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Abstract—In this paper, we propose an adaptive critic
learning approach for two classes of optimal pure state
transition problems for closed quantum systems: i) when
the target state is an eigenstate, and ii) when the tar-
get state is a superposition pure state. First, we de-
scribe a finite-dimensional quantum system based on the
Schrodinger equation with the action of control fields.
Then, we consider the target state to be i) an eigenstate
of the internal Hamiltonian and ii) an arbitrary pure state
via a unitary transformation. Meanwhile, the quantum state
manipulation is formulated as an optimal control problem
for solving the complex partial differential Hamilton-Jacobi-
Bellman (HJB) equation, of which the control solution is
found using continuous-time Q-learning of an adaptive
critic. Finally, numerical simulation for a spin-1/2 particle
system demonstrates the effectiveness of the proposed
approach.

Index Terms— Adaptive optimal control, quantum con-
trol, Q-learning, Schrodinger equation.

[. INTRODUCTION

N the rapidly-growing field of quantum control, the pursuit

of state manipulation over quantum systems has emerged as
a fundamental task with far-reaching implications [1], [2]. For
closed quantum systems, Lyapunov control methods have been
extensively studied [3]-[6], while optimal control techniques
have found useful application in governing quantum phenom-
ena within physical chemistry [7]-[10]. Recently, of particular
significance is the quest for model-free reinforcement-learning-
based methods [11]-[13] in the field of quantum control.
Reinforcement learning or approximate dynamic programming
(ADP) addresses the problem of how an agent/controller can
learn to approximate an optimal policy/control while interact-
ing with its environment. Among the ADP algorithms [14]-
[17], Q-learning is a model-free feedback-based approach and
works well even when the system model is unknown or with
uncertainties [18]-[20].
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This paper proposes an adaptive critic learning approach
for pure state manipulation of closed-quantum systems. The
novelty and contributions of this work include:

1) Two different formulations of the Schrodinger equation
with the action of control fields are summarized in
simple forms to allow optimal pure state control design
for a closed quantum system.

2) A complex partial differential HIB equation is developed
as a necessary and sufficient condition for the optimal
control of pure state manipulation.

3) A continuous-time Q-learning theory [20] is refined
and applied to form an adaptive critic for solving the
quantum optimal control problem online in a model-free
manner with validated simulation results.

The motivation of this work is to develop a model-free rein-
forcement learning approach for quantum pure state manipula-
tion. This paper is organized as follows. Section II provides the
background on pure state manipulation. Section III formulates
the optimal control problem as solving the HJB equation.
Section IV presents the control design via Q-learning. Section
V demonstrates the simulated controller.

Il. BACKGROUND

Here, we formulate the closed quantum system with action
of control fields based on the Schrodinger equation for two
cases of pure state manipulation: i) when the target state is an
eigenstate, and ii) when the target state is an arbitrary pure
state, which is any superposition of the eigenstates.

A. Schrédinger Equation of Closed Quantum Systems

The quantum states of particles at time ¢ can be described
through the time dependent Schrodinger equation, which pro-
vides analytical solutions that precisely determine the temporal
evolution of the state:

m% (W(t)) = Ho |U(t)), [T(0))=|To), (D

where the quantum state |¥(t)) € C™ is a wave function in a
n-dimensional Hilbert space; Hy € C™*" is an observable, the
internal or unperturbed Hamiltonian operator of the system;
h = 1.05457x 10734 m?kg/s is the reduced Planck’s constant
(see [21] for Dirac’s bra-ket notation and a comprehensive
introduction to quantum mechanics).

With the action of external control field ug(t) € R, the
closed quantum system can be written as

o) = (o + L) 0E), @
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with H.(t) = Ekmzlff rur(t) being the external/control
Hamilonian for k = 1,2,--- ,m and m € NT. Note that the
Schrodinger equation (2) is a bilinear model. For simplicity in
theoretical analysis, & is often grouped into the Hamiltonian
or set to be 1. Therefore, considering H = Hy + H,, we can
rearrange (2) into a compact form:

iUy = H|U). 3)

