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ABSTRACT Lateral lipid heterogeneity (i.e., raft formation) in biomembranes plays a functional role in living cells. Three-
component mixtures of low- and high-melting lipids plus cholesterol offer a simplified experimental model for raft domains in
which a liquid-disordered (Ld) phase coexists with a liquid-ordered (Lo) phase. Using such models, we recently showed that
cryogenic electron microscopy (cryo-EM) can detect phase separation in lipid vesicles based on differences in bilayer thickness.
However, the considerable noise within cryo-EM data poses a significant challenge for accurately determining the membrane
phase state at high spatial resolution. To this end, we have developed an image-processing pipeline that utilizes machine
learning (ML) to predict the bilayer phase in projection images of lipid vesicles. Importantly, the ML method exploits differences
in both the thickness and molecular density of Lo compared to Ld, which leads to improved phase identification. To assess ac-
curacy, we used artificial images of phase-separated lipid vesicles generated from all-atom molecular dynamics simulations of
Lo and Ld phases. Synthetic ground-truth data sets mimicking a series of compositions along a tieline of Ld + Lo coexistence
were created and then analyzed with various ML models. For all tieline compositions, we find that the ML approach can correctly
identify the bilayer phase with >90% accuracy, thus providing a means to isolate the intensity profiles of coexisting Ld and Lo
phases, as well as accurately determine domain-size distributions, number of domains, and phase-area fractions. The method
described here provides a framework for characterizing nanoscopic lateral heterogeneities in membranes and paves the way for
a more detailed understanding of raft properties in biological contexts.

SIGNIFICANCE Lipid rafts are important for cell function, but in most cases they cannot be detected with conventional
optical microscopy because of their extremely small size. Cryogenic electron microscopy (cryo-EM), because of its much
greater spatial resolution, is capable of imaging domains as small as 5-10 nm. In this report, we show how machine-
learning techniques can be used to automatically and accurately identify raft-like domains in simulated cryo-EM images, a
powerful approach that could ultimately lead to a better understanding of raft properties.

INTRODUCTION the ability to coalesce into larger structures in response to
certain stimuli (2). The structural and elastic properties of
the raft and non-raft environments can differ substantially,
with the latter being thinner, easier to bend, less viscous,
and more compressible owing to a greater proportion of un-
saturated lipids (3—5). These local membrane properties in-
fluence the free energy of protein conformations (6) and can
result in distinct phase preferences for different proteins (7).
In the raft model of PM organization, the size, connectivity,
and composition of both raft and non-raft domains are all
variables that can affect the local concentrations of mem-
brane proteins and, thus, the frequency of encounters be-
tween interaction partners.

One of the great challenges in studying lipid rafts is
their small size, which precludes direct observation by

The membranes that surround and partition living cells can
play both structural and functional roles. The latter is exem-
plified by the lipid raft hypothesis, which proposes the exis-
tence of plasma membrane (PM) domains enriched in
sphingolipids and cholesterol that are thought to direct the
spatial organization of membrane proteins and thus mediate
processes such as cell signaling (1). Multiple lines of evi-
dence have converged on a picture of raft domains as small
(<20 nm) and highly dynamic in resting conditions but with
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conventional optical microscopy. Instead, researchers have
relied heavily on biochemical and spectroscopic data to
infer the presence or absence of multiple membrane envi-
ronments in cell membranes. While the lack of visual evi-
dence initially provided fuel for controversy, those
concerns have been largely put to rest by the sheer quantity
of indirect data that consistently points toward heteroge-
neous membranes as a rule rather than an exception (8).
Yet even as the “seeing is believing” debate recedes into
the background, a fact often lost in the discussion is that
the utility of image data extends far beyond visual confirma-
tion of rafts. To take one example, images can reveal spatial
domain patterns that might help distinguish between
competing theories of raft formation (9). Image data also
open a window to heterogeneity in domain structures that
are often obscured in ensemble-averaged spectroscopic or
scattering measurements, thus providing a more complete
picture of rafts and their role in specific biological
processes.

The great wealth of information contained in suboptical
images is exemplified by the emergence of single-particle
cryogenic electron microscopy (cryo-EM) as a pre-eminent
tool in structural biology. A crucial breakthrough that has
accelerated its rise is the use of machine learning (ML) at
multiple stages of the experimental workflow (10) including
image denoising (11), particle picking (12), image segmen-
tation (13), and 3D reconstruction (14,15). Far from being
limited to water-soluble proteins, cryo-EM is increasingly
being used to determine structures of membrane proteins
in native or near-native environments (16—20). As the focus
of these studies has been fixed squarely on the protein, their
membrane hosts have received less attention, yet bilayers
also appear in images at a resolution high enough to observe
density variation in the separate leaflets. This raises the
possibility that, when visualized with cryo-EM, relatively
thicker raft domains might be distinguishable from the
thinner “sea” of mostly unsaturated lipids that sur-
rounds them.

To this end, we recently developed a method for obtaining
local intensity profiles along the projected circumference of
lipid vesicles in cryo-EM images (21), which we then used
to measure the local bilayer thickness at 5-nm lateral reso-
lution in liposomes and vesicles derived from cell plasma
membranes (21) as well as HIV pseudoviral membranes
(22). When thicknesses from a large population of vesicles
were plotted as a histogram, the appearance of the distribu-
tion (i.e., unimodal or multimodal) was consistent with the
number of coexisting phases determined in independent ex-
periments. Concurrently with our study, the Keller group
performed similar analyses and reached similar conclusions
using tomographic reconstructions of cryopreserved lipo-
somes (23). These outcomes were expected, since it is
well established that ordered phases are 5-10 A thicker
than disordered phases (3,24,25). However, while those
studies demonstrated critical proof of principle for using
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cryo-EM to investigate lipid phase separation, its unique ca-
pabilities as an imaging technique have not yet been
fully realized. Most importantly, the development of a
robust, automated method for determining the membrane
phase state with high spatial resolution would enable addi-
tional valuable characterization including domain-size dis-
tributions and an assessment of heterogeneity within the
sample (26).

