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In this work, we consider systems whose components suffer from clock offsets and quantization
and study the effect of those on a reinforcement learning (RL) algorithm. Specifically, we consider
an off-policy iterative RL algorithm for continuous-time systems, which uses input and state data to
approximate the Nash-equilibrium of a zero-sum game. However, the data used by this algorithm are
not consistent with one another, in that each of them originates from a slightly different time instant
of the past, hence putting the convergence of the algorithm in question. We prove that, given that
these timing inconsistencies remain below a certain threshold, the iterative off-policy RL algorithm
will still converge epsilon-closely to the desired Nash policy. However, this result is conditional to a
certain Lipschitz continuity and differentiability condition on the input-state data collected, which is
indispensable in the presence of clock offsets. A similar result is also derived when quantization of the
measured state is considered. Finally, unlike prior work, we provide a sufficiently rich data condition
for the execution of the iterative RL algorithm, which can be verified a priori across all iteration indices.
Simulations are performed, which verify and clarify theoretical findings.
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1. Introduction

Cyber-physical systems (CPS) are systems combining multiple
actuating and sensing components, which operate and synchro-
nize via communication and computational devices. However,
this synchronization is almost always imperfect, leading to dis-
crepancies — clock offsets (Okano, Wakaiki, Yang, & Hespanha,
2017) - in the way each component perceives time. The presence
of such offsets can be especially threatening to the proper op-
eration of CPS: unless appropriate precautions have been taken,
it can potentially cause instability of the system or its learning
components.

Reinforcement learning (RL) techniques have been employed
to augment CPS with more advanced autonomous capabilities, al-
lowing them to derive optimal decision-making policies via inter-
actions with the environment (Sutton & Barto, 2018). These can
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also be used in tandem with game-theoretic concepts (Busoniu,
Babuska, & De Schutter, 2008), to obtain policies that are not only
optimal, but also resilient against adversarial agents (Vamvoudakis
& Hespanha, 2017). In this context, Jiang and Jiang (2014) devel-
oped an off-policy reinforcement learning algorithm that gathers
input and state data from the CPS, and uses them to approximate
an optimal stabilization policy without knowledge of the system’s
dynamics. The authors in Modares, Lewis, and Jiang (2015) ex-
tended this algorithm in a game-theoretic sense, to obtain policies
that are also resilient to adversarial injections.

In the two aforementioned works, an analysis was carried
out to show that the proposed off-policy RL algorithm is con-
vergent, despite the errors generated from approximating the
value function using neural networks. However, in the presence
of clock offsets and quantization, this analysis is no longer valid
or applicable; no matter how small a clock offset may be, it
can lead to the injection of uncontrollably large errors in the RL
algorithm, owing to the offset’s inherent nonlinear nature. The
purpose of this study, therefore, is to fill this gap in the literature:
by considering the fact that clock offsets and quantization may
have affected the data used by the off-policy RL algorithm, we
derive conditions - in the form of certain Lipschitz continuity and
differentiability assumptions - the satisfaction of which allows
for convergence of the algorithm to still be attained.

0005-1098/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.
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Related Work: Various RL algorithms can be traced in the
literature, often employing deep neural networks for model ex-
traction (Li et al, 2022; Zhao, Wu, Li, Chen, & Zheng, 2022).
One famous family of RL methods, known as Adaptive Dynamic
Programming (ADP), comprises algorithms that collect input-
state data from the trajectories of the system, and use them to
solve the underlying Hamilton-Jacobi-Bellman (HJB) equation.
This procedure can be done either with knowledge of the system
model (Abu-Khalaf & Lewis, 2005) or in a model-free man-
ner (Jiang & Jiang, 2014; Kiumarsi, Lewis, Modares, Karimpour, &
Naghibi-Sistani, 2014; Vamvoudakis, 2017), and provably leads to
the estimation of the optimal control policy for the system. It can
also be extended to solve multi-agent optimal decision-making
problems, often formulated as dynamical games among rational
agents (Nowé, Vrancx, & Hauwere, 2012). Particularly, by solving
an associated Hamilton-Jacobi-Isaacs (HJI) equation, it can be
used to obtain policies resilient to adversarial inputs, which form
a Nash equilibrium for a user-specified cost (Johnson, Kamala-
purkar, Bhasin, & Dixon, 2014; Modares et al., 2015; Vamvoudakis
& Hespanha, 2017). In this work, we will be specifically con-
cerned with the off-policy RL algorithm (Jiang & Jiang, 2014;
Modares et al., 2015), used to estimate the Nash equilibrium from
input-state measurements.

The robustness of the off-policy RL algorithm is an issue of
interest in the literature. Specifically, Jiang and Jiang (2014),
Modares et al. (2015) analyzed the performance of this algorithm
in the presence of errors created due to neural network approx-
imation. It was shown that if the number of neurons employed
to approximate the value function and the control policy is suf-
ficiently large, then the RL algorithm still attains convergence.
However, robustness to clock offsets and quantization, which
behave differently from approximation errors, was not consid-
ered. In Gao, Deng, Jiang, and Jiang (2022), Gao, Jiang, Jiang,
and Chai (2016), an output-based off-policy ADP approach was
designed, which yields policies robust to dynamic uncertainties
and Denial-of-Service attacks; however, the effect of clock offsets
and quantization at the learning stage was also not considered in
these studies, and the studies were restricted to linear systems.
Recently, the robustness of off-policy ADP with respect to noise
was revisited in Pang, Bian, and Jiang (2021), but was focused
on linear systems and assumed a priori that the noise can be
forced to become uniformly small. Hence, the highly nonlinear
effect of clock offsets and quantization on nonlinear ADP remains
unknown, and the convergence of ADP in the presence of those
questionable.

