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ARTICLE INFO ABSTRACT

Communicated by Raghvendra Cowlagi In this paper, we propose a data-driven framework to control morphing airfoils in the subsonic flight regime,
considering high Reynolds numbers with an efficient and safe way to reach a shape with improved values of the
aerodynamic coefficients. The online solution is based on a data-driven controller combined with a surrogate
model and a multi-gradient descent algorithm. Without full knowledge of the aerodynamic parameters (lift,
drag, and pitching moment coefficients), the learning framework searches for an airfoil shape that minimizes a
metric of performance associated to drag, lift, and pitching moment coefficients. The solution uses online data to
improve the accuracy of the predictions of the aerodynamic coefficients provided by the surrogate model along
the trajectory. The optimization framework focuses on subtle airfoil deformations to assure a smooth trajectory
between the initial and the final shape. Finally, the efficacy and the robustness of our proposed solution was
shown in numerical examples, resulting in a significant reduction in the prediction error.

1. Introduction

In aerospace design, drag reduction is a desired target due to fuel burn cutback, which has a positive impact on greenhouse gas emissions. To
achieve reduced drag, aerodynamic shape optimization is currently used. Numerical optimization can enhance the consistent exploration of the
design space and lead to trade-offs which would be difficult to achieve without resorting to numerical tools. One strategy to achieve reduced drag
is the use of morphing configurations [1-4].

The advent of composite materials and advanced control techniques enable the design of morphing structures that can adapt to varying flight
conditions with optimal performance. Moreover, morphing configurations eliminate the presence of gaps and steps which are typical in high-lift
devices. Airplanes that employ morphing technologies can achieve optimal performance by minimizing drag over the entire flight envelope and
leverage the use of laminar flow technologies [5].

Researchers have shown strong interest in morphing structures over the years. For instance, the work of [6] introduces a methodology of
morphing which combines machine learning and adaptive dynamic model inversion control capable of learning the required shape of a morphing
smart block for a given trajectory. The use of machine learning theory in morphing structures is also discussed by authors in [7] where they consider
a Q-learning method combined with analytical aerodynamic calculations to determine the optimal shape by changing the maximum camber location,
the airfoil incidence, thickness, and the camber. The investigation in [8] proposes a deep neural network and reinforcement leaning technique as a
control strategy for shape-memory alloy actuators in the context of a morphing wing. A deep deterministic policy gradient (DDPG) algorithm based

Abbreviations: ADflow, Open-source computational fluid dynamics and shape optimization solver; ANK, Approximate Newton-Krylov; CFD, Computational Fluid Dynamics; CRM,
Common Research Model; DDPG, Deep Deterministic Policy Gradient; DNN, Deep Neural Network; DOF, Degree of freedom; FFD, Free-form Deformation; HF-Model, High-Fidelity
model; HPC, High-performance computing; LTI, Linear Time-Invariant; MAE, Mean absolute error; MGDA, Multi-gradient descent algorithm; MUSCL, Monotone Upstream-Centered
scheme for conservation laws; RANS, Reynolds-Averaged Navier—Stokes; PTC, Pseudo-transient continuation; PyGeM, Python Geometrical Morphing; ReLU, Rectified Linear Unit; UAV,
Unmanned Aerial Vehicle.
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Nomenclature

a angle of attack S,T,U vectors on parallel-piped region used for FFD

ay,ay, a3, MGDA parameters ulk],ylk] input and output at time step k of a morphing airfoil sys-
B;,By; lower and upper constraints on values of ¢, ¢;, and c,, tem

¢, ¢q.¢,, lift, drag, and pitching moment coefficients U, y, reference trajectory (input and output)

f c[(~), f cd(-), fcm(~) nonlinear functions of ¢;, ¢; and ¢, Xy, Xp initial and final shapes

m number of steps to morph in every iteration X[k] states (x,X»,...,Xyq) at time step k of a morphing airfoil
N prediction horizon system

() activation function of neural network x;[k] state i at time step k of a morphing airfoil system

Re Reynolds number (x4,y5) ordered pairs that define an airfoil shape

on the Actor-Critic framework is proposed in [9] to solve the problem of deep reinforcement learning morphing control in continuous action space
applied to a bionic bird wing-foldable UAV model.

In our recent work [10], we developed a data-enabled predictive controller allied to a surrogate model and a simulated annealing search
algorithm to safely actuate a morphing airfoil according to a lift constraint. The present work extends our previous results and incorporates a multi-
gradient search algorithm allied to deep neural networks to find higher performance shapes in a multi-objective optimization problem with safety
constraints related to lift, drag and pitching moment, and measurements collected online in a certain flight condition. Unlike the aforementioned
studies, this work aims to search for shapes with better values for the three aerodynamic parameters and takes advantage of measurements collected
online to predict trajectories between the initial and final shapes that minimize the effect of morphing on the aircraft stability characteristics for
efficiency and safety.

Contributions. The contributions of the present paper are threefold. First, we develop a surrogate model, based on a deep neural network (DNN),
to perform an offline prediction of the values of drag, lift, and pitching moment using the morphing airfoil model developed in [10]. Then, a
multi-gradient descent search algorithm (MGDA) is used to find an improved shape and the resulting trajectory. Finally, we develop a data-based
learning algorithm to prevent the system from reaching unsafe conditions during the shape morphing process.

Structure. The remainder of the paper is structured as follows. Section 2 formulates the problem and provides relevant mathematical background.
In Section 3, we describe the surrogate model to predict the aerodynamic parameters, while Section 4 presents the multi-gradient search algorithm.
We present results related to the data-driven shape controller used during the online learning in Section 5. The online learning algorithm used to
prevent the system from unsafe conditions is introduced in Section 6. Finally, Section 7 concludes the present work and discusses future research
directions.