Although the local phase state of the membrane can in
principle be determined from spatially resolved bilayer
thickness measurements such as those in (21), in practice
this is hampered by the substantial noise inherent to cryo-
EM images, which results in broad and overlapping thick-
ness distributions for L.d and Lo phases. One consequence
is that a relatively large portion of the projected bilayer
cannot be unambiguously classified as Ld or Lo by thick-
ness alone. However, bilayer thickness is not the only char-
acteristic that distinguishes ordered and disordered phases.
Equally important from the perspective of electron scat-
tering in image formation is the difference in molecular
packing density, which manifests as a greater intensity
contrast for ordered phases compared to disordered phases
(27). Here, we show that ML models trained to recognize
both thickness and intensity contrast can predict the local
bilayer phase state with significantly greater fidelity than
methods based on thickness measurements alone. Key to
this conclusion is the use of in silico data that allow us to
establish a ground truth for assessing the accuracy of phase
determination for a variety of methods, including both unsu-
pervised and supervised ML techniques. We also describe
additional structural information that can be gleaned from
segmented images such as area fractions and average inten-
sity profiles of ordered and disordered phases, and measure-
ments of domain size and number.

MATERIALS AND METHODS
Analysis software

The analyses described in the following sections were implemented in
Wolfram Mathematica 13.2 (Wolfram Research, Champaign, IL) unless
stated otherwise.

Molecular dynamics simulations of Ld and Lo
bilayers

All-atom molecular dynamics (MD) simulations of three-component mix-
tures containing 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol (Chol)
were performed with NAMD (28) using the CHARMM36 force-field pa-
rameters (29,30). Two compositions were simulated, corresponding to the
endpoints of a tieline in the Ld + Lo region of the room-temperature phase
diagram (Fig. S1). Each bilayer contained 100 lipids per leaflet, 50 waters
per lipid, and no ions, and was constructed and equilibrated with the
CHARMM-GUI protocols (31-33). The production runs for the two bila-
yers (917 ns for Ld and 1345 ns for Lo) were performed at constant temper-
ature of 293 K and constant pressure of 1 atm using the same simulation
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TABLE 1 Compositions and structural parameters of
simulated Ld and Lo phases at 20°C

Mixture XDspC XDOPC XcHOL Ap (A Dg (A)
Ld 0.09 0.79 0.12 59.9 40.0
Lo 0.60 0.11 0.29 40.0 52.8

parameters as in (34). Number and charge density profiles of each lipid and
water atom in the systems were calculated from the last 480 ns of the
centered bilayer trajectories with the Density Profile tool in VMD (35).
The dipole potential profile for each system was calculated from the charge
density profile following the approach in (36). The protocol is based on
Poisson’s equation and utilizes a double integral calculation, setting the po-
tential to be the same on the opposite sides of the simulation box, which is a
good approximation for symmetric bilayers (37). Table 1 lists the composi-
tions, average area per lipid Ay, and bilayer thickness Dy of the simulated
Lo and Ld phase bilayers.

Synthetic cryo-EM images

Synthetic cryo-EM images of lipid vesicles were generated following a pre-
viously described method that we summarize here (21). In phase-contrast
imaging mode, the observed signal is related to variation in the electrostatic
potential @ within the lipid bilayer, which depends on lipid composition
and packing density and is therefore different for Lo and Ld phases. We
approximated ®(w) (where w denotes position along the direction normal
to the plane of the bilayer) as a sum of contributions from individual lipid
and water atoms with an additional contribution from the membrane dipole
potential ®yq, i.e.,

o(w) = Zvipi(w) + Dy(w). (Equation 1)

In Eq. 1, the sum is over individual lipid atoms, p;(w) is the atom’s time-

averaged atomic number density profile (units of A~ 3) calculated from the
MD simulation trajectory, and V; is the spatially integrated, shielded
Coulomb potential for an isolated neutral atom (V; = 25, 130, 108, 97,

and 267 V A3 for H, C, N, O, and P, respectively). The phase shift experi-
enced by an electron wave passing through the bilayer is given by

gw) = a.2(w),

where g, accounts for the dependence of the electron phase on the projected
potential and is equal to 0.65 mrad V~! A for 300 keV electrons (38).
Following Wang et al. (39), we refer to g(w) as the electron “scattering pro-
file” of the flat simulated bilayer; as ® has units of V, the scattering profile
has units of mrad A~ . A cryo-EM image of a liposome corresponds to a
projection of the vesicle’s spherical scattering profile, y(r, 6, ¢), onto a
plane, followed by convolution with a contrast transfer function (CTF).
For a compositionally uniform and spherically symmetric liposome of
radius R, vy has no angular dependence and can be approximated with the
flat bilayer scattering profile g(w) using the coordinate transformation
r = w+ R, suchthat y(r,6,¢) = y(r) = g(r — R). In this case, the pro-
jected density I'(r) is easily obtained by the Abel transform:

I'(r) = 2/5;(07_(7&1.

a)2

(Equation 2)

(Equation 3)

Equation 3 is not straightforward to evaluate for a phase-separated
liposome where vy may have a complicated angular dependence.
Instead, we used a Monte Carlo technique to approximate I'(r). In brief,
a 3D representation of the vesicle was constructed as a set of discrete

Detecting nanoscopic lipid domains

points whose spatial density was proportional to Ay(r, d, ¢) = v(r, ¥,
@) — 7, where v, is the electron phase shift caused by Vi}re(l)us ice un-
der given imaging conditions and is equal to 3.28 mrad A  here. We
used a geometrical model for the vesicle in which the Ld and Lo phases
each comprised a single spherical cap centered on opposite poles of the
vesicle. For this domain arrangement, the position of the domain bound-
ary is specified by the polar angle , = cos™!(1 — 2ay,), where ar, is
the area fraction of Lo phase. With the Lo and Ld domains centered at
0 = 0 and m, respectively, the azimuthally symmetric spherical scat-
tering profile is

- f _ J g(r = R) for0<0<0,
v(r,0;R,0,) = {ng(;~ TR forty < fen

(Equation 4)

To generate images of phase-separated vesicles, the vesicle radius was
drawn from a Schulz distribution centered at 25 nm with a width of 5 nm,
consistent with experimentally observed vesicle-size distributions after extru-
sion through a 50-nm pore-size filter. Random points were then generated
within the Lo and Ld domains delineated by 6}, and further subdivided radi-
ally into thin (0.2 A width) concentric shells, with the shell radii r; chosen to
span the full thickness of the simulated flat Lo and Ld bilayers. Within the Lo
and Ld shells, the point density was proportional to y(r;, §) given by Eq. 4,
with the constant of proportionality chosen to generate a total of =~ 10% points
in the vesicle. The full set of points thus generated was then randomly rotated
in 3D, projected onto the xz plane, and binned into 25-A square pixels to
create the image I'(r) where the intensity at each pixel was proportional to
the density of projected points. At this step, the fraction of signal in each pixel
originating from Lo and Ld domains was recorded and used to generate
ground-truth maps of the bilayer phase state in the projection image. These
maps were subsequently used to assess the accuracy of machine-learning an-
alyses as described in “machine-learning classification of bilayer phase state”
and “quantifying the accuracy of ML analysis.”

