonzero entry for each column of U to be positive. Then we let $C = U\Sigma$
220 and $D = V'$, or equivalently let $C = U$ and $D = \Sigma V'$. The model parameters then are estimated by
221 maximizing the likelihood via alternating coordinate descent algorithm, i.e. updating the “neuron” part
222 ($\{\beta_i\}_{i=1}^N$ and D) and the “latent” part (C) until convergence is achieved.

223
224 In cases where the number of trials is relatively small, when p is large, or when the spiking is extremely
225 sparse, both the GLM and GLLVM can overfit or fail to converge (Zhao and Iyengar, 2010). In addition to
226 the Gaussian prior (i.e. L₂ penalty) on β we also include a Gaussian prior $C \sim N(0, \zeta I)$, and find the
227 maximum a posteriori (MAP) estimates rather than the MLE. Here we use $\eta = 1$ for V1 and M1, 10 for
228 HC, and 100 for ABI, and $\zeta = 0.001$ for the GLLVMs. These were set by hand and not extensively
229 optimized, since the qualitative results are robust across a wide range of values.

230

231 **Approximate Bayesian Decoding**

232 Once the encoding model is fitted with training data x and y , we then decode the external variable x^*
 233 based on new observations of spikes $y^* \in N^N$, by evaluating the posterior distribution $P(x^*|y^*, x, Y)$.
 234 For the GLM, we have

$$235 \quad P(x^*|y^*, x, Y) \propto \prod_{i=1}^N P(y_i^*|x^*, x, Y) p(x^*).$$

236 The results here all assume a flat/uniform prior on $p(x^*)$; however, in general, this term can incorporate
 237 prior information about the external variables.

238
 239 For the GLLVM we additionally need to account for the latent variables. Since the data used for fitting
 240 the encoding model is not the same as decoding dataset, the latent state c_k , depending on specific trials,
 241 acts as a nuisance parameter. We then obtain the posterior

$$242 \quad P(x^*|y^*, x, Y) \propto \prod_{i=1}^N \left[\int \int P(y_i^*|x^*, \theta_i, c) p(\theta_i|x, Y) \pi(c) d(\theta_i) dc \right] p(x^*)$$

243 Where θ denotes the parameters $\{\alpha, \beta, d\}$. When the training set size K is small, the parameter
 244 estimates for the encoding model can have substantial parameter uncertainty (Cronin et al., 2010).
 245 However, in practice, including parameter uncertainty (via MCMC) does not typically affect the posterior
 246 over the external variable (see results in Wei, 2023). We thus approximate the full posterior by plugging
 247 in the MLE/MAP estimates $\hat{\theta}$.

248
 249 Our goal is then to calculate the marginal predictive likelihood $\int P(y^*, \{\hat{\alpha}_i, \hat{\beta}_i, \hat{d}_i\}_i^N, c) \pi(c) dc$. If we
 250 assume the observations y^* to be conditionally independent given both stimuli and latent factors this is
 251 given by $\prod_{i=1}^N \int P(y_i^*|x^*, \hat{\alpha}_i, \hat{\beta}_i, \hat{d}_i) \pi(c) dc$. Although there is no closed form solution to the integral, we
 252 can use the Laplace approximation, such that

$$253 \quad \int P(y_i^*|x^*, \hat{\alpha}_i, \hat{\beta}_i, \hat{d}_i, c) \pi(c) dc \approx P(x^*, \hat{\alpha}_i, \hat{\beta}_i, \hat{d}_i, \hat{c}) \pi(\hat{c}) (2\pi)^{\frac{q}{2}} |V_c|^{\frac{1}{2}} \propto P(x^*, \hat{\alpha}_i, \hat{\beta}_i, \hat{d}_i, \hat{c}) |V_c|^{\frac{1}{2}},$$

254 where \hat{c} is the ML (or MAP) estimate and $V_c = \left[\frac{\partial^2 \log P(c|y_i^*, x^*, \hat{\alpha}_i, \hat{\beta}_i, \hat{d}_i)}{\partial c^2} \Big|_{c=\hat{c}} \right]^{-1}$.

255
 256 Since the posterior distribution of x^* is not necessarily unimodal, we evaluate the posterior distribution
 257 by grid approximation, which works efficiently for a one-dimensional case. In other words, we first
 258 compute the un-normalized posterior density at a grid of values that cover effective range of x^* , and then
 259 normalize the density.

260
 261 **Greedy Decoders**
 262
 263 To better understand how the composition of the population affects our results, we compare GLM and
 264 GLLVM decoders that use the full population of neurons to those with only a subset of neurons. Here we
 265 select subsets of the 20 “best” or “worst” neurons using a greedy optimization (see Ghanbari et al.,

266 2019). We use a beam search approach where we add neurons one at a time to the population and keep
267 the top (or bottom) five performing populations that minimize (or maximize) the absolute median error
268 on the training data for the M1 and V1 datasets or the top-1 accuracy on the training data for the ABI
269 dataset. Although not guaranteed to be the optimal best/worst set of 20 neurons, this approach
270 generates subpopulations where the decoding error is substantially better/worse than randomly
271 selected sets of 20 neurons.

272

273 Decoders based on Optimal Linear Estimation

274

275 For comparison, we also fit non-Bayesian decoders to trial-by-trial data M1 and V1 and continuous data
276 from HC (see Ghanbari et al., 2019). Briefly, we use optimal linear estimation (OLE), where the core
277 assumption is that the external variable on trial k can be reconstructed using a linear combination of
278 functions weighted by the activity of each neuron

279

$$\hat{x}_k = \operatorname{argmax}_x \sum_i y_{ki} \phi_i(x)$$

280 When ϕ_i is the preferred direction of each neuron this is a population vector decoder, but here we use
281 the (Fourier or radial) basis functions described above where $\phi_i(x) = \sum_j w_{kj} z_j(x)$, and we optimize w
282 by the ridge regression

283

$$\hat{W} = (Y^T Y + \lambda I)^{-1} Y^T Z$$

284 with $\lambda = 1$ for the results here.

285

286 Coverage and Constant Correction

287

288 To assess the calibration of these decoders for continuous variables we compare the frequentist
289 coverage (fraction of trials on which the true stimulus/movement falls within a highest density region)
290 to the nominal/desired probability. For a well-calibrated Bayesian model, the highest posterior density
291 (HPD) regions of a given size (e.g. the 95% region) should contain the true values with the nominated
292 probability (e.g. 95%). Here we compute the (cross-validated) proportion of trials for which the true
293 stimulus/movement falls within the HPD regions (the “coverage”) as we vary the size of the credible set.

294

295 For categorical posteriors, there are several scoring rules that have been previously described, such as
296 the Brier score (Gneiting and Raftery, 2007), but, here, to emphasize “coverage”, we extend our
297 calculations with continuous credible regions to use discrete credible sets. We construct the HP set, as
298 before, adding the highest probability categories until the probability m in the set meets the nominated
299 probability m^* with $m \geq m^*$. For continuous distributions, credible regions can be calculated so that
300 there are minimal errors between the desired probability (m^*) and the probability in the credible set
301 (m), but for categorical distributions, there can be a substantial mismatch between these quantities. For
302 instance, suppose we want to find the coverage of a 25% credible set, but category 1 has posterior
303 probability 50% on average across trials. To correct for this mismatch, we adjust the empirical coverage
304 for categorical posteriors (ABI results below) by a factor of $m^*/\langle m \rangle$ (e.g., .25/.5 for the example above),

305 where $\langle \cdot \rangle$ denotes an average across trials. However, for continuous posteriors we do not need or apply
306 this correction here.

307

308 Since most Bayesian decoders appear to be badly calibrated, we consider a post-hoc correction (i.e.
309 recalibration). This correction is similar to the “inflation factor” in ensemble probabilistic forecasting
310 (Wilks, 2002; Gneiting and Raftery, 2007) where similar types of overconfidence can occur (Raftery et
311 al., 2005). Namely, here we consider decoding with a modified posterior $Q(x^*|y^*, x, Y) \propto$
312 $\exp(h \log P(x^*|y^*, x, Y))$ for some constant $h > 0$. Decoding from the modified posterior $Q(x^*|y^*, x, Y)$
313 does not change the accuracy, but allows the confidence to be adjusted. Here we fit h by minimizing the
314 squared error between the empirical and nominal coverage probability over the full range $(0, 1)$.

315

316 **Conformal Prediction Intervals**

317

318 As an alternative to the post-hoc correction, we also consider split conformal prediction based on the
319 MAP point-estimates in our Bayesian models and the OLE point-estimates. Here our approach is based
320 on Algorithm 2 from (Lei et al., 2018). Briefly, we split the data in half. Then, after fitting our models to
321 one half of the data, we evaluate the residuals for the other half. For a desired coverage $1 - \alpha$ and a
322 point-estimate for the decoded variable $\hat{\mu}$, the conformal prediction interval is $[\hat{\mu}(y^*) - d, \hat{\mu}(y^*) + d]$
323 where d is the $[(n/2 + 1)(1 - \alpha)]$ th smallest absolute residual. Here residuals are calculated based on
324 the circular distance.

325

326 **Dynamic Models**

327

328 The GLM and GLLVM described above assume that trials are independent. However, in many cases, it is
329 more appropriate or desirable to decode with a dynamic model. Rather than decoding the external
330 variable on trial k , we wish to decode the external variable x_t at time t and to incorporate smoothness
331 assumptions relating x_t to previous time points. Such state space models have been previously
332 described for Poisson observations (Smith and Brown, 2003; Paninski et al., 2010; Vidne et al., 2012),
333 and applied for decoding (Lawhern et al., 2010). Here we describe decoding with a dynamic NB GLLVM,
334 for which the Poisson model is a special case (see Wei (2023) for additional detail). We apply this dynamic
335 model to hippocampal position decoding (see Results, Fig 8).

336

337 Briefly, we assume that the observation for neuron i at time t follows

338 $y_{it} \sim NB(\mu_{it}, \alpha_i)$, $\log \mu_{it} = \beta_i' z_t + d_i' c_t$, $z_t = m_z + A_z z_{t-1} + \eta_z$, $c_t = m_c + A_c c_{t-1} + \eta_c$,
339 where $z_t = f(x_t)$, $\beta_i \in R^p$, $d_i \in R^q$ and $(\eta_z, \eta_c) \sim N_{p+q}(0, diag(Q_z, Q_c))$. With initial conditions given
340 by $z_1 \sim N(z_0, Q_{z0})$ and $c_1 \sim N(c_0, Q_{c0})$. To make the model identifiable, we put the same set of
341 constraints on the model parameters as above. Denote $C = (c_1, \dots, c_T)'$ and $D = (d_1, \dots, d_N)'$, let 1) $C'C$
342 be diagonal, with diagonal elements sorted in the descending order, 2) $D'D = I_p$ and 3) the first non-
343 zero entry for each column of C is positive.

344

345 When fitting the encoding model, $\{z_t\}$ is observed and $\{z_0, Q_{z0}, m_z, A_z, Q_z\}$ do not need to be estimated.
 346 We fit the remaining model parameters by a cyclic coordinate descent algorithm, i.e., alternatively
 347 updating the “neuron” part $\{\beta_i, d_i\}_{i=1}^N$ and “latent” part $\{c_t\}_{t=1}^T, c_0, Q_{c0}, m_c, A_c, Q_c\}$. The “latent” part
 348 is fitted via an expectation maximization (EM) algorithm with a normal approximation in the E-step,
 349 following (Lawhern et al., 2010). For decoding, we plug in the fitted $\{\hat{\beta}_i\}_{i=1}^N$ and $\{\hat{d}_i\}_{i=1}^N$ and refit
 350 $\{z_t^*, c_t\}_{t=1}^T, z_0^*, Q_{z0}, m_z, A_z, Q_z, c_0, Q_{c0}, m_c, A_c, Q_c\}$ via an EM algorithm again using a normal
 351 approximation at E-step. Note that here, $\{c_t\}_{t=1}^T$ are not treated as nuisance parameters. For the results
 352 decoding position from hippocampal activity, we assume that $m_z = 0$, $m_c = 0$, $A_z = I$, and $A_c = I$.
 353 Additionally, rather than a direct grid approximation for the posterior over x^* , the posterior is
 354 approximated as a multivariate normal distribution over z_t^* . To assess accuracy and coverage, we
 355 evaluate the multivariate normal distribution along a grid in x^* for each t separately and normalize,
 356 $p(x_t^*) \approx p(z_t^*(x_t^*))$.