Control theorists have investigated the effect of clock offsets
and quantization in the context of distributed and decentralized
CPS. For example, in Fridman and Dambrine (2009), the authors
study the input-to-state stability properties of a linear system
in the presence of quantization errors, delays and saturation via
the use of Lyapunov-Krasovskii functionals. The problem of tim-
ing discrepancies between actuators and sensors is investigated
in Wakaiki, Okano, and Hespanha (2017), where the discrep-
ancies are modeled as parametric uncertainties. Expanding on
this research, in Okano et al. (2017), the authors consider both
clock mismatches and quantization errors. Finally, in Wakaiki,
Cetinkaya, and Ishii (2019), an adversarial scenario is analyzed,
in which the effect of Denial-of-Service attacks on the system are
considered in tandem with output quantization. All these works,
however, explore the effects of timing errors and quantization
on the controlled system itself; they do not analyze the impact
of those on RL algorithms used to compute the corresponding
control policy.

Contributions: The discussion above renders clear that the
effect of clock offsets and quantization on the off-policy RL al-
gorithm remains an open question. On the one hand, existing
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approaches that study convergence of this RL under the effect
of neural network approximation errors (Jiang & Jiang, 2014;
Modares et al., 2015) cannot be extended to account for the effect
of clock offsets and quantization. This is because, unlike neural
network approximation errors, the errors from clock offsets and
quantization do not necessarily vanish uniformly in the limit,
unless specific conditions hold. On the other hand, existing works
studying clock offsets and quantization focus only on their effect
on the system itself, rather than the corresponding RL compo-
nent (Okano et al., 2017; Wakaiki et al., 2017). The latter is the
purpose of this work, which analyzes the effect of both clock off-
sets and quantization on the off-policy RL algorithm used to solve
a zero-sum game. It is specifically proved that, given that the
magnitude of the clock offsets and the quantization error remains
below a certain threshold, and given certain Lipschitz continuity
and differentiability conditions not conventionally required in ex-
isting approaches, RL will still approximate the Nash equilibrium
e-closely. A preliminary version of this work appeared in Fotiadis,
Kanellopoulos, Vamvoudakis, and Hugues (2022), but i) consid-
ered only relative sensor-actuator clock offsets; ii) assumed that
all sensors and actuators share the same clock; iii) did not study
the effect of quantization; and iv) provided only sketches of the
proofs of the main results. As an additional contribution with
respect to Jiang and Jiang (2014), Modares et al. (2015), we
provide a sufficiently rich data condition for the RL algorithm,
which can be verified a priori over all iteration indices.

Notation. R and N denote the set of real and natural numbers
(including zero), respectively, R, denotes the set of non-negative
real numbers, and N, denotes the set of non-zero natural num-
bers. The operator V denotes the gradient of a function. For
any matrices Z; and Z,, Z; ® Z, denotes their Kronecker prod-
uct. For Z € R4, vec(Z) € R? denotes the vectorized form
of Z. For z € R", ||z|| denotes the 2-norm of z, z @, z =
(22 212y ... Z1zy 25 2pz3 ... z2]" its half-vectorized Kronecker
product, and C, € R"™>*Mn+1/2 the duplication matrix such that
z®z = Cyz®p2).

2. Problem formulation and preliminaries
2.1. Characterization of clock offsets

Consider, for all t > ty, a nonlinear system of the form:
x(t) = f(x(t)) + g(x(t)u(t) + h(x(t))a(t), (1)

where x(t) € R" is the system’s state with initial condition x(to) =
Xo, u(t) € R™ is the control input, a(t) € RP is an adversarial
input, and f : R" - R", g : R" — R™™ h : R" — R™P,
The functions f, g, and h are considered to be locally Lipschitz,
though unknown. In addition, it is assumed that f(0) = 0, so that
the origin is an equilibrium point of the uncontrolled system.

In complex CPS, which are systems of high heterogeneity, the
presence of multiple physical and virtual components is almost
certain. As a result, it is difficult to design a unique, centralized
clock, with which every system component will be perfectly
synchronized (Shrivastava et al., 2016). In fact, it is more com-
mon for every component to have its own clock and a slightly
different sense of time. Consequently, and owing to noise, quan-
tizations and other uncertainties that are commonplace in prac-
tice (Okano et al., 2017), mismatches can occur between two or
more component clocks.

In the dynamics (1) of the CPS, one can observe several differ-
ent kinds of CPS components: the state sensors, which measure
the state x(t), for all t > ty; the actuators, which implement the
control policy u(t), for all t > t; and any potential exogenous
input sensors, which measure a(t), for all t > to. To capture the
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general case regarding these components, let us consider that the
CPS is equipped with n state sensors, m actuators, and p exoge-
nous input sensors. Then, each of the sensorsi € {1, ..., n} := N,
provides us with measurements of the ith element of the state
x(t), which we denote as x;(t), Vt > t,. In addition, each actuator
jef{1,..., m} := N, provides us with values of the jth element of
the control input u(t), which we denote as i;(t), Yt > to. Finally,
each exogenous input sensor | € {1,...,p} := N, transmits
measured values of the exogenous input a(t), which we denote
as aqy(t), vVt > to.

Let us now define a “true/reference clock” c : [t;, c0) —
[tg, o), as the clock that is in agreement with the “real” time;
that is, it holds that c(t) =t for all t > t,. In case that the sensors
and the actuators perceive real time accurately, and are perfectly
synchronized with one another as well as with the true clock, it
will hold that:

%(0) = x(c(0))
i(£) = w(c(t))
a(t) = a(c(t))

Nevertheless, the clocks of the components of a CPS are rarely
synchronized, so it is more accurate to state that:

xi(t) = xi(cf (1)) = xi(t + (1)), i € N,

xi(t), Vt € [ty, 00), i € Ny,
uj(t), vVt € [to, 00), j € My,
a(t), VYt € [ty, 00), |l € N.

u(t) = uj(cj'(t)) = ui(t + §'(t)), j € My, (2)
a(t) = a(c(t)) = a(t + §/(¢)), | € Na,
vVt € [ty, 00). In (2), cl?‘(t),cj”(t), cf(t) € [to, oo) are the clock

functions of each state sensor i € A, actuator j € N, and exoge-
nous/adversarial input sensor | € N, respectively. Accordingly,
the functions 4, ;' and &} are the clock offsets of each of these
components from the reference clock, defined for all t € [ty, 00)
as

§i(6)=ci(t)—t, i€ N,

) =cl(t)—t, l € Ng.