To mimic experimental images, I'(r) must be convolved with a CTF ¢(s)
and associated phase perturbation factor x(s):

c(s) = [sin x(s) — Q cos x(s)exp(— Bls|*),
(Equation 5)

x(s) = — wAAZ|s|” + gCSA3 Is|*. (Equation 6)

In Egs. 5 and 6, s is the spatial frequency, B is the amplitude decay factor,
Q is the dimensionless amplitude contrast factor, A is the electron wave-
length, AZ is the defocus length (defined such that positive values indicate
underfocus), and Cs is the spherical aberration coefficient. Fig. S2 plots the
CTF for our simulated parameter set (Table 2) with and without the spher-
ical aberration correction term in Eq. 6, demonstrating that the effects of
spherical aberration are negligible for simulated imaging conditions, and
thus justifying our choice to omit the second term in Eq. 6 in our calcula-
tions. We also note our use of a single electron wavelength, which carries
the implicit assumption of zero chromatic aberration. Although chromatic
aberration exists in any real electron microscope, the effects can be partially
corrected by energy filtering. We previously showed that energy filtering

TABLE 2 Parameters used to generate simulated images (see
materials and methods for details)

Electron Contrast transfer function
Energy A AZ 0 B m
300 keV 1.97 pm 2.5 pm 0.075 300 A? 400
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has minimal effects on bilayer intensity profiles that are used in the present
analyses (27).

Accounting for the effects of the CTF, the reciprocal space image is
calculated as

I(s) oc 1+ mc(s)F[L(r)](s),

where F; is the Fourier transform of the projected 2D phase-shift image
I'(r) and m is a scale factor that adjusts the intensity contrast in the
spatial domain (we define contrast as the difference between maximum
and minimum values of bilayer intensity profiles described in “bilayer
intensity profiles”). We chose a value of m = 400 that resulted in
average contrasts of 85-110 a.u. depending on vesicle size and bilayer
composition (see Fig. S3); these values are consistent with ranges
observed in experimental images collected at 300 keV and 2.5 wm under-
focus. The corresponding real-space image I(r) is the inverse Fourier
transform of I(s),

Ir) = 7. {(9))(r).

(Equation 7)

(Equation 8)

Finally, zero-mean and frequency-independent (i.e., white) Gaussian
noise with a standard deviation of 120 a.u. was added to simulated images,
resulting in final image contrast-to-noise ratios of =0.7-0.9 that fall within
the range of values observed in experimental images (= 0.7-1.05) collected
under the simulated conditions. The complete sequence of steps for gener-
ating synthetic images described in this section is graphically summarized
in Fig. S4, while Fig. S5 demonstrates how the profiles depend on vesicle
size. For the analyses presented here, a total of 1000 vesicle images were
generated for each of the two tieline endpoint samples to use as training
data, and a total of 490 vesicle images were generated for each of the tieline
compositions for validation data.

Bilayer intensity profiles

Within projection images, vesicles were identified and subdivided as pre-
viously described (21) to obtain spatially resolved intensity profiles (IPs)
in the direction w normal to the bilayer, with w = 0 corresponding to the
bilayer midplane. In brief, vesicle contours (i.e., the set of points approx-
imating the midplane of the projected bilayer as defined by a relatively
bright central peak) were first generated using a neural network-based
algorithm (MEMNET) developed and kindly provided by Dr. Tristan Be-
pler (MIT, Cambridge, MA). While we retain the original MEMNET
nomenclature, these algorithms (and others) are now part of the
TARDIS software package (40). The MEMNET contour was resampled
at arc length intervals of =5 nm, resulting in a polygonal representation
of the 2D contour. For each polygon face, all pixels within a 5 x 20-nm
rectangular region of interest centered at the face were selected, and their
intensities binned at 1-A intervals in the long dimension (i.e., normal to
the face) and subsequently averaged in the short dimension to produce a
local IP.

Bilayer thickness measurement

A key measurement obtained from the IP is the spatially resolved bilayer
thickness Drr, details of which are provided in previous work (21). In
brief, Drt was calculated as the distance between the two minima in the
IP. Two methods were used to locate the minima: 1) a “model-free”
method, in which a local 5-point Gaussian smoothing was first performed,
and the distance between the two absolute minimum intensity values on
either side of w = 0 was calculated; and 2) a “model-fit” method that
fits the profile as a sum of four Gaussians and a quadratic background,
with the troughs corresponding to the two absolute minimum intensity
values on either side of w = 0. The two methods generally agree to within
1 A, and the Dpp values we report are the average of the two
measurements.
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Machine-learning classification of bilayer phase
state

We tested various unsupervised and supervised learning methods for iden-
tifying the phase state of the bilayer, using the spatially resolved IPs as fea-
tures for discriminating Lo and Ld phases. Each profile can be considered as
a 201-dimensional vector of intensities for input to the ML algorithm
(where noted, the dimensionality of the input vectors was first reduced us-
ing principal component analysis). For unsupervised learning, we used
k-means and k-medoids clustering with the number of clusters (k) set to
2. For supervised learning, we used five methods as implemented in Math-
ematica v13.2: decision tree (DT), gradient boosted trees (GBT), random
forest (RF), nearest neighbors (NN), and logistic regression (LR) (see sec-
tion S1 in supporting methods for additional details of these models and
their default parameter settings in Mathematica).