357

358

359

360 Results

361 Bayesian decoders are based on first fitting tuning curves for each neuron using training data. The
 362 encoding model determines the likelihood distribution, and, for traditional (naïve) Bayesian models,
 363 neurons are assumed to be conditionally independent given the external variables. During decoding we
 364 then use Bayes’ rule to calculate the posterior distribution over possible stimuli or movements given the
 365 observed neural activity. Here we focus on assessing not just the decoding accuracy but the uncertainty
 366 of the posterior under different models and experimental settings. Our goal is to determine to what
 367 extent the traditional models, as well as more recently developed latent variable models, have well-
 368 calibrated posterior estimates (i.e., where the posterior probabilities match the true probabilities of the
 369 external variable taking specific values).

370

371 To illustrate the problem of model calibration we consider a hypothetical set of Bayesian decoders (Fig
 372 1A). The average error is the same for each of these decoders, since the maximum and means of the
 373 posteriors are identical, but the uncertainty of the decoders varies. There is underconfidence or
 374 overconfidence on single trials, and, across trials, the posterior distributions do not necessarily match
 375 the distribution of errors. When errors occur an overconfident decoder will not have proper coverage of
 376 the true value. On the other hand, an underconfident decoder will cover the true value too often for the
 377 desired confidence level. In our example case, imagining 5 trials and an 80% credible interval, a well-
 378 calibrated decoder correctly covers the true value for 4 of 5 trials, while the overconfident decoder only
 379 covers 1 of 5 and the underconfident decoder covers 5 of 5. In general, overconfident decoders will have

380 lower coverage than desired, while underconfident decoders will have higher coverage than desired (Fig
381 1B).

382

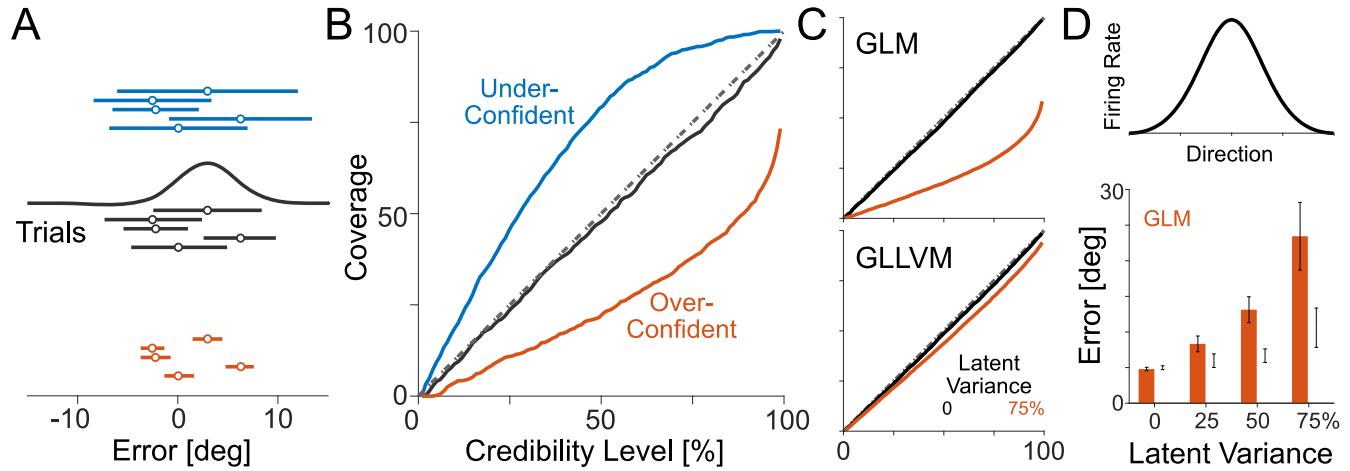
383 Bayesian models can have poor calibration when the model is misspecified. To illustrate how such
384 misspecification could occur with neural data we simulate the impact of latent variables on a traditional
385 Bayesian decoder. Here noisy spike observations are generated by a population of identically tuned
386 neurons (Fig 1D, top) with Poisson variability. However, in addition to their stimulus/movement tuning
387 neurons receive a common one-dimensional latent input that increases or decreases activity on
388 individual trials. Since this input is shared by the entire population (of 20 neurons in this case), it
389 produces correlated variability. A traditional Bayesian decoder first fits tuning curves for each individual
390 neuron (here using a Generalized Linear Model - GLM - with Poisson observations). The posterior is
391 calculated assuming that neural responses are conditionally independent given the stimuli, and, as
392 before, we can quantify the coverage by identifying the highest posterior density (HPD) regions. In this
393 more realistic simulation, the posterior can be multimodal resulting in multiple credible regions rather
394 than just a single credible interval. However, since the GLM decoder does not account for the latent
395 variable, the decoder is over-confident (Fig 1C, top) and less accurate (Fig 1D, bottom). When the latent
396 variable has a larger impact on neural responses relative to the impact of the stimulus, errors increase,
397 and the decoder is increasingly overconfident. Hence, traditional Bayesian decoders used in the
398 literature by assuming the independence between responses given the stimuli can have high error and
399 over-confidence in the presence of latent variables.

400

401 Modeling the latent variable reduces error and provides well-calibrated posteriors. Here we use a
402 Poisson Generalized Linear Latent Variable Model (GLLVM, see Methods) where the encoding model is
403 fit to account for the tuning curve, as well as the contribution of a shared low dimensional latent variable.
404 Under the GLLVM, neural responses are not conditionally independent given the stimulus. Rather, for
405 each trial the latent variable is estimated, and, during decoding, the latent variable is marginalized over
406 in order to generate the posterior distribution over stimuli. The error for the GLLVM decoder still
407 increases as the latent variable has a larger relative impact on neural responses (Fig 1D, bottom), but the
408 coverage closely follows the desired credibility level (Fig 1C, bottom). Well calibrated decoders (such as
409 the GLLVM in this simulation) have the advantage that the posterior appropriately covers the true
410 stimulus.

411

412
413

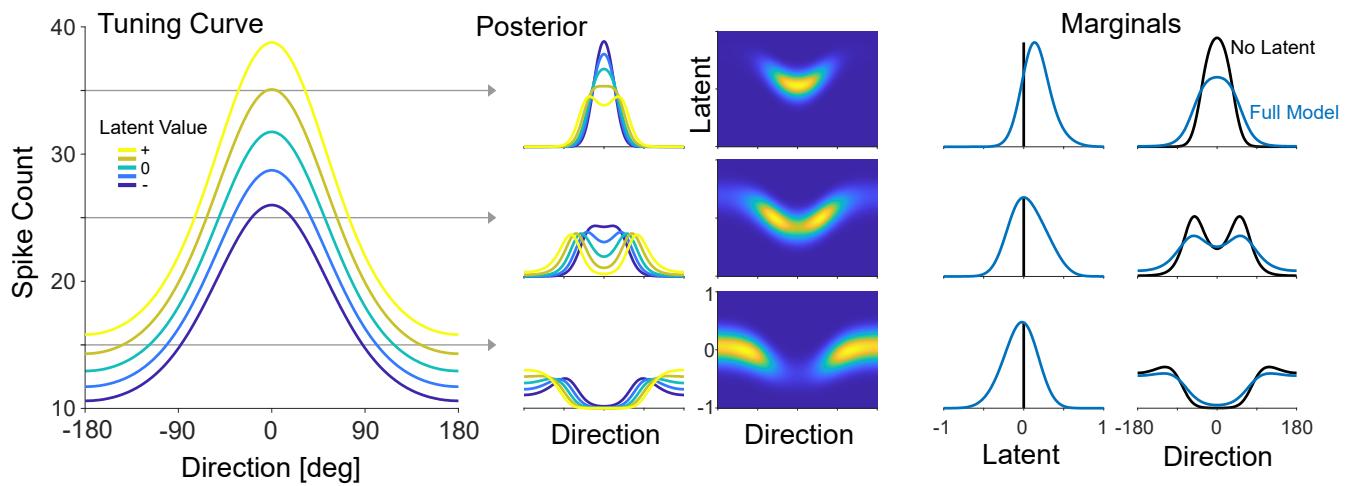


414 Figure 1: Bayesian decoders can misestimate uncertainty. A) Examples of posteriors for three toy
415 Bayesian decoders: an under-confident (blue), over-confident (red), and a well-calibrated (black)
416 decoder provide posterior estimates for each trial. Curves denote single-trial posteriors and lines below
417 each posterior denote 80% the credible intervals, and credible intervals for an additional four trials. Dots
418 denote MAP estimates. Coverage is measured by whether the highest posterior density regions cover
419 the true value (Error=0, in this case). B) Coverage as a function of the desired confidence level for each
420 decoder. C) In a simulation of homogeneous neurons receiving latent input in addition to their tuning to
421 an external variable, we find that a GLM-based decoder is increasingly over-confident as the contribution
422 of the latent input increases (top). Modeling the latent input with a GLLVM, even though it is unknown,
423 reduces over-confidence (bottom). For clarity, curves are averages of multiple simulations. D) Tuning
424 curves for the simulated population (top) and median cross-validated error for the MAP estimates
425 (bottom) for the GLM (red) and GLLVM (gray) averaged across multiple simulations. Error bars denote
426 standard deviation across simulations.

427
428

429 To further illustrate how overconfidence arises we consider a single tuned neuron in the GLLVM (Fig 2).
430 Here a neuron is tuned with a preferred stimulus/movement direction of 0 deg. However, a latent
431 variable that changes from trial to trial can shift the tuning curve up or down. This latent variable creates
432 an additional source of ambiguity when a specific spike count is observed. We cannot distinguish
433 between a situation where the neuron is spiking during the presence of a preferred stimulus and a
434 situation where the neuron is spiking during a non-preferred stimulus that coincides with an excitatory
435 latent input. For stimulus x and neural responses y , the key difference between the GLM and GLLVM
436 decoders is that instead of using the posterior $p(x|y)$ based only on a tuning curve model, we model an
437 additional latent variable z and decode from the marginal posterior distribution $\int p(x|y, z)p(z)dz$.
438 Since marginalizing, in general, increases uncertainty, the posterior distributions for individual neurons
439 under the GLLVM will be more uncertain than those of a GLM with the same noise model.

440



441

442

443 Figure 2: Latent variables increase posterior uncertainty when modeled. A single neuron tuned to reach
 444 direction may additionally be impacted by a latent variable (left) with the tuning curve scaled up or down
 445 depending on the latent state (yellow to blue curves). After fitting the encoding model, we can find the
 446 joint posterior over the value of the latent variable and the reach direction given an observed spike count
 447 (middle). Left panels show “slices” of the joint posterior evaluated at specific latent values (colors
 448 correspond to tuning curves), and the heatmaps show the full joint posterior. To decode the reach
 449 direction, we marginalize/integrate over the latent variable (right). The full model (blue) has higher
 450 uncertainty for reach direction than a model that does not take the latent variable into account (black).
 451
 452