When the offsets (3) are nonzero, it is possible for a learning-
based algorithm depending on the data (2) to become non-
convergent or yield wrong results. Therefore, it is of interest
to investigate whether learning retains any kind of robustness
towards clock offsets — at least, in an epsilon-delta sense. In
this work, we will be specifically concerned about learning-
based algorithms used to solve differential-games in a model-free
manner.

2.2. Two-player differential game

A zero-sum game can be defined over the dynamics (1), with
the players being: a) the CPS operator, who wants to optimally
regulate the system; and b) an adversary or an exogenous input,
whose goal is the disruption of this regulation. The utility of such
a game can be defined as:

J(xo; u, @) = fO?Q(X(T)) +u(t)'Ru(t) — y*a(v)"a(e))de,

where Q : R" — R is positive definite, R > 0, and y > 0 is an
attenuation factor. The game is given by:

V*(x) = minmax(x; u, a), (4)

where V* is the optimal value function. We consider that the
game (4) has a unique solution, corresponding to a saddle point/
Nash equilibrium. In general, for such a solution to exist, it is
necessary that y > y*, where y* is the minimum attainable
attenuation factor (Vamvoudakis & Lewis, 2012).
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Algorithm 1 Policy Iteration

1: Leti =0, 2 C R", ¢ > 0. Start with a tuple of policies {ug, aop}
that is stabilizing in £2.

2: repeat

3:  Solve for V;, Vx € £2, in

VVI(x)(f(x) + g(x)ui(x) + h(x)ai(x)) + Q(x)
+ ui(x)"Rui(x) — y*ai(x)"ai(x) = 0, Vi(0)=0. (6)

4:  Let the new policies be given by
1
Ui (x) = =S R™'g (VVi(x),
1
ai11(%) = s W' () VVi(x).
2y

5. Seti=i+1.
6: until i > 2 & sup,ep |[Vic1(x) — Viea(X)| < €.

Following Vamvoudakis and Lewis (2012), the saddle-point
{u*, a*} of (4) satisfies:

w00 = ~ 3R g V),

1
a*(x) = —h"(x)VV*(x),
2y2
Vx € R", where V* solves the Hamilton-Jacobi-Isaacs (HJI)
equation:

VVI(x)f (x) — %VV*T(x)g(x)R"gT(x)VV*(x) (5)
+ %VZVV*T(X)h(x)hT(x)VV*(x) +Q(x)=0, V*0)=0.

Thus, to find the optimal policy u*, one needs to solve the HJI
Eq. (5), but this is too difficult a task to be carried out analyti-
cally. Still, Algorithm 1, which describes the Policy Iteration (PI)
procedure, can be used to approximate V* over a given compact
set 2 C R" (Wu & Luo, 2012).

2.3. Learning-based PI

Although Algorithm 1 can be used to effectively solve the HJI
equation, it has the drawback of being a model-based procedure.
To tackle this issue, the authors in Jiang and Jiang (2014), Modares
et al. (2015) proposed a learning-based PI algorithm, which can
approximate the optimal value function V* without knowing f, g
or h, and by using measured input-state data.

To demonstrate how learning-based PI works, notice that the
system dynamics (1) can be expressed as:

x = f(x) + g(x)ui(x) + h(x)ai(x)
+ g(x)(u — ui(x)) + h(x)(a — a;(x)), (8)

where the functions u;, a; are the same as those derived in the
stepi — 1 € N of Algorithm 1, and the argument of time has
been dropped to simplify notation. Using (6), (7) and (8), the time
derivative of V; along (1) is:

Vi = — Q(x) — ui(x) Rui(x) + y2ai(x) ai(x) (9)
— 2ul, (R — wi(x)) + 2y%a}, ,(x)(a@ — ai(x))).
Consider now the time instants t, t;, with k € {0,1,...,K} ==

KC, such that t > to and t;, > t; for all k € K. Then, integrating

(9) over [t, t;] yields:
ti

Vi) - Ve = [

tk

(-ex)
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Algorithm 2 Learning-based PI

1: Leti =0, 2 C R", € > 0. Start with a tuple of policies {ug, ag}
that is stabilizing in £2.

2: repeat

3:  Solve for V;, u;y1 and a1 over §2 from (10).
4: Seti=i+1.

50 until i > 2 & sup,ep [Vic1(x) — Viea(x)] < €.

— ui(x(0)) Rui(X(1)) + y2a(X(r) a(X(x))
— 2ul (X(T)R(u(r) — ui(x(7))) (10)
+2y2al, , (x(0))a(t) — ax(z ))))dr, keK.

Eq. (10) provides a data-based method to express the value func-
tion V; and the policies u; 1, a;,1. This gives rise to the learning-
based PI procedure, which is described in Algorithm 2, and which
can be implemented using actor-critic networks (Gao & Jiang,
2017; Jiang, Bian, & Gao, 2020; Jiang & Jiang, 2014; Modares et al.,
2015; Song, Lewis, Wei, & Zhang, 2015).

2.4. Learning with clock offsets

It is evident that Algorithm 2 assumes perfect synchronization
between all components of the CPS. As a consequence, it is not
certain whether it will behave well, given even a relatively small
clock offset; Algorithm 2 is, after all, a highly nonlinear process.

Motivated by the preceding, in this work, we will study whe-
ther the learning-based Algorithm 2 is robust - in an epsilon-
delta sense - with respect to clock offsets in the CPS components.
In particular, we will assume that the CPS components provide
Algorithm 2 with the data (2), which have been corrupted by
timing discrepancies. Consequently, at each t > ty, Algorithm 2
receives the following corrupted versions of x(t), u(t) and a(t):

X(t) = [x:(6) Zo(t) ... Za(0)]',
u(t) = [w(t) Ba(t) ... Un(t)]',
a(t) = [a(t) ax(t) ... a(o)]".