Assumption 1 The system (2) or (3) is a finite-dimensional
quantum system, i.e., n € NV < oo. Both Hy and Hj
are linear Hermitian operators independent of time t, ie.,
Hg = Hy and H,i = Hy. The external control fields uy(t) is
a real, scalar, realizable function. The Hamiltonians are non-
degenerate throughout this paper, i.e., all of the eigenvalues
are distinct (See [22] for treatment to degenerate cases). ¢

B. Eigenstate Manipulation: Fictitious Control w
Approach

For quantum control in quantum chemistry, the target state
is usually an eigenstate of the internal Hamiltonian Hy, i.e.,
the eigen-equation of Hj is given by

Ho |Wy) = Ai [Ty) €]

with A is the eigenvalue of H, corresponding to the eigenstate
|W). The set of eigenstates |Uy) associated with a particular
observable forms a basis for the Hilbert space, hence the
following equation holds:

[¥) = Zpen (V) (&)

where ¢, € C and ¥, |c,| = 1. |¢y,| represents the quantum
probability in the eigenstate |Uy), therefore |¥) lives on the
unit sphere of C. The probability of the state |¥) is equal to the
probability of the state ) | ). In reality, |¥) and ¢??(*) | W)
describe the same physical state for any global phase factor
6(t) € R, which is a time-dependent real function. Inspired by
this non-trivial geometry [3], we introduce a second control
w(t) corresponding to 6(t) :

i |W(t)) = (Ho + Sy Hyug(t) + w(t)I) [T (2)),  (6)

with the new control w(¢) € R that functions as a gauge
degree of freedom, offering flexibility in its selection without
altering the physical quantities associated to |¥(¢)). With
such additional fictitious control w, the solution of (6) is
equal to the solution of (2) multiplied by a global phase
factor e~%*. This formulation is advantageous in analyzing
eigenstate manipulation. For example, assume that the target
state |¥4) is an eigenstate and satisfies

Ho|Wg) = A |T4) @)
and substituting w = —\4, we have
(Ho +w()T) [¥(1)) = 0. ®)

C. Pure State Manipulation: Unitary Operator U
Approach

The above formulation is obtained under the assumption
that the target state is an eigenstate, this appears in the case of
population transfer in chemical reactions. However, the target
state is often an arbitrary pure state, a superposition state, in
physical application fields. Inspired by the unitary evolution
operator [7] (also known as complete control in [23]) and
the general-complex gauge transformation in [24], we show
how to apply the macroscopic field to the pure-state quantum
system via a unitary operator U(¢). Consider the quantum
system (2) or (3), to make the system state reach the arbitrary
pure state, weAneed to eliminate the drift term, i.e., the internal
Hamiltonian H. Expressing the internal Hamiltonian in terms
of its eigenvalue:

-HO :diag()\laA27"' aA’n)7 (9)
we define a unitary operator
U(t) = diag(e™"M1!, e720 o om0t (10)

Substituting the unitary transformation with the transformed

state |U"(t)):
W(t)) =U(t) [T“(1)),

into the (2), we obtain

(1)

d N . .
iy [0 = (UTHoU + 27 U H Uy —iUTO) [0 . (12)

Since UTHoU = Hy and —iUU = H,, the drift term Hy is
eliminated and we have

i% (W (8)) = (S Hi (un (1) [94(1))

with HY(t) = Ut(t)H,U(t). Hence, similar to (5), the
following equation holds:

|v) = EneMntCn WE)

13)

(14)

with [e*te,| = |c,].

Problem Formulation Finding a set of real, scalar, realizable
control uy with k = 1,2,--- ,m that manipulates the state,
[T (t)) of (6) or |¥“(t)) of (13), to a target state |¥g) by

minimising an infinite-horizon cost V(|U) ,|U)). o

Remark 1 The two formulations above: (6) and (13), are
suitable for different use cases. The fictitious control approach
can adjust the global phase of the controlled state using
an imaginary real control w(t), while the unitary operator
approach can change the local phase by applying U (t) that
eliminates the drift term Hy. Both approaches do not change
the probability distribution of the system. The unitary operator
approach (13) tends to be more complex when implementing
the control law because H}!(t) is time-dependent while a time-
invariant Hy, is used in (6). o

1. HIB EQUATION

For quantum systems (6), (13) and a target state |¥;), the
objective is to minimize an infinite-horizon integral cost:

V(|\D>,|wd>,uk):/ ra (), [ W), up)dr,  (15)
t
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by finding the optimal control uy(t) = u} such that

uk (%), [¥a)) = argmin V(|¥), |¥q)). (16)
For the system (6), the utility (known as the reward in
reinforcement learning) of the bilinear problem is selected as
quartic on state and quadratic on control [6, Eqn. (4.25)]:

1 .
Tu = 2z (0 () — Wal SHy (P + (ul Rlp), (A7)

with a control vector p = [uy,us, -+ ,un|", a positive defi-
nite matrix S and a positive definite R = diag(r1, 72, - ,7m)-
S and R are the reward weights and should be chosen to
effectively balance the trade-offs between state performance
and control efforts. Note that all 7, must be strictly positive
(the control field is penalized so that an optimal solution
exists). For system (13), the utility function is by replacing
H;, with H}!(t) in (17). In the following discussion, we will
not distinguish Hj, and H. 2(t) for the sake of simplicity.

The optimal control problem can be addressed by formu-
lating a general solution represented by a partial differential
equation governing the optimal cost function, denoted as
V(W) , [Wg)) = miny, 4) V(|¥),|Vqg)). Define the Hamil-
tonian of the problem as

H(l‘ll> ) |\IJd> s Uk VV\IT) =

D as)
ra(19) 1) ug) + (VVG i 9),

with the gradient vector VVJ = 0V* /0| ). The optimal cost
function V*(|¥) , |U4)) satisfies the Hamilton-Jacobi-Bellman
(HJB) equation

0:VVI‘*+m1nH(|\I’>5|\Ild>auk7vv£)a (19)

where VV* = 9V*/0t = 0 as the optimal cost is not
an explicit function of time. The optimal control uj can be
determined by setting

ON(|Y),[Va) , ur, VV)

B =0, (20)

so that 1 A
uj, = o (VVI| Hy |¥), (2D
for kK = 1,2,---,m and m € NT. We can conclude that

the optimal control u} can be determined by solving the HIB
equation (19) for VV3.

While reinforcement learning is traditionally known for
its model-free features, it can be effectively combined with
models to tackle challenging optimal control problems such
as solving the HJB equation in control theory. To prepare the
formulation of optimal control for the Q-learning approach
later, we can rewrite the optimal control (24) by separating the
real part and the imaginary part of the coefficient matrices and

state variables. Let |¥) = [¢)1 +i0p 11, V2 +ini2, -, Yn+
ih2,] T, the system (6) becomes
o ([ S(Ho+wl)  R(Hoy + wI)
v =( [—éﬁ(ﬁf@ Fol) 3(Ho +wf>] )
m | S(Hp)  R(H)

or simply

P(t) = (F + 5L Grug(8)9 (1) (23)

Then we have

1
wp = =5, (= $a) T SGry (24)
Tk
and again, one can obtain the optimal control for the system
(13) by replacing Hy, with H}'(t) in Gy in (24).

Remark 2 Note that the Hamiltonian H (18) is in a different
context from the previous Hamiltonian H in the Schridinger
equation (3). H is an observable while H is an instantaneous
increment of the Lagrangian of the optimal control problem
that is to be optimized. Both Hamiltonians are inspired by
but distinct from the Hamiltonian of classical mechanics.
Moreover, note that R needs to be strictly positive definite
to avoid the singularity in (24). o

IV. QUANTUM CONTROL DESIGN

This section presents the design of the optimal quantum
controller via continuous-time Q-learning to solve the HJB
equation (19) in real-time.

A. Quantum Q-function

We refine the theory in [20] regarding the continuous-
time Q-learning algorithm and then extend it to the quantum
control problem. Define an action-dependent version of cost
function Q(|¥),|¥q),ux) such that Q*(|¥), |¥y),u}) =
V*(|®),|¥4)). For the quantum systems (6) and (13), a Q-
function can be explicitly defined by adding the right-hand
side of a generalized-HJB (GHIB) equation:

OZVW+H(|\II>7‘\I](1>7U1€’VV\P)7 (25)
for VV;* and VV{, onto the optimal cost V* as
Q) , |Vq) ,up) :=V*+VV, +H (26)

which can be approximated via parameterization [20].