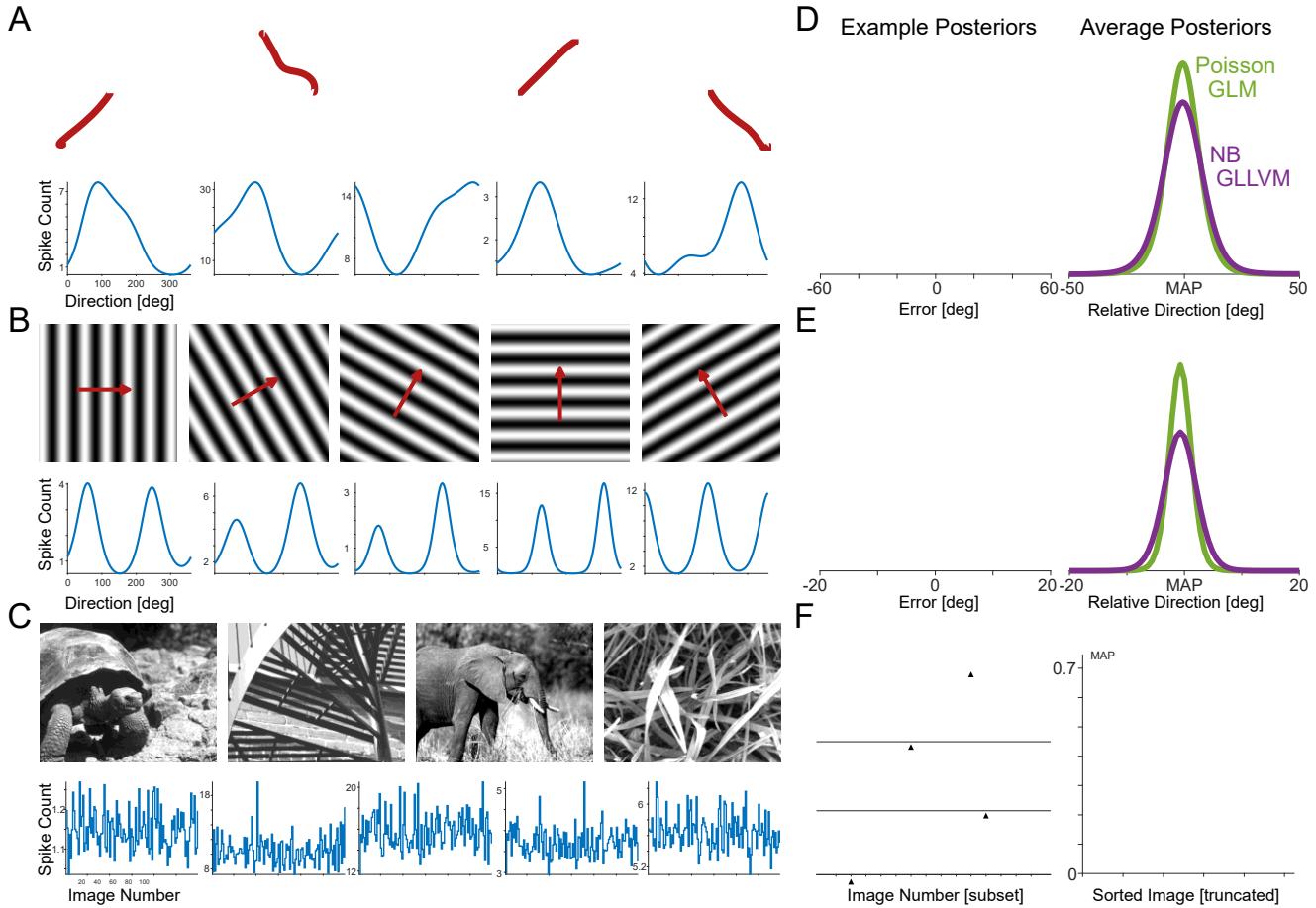
453 Trial-by-Trial Experimental Data

454 For experimental data we do not know the true model. However, the calibration and accuracy of
 455 Bayesian decoders can be assessed empirically. Here we compare GLM and GLLVM Bayesian decoders
 456 in three experimental settings: 1) decoding reach direction during a center-out task using recordings
 457 from primary motor (M1), 2) decoding sine-wave grating movement direction using recordings from
 458 primary visual (V1) cortex, and 3) decoding the identity of a natural image stimulus using multi-region
 459 Neuropixels recordings from the Allen Brain Institute (ABI). These data were previously collected and
 460 publicly shared (see Methods), and for each setting we evaluate decoding accuracy as well as coverage
 461 – the fraction of trials where the true stimulus falls within the highest density regions of the posterior
 462 (HPD).
 463

464 We compare four models 1) Poisson-GLM, 2) negative binomial-GLM, 3) Poisson-GLLVM, and 4) negative
 465 binomial GLLVM. For M1 and V1, we model tuning curves using a Fourier basis. For ABI, we model the
 466 spike counts in response to each of 118 images and regularize to prevent overfitting ($\eta = 100$). For the
 467 GLLVMs, we model a one-dimensional latent variable that co-modulates the responses of each neuron
 468 in the recorded population in addition to the tuning curves. That is, we fit an encoding model which

469 predicts the response of each neuron on each trial as conditionally independent Poisson or negative
 470 binomial observations. During decoding we evaluate the posterior distribution over possible external
 471 variables and marginalize over the latent variable in the case of the GLLVM. All results are cross-validated
 472 (10-fold) such that the decoders are trained on one set of trials and error/accuracy and uncertainty are
 473 evaluated on test data.

474



475
 476 Figure 3: Experimental decoding tasks and example posteriors. A) For M1 data, we aim to decode target
 477 direction in single trials of a center-out reaching task, B) For V1 data, we aim to decode stimulus (full-
 478 field grating) movement direction in single trials, and C) For ABI data, we aim to decode the identity of a
 479 natural image stimulus on single trials. For each case, example stimuli (top) and tuning curves for
 480 individual neurons (bottom) from the Poisson GLM fits. (D-F) show example posteriors for single trials
 481 (left) as well as the average posterior aligned to the MAP estimate (right). For ABI, note that the
 482 posteriors are discrete distributions and, for clarity, only a subset of images are shown. In (F), black
 483 triangles denote the true image stimulus.

484

485

486 For experimental data, there is substantial heterogeneity in tuning curves (Fig 3A-C), and posteriors may
 487 be continuous or discrete depending on the experimental context. However, as with the toy examples

488 above, the GLLVM (in this case, with a negative binomial observation model) tends to have posteriors
489 with higher uncertainty compared to the GLM (Fig 3E-F). On single trials, the posteriors tend to be wider
490 and to have lower probabilities for the (MAP) point estimate for the GLLVM. In both continuous and
491 discrete cases, outcomes that were assigned near-zero probability under the GLM are assigned non-zero
492 probability under the GLLVM.

493

494 As with the simulations above, we find that Bayesian decoders tend to be over-confident (Fig 4A-C). For
495 all three experimental settings (M1, V1, and ABI), the highest posterior density (HPD) regions cover the
496 true stimulus/movement less often than desired for all credible levels when decoding from all recorded
497 neurons. For the Poisson GLM, for example, when we specify a 95% credibility level, the posteriors from
498 M1 only include the true target direction 70% of the time, posteriors from V1 only include the true
499 stimulus direction 51%, and posteriors from ABI only include the true natural image stimulus 31% of the
500 time. The negative binomial GLM has better coverage than the Poisson GLM, while adding latent
501 variables improves coverage even more. The best-calibrated model of these four is the negative binomial
502 GLLVM - here when we specify a 95% credibility level, the posteriors from M1 include the true target
503 direction 81% of the time, posteriors from V1 include the true stimulus direction 82%, and posteriors
504 from ABI include the true natural image stimulus 86% of the time. Traditional Bayesian decoders can
505 thus have substantial over-confidence, and calibration is improved by adding latent variables.

506

507 As previous studies have noted, non-Poisson observation models and latent variables can alter, and in
508 many cases improve, decoding accuracy. Here, for M1 and V1, we calculate the absolute circular distance
509 between the true target/stimulus direction and the maximum a posteriori (MAP) estimate of the
510 target/stimulus direction from the Bayesian decoders on each trial. For ABI, we assess the accuracy
511 based on whether the top-1 or top-5 categories of the discrete posterior include the true stimulus image
512 on each trial. For the full populations of M1 data, the models do not have substantially different errors
513 (median across trials 9.8 deg, 9.5 deg, 9.8 deg and 9.8 deg for the P-GLM, NB-GLM, P-GLVM, and NB-
514 GLLVM, respectively). For the V1 data, the Poisson GLM outperforms the NB-GLM (median error 3.8 deg
515 vs 4.5 deg, Wilcoxon signed rank test, $p < 10^{-12}$, $z = 7.5$), and the Poisson GLLVM outperforms the NB-
516 GLLVM (median error 2.8 deg vs 3.0 deg, Wilcoxon signed rank test $p < 10^{-12}$, $z = 7.7$). For ABI data,
517 however, the NB models out-perform the Poisson models (top-1 accuracy 15.6% [14.6, 16.7] for P-GLM
518 vs 23.0% [21.9, 24.2] for NB-GLM). For V1, the GLM-based models have slightly lower error than the
519 GLLVM ($p < 10^{-12}$, $z = 17.0$, Wilcoxon signed rank test for Poisson GLM vs GLLVM), but for the ABI data, the
520 GLLVM models improve accuracy substantially (22.3% [22.1, 24.5] for P-GLVM and 30.1% [29.2, 31.8]
521 for NB-GLVM). In all cases, for randomly sampled subnetworks, we find that the cross-validated error
522 decreases (or accuracy increases) as a function of how many neurons are included in the decoder for all
523 models (Fig 4D-F).

524

525 These error and accuracy measures are based on the MAP estimates of the external variable; however,
526 there are also differences across models in the dispersion of the posteriors. The NB models have higher
527 circular standard deviations than the Poisson models for the M1 and V1 data and substantially higher
528 entropy for ABI (Fig 4G-I). For M1, the circular standard deviation of the posterior is 7.2 deg for the
529 Poisson GLM (median across trials) compared to 8.8 deg for the NB-GLM ($p < 10^{-12}$, $z = 14.3$, two-sided
530 Wilcoxon signed rank test), and 7.7 deg and 9.0 deg for the P-GLLVM and NB-GLLVM ($p < 10^{-12}$, $z = 13.9$,
531 two-sided Wilcoxon signed rank test). For V1, the median circular standard deviation is 2.0 deg for the
532 P-GLM compared to 4.0 deg for the NB-GLM ($p < 10^{-12}$, $z = 38.8$) and 2.0 deg vs 3.3 deg for the P-GLLVM
533 and NB-GLLVM ($p < 10^{-12}$, $z = -35.0$, two-sided Wilcoxon signed rank test). For ABI, the average entropy is
534 1.26 bits for the P-GLM and 2.7 bits for NB-GLM ($t(4872) = 136.4$, $p < 10^{-12}$, paired t-test), 1.8 bits for P-
535 GLLVM, 4.0 bits for NB-GLLVM ($t(4872) = 19.6$, $p < 10^{-12}$, paired t-test compared to NB-GLM). In the case of
536 decoding natural images from ABI, the GLLVMs are less certain and more accurate than the GLMs.
537

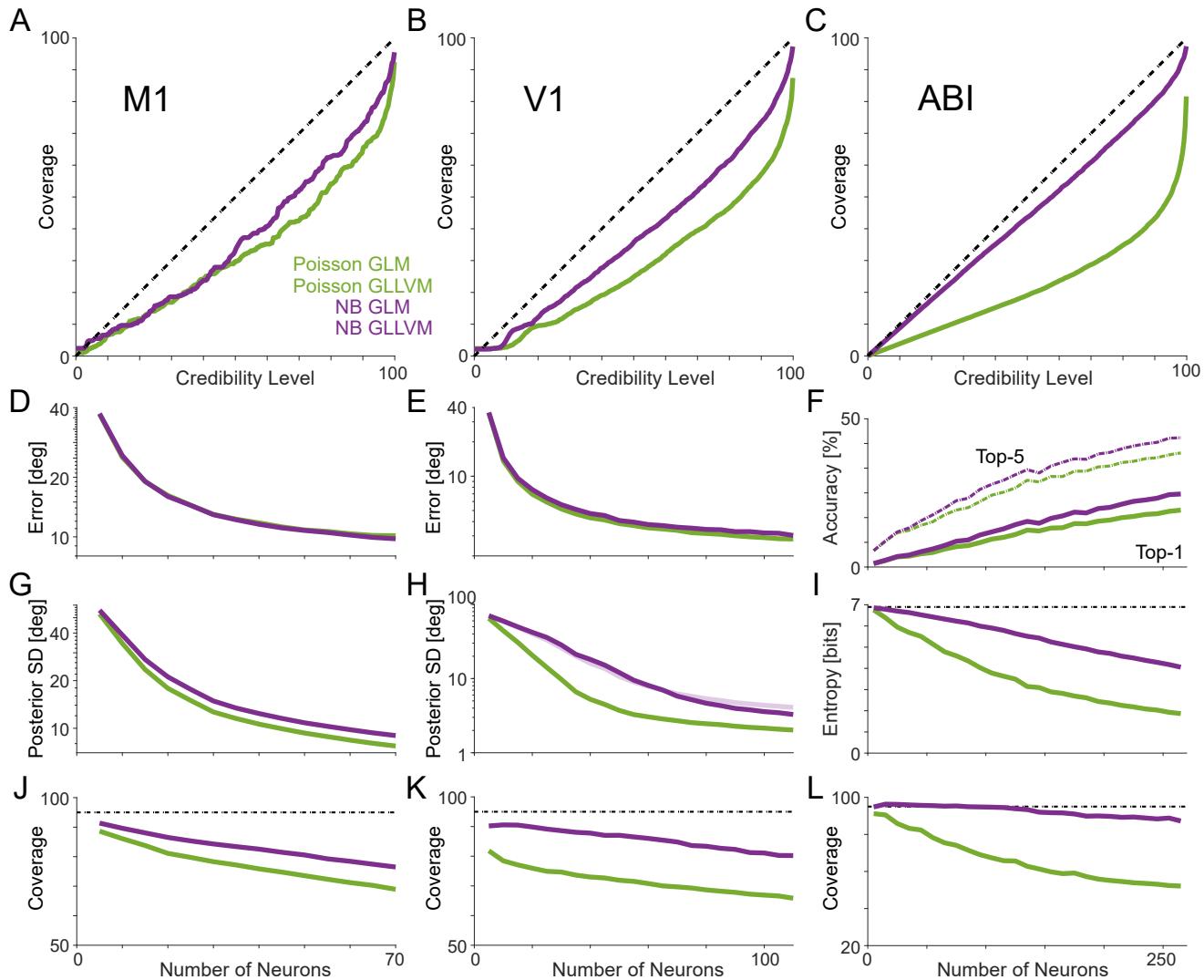
538 Differences in the dispersions of the posteriors are reflected in differences in coverage. As more neurons
539 are used for decoding the models become increasingly overconfident and badly calibrated (Fig 4J-L),
540 even as the error decreases (Fig 4D-E) or accuracy improves (Fig 4F). The negative binomial GLLVM has
541 the best coverage across datasets and population sizes but note that the coverage is still less than desired
542 (95% for Fig 4J-L).
543