Models were trained on IPs from vesicles in the pure Lo and Ld data sets,
with vesicle sizes drawn from a uniform distribution to minimize size-
dependent bias. As shown in Fig. S3, IP contrast depends on both the
bilayer phase state and the vesicle size. Therefore, to maximize the ability
of ML models to predict the former, it is necessary to account for the effects
of the latter. We investigated two ways of addressing this issue. 1) In the “IP
pre-processing” procedure (described in detail in supporting methods sec-
tion S2), intensity profiles were normalized prior to model training using an
empirically determined scale factor that corrects for vesicle size depen-
dence. 2) In the “size-training” procedure, vesicle size was included as a
second feature (along with the un-normalized IP) at the stage of model
training. In both cases, trained models were then used to predict the phase
state of IPs from the validation data sets.

Quantifying the accuracy of ML analysis

We assessed the accuracy of each ML model by comparing the predicted
phase state to the ground-truth phase state at the level of individual 5-nm
segments. Because each projected bilayer segment may contain contribu-
tions from both phases, we define here the segment’s “ordered character”
(OCe [0, 1)) as the fraction of the segment’s intensity that originated
from an Lo domain. For vesicles that contain a single domain of each phase
(i.e., the geometric model used here), most segments are purely Ld (OC =
0) or Lo (OC = 1). Exceptions occur in the vicinity of the domain bound-
ary, where intermediate OC values are typically observed. Importantly, all
supervised ML methods yield an estimate of the probability that a given
segment is Lo (i.e., a prediction of the segment’s OC value). We therefore
used the residual (i.e., OC — OC’, where OC is the ground-truth ordered
character and OC’ is the prediction of the ML model) as one metric for
accuracy.

Unsupervised ML methods result in a binary classification of the segment
phase state (i.e., a given segment is either Ld or Lo). In some cases, it is also
useful to simplify the phase classification from supervised ML methods as a
strictly binary outcome. For this purpose, we used a threshold of OC = 0.5
(i.e., a segment is classified as Ld if OC <0.5 and Lo otherwise). The accu-
racy of binary classification was assessed from confusion matrices as the
number of correct predictions divided by the total number of predictions.
One notable advantage of binary classification is the ability to estimate
domain size by counting runs of identical Lo or Ld segments within a
vesicle.

RESULTS AND DISCUSSION
Model system and generation of image data sets

The primary inputs for generating images of phase-sepa-
rated vesicles are the electron-scattering profiles of Ld and
Lo phases, which we calculated from MD simulations
as described in materials and methods. We chose the
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three-component mixture DSPC/DOPC/Chol as a model
system because the room-temperature phase diagram has
been determined experimentally at high compositional res-
olution (41,42). As shown in Fig. S1, the phase diagram con-
tains a region of coexisting Ld and Lo phases that serve as a
model for lipid rafts. We simulated the endpoints of a tieline
that includes the composition DSPC/DOPC/Chol 39:39:22
mol%, in part because this composition has been extensively
studied with confocal microscopy (43), fluorescence reso-
nance energy transfer (44), X-ray scattering (24), and
neutron scattering (3). The large line tension for this mixture
(45) results in essentially complete coalescence of domains
in giant unilamellar vesicles that can be easily visualized
with fluorescence microscopy, such that each vesicle has a
single domain of each phase.

Table 1 lists bilayer structural parameters of Ld and Lo
phases obtained from the molecular simulations. Most
important for cryo-EM are the substantial differences in
bilayer thickness D and area per lipid Ay, the latter being
inversely related to lipid packing such that the smaller Ay
of Lo phase indicates greater lipid packing density
compared to Ld phase. The large differences in bilayer
thickness and lipid packing result in markedly different
electron-scattering profiles for Ld and Lo bilayers, as shown
in Fig. S4. We used these electron-scattering profiles to
generate image data sets as a function of Lo area percentage
ranging from 0% to 100% in increments of 10%, as shown
in Fig. 1, with the workflow for image generation demon-
strated schematically in Fig. S4. Throughout the text, we
refer to these compositions as SO-S10. For each composi-
tion, the size of individual vesicles was randomly drawn
from a distribution consistent with extrusion through a
50-nm pore-size filter and thus producing diameters ranging
from =20 to 80 nm. Each vesicle object was given a
different random 3D orientation prior to projection. Projec-
tion images were convolved with a CTF assuming an elec-
tron energy of 300 keV and using typical values for CTF
parameters (Table 2). A defocus range of 2.0-3.0 um was
previously found to be optimal for determining bilayer
thickness (27), which guided our choice to use a fixed defo-

Detecting nanoscopic lipid domains
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S1
Ld-0.9 \
s9 Lo->0.1 s2
Ld-0.1 Ld-0.8
LO30.9 L FIGURE 1 Lipid compositions of synthetic image
" dS_()) » data sets. (@) All compositions in this study lie on a
Lt Lo-0. 57 thermodynamic tieline of the mixture DSPC/DOPC/
Lo->0.8 Lo->03 Chol at 20°C (41). On this tieline, an Ld phase of
fixed composition (SO) coexists with an Lo phase
. Lds 1,00_ ! 4 - \ of fixed composition (S10), and only the relative
tg:g?] I tﬂi 8-3 amounts of Ld and Lo change. (b) The compositions
) ) S1-S9 represent a series of increasing Lo area per-
Ldi60_4 Ldi50_5 centage in increments of 10%. To see this figure in
Lo-0.6 Lo-05

color, go online.

cus value of 2.5 um. Fig. 2 shows representative images
from each simulated composition before and after the addi-
tion of white Gaussian noise. For most of the phase-sepa-
rated vesicles (i.e., S1-S9), distinct domains of different
thickness and intensity are visible in the noisy images.

Data sets of noisy images were then analyzed to obtain
IPs around the vesicle circumference at 5-nm resolution as
detailed in materials and methods. Fig. 3 compares the
ground-truth profiles (obtained by convolving the Ld and
Lo electron-scattering profiles with the CTF) to representa-
tive IPs obtained from synthetic images of pure Ld and Lo
vesicles. The ground-truth IPs of Ld and Lo phases (Fig. 3
b) are characterized by significant differences in both the
position and depths of the “troughs” on either side of the
bilayer center. These features, which arise from differences
in bilayer thickness and molecular packing density of Ld
and Lo phases, are partially obscured by noise at 5-nm res-
olution but are precisely recovered when IPs from many
segments are averaged (Fig. 3, ¢ and d). As we now
describe, the spatially resolved IPs constitute the raw data
that we used to classify the bilayer phase state.