Lemma 1 The Q-function defined in (26) is positive

definite  with the optimization Q*(|¥),|¥q),u}) =
min,, Q(|T), |¥a),uk). The optimal QO-function
Q*(|U),|Wy),ur) has the same optimal value as

V*(|®),|Ta)) for the cost V(|U),|¥,)) defined in (15),
ie, Q*(|),|¥q),up) = V*(|¥),|Vq)) when applying the

optimal control u. o
Proof. Refer to [20, Lemma 3] for a similar proof using the
HJB equation (19). O

Remark 3 We refined the theory in our earlier work [20]
in terms of justifying the definition of a Q-function. In this
paper, we add the right-hand side of the GHJB equation (25)
Sfor VV* and V'V to the optimal cost instead of adding only
the Hamitonian as per [20]. Though the two definitions are
equivalent for VV* = 0, the definition here is more proper by
invoking the instrumental lemma from [25, p.441]. The GHJB
equation gives the cost of an arbitrary control. It shows that
the Hamiltonian is quadratic in the control deviation from the
optimal control, so the Q-function contains such quantified
deviation. o
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B. Adaptive Critic Learning
We approximate the Q-function (26) using a critic network
by

QUP), [Pa)  ux) = WTP(|T), [¥a),

where @(|¥), |¥,4),uy) denotes the activation function vec-
tor with the number N of nodes in the hidden layer; W
is the weight vector; e(|U),|¥4),ui) is the network ap-
proximation error; and WT&(|¥),|¥,),us) can be explic-
itly expressed according to three components Fg (|¥),|U,)),

ug) + ¢, 27)

Fou(|9),|¥4),ux), and Fy,(ug) in (26) as
Dy (|¥),[¥g))
WTe = (Wl W, r] |@wu(]¥), [Wa))ux (28)
qu(uk)

The regressor @(|¥),|U4) ,uy) is selected to provide a com-
plete independent basis such that Q(|¥),|¥4),uy) is uni-
formly bounded, e.g., ¢ can be chosen as the power series
(polynomial) or radial basis functions (e.g., sigmoid, tanh) of
the signals |U), |Uy) , ui [25]. Recalling from the Weierstrass
higher-order approximation theorem [26], the approximation
error e(|¥),|¥y),uy) is bounded for a fixed N and as the
number of nodes N — oo, we have e(|¥), |¥y), ug) — 0.

Now we derive the Bellman equation in terms of the Q-
function to update the critic. Consider the Bellman’s principle
of optimality [15], the instrumental Lemma [25, p.441], and
the Lemma I above, we can derive

—p(1%), [¥q) , ug)

- /t_T ru([¥), [Wa) , up)dr = Q" ([¥(1)) , uz(t))
—Q (Yt —1)),up(t = 1)) +£(1)
= WTo(|U (1)), ui(t) = WTe(|W(t —T)), uj(t = T))
WTAS(®), |¥y),uf)
+Ae+E(t—T,1),
N e’

B

(29)

with Ae being the residual network approximation
Ae:=e(|¥(1)),ui(t) —e(W(t =T)),ui(t =T)) (30)

and &(t — T, t) being a residual control error as
t

E(t—T.t) = — / ri(un(r) — ut(r))2dr

e 31)

+ 1 (up(t —T) — up(t — T))?

— re(ue(t) — ui(t))?,

the integral reinforcement p(|\If> ,|Wa), uk), the regressor dif-
ference A®(t) = B( (1)), ui(t) — P(¥(t ~ 1)), uj(t -
T)), and the Bellman error eg = Ae + & with Ae =
(| (t)),ur(t)) — (¥t —T)),us(t —T)) being bounded
for bounded e. The Bellman equation (29) forms the basis for
adaptive critic design.

Remark 4 The Bellman equation (29) is different from [20]
as it also considers the residual control error £(t — T, t) due
to the difference in values between the current control uy, and

its optimal control u}, for p(t—T,t), Q(t—T), and Q(t). The
uniform ultimate boundedness of such residual error (t —
T,t) is proved later in the main theorem by using the delay-
dependent Lyapunov functions. o

Define two auxiliary variables P(t) and Q(t) by low-pass
filtering the variables in (29) as

P(0) =0,

32
o0)=0, ©¥

P(t) = —LP(t) + AD(H)AD(H)T,
Q(t) = —LQ(t) + Ad(t)p,

with a filter parameter ¢ > 0. The critic network can be written
as

QUY), [Wa) ,u) = WT(|¥),|Wa) , ur),

where T and Q(|¥), |¥,),uy) denote the current estimate
of W and Q(|¥),[¥g),uy), respectively.
We design the adaptation law to update W such that

W (t) + Q(1)),

where the positive-definite diagonal matrix [" is an adaptive
learning gain.