544 **Interpreting latent variable models**

545 Including a latent variable allows the GLLVMs to account for variation in neural responses to the same
546 stimulus/movement. Here, with a one-dimensional model, the GLLVM primarily accounts for the overall
547 fluctuations in population activity from trial-to-trial (Fig 5). While the GLM only predicts variation
548 between stimuli/movements for both M1 (Fig 5A) and V1 (Fig 5B), the GLLVM accounts for the fact that
549 some trials tend to have higher overall activity across the population while other trials have lower
550 activity. This trend is apparent when examining the overall population activity – here calculated as the
551 sum of the log activity. We also examine correlations between responses of pairs of neurons (Fig 5, right).
552 Here we calculate stimulus and noise correlations by shuffling responses to the same
553 stimuli/movements. Stimulus correlations reflect the average on shuffled data, while noise correlations
554 are given by the observed correlations minus the shuffled correlations, and, for the models, we sample
555 spike counts to mimic the observed data. Since the GLM assumes that neurons are conditionally
556 independent given the stimulus/movement, it accounts for stimulus correlations but tends to
557 underestimate noise correlations. The GLLVM, on the other hand, accurately accounts for both stimulus
558 and noise correlations. This pattern is present in the overall correlation matrices, as well as, when
559 averaging over pairs of neurons based on the differences in their preferred directions (ΔPD).
560

561

562



563

564

565

566

567

568

569

570

571

572

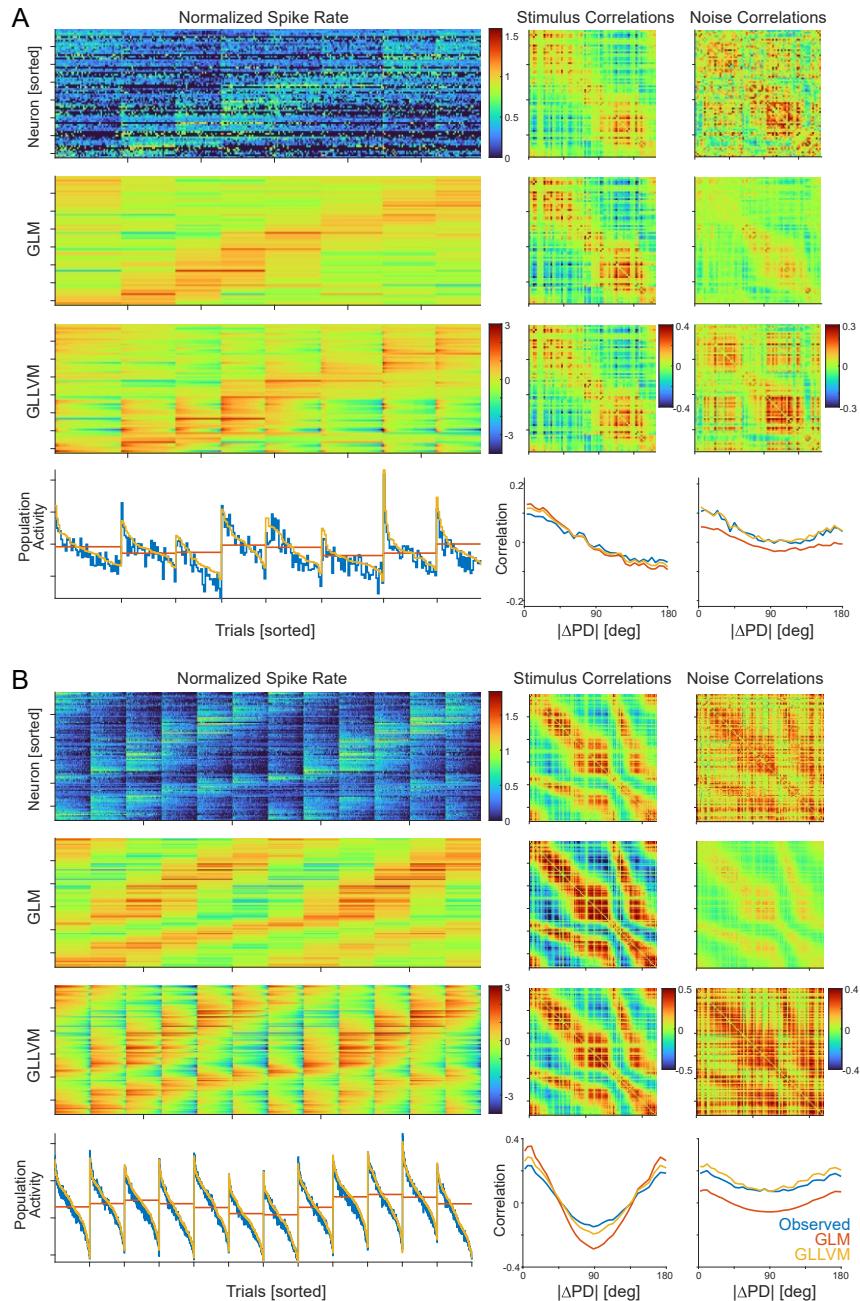
573

574

575

576

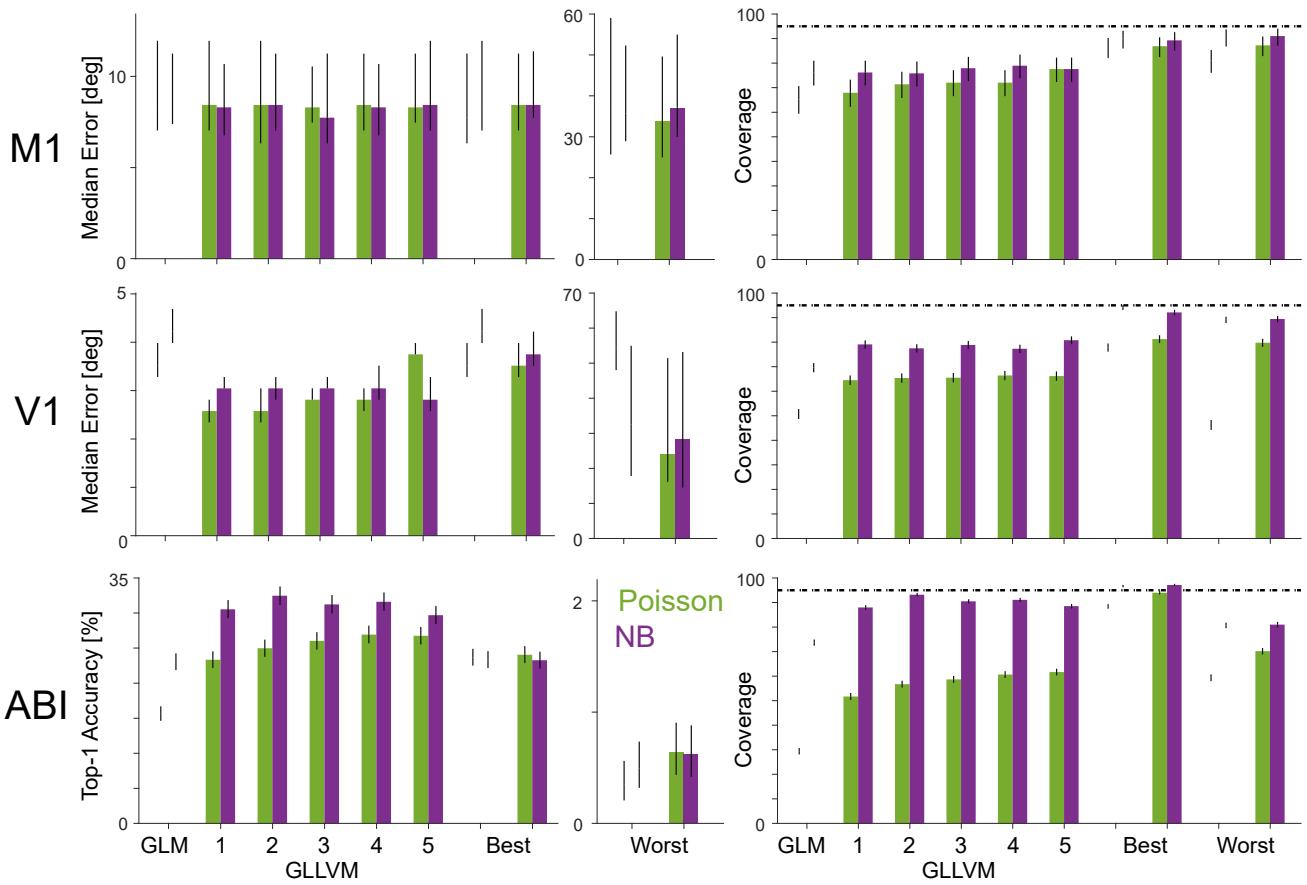
Figure 4: Coverage results for three experimental datasets and four decoders. Decoding reach direction from neurons in M1 during a center-out task (A), decoding stimulus direction from neurons in V1 during presentation of drifting gratings (B) and decoding the identity of a natural image from multiple brain regions (C), Bayesian decoders tend to be over-confident. Latent variable models (P-GLLVM and NB-GLLVM) are better calibrated than their GLM equivalents, and negative binomial models tend to be better calibrated than their Poisson equivalents. Cross-validated error/accuracy (D-F), uncertainty (G-I), and coverage (J-L) each change as a function of how many neurons are included in the model. Accuracy increases with increasing numbers of neurons and uncertainty decreases. However, calibration (the degree of over-confidence) gets worse as more neurons are included in the model. Error in D and E, denotes median error. SD in G and H is circular standard deviation. Dashed line in (I) denotes maximum entropy over the natural images. Dashed lines in J-L denote a nominated 95% coverage. M1 results in D, G, and J are averaged across 200 sets of neurons, V1 results in E, H, and K are averaged across 100 sets of neurons, and ABI results are averaged across 20 sets of neurons.



579 Figure 5: Encoding models for reach direction in M1 and grating direction from V1. A) Spike counts for
 580 all neurons recorded from M1 and trials for each of 8 directions of a center-out reaching task (top).
 581 Neurons are sorted by their preferred directions, and trials are sorted first by the target direction and
 582 then by the value of the latent state. The color scale is transformed ($\log(y/e^{\beta_0} + 10)$) to highlight the
 583 differences across neurons and trials. Model fits for the GLM (Poisson observations) and GLLVM (1D
 584 latent, Poisson observations) are shown below, as well as the population activity. The observed and
 585 modeled stimulus and noise correlations are shown at right. B) Spike counts and model fits for neurons
 586 recorded from V1 responding to drifting full-field gratings in 12 directions (sorted as in A).

587
588
589
590
591
592
593
594
595

The dimensionality of the latent variable may have some impact on the encoding and decoding accuracy and on the calibration of Bayesian decoders. To characterize the potential effects of dimensionality we fit GLLVMs with 1 to 5 dimensional latent states for the M1, V1, and ABI datasets. We find that, in most cases, the GLLVMs with >1 dimensionality have similar error and coverage to the models with 1 dimension, with the exception of the Poisson GLLVM, which tends to have better coverage with more dimensions (Fig 6). In all cases the coverage of the NB models is better than that of the Poisson models.



596
597
598
599
600
601
602
603
604
605

Figure 6: Increasing latent dimensionality does not fully correct over-confidence. Error/accuracy (left) and coverage at 95% credibility level (right) for GLLVMs with different latent dimensionality. GLM and GLLVM results reflect the full population of neurons for each experimental setting. For comparison, results with reduced populations of 20 neurons are included here for the GLM and one-dimensional GLLVM, selected using a greedy optimization to create the “best” and “worst” error/accuracy. Error bars denote 95% confidence intervals. Dashed lines denote nominated coverage of 95%. Light and dark colors for the best/worst greedy decoders denote results from the GLM and 1D GLLVM, respectively.