Phase classification based on bilayer thickness

As a baseline for comparing the performance of ML
methods, we employed a simple classification scheme for
phase state based on bilayer thickness measured from
segment IPs as described in materials and methods.
Fig. S6 a shows probability distributions of segment thick-
nesses Dy for each data set. As expected, the distributions
are approximately Gaussian for the single-phase Ld and Lo
data sets SO and S10, while data sets S1-S9 show non-
Gaussian character owing to Ld + Lo coexistence within
the vesicles. The mean Dyt was 29.7 A for SO and 35.8 A
for S10, closely matching the ground-truth values of
30.6 A and 36.4 A for Ld and Lo phases, respectively.

To classify the phase state of individual segments, we first
fit the thickness distributions for the tieline endpoint data
sets SO and S10 to Gaussians (Fig. S6 a, upper left). Thick-
ness distributions for phase-separated data sets S1-S9 were
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then modeled as a weighted sum of the endpoint Gaussians
(i.e., with the mean and standard deviation values fixed), and
the obtained weights were used to calculate the phase frac-
tions for each data set, which resulted in excellent agree-
ment with ground-truth phase fractions (Fig. S6 b and
Table 3). For each data set, the best fit phase fraction fi,
was then combined with the cumulative thickness distribu-
tion function (CDF) to determine a cutoff thickness D}
satisfying the relationship CDF(D};) = fio,, which was
then used to classify the phase state of each segment (i.e.,
a segment whose thickness was greater than or equal to

S10
‘: ocC
l |

FIGURE 2 Representative vesicle images. A pair
of images of a representative vesicle from each uni-
form (S0, S10) and phase-separated (S1-S9) data set
is shown (see Fig. 1 for compositions). For each pair,
the top and bottom images are before and after addi-
tion of Gaussian noise, respectively. The ring sur-
14 rounding the vesicle in the noise-free images shows

the angular dependence of the OC value in the pro-

jection, which quantifies the fraction of signal arising

from the Lo domain. Scale bars, 20 nm. To see this
_05 figure in color, go online.

.

1 Was classified as Lo). The accuracy of this thickness-

based classification scheme, shown in Fig. S6 ¢ and Table 4,
is slightly greater than 80% for samples near the middle of
the tieline where substantial fractions of both phases are pre-
sent and increases for samples closer to the tieline
endpoints.

Phase classification by unsupervised ML

We next used unsupervised learning (k-means and k-me-
doids) to group the segment IPs into two clusters
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FIGURE 3 Segment intensity profiles. (a) Schematic illustration of the procedure for obtaining spatially resolved intensity profiles (IPs). IPs are generated
by radial averaging of the intensity within a 5 x 20 nm sampling region centered at the projected vesicle contour. The sampling region is shown as a black
rectangle superimposed on a projection image that has been faded for clarity. (b) Ground-truth IPs of Ld and Lo phases show significant differences in the
position and depth of the troughs on either side of the bilayer center. (¢ and d) Comparison of Ld (¢) and Lo (d) IPs: ground truth (fop), four randomly chosen
5-nm segments (middle), and the average of all segments in all vesicles (bottom, with shaded area denoting = 1 standard deviation). IPs in (c¢) and (d) are
offset vertically for clarity. To see this figure in color, go online.
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TABLE 3 Area percentage of Lo phase determined by different phase-classification methods

Unsupervised ML

Supervised ML with size training

Sample Ground truth Drr 2-Means cluster 2-Medoids cluster DT GBT RF LR NN
SO 0.0 0 2 4 4 1 2 1 1

S1 10.0 11 11 14 13 11 11 11 10
S2 20.0 20 20 24 22 21 21 21 19
S3 30.0 30 30 34 32 31 31 31 30
S4 40.0 40 39 43 40 40 40 40 38
S5 50.0 50 48 52 49 50 49 50 48
S6 60.0 59 57 60 58 60 58 60 57
S7 70.0 69 67 70 68 70 69 71 68
S8 80.0 78 76 79 76 79 78 80 77
S9 90.0 88 86 88 85 89 87 90 87
S10 100.0 98 96 97 94 99 97 99 97

(we note that for this analysis, segments from all 11 sam-
ples were pooled prior to clustering). As shown in Table 3,
both clustering methods resulted in reasonable area per-
centage predictions for all compositions, deviating by
<5% from ground-truth values. Both methods also
achieved good accuracy (>90%) at the level of individual
segment classification (Table 4). The accuracy was corre-
lated with the position of the sample on the tieline, with
the lowest accuracy consistently occurring near the middle
of the tieline (i.e., sample S5). While this trend is similar
to that found for thickness-based classification, unsuper-
vised learning resulted in substantially improved overall
prediction accuracy, especially near the middle of the tie-
line. To assess the impact of dimensionality reduction, we
also performed clustering after first subjecting the IPs to a
global principal component analysis. Fig. S7 reveals that
segment accuracy exceeds 90% for all data sets even
when only the first two principal components are used
for clustering. We note that for data sets of the size used
here, k-means and k-medoids clustering are computation-
ally inexpensive and fast on a desktop computer even
when the full 201-dimensional IP is used.

Phase classification by supervised ML

We next tested five supervised ML algorithms as described
in materials and methods using models trained on segment
IPs obtained from 1000 vesicles drawn from a uniform
size distribution in each of the tieline endpoint samples. Ta-
ble 3 compares the Lo area percentage predicted by these
models to predictions from thickness-based and unsuper-
vised methods, while Table 4 compares the overall accuracy
of binary phase classification for the various data sets and
methods at the level of individual segments. Like the thick-
ness-based and unsupervised methods, accuracy is strongly
correlated with the position of the sample on the tieline
(Fig. 4 a and b). Comparing different methods, GBT and
LR emerged as the most accurate overall, followed closely
by NN and RF; DT was significantly less accurate. Fig. S8
shows an example of the confusion matrices that were
used to calculate binary accuracy.