2. Problem formulation

Consider an airfoil that can change shape in one dimension (1D), i.e., in the y-direction, starting from a baseline shape. We shall use the
NACA 2412 airfoil as the baseline configuration since it is widely used in low-speed, general aviation wings. The shape and its corresponding
computational fluid dynamics (CFD) surface mesh are defined by 1,102 ordered pairs (x,, y,) distributed over the surface of the airfoil. In order to
control the shape, instead of using all the 1, 102 pairs, we shall instead use 20 points by applying a technique called free-form deformation (FFD)
[11,12].

2.1. Morphing airfoil modeling

Define the morphing airfoil as a discrete-time dynamical system of the form
x[k + 1] = x[k] + ulk]
ylk] = f(x[k]) = [f,, (x[kD), fcd(X[k]),fcm(X[k])]T, k=0,1,...,L, x[0] =%,

where x[k] € R? is the state of the system, u[k] € R?0 is the control input that drives the position of the ordered pairs, and y[k] € R? is the output
vector consisting of the lift, drag, and pitching moment coefficients at a given shape, i.e., y=| fc/(')’ fe y ) fe ()]T, where fc/ (RO LR, fcd :
R¥ - R, and f, o - R?° - R denote the unknown nonlinear functions representing the lift, drag, and pitching moment coefficients, respectively.
The following assumptions are now needed.

1)

m

Assumption 1. The system (1) is stabilizable and x[k] can be measured for all values of k € {0,1,...,L}. [

Assumption 2. The nonlinear functions fq(~), fe d(-), and fc,,,(') are bounded and continuous. Moreover, small variations on the shape x[k] for
all values of k € {0,1,..., L} imply small variations on the values of fcl(~), fcd(-), and fcm(~). This assumption is directly related to the physical
characteristics of the phenomenon and does not affect the size of the search space. []

Assumption 3. The flight condition, defined by the angle of attack (a), Reynolds (Re), and Mach numbers, remains unchanged during the whole
morphing procedure. []

Let X C R? be the set of all the states reachable from the origin in k steps of the system (1), i.e., the set of all states x[k] obtained starting
from the initial condition x[0]. The purpose of this work is to find an improved shape denoted as x* € X that has an increased value of ¢;/c,, an
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increased value of ¢;, a reduced value of ¢, and a desired |c,,| not greater than the initial value. The improved shape can be found by solving the
following multi-objective optimization problem:

L fe, X[LD)
m;rélngrzléze Fx) =[ —m s —fo &ILD , fe, (X[LD) ]
subjectto  x[k+ 1]=x[k]+ul[k], Vke{0,---,L—-1}
S, x[LD) = f,,(x[0D) )

foyGILD) < £, (xI0D)
| £, GILD| < | £, (<I0D) |
x[0] = x.

Since fq(-), f cd(')’ and fcm(-) are unknown nonlinear functions, a surrogate model must be constructed. This problem can be summarized as
follows.

Problem 1. Find a shape with higher (Z—I ), higher ¢;, lower c;, and feasible c,, that can be tractably estimated given that the functions fq(~), fcd ),
d
and fcm(~) are unknown. []

Since morphing the wing airfoil can affect the stability of the aircraft, we will morph the shape while we guarantee efficiency and safety.
Efficiency means that morphing occurs only when a new shape x[-] with improved values of fc,(')’ fcd(-), and f cm(') exists and can be reached;
while safety means that the trajectory from the baseline to the new shape will not reach an intermediate shape with “unsafe” values. Thus, the
constraints can be mathematically described as follows:

o (xIKD) > 0.98, (x[0]),

Jo, (<KD < 1.02,, (x[0]),

| o, (x[KD | < 1.05] £, (x[OD) .
vke (1,2, ...,L-1}.

3

It is known that a surrogate model has inherent errors on the prediction and thus in order to improve the prediction of fc’(~), f Cd(~), and fcm(-),
we shall use data gathered along the system’s generated trajectories. This problem can be summarized as follows.

Problem 2. Estimate fc, ), fcd(-), and fcm(~) in an online manner, using data gathered along the trajectory of (1) while preventing the system from
reaching any “unsafe” values during the morphing procedure. []

3. Surrogate model and shape optimization

Here, we will deal with Problem 1. The approach used for modeling is based on a DNN where the training dataset is generated by using a CFD
solver, for which more details are provided in Section 3.3. Once the surrogate model is obtained, an MGDA will be used to solve (2). Although the
CFD simulations can provide accurate predictions of lift, drag, and pitching moment coefficients, i.e., ¢;, ¢;, and c,,, respectively, they still require
a considerable computational cost. We are thus interested in developing a surrogate model based on a DNN to accurately predict the aerodynamic
parameters. This development consists of a generation of 9,600 morphing shapes, from a baseline shape to train 3 fully connected DNNs.

3.1. Parametric method

The FFD technique has been used in shape optimization [5,13] and is based on the tensor product trivariate Bernstein polynomial [14-16] that
inserts the shape representation into a rectangular box composed by the control points. A subsequent transformation recomputes the position of the
solid points with respect to the modified points of the lattice.

The vectors S, T, and U define the size and the orientation of the control lattice. The lattice is uniformly layered by planes in their directions
with several deformable cuboids to embed the object as shown in Fig. 1. Given several established basis functions (trivariate Bernstein polynomials),
the changing positions of the vertexes of the cuboids (FFD control points) cause the inner model to deform [13].