606 Since the size of the population appears to have an impact on coverage, we also examine how the
607 composition of the population impacts accuracy and decoding. Here we use a greedy optimization (see
608 Methods) to find the population of size N neurons that minimizes the error (M1 or V1) or maximizes the
609 top-1 accuracy (ABI) of the Poisson GLM creating the greedy “best” subpopulation. And for comparison
610 we also consider maximizing the error (M1 or V1) or minimizing the top-1 accuracy (ABI) of the Poisson
611 GLM to create the greedy “worst” subpopulation. Like previous studies, we find that the full population
612 is often unnecessary for accurate decoding – a greedy best subpopulation of $N=20$ often has
613 error/accuracy comparable to the full population. Here we additionally show that these greedy best
614 models often have better coverage than the models based on the full population (Fig 6). However, the
615 population size is not the only factor determining coverage, since the greedy best and greedy worst
616 populations have substantial differences in coverage despite both consisting of 20 neurons.
617

618 **Post-hoc correction for miscalibration**

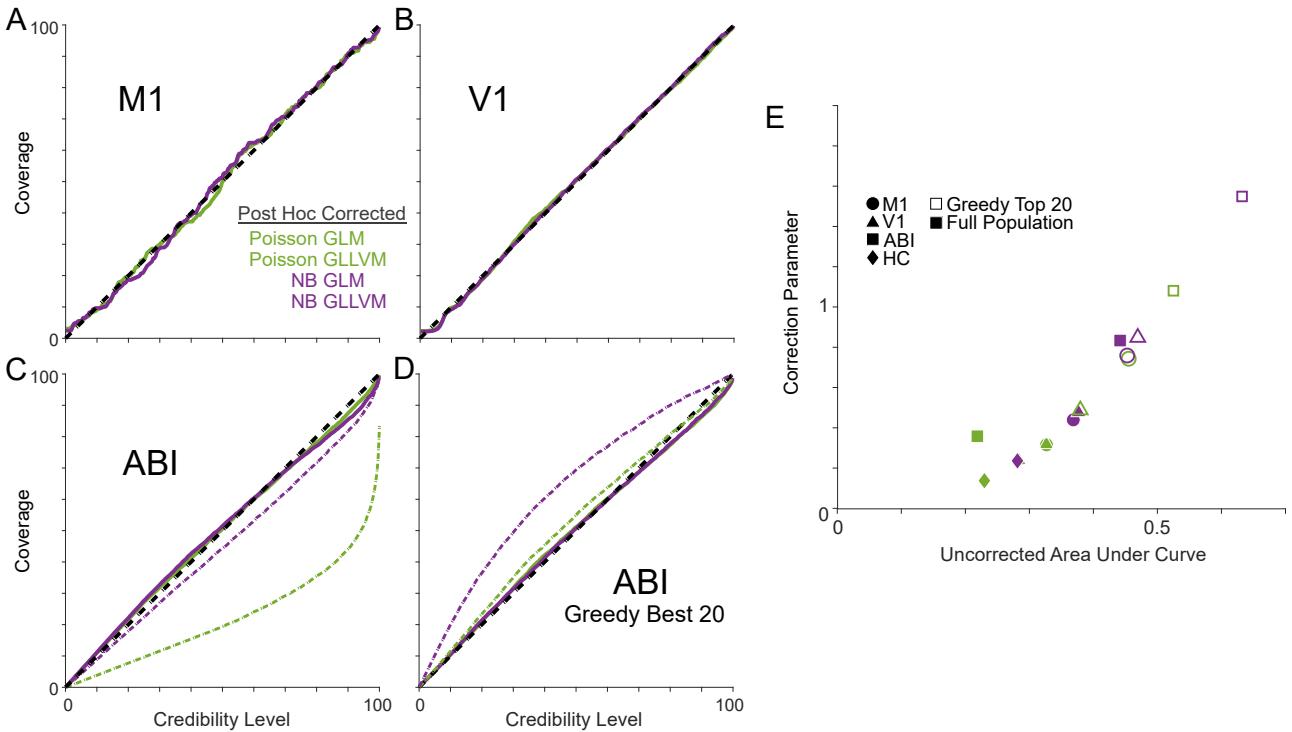
619 Since even decoders based on GLLVMs are over-confident, it may be useful to consider calibration as a
620 distinct step in neural data analysis in situations where accurate uncertainty estimation is needed. One
621 approach to correcting calibration errors is to simply inflate the posterior uncertainty post-hoc. That is,
622 rather than decoding using $p(x|y)$ use $q(x|y)$. Here we consider the transformation $q(x|y) \propto \exp(h \log p(x|y))$ with $h > 0$. This transformation preserves the MAP estimate and the relative log-
623 probabilities of all x , but h allows the uncertainty to be modified. Note that if $p(\cdot)$ is a normal
624 distribution with standard deviation σ , $q(\cdot)$ is a normal distribution with standard deviation σ/\sqrt{h} , but
625 this transformation can be used for general distributions.
626

627 For the over-confident examples above, we estimate a single constant h using the full data for each case
628 (see Methods) and find that this transformation produces well-calibrated decoding distributions at all
629 desired confidence levels (Fig 7A-C). The transformation does not change the decoding accuracy (based
630 on MAP estimates) but allows for substantially more accurate uncertainty estimation. In the examples
631 above, we showed that over-confidence depends on the encoding model and the number of neurons
632 used in the decoder. The optimal value of h , thus, also depends on the model as well as the size and
633 composition of the population with higher overconfidence needing greater correction (smaller h). We
634 also note that, at least in some cases, underconfidence is possible (Fig 7D), but can be similarly corrected
635 by $h > 1$.
637

638 Within a given experimental setting, there is a consistent relationship between the degree of
639 over/under-confidence and the optimal correction parameter (here optimized by minimizing the mean
640 squared error in the nominated coverage vs empirical coverage plots). Across models (GLM, GLLVM,
641 Poisson, and NB) and populations (full population and greedy best), the correction parameters are well
642 predicted by a power law, $h = (2p)^\alpha$, where p denotes the area under the curve for the uncorrected
643 coverage and we find $\hat{\alpha} = 2.7, 2.5, 1.3, 2.5$ for M1, V1, ABI, and HC (see below), respectively (Fig 7E).

644

645



646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

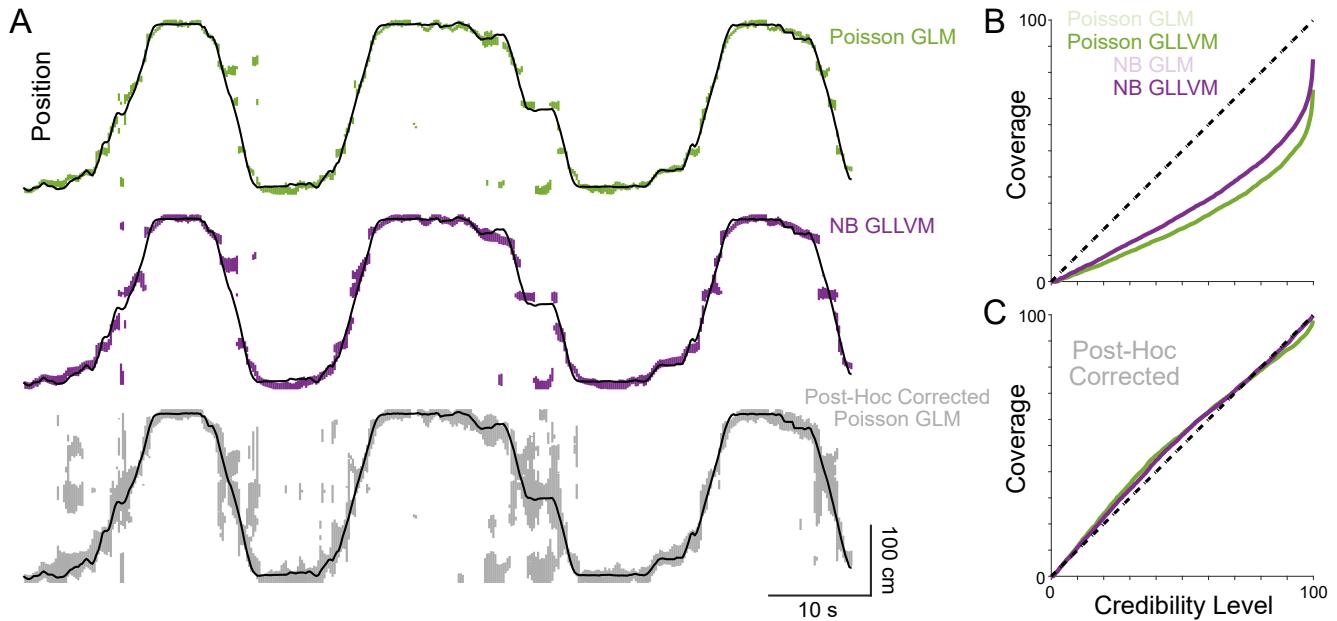
663

664

Figure 7: Post hoc corrected coverage. (A-C) results for full populations in each of the three experimental settings from Fig 3A-C. For each model and experiment there is a distinct correction parameter optimized to produce well calibrated results. D) Under-confidence is rare, but can occur, such as when decoding from the best 20 neurons (greedy selection) from the ABI dataset using NB models. Dashed lines in C and D decode the uncorrected results, while solid lines denote the post-hoc corrected results (dashed lines in C are repeated from 4C for reference). E) The optimal correction parameter as a function of original miscalibration. Dashed lines denote power law fits for each dataset.

For some settings, rather than trial-by-trial decoding of spike counts, the goal is to decode a continuous, typically smoothly varying, external variable. To illustrate how general the problem of over-confidence in Bayesian decoders is, we consider continuous estimates of an animal's position from hippocampal activity (Fig 8A). Here, rather than distinct trials with a controlled stimulus/behavior, a rat runs freely on a linear track. GLM and GLLVMs can still be used to decode the animal's position. We fit encoding models based on place fields (direction-selective cubic B-spline bases with 10 equally spaced knots), and for the GLLVMs, we additionally include a one-dimensional latent variable. However, to more accurately decode the continuous behavior, we also add a process model that ensures that the position and latent state vary smoothly from one time to the next (see Methods).

665 As before, we assess the coverage of each model. Here we find that, decoding the time series of animal
 666 position, the Poisson GLM is the most overconfident and the NB-GLLM is the most well-calibrated. The
 667 95% credible regions for the posterior include the true position only 48% of the time for Poisson GLM,
 668 while the NB-GLLM covers the true position 63% of the time (Fig 8B). All four models have better
 669 calibrated posteriors following post-hoc correction (Fig 8C). The coverage of 95% credible regions
 670 increases to 91% for the P-GLM and 94% for the NB-GLLM, for example.
 671
 672



673
 674 Figure 8: Continuous decoding and coverage for position in hippocampus (HC). A) The true position along
 675 the linear track (black line), along with 95% credible regions for three Bayesian decoders: 1) the
 676 traditional Poisson GLM, 2) a negative binomial GLM, and 3) the Poisson GLM after post-hoc correction.
 677 Note that, in some cases, the posterior (or post-hoc corrected distribution) is multimodal, resulting in
 678 multiple HPD regions. B) Empirical coverage as a function of the desired credibility level for the four
 679 Bayesian decoders. C) Empirical coverage after post-hoc correction.
 680
 681

682 Conformal prediction intervals

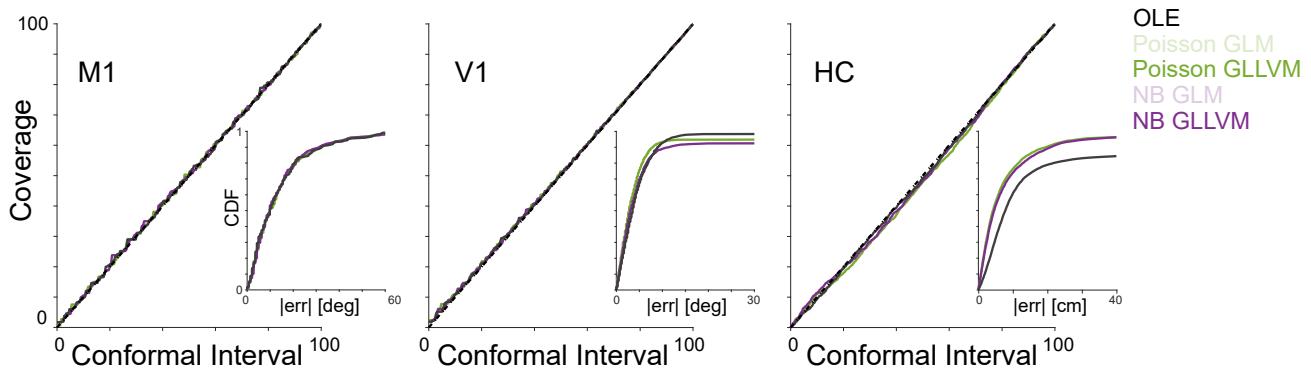
683 One potential alternative to the post-hoc correction described above that may be useful for continuous
 684 decoding is conformal prediction (Shafer and Vovk, 2008; Lei et al., 2018). Rather than using a posterior
 685 distribution, this approach constructs prediction intervals by using the quantiles of the distribution of
 686 residuals (see Methods). Here we evaluate split conformal prediction (Lei et al., 2018) and find that this
 687 approach produces well-calibrated intervals around the point estimates of both the GLM and GLLVM

689 (one latent dimension) on trial-by-trial stimulus direction or movement direction in the V1 and M1
690 datasets and position in the HC dataset (Fig 9).