As described in materials and methods, we tested two
procedures to correct for the influence of vesicle size on
contrast, in which models were trained either on size-
normalized segment IPs (“IP pre-processing”) or un-
normalized IPs and vesicle radii (“size training”). For the

TABLE 4 Segment-level accuracy determined by different phase-classification methods

Unsupervised ML

Supervised ML

DT GBT RF LR NN
Sample Dt 2-Mean 2-Medoids ST pp° ST PP" ST pp° ST pp° ST PP"
SO 100 98 96 96 96 99 99 98 99 99 99 99 99
S1 89 94 92 922 93 96 96 95 95 96 96 95 95
S2 84 92 91 91 92 95 95 94 94 95 95 94 94
S3 81 92 91 90 91 94 95 93 94 95 95 94 94
S4 82 91 91 90 91 94 94 93 94 94 94 93 94
S5 81 90 90 89 90 93 93 92 93 93 93 92 93
S6 82 90 91 90 90 94 94 92 94 94 94 92 94
S7 84 92 93 91 922 95 95 93 94 95 95 93 95
S8 86 92 92 91 92 95 95 93 94 95 95 93 95
S9 90 92 93 91 93 96 96 94 95 96 96 94 96
S10 98 96 97 94 97 99 99 97 99 99 99 97 99

“Size training.
°IP pre-processing.
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ures. Methods used: decision tree (DT), gradient
boosted trees (GBT), random forest (RF), logistic
regression (LR), and nearest neighbors (NN). To
see this figure in color, go online.

Lo area percentage

best-performing algorithms (i.e., GBT and LR), the two pro-
cedures produced nearly identical results. Interestingly, IP
pre-processing resulted in small but consistent gains in
segment-level accuracy compared to size training for the
NN, RF, and DT algorithms, as shown in Table 4 and Fig. 4.

Because supervised methods yield probability-based pre-
dictions (i.e., the probability that a given segment is Lo
phase), we can further assess the ability of these models
to recognize domain boundaries that are inherently
weighted superpositions of Lo and Ld IPs. For each
segment, we first calculated the fraction of total intensity
originating from the Lo phase, which we termed the seg-
ment’'s OC. The residual OC — OC’, where OC is the
ground truth value and OC’ is the probability determined
by a supervised model, is a natural alternative metric for
quantifying accuracy, with smaller values indicating greater

®
[} ',' |}

O

NN
- LR
—> RF
—— GBT
——> DT
———— Ground truth

Lo area percentage

accuracy. The mean absolute residual (i.e., averaged over all
segments in a data set) is plotted vs. Lo area percentage in
Fig. 4 ¢ and d for the different supervised methods, revealing
similar overall trends compared to the binary phase classifi-
cation. The accuracy of boundary classification is discussed
in the next section.

Visualizing phase-classification accuracy

It is instructive to visualize the accuracy of phase classifica-
tion at the segment level within individual vesicles. Fig. 5
presents ring plots of representative vesicles in which
ground-truth OC values of individual segments are found in
the innermost ring and OC’ values predicted by the various
supervised models are arranged concentrically. The green-
pink color scale facilitates the identification of misclassified

FIGURE 5 Visualizing the accuracy of phase classification for individual vesicles. (a) The inner ring gives the ground-truth OC for individual 5-nm seg-
ments of a vesicle, with model predictions OC" arranged concentrically as indicated. (b—g) Ring plots of representative vesicles for different data sets as
indicated. Methods used are decision tree (DT), gradient boosted trees (GBT), random forest (RF), logistic regression (LR), and nearest neighbors (NN),
in each case with the size-training procedure. To see this figure in color, go online.
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FIGURE 6 Selected images demonstrating the influence of vesicle orientation on apparent phase behavior. Shown are pairs of images for several orien-
tations of =50-nm-diameter vesicles from data sets S5 (a—f) and S2 (g—/). In each pair, the upper and lower images are before and after the addition of
Gaussian noise, respectively. The ring surrounding the vesicle in the noise-free images plots the ground-truth OC value along the projected circumference
as indicated by the color scale. Scale bars, 20 nm. To see this figure in color, go online.

segments (i.e., an Lo segment identified as L.d or vice versa),
in this case when a binary cutoff of OC* = 0.5 was used, as
described in materials and methods. A few such misclassified
segments are found in each of the phase-separated vesicles
shown in Fig. 5. Unsurprisingly, the probability of misclassi-
fication is greater near domain boundaries where both phases
contribute to the projected signal. Notably, the representative
examples of pure Ld and Lo vesicles shown in Fig. 5 b and g
contain no misclassifications, consistent with the absence of
confounding boundary segments in these data sets, although
misclassifications in the bulk do occasionally occur in both
uniform and phase-separated vesicles and can be seen in
Fig. 5, ¢, e, and f.

In light of the previous discussion, the trends in accuracy
shown in Fig. 4 can be explained by the difficulty of classi-
fying boundary segments. The lowest overall accuracy oc-
curs in system S5, which has equal area fractions of the
two phases and thus the largest number of boundary seg-
ments. Indeed, every projection image for this sample—
regardless of the vesicle’s 3D orientation—is assured to
have boundary segments, as demonstrated in Fig. 6, a—f.
However, as the vesicle composition moves toward the
ends of the tieline in either direction, the size of one domain
increases at the expense of the other, and the total domain
boundary length in the projected images decreases. Conse-
quently, there is a non-zero probability of observing only
the majority phase at the edges of a projected vesicle, as
demonstrated in Fig. 6 [ for sample S2. Such projections

are relatively common for compositions near the ends of
the tieline (Fig. S9) and, as a result, the accuracy of phase
identification is higher than for samples near the middle of
the tieline.

Further insight can be gained by visualizing segment clas-
sification accuracy for an entire data set. For this purpose,
we generated matrix plots in which rows correspond to indi-
vidual vesicles (arranged from smallest to largest diameter,
top to bottom) and columns correspond to individual seg-
ments (arranged such that the middle of the minority phase
domain is centered within the row), as shown in Fig. 7 for
system S4. Several interesting aspects of the data sets
become apparent in these plots. For example, the ground-
truth OC values plotted in Fig. 7 b reveal how the fraction
of boundary segments (i.e., those with lighter shades) varies
widely between vesicles due to differences in their random
3D orientations prior to projection (cf. Fig. 6). In a few
cases, the vesicle was oriented such that the domain bound-
ary was nearly parallel to the projection plane, resulting in
every segment containing intensity contributions from
both phases. Fig. 7 a plots the corresponding OC’ values
predicted by GBT, revealing a strong tendency for the model
to predict values close to 0 or 1 and eschew intermediate
values, even for boundary segments whose ground-truth
OC values are in fact intermediate. This tendency is empha-
sized in Fig. 7 ¢, which plots the signed residual OC — OC’
and thus makes clear the outsized contribution of boundary
segments to overall accuracy. The relatively poor
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FIGURE 7 Matrix plots of ordered character. Each row represents one of 490 vesicles in data set S4, where the columns are individual 5-nm segments of
the vesicle. Plotted are: (a) the OC’ prediction from the GBT model with the size-training procedure; (b) the ground-truth OC value; and (c) the signed re-

sidual OC — OC'. To see this figure in color, go online.

performance in boundary identification is likely caused by
the fact that the models were not trained to recognize bound-
ary segments. Adding such segments to the training data set
will almost certainly improve the predictions and may prove
to be important for real-world data analysis, where the like-
lihood of encountering multiple smaller domains within ves-
icles is greater.