Every object point X (x, y, z) interior to the control lattice has (s, 7, u) coordinates in the coordinate system fixed to the FFD box as follows,

X=Xo+sS+T+ul. 4

Let P, il = 0,:+,1,j=0,:+,mk=0,--,n be the control points on the lattice. The deformation is represented by a movement of the control points
Py from their positions. The new position of an arbitrary point X * (x(s), (), z(u)) inside the lattice is computed as,

1

m n
* _ AN A m\ . m—j,j n\ o _ ok kp
X*(x(5), (), 2(w) ;0 <,~>(1 $)'7s [;) (J.)(l 0"t (Z;) <k>(1 " *u P,,k>] : ®)

Note that, FFD can then be used to deform an object in 2D or 3D spaces, regardless of the representation of this object. Instead of manipulating
the surface of the object directly, we will move the FFD control points to obtain a new shape. The displacement of a point inside the lattice is
described by a third order Bézier tensor product. The control lattice of the parallel-piped FFD design used to morph the airfoil shape is shown in
Fig. 1, which is implemented into a standalone Python package named PyGeM.
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(a) Free-form deformation (3D). (b) Free-form deformation (2D).

Fig. 1. The parallel-piped lattice [10].

Mesh with 142,029 cells

X

100

ARSI
TR
X
S

W
s
\\\\‘sﬁo‘:‘
%
R

Mesh with 142,029 cells

50

Wy
/////

///5
/0
/

iy Wy,

/]
iy
7
7

K
3%
>" o9
%
(%

iy
-
iy

iy
0 0.05 0.1
CoordinateX

1]

W
A

0.01

!

CoordinateY
o
[11T]
i
1Ml ll,]l
I

0.005

\\\\\\\\\\\“
\

=
=
==
=
==
==
—=
—
T

W
N

N
XN

W\
N
R

N

N
o

N
§
N
CoordinateY

-0.005

04 06 7 ‘ ==
CoordinateX

- 001 g i
'1 OO 0.985 0.99 0.995 1 1.005

CoordinateX CoordinateX
(a) Far field. (b) Airfoil wall.

T

Fig. 2. Computational mesh with 142,029 cells.

Using the NACA 2412 airfoil as a baseline configuration, a new airfoil shape is obtained by vertically moving the FFD control points as shown in
Fig. 1b. The (x,, y,) coordinates of the new shape are computed using (5).

3.2. Mesh generation

The computational meshes for the airfoils considered in this work consists of 1,102 points along the surface and 130 points in the off-wall
direction. The meshes are generated using a cluster, a cutting edge high performance computing (HPC) resource at Georgia Tech equipped with
Dual Intel Xeon Gold 6226 CPUs @2.7 GHz (24 cores/node) [17]. The mesh generation approach is implemented in the open-source module pyHyp
[18], a hyperbolic mesh generator used to generate high-quality structured mesh. Fig. 2 shows the computational mesh for the NACA 2412 airfoil.

3.3. ADflow-CFD data generation

To obtain the values of ¢;, ¢;, and c,, for different airfoil shapes, we will use high-fidelity CFD simulations performed with ADflow. ADflow is
an open source CFD solver [19] and has options to solve Euler, laminar Navier-Stokes, and Reynolds-Averaged Navier—-Stokes (RANS) equations
in steady, unsteady, and time-spectral modes, with multi-block structured and overset meshes. The governing equations are discretized using the
finite volume method with first and second order stencils. The in-viscid fluxes are discretized by using 3 different numerical schemes: (i) the scalar
artificial dissipation scheme [20], (ii) a matrix dissipation scheme [21], and (iii) a Monotonic Upstream-centered Scheme for Conservation Laws
(MUSCL) based on the works of [22] and [23]. The viscous flux gradients are calculated by using the Green-Gauss approach while the residual
equations can be converged with four distinct algorithms. An Approximate Newton-Krylov (ANK) solver is implemented and can be used as a
globalization scheme for the full NK algorithm [24]. We use the Spalart-Allmaras (SA) turbulence model [25] as closure for all CFD simulations that
are part of this work. The numerical methods and models in ADflow have been validated in [5,26] against experimental airfoil data.

For all the CFD simulations used in the data generation, we choose a 12th order decay in total residuals magnitude as a relative convergence
w _ IRYIL

el = R where the superscript fs refers to the free-stream properties. We observe that this
o 12

criterion. The relative convergence is defined as 7
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stopping criterion is reached, in general, after 2,000 nonlinear iterations for the test cases. For the SA turbulence model, used in this study, the
convergence is proved in [24].

We follow best practices from the CFD literature [27,28] to assure that our CFD simulations are able to reproduce flight conditions as closely
as possible. This is compatible with current aerospace industry standards and aerodynamic development practices [29]. Our meshes are composed
of a number of cells and nondimensional distance from the first cell center to the wall such that the relevant physical phenomena are captured,
including turbulence and separation effects.

3.4. Shape generation

For the CFD analysis, we discretize the airfoil using the 1,102 points distributed over the surface. This quantity of points is necessary to obtain
accurate values of lift, drag, and pitching moment coefficients, ¢;, c;, and c,,, respectively, for the high Reynolds number flow considered in this
work.

To generate the new shapes from the baseline NACA 2412, we consider 20 FFD control points able to independently move in the vertical direction,
i.e., 1 degree of freedom (DOF) for each control point. The control points are identified as (x;, x,, ---,X,o) and are evenly distributed as shown in
Fig. 1b. The control points may expand into small variations, resulting in small deformations around the original airfoil. The upper surface is defined
by the control points (x;,x,, -+, x;() and the lower surface is defined by (x;,x;,,:-,X;y) by assuming values in the interval [-2.5,2.5], with pace
0.01, as described in Table 1. Fig. 3 presents the upper and lower bounds and the morphed shapes in a linear trajectory obtained using the FFD
control points with the geometric constraint.