Notice that the clock offsets that have corrupted the measured
data are both unknown and time-varying, hence it is not possible
to cross them out. As a result, it is not possible to construct
Eq. (10) for Algorithm 2 and learn the functions V;, u;,1 and ajy4
directly; rather, one is forced to learn the functions Vi, u;y1 and
ai1+1, which satisfy the clock-offseted version of (10):

W) - ) = [ (~ate)

tk

— Gi(X(0))"RW(X(0)) + ¥ ai(X(r)) a(X(r))
— 201}, (X(T)R(E(T) — Wi(X(2))) (11)
+2y%a,, (X(0))a(r) — ai(’_‘(f)))) dr, ke K.

As a result of (11), the following question arises: will the “cor-
rupted” value function V;, as well as the “corrupted” policies
Uiy1, Giy1 converge close to the true ones? In the upcoming
sections, we will see that the answer to this question is positive,
given certain assumptions. In particular, if the clock offsets do
not exceed a §(e)-threshold, and given certain Lipschitz continu-
ity/differentiability assumptions, the functions V;, iliy1 and @i
enter an e-neighborhood of V*, u* and a* over a compact set
£2 C R", after a finite number of iterations in i € N.
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3. Main results

In this section, we will describe the learning-based PI al-
gorithm with clock offseted and/or quantized data and prove
that it can be robust, in an epsilon-delta sense, given certain
continuity/differentiability assumptions.

3.1. Learning-based PI with clock offsets

Since Eq. (11) is infinite-dimensional, it is difficult to solve
explicitly for V; and u; 1, ai1, i € N. Nevertheless, these functions
can be expressed as:

Vi(x) = (w)'"(x) + €' (x),
Uipa (%) = (W) P (x) + €'(x),
aip1(x) = (w ?)Ttﬁ (x) + €'(x),

where w} € R™, wl € RM>*™ 1 € RNa*P are weight matrices,
¢’ : R" — RW ¢* : R" - RM, ¢ : R" — RN are basis
functions such that ¢*(0) = ¢"(0) = ¢%(0) = 0,and ¢/ : R" — R,
€' R" — R", ¢ : R" — RP are approximation errors. It is
known that the approximation errors €/, €' and € converge to
zero uniformly on any compact set 2 C R", as N, Ny, N, — o<.

Still, the weight matrices w}, w}, w are not known in advance
and have to be identified. For this purpose, an actor-critic net-
work structure is employed, which approximates V;, u;; 1 and a1
according to:

A

Vi(x) = ()" (),
i1 (x) = (D} 9" (x), (12)
Gia(x) = (f) ¢°(x),

where W} € R™ are the critic weights, and B! € RM>*™ ¢ €
RNexP are the actor weights. The weights @7, w¥, ¢ then need
to be trained through Eq. (10), so that V;, fli1, di+1 become good
approximations of V;, u;1 and a; 1. However, (10) cannot actually
be constructed, owing to the clock offsets (3) that have corrupted
the measured data. Hence, one is forced to construct the offseted
Eq. (11) instead, and approximate the corrupted functions V;, 1,
Gi;1 in lieu of the actual ones.

Exploiting now the actor—critic structure (12), notice that the
left-hand side of (11) can be approximated as:

Vi(R(6)) — ViX(6)) = (8" (R(8)) — ¢* (*(t)) i} (13)
Additionally, the right-hand side of (11) can be approximated
in terms of the offseted measured data, the actor policies at a
previous step i — 1 € N, and the actor neural networks at step

i € N. Specifically, the two right-most terms in (11) can be
approximated as:

207, 4 (X(T))R(U(r) — Gi(X(x)))
= 2(¢"(X(x))"{'R(U(r) — 4i(X(x))) (14)
=2(((@(r) - W(XO)'R) @ $*(K( ) vec(it),
2y%a;,,(X(r))a(r) — Gi(x(1))
= 2y (¢ X(x))' df(a(r) — ai(X(2))) (15)
= 2%(((@(0) — &RE))T) ® PR )vec(if).
The residual error by approximating (11) with the actor-critic

structure is given, for k € £ and i € N, by

e = B ~ Vie) + [ (QGito)
7%

+ Bi(X(7)) Ri(X(7)) + 207, (X()R(E(T) — Li(X()))
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Algorithm 3 Learning-based PI with Clock Offseted Data
1: Leti = 0, 2 C R", ¢ > 0. Start with a tuple of policies
{Qig, Go} = {ug, ap} that is stabilizing in £2.
2: repeat
Solve for W; through (17) and seti =i+ 1.
until i > 2 & HWM Wi, H <e

oW

— 724 (X())a(X(0)) — 2y 4y, (X(0)a(r) — ai(’_‘(f))))df-

Using (13)-(15), the residual error can be written in a linear form
with respect to the actor-critic weights at stepi € Nforall k € K,
according to the formula:

eix = Ui kWi + By, (16)
where W; = ()" vec(!)" vec(!)'], Wik = [ ¥ ¥4,
and:

- T
Bl = (470D - 9" (K1)
o= [ 2(Gin)

Wy = / g 2y°((a(r) — a(X(0)))') ® ¢*(X(z))'dr,
tk

— W(X(1)))'R) ® ¢"(X(2))'dr,

/

1
Pi = / (Q(»?(r))+a,-(;‘<(r))TRﬁ,-(;‘<(f))
tk
— V2@ a(X(x) )dr.

A standard assumption (Jiang & Jiang, 2014; Modares et al., 2015)
is now needed, requiring the measured data to be sufficiently rich.