691

692 Conformal prediction has the advantage that it is parameter free and can also be used for non-Bayesian
693 decoders. To illustrate this possibility, here we fit additional decoders to the M1, V1, and HC data using
694 optimal linear estimation (OLE, see Methods). These decoders do not have explicit measures of
695 uncertainty but, in some cases, perform on par with the Bayesian models in terms of accuracy – here
696 with (10-fold) cross-validated median absolute errors of 9.8 deg for M1 and 3.5 deg for V1. And for HC
697 the dynamic Poisson GLM has median absolute error of 4.7 cm and the dynamic NB GLLVM has 4.6 cm,
698 compared to median absolute error of 7.8 cm for OLE. Using split conformal prediction, the intervals are,
699 like the Bayesian decoders, well-calibrated (Fig 9). However, since the conformal prediction intervals are
700 based only on point-predictions and the residuals across all trials, they do not capture changes in
701 uncertainty across stimuli/movements or from trial to trial.

702



703

704 Figure 9: Coverage for conformal prediction intervals. For M1 and V1 trial-by-trial data as well as
705 continuous decoding of position for HC, split conformal prediction produces well-calibrated intervals for
706 all models. Here the results show the full data. These uncertainty estimates are based on the distribution
707 of residuals (insets) and can also be calculated for non-Bayesian decoders such as optimal linear
708 estimation (OLE, gray).

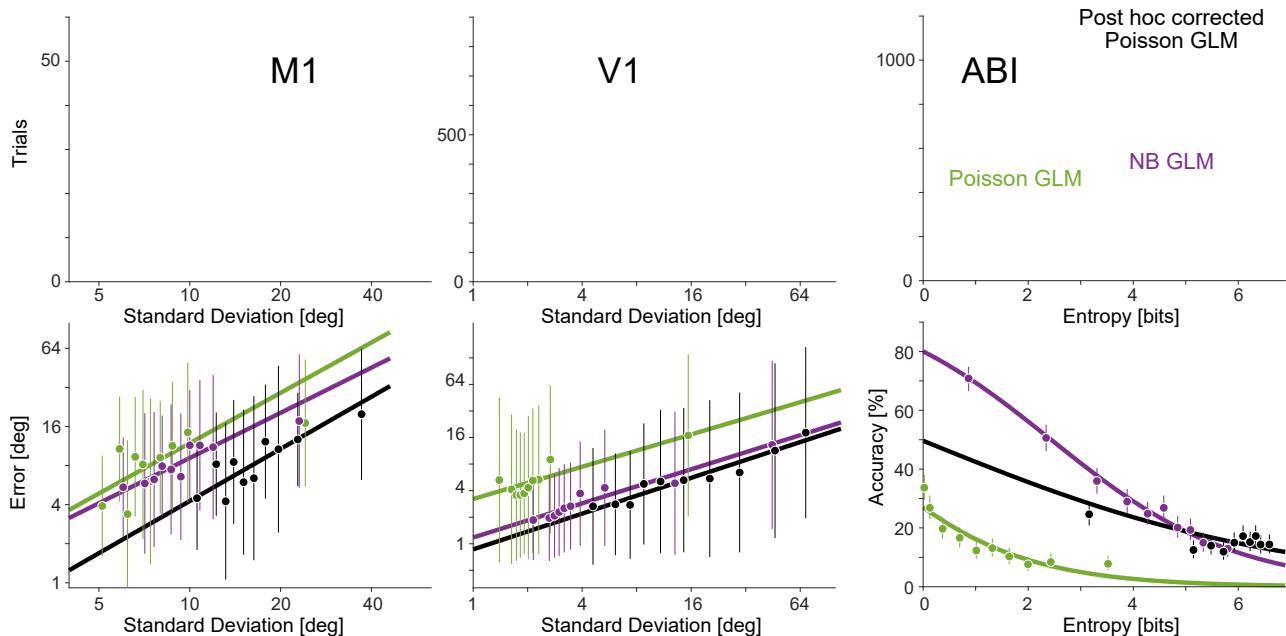
709

710 Posterior uncertainty and task variables

711

712 From trial to trial there are substantial variations in both posterior uncertainty and accuracy. The exact
713 relationship between error/uncertainty and accuracy depends somewhat on the decoder, since different
714 models have different uncertainties. However, in the data examined above, we find that for all models
715 error increases with increasing posterior uncertainty (M1 and V1) or accuracy decreases with increasing
716 posterior uncertainty (ABI) (Fig 10). Fitting a linear model (in the log-log domain) for the post-hoc
717 corrected Poisson GLM, M1 error increases 252% [187, 340] (95% CI) for each doubling of posterior
718 (circular) standard deviation. For V1 with the post-hoc corrected Poisson GLM, error increases 160%
719 [150, 169] for each doubling of the posterior (circular) standard deviation. Fitting a logistic model for

720 ABI, accuracy decreases with OR=0.75 [0.68, 0.83] per bit of posterior entropy. These results are for the
 721 posteriors of the post-hoc corrected Poisson GLM, but all models show statistically significant
 722 dependencies between error/accuracy and uncertainty both with and without post-hoc correction.
 723
 724

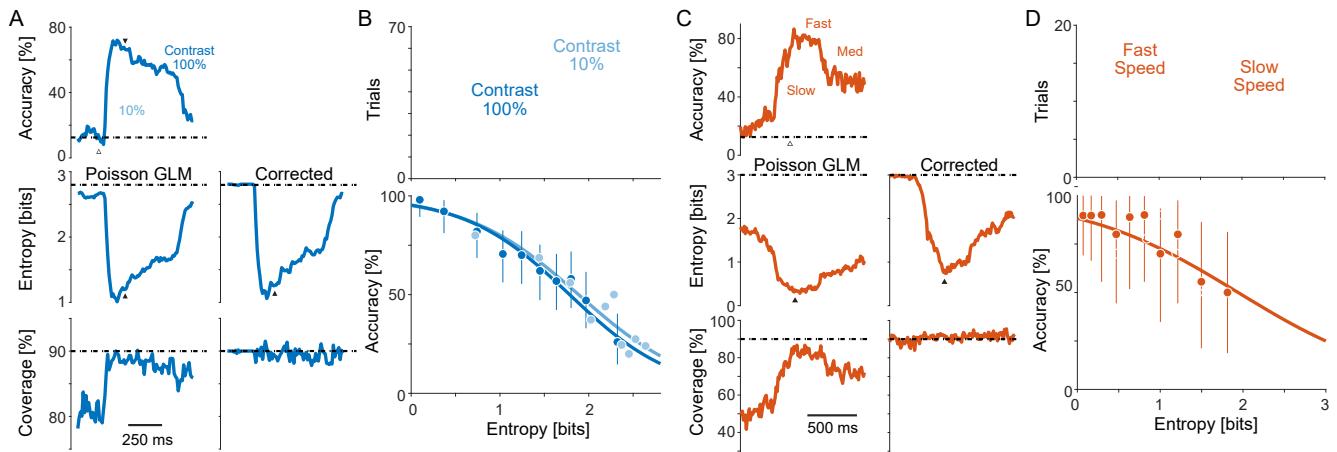


725
 726 Figure 10: Uncertainty predicts accuracy. For reference, dots denote averages calculated in deciles. Error
 727 bars for M1 and V1 denote standard deviation. Error bars for ABI denote 95% confidence intervals. Lines
 728 for M1 and V1 denote linear, least-squares fit for single trials in the log domain. Curves for ABI denote
 729 logistic regression.
 730
 731

732 In experiments where a task variable is expected to influence behavioral/perceptual uncertainty, we may
 733 also expect Bayesian decoders to reflect differences in this uncertainty. Here, for instance, we examine
 734 V1 data from an additional experiment with static oriented grating stimuli, where the contrast of the
 735 stimulus was explicitly varied. Fitting separate (categorical) Poisson GLMs to the different time points
 736 (50ms window) and contrast conditions, we find that accuracy for decoding categorical stimulus
 737 orientation increases following stimulus onset and increases with increasing stimulus contrast (Fig 11A
 738 top). Accuracy for the high contrast trials is substantially higher than for low contrast trials (66% for high,
 739 43% for low, $z=7.4$, $p<10^{-12}$, two-sided test for difference of proportions, 200ms following stimulus
 740 onset). Additionally, posterior entropy decreases following stimulus onset, and is lowest for high contrast
 741 stimuli (Fig 11A middle). In this example, since the population is relatively small (18 units), the degree of
 742 over-confidence for the Poisson GLM (Fig 11A bottom) is not as extreme as the previous V1 population.
 743 Here, the post-hoc corrected posteriors for the Poisson GLM (corrected separately for each time point
 744 and contrast) show a similar pattern with high contrast trials having lower entropy than low contrast

745 trials (1.3 bits for high, 2.1 bits for low, two-sided unpaired t-test $t(955.4)=21.0$, $p<10^{-12}$, at 200ms
 746 following stimulus onset). As in Fig 10, we find that single trial accuracy is well predicted by the posterior
 747 uncertainty (Fig 11B). The relationship between entropy and accuracy is consistent across contrasts, and
 748 the logistic fits do not differ substantially for the different contrasts (OR=0.18/bit [0.12, 0.27] 95% CI for
 749 high contrast, OR=0.21/bit [0.14, 0.31] for low contrast). These trends mirror recent results from
 750 Boundy-Singer et al. (2023) also characterizing stimulus orientation uncertainty in macaque V1 .
 751

752



753

754 Figure 11: Accuracy, uncertainty, and coverage vary with stimulus contrast in V1 and with movement
 755 speed in M1. A) For static, oriented gratings, cross-validated decoding accuracy increases following
 756 stimulus onset (white triangle) but depends on stimulus contrast (top). Posterior entropy decreases, with
 757 lower entropy for higher contrast stimuli, and coverage (at 90% nominated) also varies. Dashed lines
 758 denote chance (top), maximum entropy (middle), and nominated coverage (bottom). B) At 200ms after
 759 stimulus onset (black triangles in A), we find that the (post hoc corrected) posterior entropy for the
 760 Poisson GLM varies with contrast. Dots denote averages in deciles, error bars denote 95% confidence
 761 intervals, and curves denote logistic regression fits. C, D) Analogous results for recordings from M1
 762 during center-out reaching with maximum movement speed split by terciles. Cross-validated decoding
 763 accuracy increases shortly before movement onset (white triangle) but depends on reach speed (top).
 764 Posterior entropy decreases with lower entropy for higher speeds. Results in (D) are for 100ms after
 765 movement onset (black triangles in C).
 766

767 We use a similar analysis to assess the impact of reach speed in M1. Just as stimulus contrast may impact
 768 uncertainty when decoding visual stimuli, movement features beyond reach direction may impact
 769 uncertainty when decoding behavior. Here we use the M1 data during center-out reaching examined
 770 above. We fit a single decoder for reach direction at each time point (50ms window), but assess accuracy,
 771 entropy, and coverage separately for different trials based on the peak movement speed. Splitting the
 772 trials into speed terciles (Fig 11C), we find that accuracy increases shortly before movement onset, and

773 trials with the fastest reaches are decoded more accurately than those with slower reaches (80% for fast,
774 64% for slow, $z=2.6$, $p=0.01$, two-sided test for difference of proportions, 100ms following movement
775 onset). Posterior entropy also decreases shortly before movement onset and is lowest for the fast
776 reaches (Fig 11C middle). Here, as before, the Poisson GLM tends to be overconfident. The post-hoc
777 corrected posteriors have substantially higher entropy, but show the same pattern where fast reaches
778 have the lowest entropy (0.8 bits for fast, 1.4 bits for slow, two-sided unpaired t-test $t(184.5)=7.8$, $p<10^{-12}$,
779 at 100ms following movement onset). The entropy on single trials again predicts single trial accuracy
780 (Fig 11D), and the logistic fits do not differ substantially for the different speeds (OR=0.16/bit [0.06, 0.44]
781 95% CI for fast, OR=0.35/bit [0.13, 0.94] for slow).

782

783 Discussion

784 Using data from a range of brain regions and experimental settings, we have shown how Bayesian
785 decoders of neural spiking activity are often miscalibrated. In particular, the posterior estimates tend to
786 be overconfident. Overconfidence increases with increasing numbers of neurons, is reduced by using
787 negative binomial observation models (compared to Poisson) and is reduced by modeling latent
788 variables. However, since even the best calibrated models tested here are not well calibrated, we
789 introduce a post-hoc correction and show how it can be used, in multiple settings, to recalibrate
790 uncertainty estimates. Finally, we present results illustrating how the posterior uncertainty of Bayesian
791 decoders can vary substantially from trial-to-trial. Single trial posterior uncertainty predicts single trial
792 accuracy and may be useful for understanding variation in perceptual or behavioral confidence due to
793 task variables such as stimulus contrast or movement speed.