(33)

W(t) = —-T'(P(t) (34)

C. Quantum Control Synthesis

We reconstruct the optimal control uj, from (24) based on
the parameterization of Q(\\Il> ,|W4),ug) such that

WqT,u@q;u + Eu, (35)

* =
Uk = 75, .
where ¢, is a bounded approximation error due to &, WJ , Py,
accounts for the term (¢ — 94)TSGx. One can determine
the optimal control directly using the adaptive critic (33) if
the weight W converges to the actual weight W. Therefore,
the control command (actor) is

up = ——We, Py (36)

21k
The main result of the learning-based quantum control design
is summarized in the following theorem.

Theorem 1 Given the quantum systems (6) and (13) with
the cost (15) and Q-function (26), if the regressor signal
A®(t) is persistently excited', the adaptive critic network
(33) with the adaptation law (34) leads to a learning-based
controller (36) so that the adaptive critic weight estimation
error W =W —W and the quantum state | V) will converge to
a compact set around |V 4) and the controller (actor) uy, will
converge to a small bounded set around its optimal control
value uj. Moreover, in the extreme case that there is no
network approximation error, i.e., € = 0, then the convergence
is exponential. o
Proof. To begin with, we analyze the effect of the Bellman
error g over the low-pass filtering dynamics (32). It can be
deducted that PW +Q="PW - (PW + A) = PW — A.
This leads to A(t) = —f e !E=TIAD(1)ep(T)dr, A0) =0

IThe persistency of excitation (PE) condition is a common assumption
for convergence of the parameter estimates in adaptive control. This can be
verified online by checking the minimum eigenvalue of the auxiliary matrix
P(t) being strictly positive as shown in [20, Lemma 1].
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where e g = Ae+£. For simplicity, we split the term into two
parts written as A(t) = &; + &> with

t
&(t)=— /0 e AD(T) As(T)dT, &(0) =0, (37)

t
&alt) = — / e DABTIE(F)T,  E(0) =0, (38)

Using the idea of delay-dependent stability [27], we design
a Lyapunov function candidate . as

L =L1+ koLo+ ksLsz+ kaLly+ ksLs + k(}ﬁg, 39

where sub-Lyapunov functions £, = %VT/TF’WT/, Lo =
Q*(|‘I~’>a|‘1’d>ﬂf£), £3 = %5{61’ £4 :~ %§;§2, £5 =
SO W)W (t+7)dr, Lo = [0 [, , WT(r)W (r)drdd,
and ks, ks, k4, ks, and kg are some positive constants. For
the first term, considering the Young’s inequality with n:
[lall[]b]] < % lal|* + 2|b]|* (valid for every n > 0) and the
PE condition: Apin(P(t)) > o > 0, Vt > 0, using (32)(34)
and [20, Lemma 3], the derivative of £, can be written as

Ly =WTT'W = W (PW + Q) = —WT (PW — 4)
< —o||[WI]” + &1 + &l W]

]. ]. ~ ’171 772
< (o — — — W2+ 2, 2 2
< (0= 5= 5 IWIP + il + S el
(40)
where 1; > 0, n2 > 0 are properly chosen constants such that
o — ﬁ — 2:]2 > 0 holds. Similarly, analyzing the derivative

of each term in £ (39), the derivative . can be written as

Z < —a[W)|? = azllér]® — as[|&a]|* — au (¥])

t
~aslWie- D)~ as [ W )|Par+ 5,
t—=T
(41)

where o; (2 = 1,2, ..., 6) are the positive scalars with properly
chosen k; and n;; B is a bounded constant that characterizes
the effect of the network approximation error . According
to the Lyapunov theorem, |U(t)), W (¢), &1(t), and &;(¢) are
uniformly ultimately bounded. Moreover,