Assumption 1. There exist constants n > 0 and Ky € N, such
that if K > K, then 1 % Zk lklI/lk > DNy tmNg+pNg, Vi €N, O

While Assumption 1 is standard (Jiang & Jiang, 2014; Modares
et al,, 2015) and easy to check for i = 0, it can be difficult to
verify a priori for all i € N. To deal with this issue, consider the
i-independent data matrix ¥ = [¥ !I/K]T, where for all

k=0,...,K
EACCAREACE)
f‘kz(Ra(r)) ® ¢U(X(7))dt
W = [,( — 2¢"(x(7)) ®n ¢"(X(1))dz
o= 2y2(a(r)) ® ¢*(X(r))dr

Jik2%(&(r)) @n ¢(X(1))dT

The following Proposition (proved in the Appendix) provides an
i-independent condition for Assumption 1 to hold, for all i € N,.

Proposition 1.
alieN,;. O

If #2min(¥T¥) > 1 then Assumption 1 holds for

Given this condition, the weights of the actor—critic structure
can be trained at each step i € N of the learning process,
according to the least-sum-of-squares law:

W = — (Z L) (Z LBk (17)

The overall procedure is described in Algorithm 3.
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3.2. Convergence analysis

In what follows, we will show that the learning-based PI
algorithm retains robustness with respect to the clock offsets
given certain Lipschitz continuity assumptions. To this end, for
all i € N, consider the function V; that satisfies the Lyapunov
equation:

VVI ()0 (x) +2(®)i(x) + h(x)a(x))
+Q(X) + W(x) Riti(x) — y*@(x) ai(x) = 0. (18)
Additionally, define the following policy tuple:

100 = — 3R '8 (V)
1
2y?
Following the reasoning of Section 2.3, due to (18)-(19), it can be

shown that over the trajectories of (1) we have

(19)

di1(x) = =—h" (X)VVi(x).

W) - e = [ (~Qtao)

— (0 RL(X(7)) + 1 2a(x(1)) ai(x())
IH(( 2)R(T) — f(X(1))) (20)
+ 272, ((O)a() — X)) ) dr, ke K.

The following auxiliary lemma is the first step towards proving
that Algorithm 3 converges close to the desired functions, given
that the clock offsets are uniformly bounded below a certain
threshold, and provided that the number of basis functions is
large enough. However, the following additional assumption is
also required.

"'\ A

Assumption 2. The following hold:

e The functions V; are continuously differentiable on £2, for all
i € N, with locally Lipschitz gradients.

e The trajectories of the state x(t) are Lipschitz on t and
confined in £2 for all t > t,.

e The trajectories of the control inputs u(t), a(t) are Lipschitz
on t and uniformly bounded. O

Define now the function A(t) to be, for all t > ¢y, the greatest
of all clock offsets’ magnitudes:

— X u a
A(t)—maX{gg/avfIS,(t)l, jr_gjavflt?,(t)l, gﬁflﬁl(t)l}.

Then, the auxiliary lemma (proved in the Appendix) is stated as
follows.

Lemma 1. Let Assumptions 1-2 hold, and consider the iteration
provided by Algorithm 3, for all i € N. Then, for all ¢ > O, there
exist constants N, Ny, Ny € Ny, and a strictly positive clock offset
upper bound A* > 0, such that if N, > N;, N, > N}, N, > N} and
A(t) < A* for all t > ty, then it holds that:

sup [Vi(x) — Vi(x)| < e,
XeN
sup ” Uip1(x) — Uip(x ||
XeR
sup ”ai+l — G (x ||
XeR

Remark 1. In the work of Jiang and Jiang (2014), it is proved that
sufficiently good approximation of V;, i1, G;+1 can be achieved,
in the absence of clock offsets, provided there are sufficiently
many basis functions. However, in the presence of clock offsets,
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this result is no longer valid. Instead, as the proof of Lemma 1
demonstrates, a Lipschitz continuity assumption (Assumption 2)
is required, which in turn leads to a different and more challeng-
ing theoretical analysis than that of Jiang and Jiang (2014). O

Lemma 1 studied how well the learning-based PI procedure
can perform at a specific iteration i € N. The following theorem
(proved in the Appendix) uses Lemma 1 to generalize its results
and prove the desired epsilon-delta robustness result that we
sought for. In particular, it shows that Algorithm 3 converges to
an e-suboptimal tuple of policies given that Assumption 2 holds,
that the clock offsets remain below an ¢-dependent threshold,
and that the number of actor—critic nodes is sufficient.

Theorem 1. Let Assumptions 1-2 hold, and consider the procedure
provided by Algorithm 3, for all i € N. Then, for all ¢ > 0, there exist
constants N3*, Ny*, Ny*, i* € Ng, and an upper clock mismatch
bound A* > 0, such that if N, > N}*, N, > N;*, N, > N}*, and
A(t) < A* for all t > to, then it holds that:

sup | Vi) - V*(x)H <e
XEN

sup 1) ~ '] =

sup | 1100 — (9] =

3.3. Learning-based PI with clock offsets and quantization

In this subsection, we consider that the measurements (2) of
the state do not only suffer from clock offsets, but also from
quantization. Specifically, we employ the logarithmic quantizer
considered in Elia and Mitter (2001), Okano et al. (2017): given
ap > 0and p € (0, 1), the quantizer r : R — R is defined as:

Lplag  ify e (pao, plagl,
r(y)=10 ify=0, (21)
—Zplag ify € [—plag, —p"ag),

where ¢ € Z is the integer for which the inequality p“*lag(ly| <
ptap holds. Evidently, the quantization becomes finer as p — 1,
and coarser as p — 0. It is also helpful to define as " : R" —
R", the quantizer which applies the operator (21) entry-wise on
vectors in R".

The quantization further dilutes the measurements of the state
signals; instead of measuring x;(t) as in (2), Vi € N, one now only
has access to the quantized values:

xi(t) = r(x(t)) = r(xi(c{(£))) = r(xi(t + §(1))),

with the whole quantized vector being x(t) = [X;(t) X(t) ...
Xa2(t)]T. Notice that a quantization of u or a will not have any
impact on the learning-based PI, as both the measured and the
actual values of the control input signals implemented in (1) will
be quantized. On the other hand, although the measured value of
the state x is quantized, its actual value is continuous owing to the
continuous-flow nature of (1). As such, discrepancies will exist
between state measurements and reality, which can jeopardize
the convergence of the learning-based PL

To analyze learning-based PI under quantization, the following
Lemma (proved in the Appendix) is needed.