794

795 Similar to previous work (Macke et al., 2011), we show here how latent variables (GLLVMs) can better
796 account for noise correlations and shared variability in the simultaneously recorded neurons.
797 Correlations are known to play an important role in population coding, generally (von der Malsburg,
798 1994; Nirenberg, 2003), and failing to accurately account for these dependencies can lead to decoding
799 errors (Ruda et al., 2020). Latent variable models represent one approach to describing shared
800 variability. Fitting latent variables alone, without explicit tuning to external variables often reveals
801 interesting task structure (c.f. Gao et al., 2016; Zhao and Park, 2017), and the latent states fit here may
802 reflect both internal as well as unmodeled external, task-related effects. Previous work has shown how
803 these models can improve encoding and decoding accuracy (Santhanam et al., 2009; Chase et al., 2010;
804 Lawhern et al., 2010). Here we additionally show how latent variable models increase the uncertainty of
805 Bayesian decoders and improve their calibration.

806

807 Bayesian decoders have advantages over other decoding methods in that they provide probabilistic
808 predictions and can flexibly incorporate prior assumptions, such as sparseness and smoothness.
809 However, many non-Bayesian decoders exist, including vector decoders (Georgopoulos et al., 1986;
810 Salinas and Abbott, 1994), nearest-neighbor methods, support vector machines, and artificial neural
811 networks (Quiroga and Panzeri, 2009). Although, well-tuned Bayesian methods can often out-perform
812 non-Bayesian approaches (e.g. Zhang et al., 1998). Machine learning and recent deep learning
813 approaches to decoding have been shown to be more accurate than simple Bayesian models in many
814 settings (Pandarinath et al., 2018; Glaser et al., 2020b; Livezey and Glaser, 2021). Since calculating the

815 full posterior distribution can be computationally expensive, these methods can also be substantially
816 faster for situations where predictions are time-sensitive. Almost all work with non-Bayesian decoders
817 of neural activity focuses on the accuracy of point predictions. Here we show how conformal prediction
818 can be used to generate well-calibrated uncertainty estimates for OLE. However, miscalibration is a
819 known problem in work on artificial neural networks (Guo et al., 2017) and recent work on Bayesian
820 neural networks and conformal prediction (Shafer and Vovk, 2008) could potentially be used to create
821 and calibrate uncertainty estimates for these models as well.

822

823 Accurate uncertainty estimates may potentially be useful for robust control of brain machine interfaces
824 (BMIs). For instance, although many BMIs directly control effectors, such as a cursor position (decoding
825 movement) or a desired word (decoding speech), based on point predictions (Nicolelis, 2003), it may be
826 beneficial to distinguish between predictions based on their confidence level. Here, we find substantial
827 variation in uncertainty for trial-by-trial offline decoding, and we also illustrate how contrast (in V1) and
828 speed (in M1) might impact decoding uncertainty. These results are limited by the fact that we do not
829 explicitly include contrast or speed in the encoding model (Moran and Schwartz, 1999) or decode these
830 variables directly (Inoue et al., 2018), but they suggest how uncertainty may be a separate and
831 worthwhile consideration for decoding problems. Additionally, our results suggest that recalibration
832 could be necessary to avoid overconfidence in BMIs that make use of posterior uncertainty during
833 control.

834

835 The uncertainty estimates from Bayesian decoders of neural activity may also be useful for studying
836 behavioral and perceptual uncertainty. Normative models of population coding (Ma et al., 2006) and
837 broader descriptions of uncertainty in the brain (Knill and Pouget, 2004) often directly relate neural
838 activity to probabilistic descriptions of the external world. Although several features of neural activity
839 have been proposed as indicators of behavioral/perceptual uncertainty (Vilares and Kording, 2011), the
840 posteriors from Bayesian decoders represent a principled framework for translating noisy, high-
841 dimensional data into a single probabilistic description (Zemel et al., 1998; Dehaene et al., 2021;
842 Kriegeskorte and Wei, 2021). The impacts of tuning curve shapes (e.g. Pouget et al., 1999; Zhang and
843 Sejnowski, 1999) and correlations between neurons (Averbeck et al., 2006; Lin et al., 2015; Kohn et al.,
844 2016) on the uncertainty of population coding have been well studied, and here we add to this work by
845 demonstrating how different encoding models (GLM vs GLLVM and Poisson vs negative binomial) have
846 systematically different degrees of overconfidence in experimental recordings across many settings.

847

848 Since even the best Bayesian models (negative binomial latent variable models up to five dimensions)
849 are overconfident, recalibration appears to be necessary to ensure that the uncertainty of Bayesian
850 decoders matches the distribution of errors. On one hand, this may suggest that there is additional
851 mismatch between the GLLVM and the data generating process. It may be that low-dimensional latent
852 variable models only partially capture noise correlations (Stevenson et al., 2012), that there is
853 unmodeled nonstationarity in the tuning curves (Cortes et al., 2012; Rule et al., 2019), that responses
854 are underdispersed (DeWeese et al., 2003; Stevenson, 2016), or some combination of these factors. On
855 the other hand, humans and other animals are often over- or underconfident during perceptual and
856 cognitive judgements (Baranski and Petrusic, 1994; Kepcs and Mainen, 2012; Mamassian, 2016). It is
857 possible that the original (miscalibrated) uncertainty estimates better predict psychophysical

858 uncertainty or metacognitive reports of confidence, even if recalibrated uncertainty estimates better
859 predict the distribution of external variables.

860

861 Finally, it is important to note that when Bayesian models are recalibrated post-hoc they are no longer
862 following a coherent Bayesian framework (Dawid, 1982). From a practical standpoint, such as when
863 developing BMIs, model calibration may be more important than model coherence. However, additional
864 work is needed to better understand the alignment of perceptual/behavioral uncertainty and decoder
865 posterior uncertainty (Panzeri et al., 2017). Models with more accurate descriptions of single neuron
866 variability (Gao et al., 2015; Ghanbari et al., 2019), with nonstationarity (Shanechi et al., 2016; Wei and
867 Stevenson, 2023), additional stimulus/movement nonlinearities (Schwartz and Simoncelli, 2001), state-
868 dependence (Panzeri et al., 2016), and with more complex latent structure (Glaser et al., 2020a; Williams
869 et al., 2020; Sokoloski et al., 2021; Williams and Linderman, 2021) may all show better coverage while
870 maintaining coherence. Our results here indicate that Bayesian decoders of spiking activity are not
871 necessarily well calibrated by default.

872

873

874

875 **References**

876 Amarasingham A, Chen T-L, Geman S, Harrison MT, Sheinberg DL (2006) Spike count reliability and the
877 Poisson hypothesis. *J Neurosci Off J Soc Neurosci* 26:801–809.

878 Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of Ongoing Activity: Explanation of the Large
879 Variability in Evoked Cortical Responses. *Science* 273:1868–1871.

880 Averbeck BB, Latham PE, Pouget A (2006) Neural correlations, population coding and computation. *Nat
881 Rev Neurosci* 7:358–366.

882 Baranski JV, Petrusic WM (1994) The calibration and resolution of confidence in perceptual judgments.
883 *Percept Psychophys* 55:412–428.

884 Berens P, Ecker AS, Cotton RJ, Ma WJ, Bethge M, Tolias AS (2012) A Fast and Simple Population Code for
885 Orientation in Primate V1. *J Neurosci* 32:10618–10626.

886 Boundy-Singer ZM, Ziembra CM, Hénaff OJ, Goris RLT (2023) How does V1 population activity inform
887 perceptual certainty? :2023.09.08.556926 Available at:
888 <https://www.biorxiv.org/content/10.1101/2023.09.08.556926v1> [Accessed January 3, 2024].

889 Brillinger DR (1988) Maximum likelihood analysis of spike trains of interacting nerve cells. *Biol Cybern*
890 59:189–200.

891 Chase SM, Schwartz AB, Kass RE (2010) Latent Inputs Improve Estimates of Neural Encoding in Motor
892 Cortex. *J Neurosci* 30:13873–13882.

893 Chen Z (2013) An overview of bayesian methods for neural spike train analysis. *Comput Intell Neurosci*
894 2013:1.

895 Cortes JM, Marinazzo D, Series P, Oram MW, Sejnowski TJ, van Rossum MCW (2012) The effect of neural
896 adaptation on population coding accuracy. *J Comput Neurosci* 32:387–402.

897 Cronin B, Stevenson IH, Sur M, Kording KP (2010) Hierarchical Bayesian Modeling and Markov Chain
898 Monte Carlo Sampling for Tuning-Curve Analysis. *J Neurophysiol* 103:591.

899 Dawid AP (1982) The Well-Calibrated Bayesian. *J Am Stat Assoc* 77:605–610.

900 deCharms RC, Zador A (2000) Neural representation and the cortical code. *Annu Rev Neurosci* 23:613–
901 647.

902 Degroot MH, Fienberg SE (1983) The Comparison and Evaluation of Forecasters. *J R Stat Soc Ser Stat*
903 32:12–22.

904 Dehaene GP, Coen-Cagli R, Pouget A (2021) Investigating the representation of uncertainty in neuronal
905 circuits. *PLOS Comput Biol* 17:e1008138.

906 DeWeese MR, Wehr M, Zador AM (2003) Binary spiking in auditory cortex. *J Neurosci Off J Soc Neurosci*
907 23:7940–7949.

908 Diamond ME, von Heimendahl M, Knutson PM, Kleinfeld D, Ahissar E (2008) “Where” and “what” in the
909 whisker sensorimotor system. *Nat Rev Neurosci* 9:601–612.

910 Draper D (1995) Assessment and Propagation of Model Uncertainty. *J R Stat Soc Ser B Methodol* 57:45–
911 70.

912 Ecker AS, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS (2010) Decorrelated neuronal firing in
913 cortical microcircuits. *Science* 327:584.

914 Gao Y, Archer EW, Paninski L, Cunningham JP (2016) Linear dynamical neural population models through
915 nonlinear embeddings. In: *Advances in Neural Information Processing Systems*. Curran
916 Associates, Inc. Available at: https://proceedings.neurips.cc/paper_files/paper/2016/hash/76dc611d6ebaafc66cc0879c71b5db5c-Abstract.html [Accessed January 12, 2024].

919 Gao Y, Buesing L, Shenoy KV, Cunningham JP (2015) High-dimensional neural spike train analysis with
920 generalized count linear dynamical systems. In: *NIPS*.

921 Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction.
922 *Science* 233:1416–1419.

923 Ghanbari A, Lee CM, Read HL, Stevenson IH (2019) Modeling stimulus-dependent variability improves
924 decoding of population neural responses. *J Neural Eng* 16.

925 Glaser J, Whiteway M, Cunningham JP, Paninski L, Linderman S (2020a) Recurrent Switching Dynamical
926 Systems Models for Multiple Interacting Neural Populations. In: *Advances in Neural Information
927 Processing Systems*, pp 14867–14878. Curran Associates, Inc. Available at: <https://proceedings.neurips.cc/paper/2020/hash/aa1f5f73327ba40d47ebce155e785aaf-Abstract.html> [Accessed March 22, 2023].

930 Glaser JI, Benjamin AS, Chowdhury RH, Perich MG, Miller LE, Kording KP (2020b) Machine Learning for
931 Neural Decoding. *eNeuro* 7:ENEURO.0506-19.2020.

932 Gneiting T, Raftery AE (2007) Strictly Proper Scoring Rules, Prediction, and Estimation. *J Am Stat Assoc*
933 102:359–378.

934 Goris RLT, Movshon JA, Simoncelli EP (2014) Partitioning neuronal variability. *Nat Neurosci* 17:858–865.

935 Graf ABA, Kohn A, Jazayeri M, Movshon JA (2011) Decoding the activity of neuronal populations in
936 macaque primary visual cortex. *Nat Neurosci* 14:239–245.

937 Guo C, Pleiss G, Sun Y, Weinberger KQ (2017) On Calibration of Modern Neural Networks. In: Proceedings
938 of the 34th International Conference on Machine Learning, pp 1321–1330. PMLR. Available at:
939 <https://proceedings.mlr.press/v70/guo17a.html> [Accessed September 12, 2023].

940 Humphrey DR, Schmidt EM, Thompson WD (1970) Predicting measures of motor performance from
941 multiple cortical spike trains. *Science* 170:758–762.

942 Inoue Y, Mao H, Suway SB, Orellana J, Schwartz AB (2018) Decoding arm speed during reaching. *Nat
943 Commun* 9:5243.

944 Kelly RC, Smith MA, Kass RE, Lee TS (2010) Local field potentials indicate network state and account for
945 neuronal response variability. *J Comput Neurosci* 29:567–579.

946 Kepecs A, Mainen ZF (2012) A computational framework for the study of confidence in humans and
947 animals. *Philos Trans R Soc B Biol Sci* 367:1322–1337.