Table 1
Boundary of the FFD Control Points.

max value  min value  upper bound shape  lower bound shape
X1,Xp, %, X1 2.5 -2.5 2.5 -2.5
X115 X120 X0g 2.5 -2.5 -2.5 2.5

Linear trajectory from lower to upper bound

0.100 —— Lower Bound
—=— NACA 2412

0.075 = Upper Bound
0.050
> 0.025
0.000
—-0.025
-0.050

0.0 0.2 0.4 0.6 0.8 1.0

x/c

Fig. 3. Prediction of Trajectory 5. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.5. Data set

To train the DNNs used, we consider one flight condition defined as Re=2¢6, Mach=0.2, and a = 1.0° and 9,600 shapes such that 7,680 shapes
are used as training data, and 1,920 as validation data. Finally, we generate 5,100 more shapes to use as testing data and to evaluate the accuracy
of the predictions. In the present work, we consider only one flight condition to perform a thorough evaluation of the efficiency of the proposed
search algorithm. For future work, we will consider other flight conditions to build the DNNs as discussed in our previous work [10].

Table 2 summarizes the data set used to train the DNN. The numerical experiments to obtain ¢, ¢;, and c,, were performed in the cluster [17].
ADFlow required, on average, 2 hours to simulate 50 morphed shapes using 8 GB memory, and 19 cores. This run-time corresponds to a 12th order
decay in total residuals, which represents a standard engineering-level convergence for CFD analysis.

Table 2
Data set.
Training data set ~ Validation data set ~ Testing data set
Data points size 7,680 1,920 5,100

3.6. DNN

Since the functions f, c,(-), fe y (), and fcm(-) are not known, one can approximate these functions by generating data points by using CFD. To
estimate ¢;, ¢4, and c,, in a more efficient way, we propose to use three fully connected DNNs to approximate fcl(~), fe d(‘), and fcm(-). The input
data of the DNN is the vector X € R??> where the first 3 elements define the flight condition, i.e., the triple (Re, Mach, «) and the remaining 20
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Table 3
DNN Architecture.
Layer DNN (¢;) DNN (c,) DNN (c,,)
Input 1x23 1x23 1x23
Hidden 5x25, 5x50, 5x25, 5x10 5x25, 5x50, 5x25, 5x10 5x25, 5x50, 5x25, 5x10
Output 1x1 1x1 1x1
MAPE 0.39% 0.04% 0.47%
Error Histogram of CL - Testing Data Error Histogram of CD - Testing Data Error Histogram of CM - Testing Data
400 700
500 3504 600
400 300 4 500 4
- Mean Error = 0.94% w 2507 + 400 Mean Error = 1.7%
e Ay t Mean Error = -0.42% c Std Dev = 7.45%
5 300 Std Dev = 4.69% 2 56 Std Day = 0.91% 5 o
o MAPE = 1.46% o} MAPE=101675% © 300 MAPE = 3.77%
200 150 4
200
100 4
100 - 100
0 . . 0 Law 0
-100 -75 -50 -25 00 25 50 75 100 -100 -75 -50 -25 00 25 50 75 100 -100 -75 -50 -25 00 25 50 75 100
Error(%) Error(%) Error(%)
(a) a (b) ca () em

Fig. 4. Error histograms of c;, ¢;, and c,, with 5,100 shapes.

elements define a unique airfoil shape. The DNNs will be trained by using the training data-sets described in Table 2. The training is performed using
Exponential Linear Unit (ELU) as activation function with input data being normalized as discussed in our previous work [10], the loss function
considered is the Mean Absolute Percentage Error (MAPE). The architecture of the DNNs is described in Table 3 and the error histogram for each
parameter using 5,100 shapes from the testing data set is shown in Fig. 4.

We use the DNNs to perform shape optimization to obtain, in seconds or in a few minutes, a safe trajectory to a given shape. A reasonable time
of response is necessary to morph efficiently the shape during the flight. Using directly the ADflow solver to find the final shape, and generate a
safe trajectory to this shape, will take many minutes or even hours since it takes 20 minutes on average to obtain the aerodynamic parameters of a
single shape [10].

The efficiency of the DNN to predict the aerodynamic parameters is shown in our previous work [10] and in different related works. For instance,
the authors in Ref. [30] used ADflow as CFD solver to obtain C;,Cp,C),, and Cp of wing shapes and trained deep neural networks using 135,108
and 47,967 CFD samples for training and validation, respectively. They performed CFD-based optimization using the efficient adjoint solver in
ADflow, which costs 18.4 CPU hours using a 2.6 GHz processor.

The authors in [31] performed gradient-based aerodynamic shape optimization (ASO) of airfoils in subsonic and transonic flow conditions to
investigate the benefits of including transition to turbulence effects into the optimization process. They performed aerodynamic shape optimization
(ASO) framework, which uses ADflow as the flow solver, and the optimization runs took up to 72 hours running on 36 processors Intel Xeon Gold
6154, 3.0 GHz.

4. MGDA

With the developed surrogate models based on DNNs, we deal with the second part of Problem 1 that is to find the shape x* the solve the
optimization problem described in (2). To address this problem, we use the MGDA optimizer to reach a new shape with reduced drag and increased
lift. To find the new shape, we solve an optimization problem with three objective functions that can be mathematically described as follows:

fo/KIL])
fo,RILD)
subject to  x[k + 1] =x[k] +u[k],Vk € {0,---, L — 1}
o/ KILD) > £, (x[0])
foy KIL]) < £, (XI0])
I1f., RILDI| < 11/, (IO ©)

~fo&ILD) . fo, (L)) ]

minimize F(x) = [
ueR?20

Se,(xLkD) = 0981, (x[0]), Vke (1,2, ..., L-1}
fe,(xlk]) < 1.02f, (x[OD), VK€ {L,2, ..., L-1}
| fe,xlkD | < 1.05] f, (x[OD |, Vke{1,2, ..., L-1}.
The multi-objective optimization problem for the morphing airfoil involves three objective functions as described in (6) and it is solved by using

the gradient vectors of fc, ), fcd(-), and fc,,,(') represented by Vfcl, Vf, Py and Vfcm respectively; all gradient vectors are elements of R20,

6
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Fig. 5. Hyperplane = and gradient vectors.