Lemma 2. Let z € D C R" where D is compact. Then,
the quantization error ||r"(z) — z|| is bounded on D. In addition,
lim, »1 [[7"(z) — z|| = O uniformly on D. O

Exploiting Lemma 2, the analysis of the previous subsection
can be extended to the case of quantization. Particularly, one can
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Algorithm 4 Learning-based PI with Clock Offseted and Quan-
tized Data

1: Leti = 0, 2 C R", ¢ > 0. Start with a tuple of policies
{lig, Go} = {ug, ao} that is stabilizing in £2.
2: repeat

3. Solve for W through (22) and seti =i+ 1.
4 untili > 2 & HV,\\/F] — Wl;z H < €.

show that learning-based PI always converges to an € neighbor-
hood of the optimal control and value function, given a suffi-
ciently fine quantizer. The actual equations of the learning-based
PI with quantization will be identical to the quantization-free
case, with the exception that quantized data are utilized instead.
Particularly, the weights are trained as:

K R R 1 K . )
- (Z ‘r”i.TkWiJ<> (Z lpi:rk®i‘k>7 (22)
k=0 k=0

where W; = [(@})" vec(@!)" vec(@®)'", &y == [, 2NN
and: '

R . ) T

Bl = (6°R(0) — 6 6(w)

A

vl = / k2((ﬁ(r) — Ui(X(7)))'R) ® ¢"(X(7))"dr
G

& ZZ/k —2y%((a(r) — a(X(r))") ® ¢(x(x))'d

i = [ Qi) + e R

— YRR aR() )dr.

The procedure is shown in Algorithm 4. For (22) to be properly
defined, we require the following assumption.

Assumption 3. There exist constants 7 > 0 and I%o € N, such

that if K > Ko then £ >0 o WL @i = Al 1w, pn,» Vi €N, D

The convergence properties (proved in the Appendix) of the
learning-based PI under both clock offsets and quantization are
stated next.

Theorem 2. Let Assumptions 2-3 hold, and consider the procedure
provided by Algorithm 4, for all i € N. Then, for all ¢ > 0, there
exist constants N;**, N;y**, NX**, i* € Ny, an upper clock mismatch
bound A** > 0 and a low-bound p* € (0, 1) for the quantizer’s
coarseness, such that if N, > N, N, > N, Ng > N, p €
(p*, 1) and A(t) < A for all t > to, then it holds that:

sup | Vi) -
XeNR

sup [i-16) ~ '] =

w(x)H <e

sup é-106) — (0] =
Xe

4. Simulation results

We consider a two-link manipulator (Modares et al., 2015),
where the state vector is x = [¢q' ¢']", and ¢ € R? and § € R?
are the angular positions (in rad) and the angular velocities (in
rad/s), respectively. The control input u € R? in this model
denotes the torque, while a € R? is the adversarial input (both
in Nm). The objective is to approximate the optimal game-based
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Fig. 1. Evolution of the learning-based PI in presence of clock offsets (top figures) and quantization (bottom figures).

value function V* and controller u* of (4), where Q(x) = 5 ||x]|%,
R =1, and y? = 20. To this end, the actor—critic network (12) is
employed, with basis functions given by polynomials of order up
to 4.

First, we consider a setup where the input data sampled from
the system suffers from clock offsets. To showcase the gradual
deterioration in performance as the magnitude of these offsets
increases, we simulate 7 different cases, in each of which the
clock offsets of the input signals 8;(t), &{(t) take the constant
values 0 ms, 1 ms, 2 ms, 3 ms, 4 ms, 6 ms and 8 ms,
respectively, for all t > tp, i = 1, 2. In each simulation, the first
20 seconds are used for exploration to gather sufficient state-
input data from the system. Subsequently, the learning-based PI
with clock mismatches (Algorithm 3) is carried out with T =
50 ms, by iteratively solving Eqs. (17). The learnt controller is then
implemented in the system for all t > 20 s, where the adversarial
input is a(t) = 0.5sin(t)[1 1]".

The results are shown in Figs. 1(a)-1(c). It can be seen from
Fig. 1(a) that convergence of the learning-based PI algorithm
takes place for all values of the clock mismatch. However, as

seen from Fig. 1(b) and as expected from Theorem 1, the network
weights converge monotonically further away from their nominal
values (i.e., their values when the clock mismatch is zero) as the
magnitude of the offset is increased. Note here that we cannot
directly compare the network weights with their optimal values,
because these optimal values are unknown. However, the weights
of the offset-free case are known to converge uniformly to the
optimal ones (Jiang & Jiang, 2014; Modares et al., 2015), hence
Fig. 1(b) gives some information about how close to optimality
we are at each offset scenario. Fig. 1(c) shows the evolution of the
norm of the state vector for each clock mismatch scenario. In spite
of the persistent disturbance, the closed loop remains bounded
for offsets ranging up to 4 ms. However, the system'’s trajectories
drift to infinity for offsets equal to 6 —8 ms. Finally, Table 1 shows
the finite-horizon performance cost over t € [20, 60], which
increases as the offset increases.

Second, we consider a setup where the state data sampled
from the system suffers from logarithmic quantization, with ap =
1. We specifically simulate 6 different cases, in each of which the
characteristic value p of the quantizer is 1, 0.996, 0.992, 0.988,
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Table 1

Performance cost over t € [20, 60] in each offset scenario.
Offset 0 ms 1 ms 2 ms 3 ms 4 ms 6 ms 8 ms
Cost 16.17 16.18 16.19 16.19 16.2 21.71 1882

0.984 and 0.980, respectively; the value p = 1 is used with a
slight abuse of notation to describe the quantization-free case.
Similarly to the previous setup, the first 20 seconds are used for
exploration, and subsequently the learning-based PI with quanti-
zation (Algorithm 4) is carried out with T = 50 ms, by iteratively
solving Eqs. (22). The learnt controller is then implemented in
the system for all t > 20 s, where the adversarial input is a(t) =
0.5sin(t)[1 1]. The results present a behavior similar to the clock
offset scenario: while convergence of the learning takes place for
all quantizers as shown in Fig. 1(d), the network weights converge
further away from their nominal values as the quantizer becomes
more coarse (Fig. 1(e)). Moreover, for the more coarse quantizers,
the system'’s state diverges under the learnt control law (Fig. 1(f)).