Average IPs of coexisting phases

Among the most important information obtained from cryo-
EM analysis is the average IP of the bilayer. In principle, the
bilayer’s electron-scattering profile can be recovered from
the IP by deconvolution (39), raising the possibility of using
cryo-EM to complement well-established neutron- and
X-ray-based methods for bilayer structure determination
(46). A significant advantage of cryo-EM compared to tradi-
tional scattering methods is the ability to classify individual
segments by their phase and thus separately determine the
IPs of coexisting phases. Fig. 8 a compares the mean IPs
for Ld and Lo phases (i.e., averaged over all segments clas-
sified as Ld or Lo) for samples SO-S10 using predictions
from GBT. As expected, agreement with ground-truth pro-
files (Fig. 3) is better for the majority phase in each data
set, although the overall agreement for both phases is
reasonable in all data sets. Fig. 8 b shows that Dt values
calculated from the IPs of phase-separated samples S1-S9
are generally in excellent agreement with the values calcu-
lated from the pure Ld and Lo data sets (Fig. 8 b, dashed

lines), although deviations occur for the minority phase
near tieline endpoints.

Isolating vesicle-size effects

It is well established that nanoscopic membrane curvature
plays a vital role in many biological processes (47,48).
Curvature is influenced by intrinsic factors such as
lipid composition and the presence of integral membrane
proteins as well as by external factors including cytoskel-
etal attachments and the binding of peripheral membrane
proteins (49). Even in simple liposomes with nominally
identical leaflet compositions, it is likely that substantial
structural perturbations emerge in the presence of high
membrane curvature. This has been observed in coarse-
grained MD simulations of 20-nm-diameter vesicles,
which showed changes in the headgroup and acyl-chain
packing of inner and outer leaflets that depended on
both lipid headgroup type and tail saturation (50). In
this context, another major advantage of cryo-EM
compared to neutron and X-ray scattering is the
ability to isolate membranes of different average curva-
ture within the sample and separately interrogate their
structure.

As a proof-of-principle demonstration, we binned vesi-
cles in each data set by size and calculated several properties
for the different bins (we note that all vesicles in our simu-
lated data sets have identical bilayer structure irrespective of
their size). Fig. 9 shows the apparent area fraction of L.d and

a 4o . . . " 7 b 3 FIGURE 8 Average intensity profiles and Dryr
/K SEECEELEES values. (a) After classification by GBT with the

5 36 A—/ size-training procedure, the mean intensity profile
S - | < Ld for all Lo and Ld segments is depicted in pink and
%‘ = 3411 = Lo green, respectively for each phase-separated data
§ ;§ } set (i.e., SI-S9), while the mean intensity profiles
= mLd ] 32{ o of pure Ld and Lo (data sets SO and S10, respec-
:;\-:ean erotte | [ o—o—o P . tively) are shown in black. (b) Dyt values evaluated

; : . X ; 30. from the mean intensity profiles shown in (a).
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FIGURE 9 Influence of vesicle size on apparent area fraction of Ld and Lo phases. The area fraction of Ld (green) and Lo (pink) phases predicted by
logistic regression with the size-training procedure is shown as a function of vesicle size for each of the phase-separated data sets. Error bars are 95% con-

fidence intervals. To see this figure in color, go online.

Lo phases for systems S1-S9 calculated separately for each
vesicle-size bin. We also attempted to determine the average
linear extent and number of domains as a function of vesicle
size. This was complicated by the non-negligible frequency
of segment misclassifications far from domain boundaries
(cf. Fig. 5), which have the effect of erroneously dividing
a continuous domain into two or more discontinuous do-
mains. To counteract this artifact, we implemented a correc-
tion that eliminated isolated segments (i.e., those whose
phase classification was different than its two nearest neigh-
bors) as illustrated in Fig. S10 a. With this correction, the
average domain size calculated from images was similar
to ground-truth values (Fig. 10). Reasonably good agree-
ment between the average number of domains per vesicle
calculated from images and the ground-truth value (i.e., 2
domains per vesicle) was also obtained from this analysis
(Fig. S10, b and ¢).

Simulating noise in synthetic images

It is often noted that the signal-to-noise ratio (SNR) of cryo-
EM is among the lowest of any imaging technique (11), with
the noise power typically exceeding the signal power by
more than an order of magnitude. When ground-truth data
sets are used to assess the performance of classification
methods, it is therefore reasonable to question whether the
simulated noise characteristics accurately reflect real-world
noise and how any simplifying assumptions might influence

the outcome. Baxter et al. have identified three independent
sources of noise in cryo-EM projection images: 1) “struc-
tural noise” originating from variability in the local back-
ground structure (e.g., ice thickness) of individual vitrified
particles as well as particle-to-particle conformational vari-
ability; 2) shot noise originating from the quantum nature of
electron radiation; and 3) digitization noise arising from
processes associated with image capture (e.g., CCD readout
noise) (51). Through a careful analysis of paired projection
images of ribosomes, the same authors were able to disen-
tangle these noise sources and separately determine their
magnitude, finding that shot noise is = 10-fold larger than
structural noise, which in turn is over 10-fold larger than
digitization noise (51). Clearly, shot noise is the dominant
contributor to the low SNR of cryo-EM images.