Evolution of X and final shape Ci» Cd» Cm
Trajectory using VfZ, Vf., with 150 steps Trajectory using Vf7 , Vf.,, with 150 steps
1.5 5
s m— CN
2 — 0.3751 — ©(ONN)
3 001 g
S 051 0.350
—1.04=x = x X7 == Xio  ** X13 "' Xi6 X19 b e e
— X = X5 = Xg v oxu X oeroxy o Xao
- X3 - Xe X9 X12 = X15 . X8
T T T T T T T T - Cdo
0 20 40 60 l(80 100 120 140 1024— €4 (DNN)
(time step) L’JG
101—— M S S S S S S S S S S S S S S S S S e w0
0.05 A < - = Cmo
. 0.04925 1 — s -
0.00 1 £0.04920 !
0.04915 1
0.0 0.2 04 . 06 0.8 1.0 0 20 40 60 80 100 120 140
Iteration
(a) Evolution of state X and final airfoil shape. (b) Evolution of ¢, ¢g, and ¢pm.

Fig. 6. Example of a trajectory built by using gradient vectors.

Let 7 be a hyperplane defined as {v € R" | Vch .v=0}. The orthogonal projections of Vf,, and -Vf, on the hyperplane = can be expressed as

vrI v,

/T =Proj,(Vf,) = Vf,, - Hv;il(vfc’")
mll2
TV,

VfE = Proj,(-Vf,) =-Vf,, + H n (VS )
m |2

The gradient vectors are orthogonally projected on the hyperplane z and therefore V f;l;n Vf c’: =0and V f}:n (-Vf C’; ) = 0. Using the hyperplane
m, we search for shapes that improve the value of ¢; and ¢; with small variations of c,,. Fig. 5 illustrates the hyperplane z and the gradient vectors
as vectors of R3 without loss of generality since only the norms of the vectors and the angle between them do matter.

Fig. 6 shows a trajectory that, regardless the value of f.;, moves toward the maximum value of f, while keeping a minimum f_ variation.

It is worth mentioning that all gradient-based optimization techniques may converge to local minima. However, from an engineering perspective,
achieving a local optimum that is better than the initial design is already a useful result [32]. Results in the literature [33-35] indicate that gradient-
based algorithms are adequate for aerodynamic shape optimization. Furthermore, the real-time optimization process highlighted in this paper aims
at finding, during flight, a shape that is compatible with flight stability characteristics and does not deteriorate the aerodynamic performance when
compared with the initial, baseline shape. We suppose that the initial airfoil was optimized during the wing design process in a previous stage, such
that we preserve the aerodynamic efficiency by requiring our morphed airfoil shapes to be at least as efficient as the original ones.

4.1. Morphing direction

The morphing direction VF(x) used is,
VF(x) = aIVfc’;(x) - aZVfc’;(x) - aVf, ()
subject to:
ay+a, =1
a, 20.1 @
a3 €[-0.01,0,0.01]
[vszl=lvse ], =] v,

where a; € R* and a, € R* are the weights of the gradient vectors used to balance the importance of f, (-) and f,, (") in (6) for every iteration

=1,
2

. . . . . . S, ©)
when running the search algorithm. For the search algorithm, we do not directly use the gradient of the ratio < fc’ (_)> as we evaluate each term
cd

7
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separately. The correction term a3V /. (x) is added to ensure that the constraint || f, (X[LDI|| < ||, (x[0D]| is fulfilled. The partial derivatives used
to obtain the gradient vectors V( fq), V(f, y ), and V( fc,,,) can be calculated using central difference approximations or automatic differentiation. In
this work, we use the central difference approximations to obtain the gradient vectors.

4.2. Search algorithm

For every iteration of the search algorithm the new shape is given by,

x[k + 1] =x[k] + p - VF(x[k]),Vk € {0,---,L — 1} 8

where f is defined such that the maximum variation from x[k] to x[k + 1] is no greater than 0.1, i.e., ||x[k + 1] — x[k]||, < 0.1. The values of
ap,a, €(0.1,0.9), a3 €[-0.01,0,0.01], and values of § are chosen such that x[k 4+ 1] minimizes the objective function defined in (6). The MGDA can
be described by the following pseudo-code.

Algorithm 1 Multi-Gradient Search Algorithm.
Input: DNNs: £, (), fq (), f¢, (), flight condition: (Re, Mach, &) and initial shape X,.

Output: x*, shape with improved (f—‘ ), ¢;, and ¢, values.
4

1: procedure

2 Set K, A, €({0.1,0.15,---,0.85,0.9}, B, €{0.01,0.02,---,0.08,0.09}
3: Set A; ={0.01,0.0,-0.01}

4: Set target_cl, target_cd, target ratio_cl cd, MaxQty

5: k=0, x <X,

6 stop_search=0, stop_local search=0

7: while (k< K) and (stop_search ==0) do

8: counter =0, x;;, = [0]

o Obtain V £, (x), V. f7(X), V £, (X), V.7 (X),V f,, (%)
10: for each §, € B do
11: for each a; € A; do
12: for each a; € A; do

. e - g B
13 w=l-as b=
14: VF(x) = aIVfC’[‘(X) - (szfr’;(x) + 113Vme(X)
15: x[k + 11=x[k] + B - VF(x[k])
. S, XIk+11) S, (XIK])
16: <fc4(x[k+1]) > 7o mk])) and (fL,/ (x[k+11)>0.98f, (x[O])) and
17: (f,, &Ik +11) < 1.02f, (x[0])) and Hf (x[k + 1])|| <1.05 Hf (x[O])” then
18: Xy;sc[counter] = x[k + 1]
19: counter = counter + 1
20: end if
21: if counter == MaxQty then
22: break
23: end if
. S, XIk+11) .
24 if <fm i > target_ratlo_cl_cd) and ( fo, &xlk+1]) > target.cl) and
25: (f.,(xlk +1]) < target cd) then
26: stop_search = 1
27: break
28: end if
29: end for
30: end for
31: end for
32: Evaluate and select cost function: Max (C—‘ ), Max(c;) or Min(c,).
€a

33: Obtain the best shape xt*emp.
34: Xlk+11=x7 5 k—k+1
35: end while
36: Evaluate the trajectory and obtain x*.