948 Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation.
949 *Trends Neurosci* 27:712–719.

950 Kohn A, Coen-Cagli R, Kanitscheider I, Pouget A (2016) Correlations and Neuronal Population
951 Information. *Annu Rev Neurosci* 39:237–256.

952 Kohn A, Smith MA (2016) Utah array extracellular recordings of spontaneous and visually evoked activity
953 from anesthetized macaque primary visual cortex (V1). CRCNS.org.

954 Koyama S, Eden UT, Brown EN, Kass RE (2010) Bayesian decoding of neural spike trains. *Ann Inst Stat
955 Math* 62:37–59.

956 Kriegeskorte N, Douglas PK (2019) Interpreting encoding and decoding models. *Curr Opin Neurobiol*
957 55:167–179.

958 Kriegeskorte N, Wei X-X (2021) Neural tuning and representational geometry. *Nat Rev Neurosci* 22:703–
959 718.

960 Lawhern V, Wu W, Hatsopoulos N, Paninski L (2010) Population decoding of motor cortical activity using
961 a generalized linear model with hidden states. *J Neurosci Methods* 189:267–280.

962 Lei J, G'Sell M, Rinaldo A, Tibshirani RJ, Wasserman L (2018) Distribution-Free Predictive Inference for
963 Regression. *J Am Stat Assoc* 113:1094–1111.

964 Lemon CH, Katz DB (2007) The neural processing of taste. *BMC Neurosci* 8:S5.

965 Lin I-C, Okun M, Carandini M, Harris KD (2015) The Nature of Shared Cortical Variability. *Neuron* 87:644–
966 656.

967 Livezey JA, Glaser JI (2021) Deep learning approaches for neural decoding across architectures and
968 recording modalities. *Brief Bioinform* 22:1577–1591.

969 Lu H-Y, Lorenc ES, Zhu H, Kilmarx J, Sulzer J, Xie C, Tobler PN, Watrous AJ, Orsborn AL, Lewis-Peacock J,
970 Santacruz SR (2021) Multi-scale neural decoding and analysis. *J Neural Eng* 18:045013.

971 Ma WJ, Beck JM, Latham PE, Pouget A (2006) Bayesian inference with probabilistic population codes.
972 *Nat Neurosci* 9:1432–1438.

973 Macke JH, Buesing L, Cunningham JP, Yu BM, Shenoy KV, Sahani M (2011) Empirical models of spiking in
974 neural populations. *Adv Neural Inf Process Syst* 24.

975 Mamassian P (2016) Visual Confidence. *Annu Rev Vis Sci* 2:459–481.

976 McCullagh P, Nelder JA (1989) Generalized Linear Models. CRC Press.

977 Meyniel F, Sigman M, Mainen ZF (2015) Confidence as Bayesian Probability: From Neural Origins to
978 Behavior. *Neuron* 88:78–92.

979 Miller JW, Carter SL (2020) Inference in generalized bilinear models. Available at:
980 <http://arxiv.org/abs/2010.04896> [Accessed April 18, 2023].

981 Mizuseki K, Diba K, Pastalkova E, Teeters J, Sirota A, Buzsáki G (2014) Neurosharing: large-scale data sets
982 (spike, LFP) recorded from the hippocampal-entorhinal system in behaving rats. *F1000Research*
983 3:98.

984 Mizuseki K, Sirota A, Pastalkova E, Diba K, Buzsáki G (2013) Multiple single unit recordings from different
985 rat hippocampal and entorhinal regions while the animals were performing multiple behavioral
986 tasks.

987 Moran DW, Schwartz a B (1999) Motor cortical representation of speed and direction during reaching.
988 *J Neurophysiol* 82:2676–2692.

989 Nicolelis M a L (2003) Brain-machine interfaces to restore motor function and probe neural circuits. *Nat*
990 *Rev Neurosci* 4:417–422.

991 Nirenberg S (2003) Decoding neuronal spike trains: How important are correlations? *Proc Natl Acad Sci*
992 100:7348–7353.

993 Pandarinath C, O’Shea DJ, Collins J, Jozefowicz R, Stavisky SD, Kao JC, Trautmann EM, Kaufman MT, Ryu
994 SI, Hochberg LR, Henderson JM, Shenoy KV, Abbott LF, Sussillo D (2018) Inferring single-trial
995 neural population dynamics using sequential auto-encoders. *Nat Methods* 15:805–815.

996 Paninski L, Ahmadian Y, Ferreira DG, Koyama S, Rahnama Rad K, Vidne M, Vogelstein J, Wu W (2010) A
997 new look at state-space models for neural data. *J Comput Neurosci* 29:107–126.

998 Panzeri S, Harvey CD, Piasini E, Latham PE, Fellin T (2017) Cracking the neural code for sensory perception
999 by combining statistics, intervention and behavior. *Neuron* 93:491–507.

1000 Panzeri S, Safaai H, De Feo V, Vato A (2016) Implications of the Dependence of Neuronal Activity on
1001 Neural Network States for the Design of Brain-Machine Interfaces. *Front Neurosci* 10 Available
1002 at: <https://www.frontiersin.org/articles/10.3389/fnins.2016.00165> [Accessed April 26, 2023].

1003 Pouget A, Deneve S, Ducom J-C, Latham PE (1999) Narrow Versus Wide Tuning Curves: What's Best for
1004 a Population Code? *Neural Comput* 11:85–90.

1005 Quiroga RQ, Panzeri S (2009) Extracting information from neuronal populations: information theory and
1006 decoding approaches. *Nat Rev Neurosci* 10:173–185.

1007 Raftery AE, Gneiting T, Balabdaoui F, Polakowski M (2005) Using Bayesian Model Averaging to Calibrate
1008 Forecast Ensembles. *Mon Weather Rev* 133:1155–1174.

1009 Ruda K, Zylberberg J, Field GD (2020) Ignoring correlated activity causes a failure of retinal population
1010 codes. *Nat Commun* 11:4605.

1011 Rule ME, O'Leary T, Harvey CD (2019) Causes and consequences of representational drift. *Curr Opin
1012 Neurobiol* 58:141–147.

1013 Salinas E, Abbott LF (1994) Vector reconstruction from firing rates. *J Comput Neurosci* 1:89–107.

1014 Sanger TD (1996) Probability density estimation for the interpretation of neural population codes. *J
1015 Neurophysiol* 76:2790–2793.

1016 Santhanam G, Yu BM, Gilja V, Ryu SI, Afshar A, Sahani M, Shenoy KV (2009) Factor-Analysis Methods for
1017 Higher-Performance Neural Prostheses. *J Neurophysiol* 102:1315–1330.

1018 Schwartz O, Simoncelli EP (2001) Natural signal statistics and sensory gain control. *Nat Neurosci* 4:819–
1019 825.

1020 Scott J, Pillow JW (2012) Fully Bayesian inference for neural models with negative-binomial spiking. In:
1021 Advances in Neural Information Processing Systems, pp 1898.

1022 Shafer G, Vovk V (2008) A Tutorial on Conformal Prediction. *J Mach Learn Res* 9:371–421.

1023 Shanechi MM, Orsborn AL, Carmena JM (2016) Robust Brain-Machine Interface Design Using Optimal
1024 Feedback Control Modeling and Adaptive Point Process Filtering. *PLOS Comput Biol* 12:e1004730.

1025 Siegle JH et al. (2021) Survey of spiking in the mouse visual system reveals functional hierarchy.
1026 *Nature*:1–7.

1027 Skrondal A, Rabe-Hesketh S (2004) Generalized Latent Variable Modeling: Multilevel, Longitudinal, and
1028 Structural Equation Models. CRC Press.

1029 Smith AC, Brown EN (2003) Estimating a State-Space Model from Point Process Observations. *Neural*
1030 *Comput* 15:965–991.

1031 Smith MA, Kohn A (2008) Spatial and temporal scales of neuronal correlation in primary visual cortex. *J*
1032 *Neurosci* 28:12591–12603.

1033 Sokoloski S, Aschner A, Coen-Cagli R (2021) Modelling the neural code in large populations of correlated
1034 neurons *Pillow JW, Gold JI, Harris KD, eds. eLife* 10:e64615.

1035 Stevenson IH (2016) Flexible models for spike count data with both over- and under- dispersion. *J*
1036 *Comput Neurosci* 41:29–43.

1037 Stevenson IH, London BM, Oby ER, Sachs NA, Reimer J, Englitz B, David SV, Shamma SA, Blanche TJ,
1038 Mizuseki K, Zandvakili A, Hatsopoulos NG, Miller LE, Kording KP (2012) Functional Connectivity
1039 and Tuning Curves in Populations of Simultaneously Recorded Neurons. *PLoS Comput Biol*
1040 8:e1002775.

1041 Theunissen FE, Woolley SM n., Hsu A, Fremouw T (2004) Methods for the Analysis of Auditory Processing
1042 in the Brain. *Ann N Y Acad Sci* 1016:187–207.

1043 Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity of single cortical neurons
1044 and the underlying functional architecture. *Science* 286:1943–1946.

1045 Uchida N, Poo C, Haddad R (2014) Coding and Transformations in the Olfactory System. *Annu Rev*
1046 *Neurosci* 37:363–385.

1047 Urai AE, Doiron B, Leifer AM, Churchland AK (2022) Large-scale neural recordings call for new insights to
1048 link brain and behavior. *Nat Neurosci* 25:11–19.

1049 van Bergen RS, Ji Ma W, Pratte MS, Jehee JFM (2015) Sensory uncertainty decoded from visual cortex
1050 predicts behavior. *Nat Neurosci* 18:1728–1730.

1051 Vidne M, Ahmadian Y, Shlens J, Pillow JW, Kulkarni J, Litke AM, Chichilnisky EJ, Simoncelli E, Paninski L
1052 (2012) Modeling the impact of common noise inputs on the network activity of retinal ganglion
1053 cells. *J Comput Neurosci* 33:97–121.

1054 Vilares I, Kording K (2011) Bayesian models: the structure of the world, uncertainty, behavior, and the
1055 brain. *Ann N Y Acad Sci* 1224:22–39.

1056 von der Malsburg C (1994) The Correlation Theory of Brain Function. In: *Models of Neural Networks: Temporal Aspects of Coding and Information Processing in Biological Systems* (Domany E, van
1057 Hemmen JL, Schulten K, eds), pp 95–119 *Physics of Neural Networks*. New York, NY: Springer.
1058 Available at: https://doi.org/10.1007/978-1-4612-4320-5_2 [Accessed April 28, 2023].

1060 Walker B, Kording K (2013) The Database for Reaching Experiments and Models Lytton WW, ed. *PLoS*
1061 *ONE* 8:e78747.

1062 Warland DK, Reinagel P, Meister M (1997) Decoding Visual Information From a Population of Retinal
1063 Ganglion Cells. *J Neurophysiol* 78:2336–2350.

1064 Wei G (2023) Bayesian Dynamic Modeling of Neural Spiking Activity. Available at:
1065 <http://hdl.handle.net/11134/20002:860745905>.

1066 Wei G, Stevenson IH (2023) Dynamic Modeling of Spike Count Data With Conway-Maxwell Poisson
1067 Variability. *Neural Comput* 35:1187–1208.

1068 Wilks DS (2002) Smoothing forecast ensembles with fitted probability distributions. *Q J R Meteorol Soc*
1069 128:2821–2836.

1070 Williams AH, Linderman SW (2021) Statistical neuroscience in the single trial limit. *Curr Opin Neurobiol*
1071 70:193–205.

1072 Williams AH, Poole B, Maheswaranathan N, Dhawale AK, Fisher T, Wilson CD, Brann DH, Trautmann EM,
1073 Ryu S, Shusterman R, Rinberg D, Ölveczky BP, Shenoy KV, Ganguli S (2020) Discovering Precise
1074 Temporal Patterns in Large-Scale Neural Recordings through Robust and Interpretable Time
1075 Warping. *Neuron* 105:246-259.e8.

1076 Zemel RS, Dayan P, Pouget A (1998) Probabilistic Interpretation of Population Codes. *Neural Comput*
1077 10:403–430.

1078 Zhang K, Ginzburg I, McNaughton BL, Sejnowski TJ (1998) Interpreting neuronal population activity by
1079 reconstruction: unified framework with application to hippocampal place cells. *J Neurophysiol*
1080 79:1017–1044.

1081 Zhang K, Sejnowski TJ (1999) Neuronal Tuning: To Sharpen or Broaden? *Neural Comput* 11:75–84.

1082 Zhao M, Iyengar S (2010) Nonconvergence in logistic and poisson models for neural spiking. *Neural*
1083 *Comput* 22:1231–1244.

1084 Zhao Y, Park IM (2017) Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from
1085 Population Spike Trains. *Neural Comput* 29:1293–1316.

1086