* 1 T
e —ui] < 5=l Puu (@)l Wl +leal,  (42)
Tk
remains bounded. If ¢ = 0, we have 8 = 0 hence |uy — uj|
will exponentially converge to zero. (]

V. SIMULATIONS

In this section, we apply the adaptive critic learning ap-
proach via numerical simulations to a two-level quantum
system, i.e., a spin-1/2 particle, for two cases: (i) the target
state is an eigenstate, and (ii) the target state is a superposition
state. This example is representative because all the fermions:
proton, neutron, electron, and quarks, have net spin-1/2,
which may be used to constitute qubit to achieve necessary
state manipulation in quantum communication and quantum
computing.

The spin-1/2 particle with its spin in o is described by the
following Schrédinger equation:

) = (o + B () 0@), @3)

with the internal Hamiltonian H, o and the control Hamiltonian
Hy (for m = 1) being

- 1 0 - 0 —i
Hozaz:{o _1}, leay:[i 0]

Consider the two available basis states of the system as |0)
and |1), the general state can be expressed as a superposition
of these states with probability amplitude c1,co € C:

) =¢1]0) +e2|1),

with |e1|? +|ca|? = 1 for the states |¥) being normalised, i.e.,
pure states.

(44)

(45)

Probability of State Evolution

2

eyl

2
0.8 ez} |

Probability
o
[}

°
~
T

021

0 10 20 30 40 50 60
Time [s]

Fig. 1. Probability of states: Eigenstate manipulation.

Fig. 2. Eigenstate manipulation on a Bloch sphere.

A. Eigenstate Manipulation

Given that the target state is an eigenstate, we use the first
formulation given in (6) of the quantum system with w = — A4
being a constant. Let the initial state of the system be |¥() =
|0) = [1, 0]T and the target state be |¥,) = [1) = [0, 1]T.
We can rewrite the quantum state by separating the real part
and the imaginary part:

V1 (t) + s (t
ey = |2 ).

Therefore, we have ¥(0) = [1, 0, 0, 0]T and ¢y =
[0, 1, 0, 0]T, correspondingly, |c;|? = 12 + 2 and |ca|? =
13 + 3. The parameters are set as follows: the period T =
0.5 s, the filter parameter ¢ = 1, the adaptive learning gain
I' = 51, the regressor @ is the power series of (|U), [¥y) , ux)

(46)
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up to the fourth order. Fig. 1 presents the probability of the
state evolution for eigenstate manipulation and Fig. 2 depicts
its state evolution on a Bloch sphere. It is easily verified that
le1]? + |ca]?> = 1 for any arbitrary time instance. The state
reaches the target state around t = 15 s.

B. Arbitrary Pure State Manipulation

When the target state is an arbitrary pure state, we use
the second formulation (13) of the quantum system with a
unitary operator U(¢). Let the initial state of the system be
|Wo) = |0) = [1, 0]T and the target state be a superposition
state [Uy) = |[+) = % |0) + % [1). We choose the unitary
operator U(t) = diag(e™", e'). Separating the real part and
the 1mag1nary part as (46) we have 1(0) = [1, 0, 0, 0] and

>/57 127 0, 0]T, correspondingly, |ci|? = ¥? + 12
and |02| 13 + 3. Fig. 3 presents the probability of the
state evolution for superposition state manipulation and Fig. 4
depicts its quantum state evolution on a Bloch sphere. Again,
it is easily verified that |c1|? + |c2|?2 = 1 for any arbitrary
time instance. The state reaches the superposition target state
around ¢ = 25 s.

Probability of State Evolution
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Fig. 3. Probability of states: Arbitrary pure target state.
1 0>
05
=
0 \‘\ i
N
,/>/
0.5 vl
|+>
-1
-1
[1> _
0 e 1
0

y
Fig. 4. Arbitrary pure state manipulation on a Bloch sphere.

CONCLUSION

In this paper, the proposed adaptive critic learning approach
can manipulate pure states online in a model-free manner.
Nevertheless, it is a data-driven approach that requires full-
state feedback. For practical feasibility, the proposed control

requires pre-solving the Schrédinger equation because mea-
surements of a quantum system inevitably interfere with its
state (decoherence). Future research will extend the results to
open quantum systems with coherent control.
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