37: end procedure




J.M. Magalhdes Jiinior, G.L.O. Halila and K.G. Vamvoudakis

Value

Multi-Gradient Search Algorithm

Aerospace Science and Technology 148 (2024) 109106

DNN's V f5(x), V2, (x),Vfe, (x)
@ Surrogate model of shape_list = [ ] Evaluate and Select
¢, Cqand Cp couns t;r —0 —p| main cost function:
T 7 Max (ﬂ‘) Max(er) or Min(cq)
Inputs oy + next element of A; y
Initial shape: Xo awm—l-o Select best shape x*
] Flight condition: (Mach, Re, a) - -A
R _ | a3 ¢« next e]lement off gs in shape_list.
target_ratio.clcd) B1 + next element of B, v
l B= - Bl x[k +1] =x*
|VF(X)[oo
ke—k+1
Initialize Sets v
{randomis} VF(x)=a1V f5 (x)-02V fE, (x)+asV fe,, (x)

A, € {0.1,0.15,--- ,0.85,0.9}
As = {0.01,0.0,-0.01}
By € {0.01,0.02,---,0.08,0.09}

l

Initialize Variables

Max iteration : K
Max qty of elements: MaxQty
k=0, x[k] = Xo

Xtemp = X[k] + B - VF(x[k])

Jei(Xtemp), fea (Xtemp)

OR

Xtemp
good shape?

0
Target reached ?

oR
All triple (a1,a3, 81
tested?

shape_list[counter] = Xemp|

Evaluate final shape

Generate trajectory, i.e.,
sequence of interm. shapes

counter = counter + 1 '

Save final shape

Save trajectory

Trajectory|
Database

Fig. 7. Flow chart: multi-gradient search algorithm.

Table 4

Analysis of the three Trajectories generated using the DNN.

Generate new’
trajectory?

Main function

Max ([—‘)
c

Max ¢,

Min ¢, Description

23.58% at k=70
23.27% at k=77
11.29% at k=79

Trajectory 1 (

a
e
<
&
Ca> ( o )

Trajectory 2
Trajectory 3

23.19% at k=70
22.88% at k=77
10.83% at k=79

—0.34% at k=75
—0.33% at k=79
—0.67% at k=22

Trajectory with focus to maximize ( f—’ )
7
Trajectory with focus to maximize c,

Trajectory with focus to minimize ¢, and then maximize <;—’ )
1

Evolution of X and final shape
Trajectory using V£ Vfl, , Vf., with 80 steps

(time step)

@
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Search Algorithm - a3, a3, B1
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d

€1, Cdr Cm
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23.58% ci/cg at k=70, 23.19% c; at k=70, -0.34% cq at k=75

[
—— ¢ (DNN)
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k
(time step)
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The subsets A; and B, can be chosen randomly, as shown in line 2, such that for every run of the search algorithm, the algorithm provides a
different shape x* that improves the aerodynamic parameters. Moreover, to avoid local minima, we perform an assessment of the cost functions in
every iteration as shown in line 32 of the pseudo-code. It is important to mention that we aim to find shapes, with improved parameters, that are
reachable using a trajectory that does not affect the safety conditions as described in (3). Fig. 7 shows the flow chart of the multi-gradient search
algorithm.
To evaluate the efficiency of the search algorithm using the surrogate model, we generate three trajectories, each trajectory with a focus on an

objective function, line 32 of the pseudo-code. For the three trajectories, we reach a final shape with significant improvement on (cc—’ ), ¢, and ¢y
d

as described in Table 4.
Figs. 8-10 present the trajectories described in Table 4 over three plots: plot (a) represents the evolution of the states x; and the final shape after

80 steps; plot (b) depicts the evolution of «;, a3, and f,; plot (¢) shows the evolution of ¢;,c,, and c,,.

5. Data-enabled predictive shape algorithm

Although MGDA described in previous section and used to solve Problem 1 may provide the desired final shape, it only relies on the trained
model, which does not consider real-time data that may exist during the morphing period from the initial shape to the final one. To this end, the
data-enabled predictive shape algorithm proposed in [10] and based on behavioral system theory [36,37] must be used to solve Problem 2.
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The algorithm has two components; the first is the time window L =T;; + N, where T;,; refers to the length of data collected online that
will be used to predict ¢;, ¢;, and c,, over the prediction horizon N; and the second is the matrix of trajectories, similar to the Hankel and Page
matrices. Note that this matrix has as columns real trajectories with length L, and in this context, a trajectory is an input-output sequence provided
as {uy, yy },f:‘()l. The matrix has full row rank, generated by a sufficiently rich input sequence to be used to recover all the trajectories.