5. Conclusion

This paper considered the effect of clock offsets and quan-
tization on an RL algorithm used to solve a zero-sum game.
Given certain restrictions on the magnitude of these, as well as
some Lipschitz continuity and differentiability assumptions, it
was shown that the game’s solution can still be approximately
computed. Possible future directions include studying the effect
of clock offsets and quantization on online RL algorithms.
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Appendix

Proof of Proposition 1. For all i € N, define the matrix

INy 0 0
0 ImNy 0
Si=|0 GRS, 0 ,
0 0 IpNg
0 0 Y20, (D8 1) @ Ing)

where the O entries indicate zero matrices of appropriate di-
mensions We notice that ¥, = lI/kTS Therefore, it holds that

DY Bl = Y ST = 15T (X B ) s =

2 S,TlI/TlI/S,-. ThlS y1elds

L&

O xmm(leI/)s,-Ts,-
k=0

1 R
= E)\min( WTW ))\min(siTSi )INv+mNu+pNa-

1, while
tlll-l-k lpl k

But STS; satisfies the strict equality Amin(S'Si) =
Amin(&T¥) > K7 by assumption. Thus, we obtain - X ,{
> nIN1;+mNu+pNa’ Vie N+ u
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Proof of Lemma 1. By the Weierstrass approximation theorem,
Vi, Uiy 1, Gip1 can be approximated on £2 as:

Vi(x) = (])""(x) + & (%),

lig1(x) = (}') " (x) + €'(x), (23)
Aipa(x) = (W) (%) + &'(x).

The approximation errors €’ : R" — R, € : R" — R™, & : R" —
RP vanish uniformly on §2 as N,, N,, N, — oo. Substituting (23)
n (20), for i € N, we derive:

0 = YW+ Dk + Eix, k€N, (24)

T v, Wik = (¥ W ¥, and:

where W; = [@}T vec(i Sk

T
Wl = (") — 9" (K1)
t./
vt = [ “2(te) - B )R © 9o,
s

¥ = f = 2y*((a(r) = &(x(x))") ® ¢*(x(r))'dx,

t

’

—/’(Zyzgf(x(f))T(a(f)—&i(X(T)))dT-

Adding and subtracting identical terms in (24), one has
0= tkW+®1k+Alp1kW+Aq§lk+E1ka (25)

where AW, = W — 1,{ and AP = Py — ®; .. Note that from
(25), we have é;; = lI/,kW, + @,k, where e,k = (Allf,kW, +
A+ El‘k) while (16) specifies e; , = sz + <D, k. Since W is
estimated through the least sum of squares law (17) to minimize
the sum of squared errors Zf:o eﬁk (valid due to Assumption 1),

it must hold that >"_,e?, < Y_, &,. Hence:

K K
D et =D (Ei+ AWW; + Ady ), i€ N (26)
k=0 k=0

Subtracting (25) from (16), we obtain:

e + Eik + AVLW; + Ady = B (W, — W). (27)

Multiplying (27) by itself and summing over k leads to
K

1
I<Z(elk+Elk+Alp1le+A@lk) (28)
k=0

Z(w w;)"

where Assumptlon 1 was used. However, owing to (26):
K
E;(ei,k + Eij + AW W; + AD; )

2

2RV (Wi — Wi) > ||W; — Wi,

K
4 . .
< EZ(Ei,k + AVW + AD i)
k=0
< max 4(51 K+ AW ka + AP, k) ,

1<k<K
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which, combined with (28) yields:

max *(Et K+ AY; le + Ad;y) k

29
1<k<K n (29)

> [ ]

Now, notice that given Assumption 2, E, ¢« — 0asN,, Ny, N, —>

oo (uniformly on any trajectories of x on .Q) Additionally, one has
Ad; e = Vi(X(t})) — Vi(x(ti)) — Vi(X(t})) + Vi(X(tr)) and AW W; =
Aix + Bix, where

s = [ (2 400) — N RU(E) — i)
ti
— 2l (D)~ AR — GE)dr,
‘
Buac= [ (<20 = EENTalr) = o)

+ 272(@s (R(1)) — ERO)@E(T) - G(H)) ) dr.
Using Assumption 2, one has:

|A®; k] < IVi(x(tp)) — ViX(E))] + IVi(x(te)) — Vi(X(te))]
<Ly, ||x ” (t) — X(t)|| + Ly, Ix(te) — X(t)

< LV Z |Xl tk
n

= Ly Y ()~

i=1

Xi(t )l + Ixi(te) — Xl(tk)l)

xi(ty + ()l
+ (6 — (8 + 81(6)1)
< LyLe Y (1850 + 185D,

i=1

where Ly, is the Lipschitz constant of Vi on £ and L, is the
Lipschitz constant of x(t) on t, which exist owing to Assumption 2.
Hence, if A(t) < Ay then

|A¢i,k| = 2nLV,-LxAM~ (30)

Inequality (30) implies that A®;; — 0 (uniformly on any tra-
jectories of x on £2) as Ay N\ 0 and N,,N;,N, — o0o. In
addition:

et = [ (2 ae) - SR - )

Ik

— 2fr (R(1)) — EH( ) ROU(T) = (7))

+ |2l (R(r) — ) RU(T) = ()

— 2l (R(1)) — S )RAU(T) = ()|

+ |21 (R(r) — O N)RAT) = ()

— 21 (R(1)) — () RAUT) — (7))