In addition to having different magnitudes, the factors
responsible for the independent noise sources act at different
stages of the image-generation process. Because the factors
that give rise to structural noise are present in the vitrified
sample itself, structural noise is affected by the CTF and
is thus frequency dependent. In contrast, shot noise and digi-
tization noise originate at the detector and can be considered
as white (i.e., frequency-independent) noise sources. When
generating synthetic images, it follows that structural noise
(typically modeled as a zero-mean Gaussian noise image)
must be added to the projection image prior to convolution
with the CTF, while the effects of shot noise and digitization
noise can be combined in a single zero-mean Gaussian noise
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image that is added to the CTF-corrupted particle image
(51). We note that, although shot noise is inherently gov-
erned by Poisson statistics, the use of a Gaussian distribu-
tion is justified by the relatively high electron counts per
pixel (52). The use of zero-mean Gaussian noise in our
simulated liposome data sets is further validated in
Fig. S11, which shows that histograms of pixel intensities
in particle-free regions of a representative experimental im-
age are well described by Gaussian distributions.

The full procedure for generating synthetic images of li-
posomes in the presence of both frequency-dependent and
frequency-independent noise sources is outlined schemati-
cally in Fig. S4. As described in materials and methods,
we omitted the frequency-dependent structural noise in
our simulated data sets and included only frequency-inde-
pendent zero-mean Gaussian noise with a standard deviation
that was adjusted to mimic experimentally observed
contrast-to-noise ratios of vitrified liposomes. It has previ-
ously been suggested that for synthetic cryo-EM images
of ribosomes to be “realistic,” a frequency-dependent noise
component with SNR = 1 should be included (51).
Although the magnitude of the structural noise for lipo-
somes has not been reported to our knowledge, we tested
whether including a structural noise component with a
magnitude similar to that of vitrified ribosomes would affect
the classification of segment phase state. Table S1 shows
that including structural noise in both the training and vali-
dation data sets resulted in negligible differences in predic-

12 Biophysical Journal 123, 1-15, October 1, 2024

tion accuracy compared to the case where training and
validation data both lacked structural noise. We are there-
fore confident that our reported prediction accuracies reflect
outcomes that would be obtained in real-world analyses of
similar samples, provided that the training and testing data
are subject to the same sources of noise with compara-
ble SNR.

Sampling the vesicle orientational distribution

Because projection images capture only a relatively small
portion of the total vesicle surface, phase fractions calcu-
lated from individual vesicles can vary substantially depend-
ing on the orientation of the vesicle (Fig. S9). This can result
in large uncertainties in the mean area fraction calculated
from a sparse data set in which the orientational distribution
may be undersampled. To estimate the uncertainty in re-
ported phase fractions, we simulated experiments in which
the mean phase fraction was calculated from a data set of
N vesicles with random orientations; repeating the experi-
ment a large number of times provides an adequate sam-
pling from which to calculate the standard deviation of the
mean and thus estimate the uncertainty inherent to a single
data set. Fig. S12 demonstrates this procedure for vesicles
with a ground-truth Lo fraction of 0.3 and varying N from
1 to 1000, in each case simulating the experiment 1000
times. Consistent with Fig. S9, the Lo fraction measured
from individual vesicles is broadly distributed between
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0 and 0.37. As the number of vesicles in the data set in-
creases, the distribution of the mean phase fraction narrows
considerably; for N = 500 (Fig. S12 e), the standard devi-
ation is =0.005. Fig. S13 plots the standard deviation as a
function of N for data sets S1-S5 (corresponding to domain
area fractions 0.1-0.5). For data sets of the size used in this
study, the standard deviation is less than 0.005.

CONCLUSIONS

We report on a new application of ML to classify the phase
state of lipid bilayers in cryo-EM images. To mimic the sce-
nario of lipid rafts in eukaryotic plasma membranes, we
analyzed synthetic images of phase-separated vesicles con-
structed from MD simulations of L.d and Lo phases. In pre-
vious work, we showed how membrane thickness can be
measured in cryo-EM projection images (21). When these
measurements were made locally, the distribution of ob-
tained thickness values (i.e., unimodal vs. bimodal) was
used to infer phase coexistence. However, there are limita-
tions to this approach: 1) because the local thickness mea-
surement is quite noisy, thickness distributions of the
separate Lo and Ld phases are broad and overlapping,
such that a large portion of the bilayer cannot be unambig-
uously classified as Ld or Lo by thickness alone (see Fig. S6
¢); and 2) even had we attempted classification using thick-
ness or any other local measurement, we had no means of
assessing accuracy. The current work represents a signifi-
cant advance by addressing each of these limitations: 1)
rather than using scalar thickness measurements, the full in-
formation content of the image—i.e., the local intensity
variation in the direction normal to the membrane—is
used to determine the local phase state; and 2) by analyzing
ground-truth simulated data sets where the actual phase state
is known, we are able to assess and compare the accuracy of
different classification methods in addition to testing the
performance of the models in the presence of heterogene-
ities in both vesicle size and domain size.

Our most important finding is that ML methods can clas-
sify the phase state of the bilayer at accuracies exceeding
90% for the conditions that were simulated. Supervised
methods such as LR and GBT showed the highest accuracy,
while unsupervised methods such as k-means and k-medoids
closely followed. Notably, unsupervised methods exhibited
greater accuracy than some supervised methods, show-
casing their potential for analyzing stand-alone experi-
mental data sets and characterizing nanodomains in the
absence of training data. In comparing results from super-
vised and unsupervised ML methods, we do not wish to
imply that one is intrinsically superior to another; indeed,
compared to classification based on segment thickness
alone, each of the ML methods showed significantly
improved performance. Instead, the choice between
methods depends on the scientific questions being asked
and the data that are available.

Detecting nanoscopic lipid domains

We observed that prediction accuracy decreased for sam-
ples positioned in the middle of a tieline where approxi-
mately equal fractions of each phase are present, owing to
the presence of domain boundaries that are particularly
prone to misidentification in a binary classification scheme.
Extensive domain interface is a hallmark of nanoscopic
phase separation, and the ability to correctly classify bound-
ary segments is thus a key target for future development. It
must also be recognized that additional challenges are
encountered in vitro and in vivo that are not accounted for
in our in silico data sets; these include variability in physical
parameters such as vesicle composition and ice thickness, as
well as instrumental parameters such as defocus length (26).
Despite these limitations, the ability to directly image and
decode nanoscopic membrane features will likely position
cryo-EM at the leading edge of membrane biophysics in
the years to come.

SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
2024.04.029.
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