Using the high-fidelity model (HF-Model) based on CFD simulations, we generate T trajectories of length L =T, ; + N to obtain the input data
matrix U, = [U;Eim,U]T]]T and output data matrix Y, = [Y;;m,Y;]T. For a trajectory of length L to be predicted, we use the following notation,

Vini = T oy T 11T,y = 0 (T + 10, YT [T + N7, gy = W10, ...,

MT[Tini]]T, Uy = [MT[Tini +11,... ,MT[Tini + N]]T

We are interested in finding y for a given reference input, u,. Thus, for a given final shape X, we generate a reference trajectory (u,,y,) from
baseline shape X, toward Xy by using the surrogate model. To clarify, denote as state x € R”, input u € R™, output y € R?, and Uy, € RTinimxT |

Uy €eRN™T, Yy € RniPT and Yy € RN
The prediction of ¢;, ¢;, and c,, is given by the solution of the following optimization problem:

N
minimize Y (C(ulTiy; + k) + W(g.0,))
Eaty.oy k=1
Ury tni | | O
0
s.t. Nolg=| "N |+
YTini yini Gy
Yy N 0

B [Ty + k1 < Y[Tp; + k1 < By[Tip; + k1, V€ {1,...,N}
Ul + k1 €V, VkE(L,...,N}
Wi+ k)€Y, Vke({l,...,N}

9

where, C(u[.]) = |Jul.] — u,[.]||2 s R=w, Iy, w, > 1, W(g,0,) = wgllgllé + Wgy||0y||2» Wy, Wo > 0, the weights w,,w, and W, are defined using the
data set described in section 3.5, By; and B are upper and lower constraints used to guarantee small variations on output according to Assumption 2
and /. is an identity matrix of appropriate dimensions. These constraints are based on online gathered data y;,;. Let Ap,, =[A., A, , Acm]T be the
maximum absolute variation on measured (c;, ¢z, ¢,,) for two consecutive intermediate shapes, we have,

10
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Trajectory 4 - Cycle 1

_Trajectory 4 - Cycle 1 HF-Model, Shape Algorithm and DNN
Evolution of X and initial, final shape k=[0, 14], T ini at k=4, Prediction horizon=10
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(a) Evolution of state X and the final airfoil shape. (b) Evolution of ¢;, ¢g, and cp,.
Fig. 11. Trajectory 4 - Cycle 1.
Table 5
Prediction error of ¢;,c,;, and c,, for Trajectory 4.
Cycle 1: y[5] to y[14] Cycle 2: y[10] to y[19] Cycle 3: y[20] to y[24]
Mean Abs Error ~ Max Abs Error ~ Mean Abs Error ~ Max Abs Error ~ Mean Abs Error ~ Max Abs Error
¢ DNN 0.46% 0.47% 0.40% 0.47% 0.25% 0.42%
! Shape Algorithm 0.02% 0.03% 0.03% 0.04% 0.09% 0.12%
DNN 0.49% 0.74% 0.69% 0.85% 0.86% 1.0%
‘¢ Shape Algorithm  0.01% 0.04% 0.03% 0.06% 0.01% 0.05%
¢ DNN 1.02% 2.01% 2.29% 4.58% 4.39% 6.62%
" Shape Algorithm 0.03% 0.05% 0.01% 0.02% 0.06% 0.11%
kw0 0 A, kw0 0 A,
C, C,
Bylkl=y[T;,;1+| O kWed ()c Acd , Brlkl=ylT;;1-| O kwe" Oc Acd
0 0  kw || A, 0 0 kw™ || A,
m m

where y[T},;] is the most recent measurement of (c;,c,,c,,) and we',w?,w" € (0, 1] are correction factors whose values are equal to one as default
but can be used to improve accuracy.

Remark 1. The data-enabled predictive shape algorithm uses a matrix of trajectories, randomly generated, for prediction which might be computed
for every new flight condition. The size of this matrix depends on the horizon of prediction. []

Remark 2. We assume that the state x[-] is known for all values of k € {0, 1,..., L} (Assumption 1) during the entire morphing process. []

Remark 3. The value of u[k] is bounded such as |[x[k + 1] — x[k]||, < 0.1 so that only small shape variations arise and, therefore, small variation of
fe, (), fe, () are produced (Assumption 2). This boundary was defined empirically by evaluating the data points used to build the DNN. []

Remark 4. Each element x;, that defines a shape x, can assume values in the set [-2.5,-2.49, ...,-0.01,0.0,0.01, ...,2.49,2.50] with 501 elements that
are multiple of 0.01. There are (501)2 states to be considered in our search algorithm. []

Remark 5. The constraints (B[], By[-]) are based on online measured data and defined such as the variation of fc,(~), fcd(-) is no greater than
2%. [

To show the efficiency of the data-enabled predictive shape algorithm, we run the algorithm in a trajectory with 25 steps named as “Trajectory
4.” Here we consider L =15, T;; =5, N =10, i.e., we use 5 time steps to predict 10 steps ahead. The matrix of trajectories [ur, YLT 1T € R3%5*425 and
the flight condition is defined as (Re=2e6, Mach=0.2, a = 1.0°). The matrix of trajectories is compound by 425 trajectories, with each trajectory
defined by a sequence of 15 shapes, in total we need 6,375 shapes to build the matrix [Uz, YLT]T. The 6,375 shapes used to build the matrix is a
subset of the training data set described in section 3.6.

Figs. 11-13 show the use of the shape algorithm on “Trajectory 4” over 3 cycles: in cycle 1, we move the first 5 steps of the given trajectory and
predict 10 steps forward; in cycle 2 we move other 05 steps and predict 10 steps forward; and cycle 3, the final cycle to cover the whole trajectory
with 25 steps.

The figures above show that the prediction provided by the shape algorithm is more accurate than the one provided by the surrogate model
based on DNN. At cycle 3, the maximum error on ¢, prediction is about 1.0 drag-count. Table 5 summarizes the accuracy of the proposed shape
algorithm.

It is important to point out that we morph the wing in flight only when the airplane is in a stable and trimmed cruise condition. This procedure
is adopted due to safety reasons since morphing the wing during the flight is a disturbance to the system, affecting the stability of the airplane. For
simplification, the flight condition defined by the triple (Re, Mach, a) remains unchanged during the morphing process as described by Assumption
3.