+ |2l (R(r) — )R — (R

— 2l (R(r)) — EE))RAT) - BED))| ) de

:/ k ( ‘z(ﬂi+1(X(T)) — T (X)) R(u(t) — ﬁi(x(t)))‘

tk

|21 (1) — ) ROu(E) — ()|
|21 (R(0) — E )R — (7))
+ |20 - EERONRGEE) — ()] ) dr.
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After using Assumption 2, one has:

X0)| = nla,, LAu,

||1],-+1(X(r)) — Uiy( Ui

lu(z) — u(z )II < mLuAM,
[ ti(x(1)) = Bi(x(7))|| < nlyLeAwm,

‘|5}'(X(f))—gf(>_((f))\| ) uniformly

where Ly, ,, Ly, are the Lipschitz constants of {11, U; on £2, and
L, is the Lipschitz constant of u on t > t; (Assumption 2).
Therefore, since the state is confined in £2 and the control input
u is uniformly bounded, it follows that A;x — 0 (uniformly
on any trajectories of x on £2) as Ay \, 0 and N,, N,, N, —
oo. The proof that B;; — 0 is identical, hence it follows that
AY; . — 0 uniformly. Therefore, due to (29), for every €; there
exist constants NJ', N, N* and a clock mismatch upper bound
A", such that if N, > NJ", N, > NJ', N, > NJ' and A(t) < A™ for
all t > to, then W,- — Wi|| < €;. The final result follows from this

inequality, the uniform convergence the approximation errors to
zero and the boundedness of the basis functions on 2. &

Proof of Lemma 2. Boundedness of the quantization error on D
follows from the boundedness of both z and r"(z) on D. In proving
uniform convergence, let z; be the ith entry of z, i € N4. Then,
there exist three cases:

(i) If z; = O then |r(z;) — zll = O by definition.

ii) Let z; > 0. Then r(z;) = p+1 pag, where £ € Z is such that

ooy < z; < plag. Consequently:

2p 20

14 4

pcgl — —1)<r(z)—z < p'ogg| —— — p
0<p+1 ) ()~ 0<,o+l )

2p
= |r(z;) — zil < p'ao (1 - ?>
Note, plag = p 'p"Tlay < p~'zi < p~'zm where z, =
maXzep (|||, and the maximum exists owing to D being com-

pact. Therefore, (31) becomes |r(z;) — zi| < zm( - ) It is

% p+1
now ev1dent that for all € > 0, there exists p* € (0, 1), where
p* =3 (p*, 1) then |r(z;) — zi] < €. Hence,
uniform convergence is proved.

iii) The case where z; < 0 is similar to ii).

(31)

Proof of Theorem 1. Assume that for some A > 0, A(t) < A,
vt > to. We will follow an induction.

Fori = 0, we have V; = Vo, iy = u; and a4 = aj,
since il = up and Gy = ao. Hence, it follows from Lemma 1
that Timy, , v, co. 30fVo(X), 81(x), @1 (X)) = {Vo(x), ur(x), ax(x)},
uniformly on £2. R

Assume now that limy, y, ny—oo avo{Vic1(X), Ti(X), Gi(x)} =
{Vic1(x), ui(x), ai(x)}, uniformly on $2, for some i € N,. Then, by
the definitions of V;, V; and over the trajectories of u : R" — R™,
a:R" — RP, we have:

( x(t)| =

E)TRU(HE)) + 2u (X(T)Ro (x(7)) ) de

/ fi(x(7)) Rili(x(t ))+ZﬂlTJr](x(r))Rﬁ;’(x(r)))dr
/ P2 ax( ) ax(0)) + 2y %al, (D S((T)) ) de

+ / (2T ax() + 2028, (X )(E) ) de

<

/ () R — o R0 i
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] [ 2w = B R )
t
| [ (26 R0 — e
t
+ f (r2ax()ao) - (o) ax(e) )de
| [ 27 (@) - G e
[ (@ e - aoe)de |, (32)
where v} = u—u;, O = u—1;, v = a—g;and ¥ = a — a;.

Owing to the assumptions of the induction, as Ny, Ny, N; — 00
and A N\ 0 we have:

/ () Rux(2) — o) RI () ) > O,

| 2R = e — o,

t

/ " (a6 ) - 2ol Rl ) dr > 0,

[ ]
f 2y%aj,,(x(7))(@i(x()) — ai(x(t)))dt — 0. (33)
t
In addition, owing to Assumption 1, the definitions of Vi, Uiy,
G;,1 and the inductive assumption, as Ny, N,, N, — oo and A \
0 it holds on £ that

Uip(x) = uip1(x),  Giga(x) = aipq(x). (34)

Hence, from (32), (33) and (34), we conclude that
limy, n, Ng— oo, Ano0 Vi(¥) = Vi(x) uniformly on £2. On the other
hand, from Lemma 1 we have limNu’Nv,Na_)oo’A\o{\A/,-(x), i 1(x),
Gi(X)) = {Vi(x), 11 1(x), @i;1(x)}, uniformly on §2. Combining the
two results, we conclude that for all €; > 0, there exist constants
N3*, Ny*, N;* and a clock mismatch upper bound A**, such that
if Ny > N;*, Ny > NJ*, Ng > N;*, and A(t) < A for all t > fo, it
holds that:

760 = v = 760 = Vi + Wi = v

= %2 + %2 = €2,

|ti1(x) — w1 ()| < |l (x) — ﬁi+1(X || (35)
+ ||t (%) — wia ()] = = + — =€,

”aiﬂ(x ai1(x H ”alﬂ(x - a,+1(X)H
+ @i (x) — a0 <= = + — =€,

which completes the induction. Fmally, from Wu and Luo (2012),

for all €3 > 0 there exists i*, such that if i > i* and x € £2 then:
) [V*(x) = Vix)|| < es, (36)
[ur(x) — uia ()| < €3 |la*(x) — a1 (®)] < es.

Hence, the result follows from (35) and (36). ®

Proof of Theorem 2. The proof follows using Lemma 2 and
reasoning similar to Lemma 1 and Theorem 1. H
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