11
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Trajectory 4 - Cycle 2

_Trajectory 4 - Cycle 2 HF-Model, Shape Algorithm and DNN
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(a) Evolution of state X and the final airfoil shape. (b) Evolution of ¢, ¢q, and ¢p.
Fig. 12. Trajectory 4 - Cycle 2.
. Trajectory 4 - Cycle 3
_Trajectory 4 - Cycle 3 HF-Model, Shape Algorithm and DNN
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Fig. 13. Trajectory 4 - Cycle 3.

6. Data-driven learning algorithm

The previous sections provided the tools to develop the online learning algorithm composed by two steps. The first step is performed offline by
running the MGDA to obtain a candidate for the final shape and define a smooth linear trajectory to reach this candidate shape. The second step
occurs online by running the data-enabled predictive shape algorithm to morph the shape in a safe and efficient way. During simulated flight, which
is the second step of our online algorithm, we do not perform online CFD simulations. Instead, we suppose that a data acquisition system, installed
in the aircraft, will provide us with real-time ¢;, ¢4, and c,, measures. In this paper, we emulate the real-time acquisition system mentioned above by
taking the aerodynamic data generated by using CFD simulations corresponding to the first m steps in the morphing trajectory. The online learning
algorithm can be described by the procedure shown in Fig. 14.

We will now show the efficiency of the proposed online solution in finding a shape with improved values of ¢, c;, and c,,. Here, we consider
m =5 which means that for every 5 steps of morphing toward the final shape, we run the data-enabled predictive shape algorithm to predict the ¢,

¢y, and ¢, values for the remaining 10 steps. For this numerical example, we choose “Trajectory 1” that provides an increase of 23.58% in (CC—‘ )
d

We morph the airfoil over the first 5 steps following “Trajectory 1.” Then, using the data-enabled predictive shape algorithm, we predict the
values of ¢, ¢, and ¢, for the following 10 steps of “Trajectory 1.” This first movement called Cycle 1, as discussed in Section 5, is described in
Fig. 15.

Evaluating Cycle 1 of “Trajectory 1,” it is possible to conclude that this trajectory is not appropriate for the given flight condition. After 5 steps
of morphing, there is no improvement on c,. Moreover, the prediction provided by the data-enabled predictive shape algorithm indicates that the
value of ¢, will not be improved over “Trajectory 1.” At this point, to prevent the system from reaching unsafe condition as described in (3), we
use the collected data to evaluate other potential trajectories given by MGDA. Using the data-enabled predictive shape algorithm, we evaluate other
trajectories to search for a shape with improved valued of ¢;, c¢;, and c,, as shown in Fig. 16.

The assessment of the 3 trajectories shown in Fig. 16a indicates that “Trajectory 5” provides the shape with the best values of ¢, ¢, and c,,. We
keep moving every 5 steps (m =5) over “Trajectory 5,” at k = 44 we have a reduction of 0.7% in ¢; and after 82 steps we reach a shape that provides

a gain of 6.17% on (f—’) with actual reduction in ¢, as shown in Fig. 17.
d

Fig. 18 presents the prediction of the entire “Trajectory 5” provided by the surrogate model and the predictive shape algorithm. The accuracy of
the proposed shape algorithm shown in Table 6 is higher than the accuracy of the DNNs.

12
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Fig. 14. Online learning algorithm.
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This numerical example shows the efficiency of the online learning algorithm in preventing the system from reaching undesired/unsafe conditions
by improving the prediction of ¢;, ¢, and c,, for a given trajectory. Moreover, we can use the data gathered online to evaluate, in an offline way,
alternative trajectories that provide improvement on the aerodynamic coefficients.

For a further understanding of the efficiency of the proposed solution, Fig. 19 presents the values of ¢, ¢, and c,, of HF-Model and DNN for the
entire “Trajectory 1.” Although the final shape of “Trajectory 1” provides an increase of 21.56% in c;, this shape violates the safe constraint defined
in (3) with an increase of 2.36% in ¢; and therefore it must be avoided.
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Fig. 17. The reached final shape of Trajectory 5.
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Fig. 18. Prediction of Trajectory 5.

Table 6
Prediction error of ¢;,c;, and c,, for Trajectory 5.

1¢ t1el

t1el

Max Abs Error Mean Abs Error

DNN 2.21% 2.07%

“ Shape Algorithm  0.18% 0.14%

. DNN 0.24% 0.20%

4 Shape Algorithm  0.03% 0.02%
DNN 11.71% 10.87%

“n  Shape Algorithm  0.16% 0.05%

6.1. Robustness analysis

20 40 60 80

(time step)

(b) Trajectory 5: evolution of ¢;, ¢4, and c¢m.
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The matrix of trajectories in equation (9), used to predict any trajectory of the controllable and observable system defined in (1), is generated
by using the HF-model; this matrix might be generated for every new flight condition. As discussed in our previous work [10], real values of ¢, c,,
and c,, are not always available and therefore the matrix of trajectories is built by using the developed surrogate model.

For the robustness analysis, we run the data-driven shape algorithm over twenty trajectories using the matrix of trajectories provided by the
surrogate model, modeled with inherent errors on the parameters’ prediction. Fig. 20 presents the histograms of these errors for the given flight

condition.

Table 7 presents the robustness analysis of the proposed algorithm for twenty different trajectories. For every trajectory, we consider the use of
five and ten real-time data points for prediction. Fig. A.1 in Appendix A presents the evolution of ¢;, ¢;, and c,, for each trajectory.
The present robustness analysis shows that, even with the error inherent to a poorly trained DNN, we can reduce the error of the prediction

when we use the real-time collected data of the proposed solution.
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Trajectory 1 - ¢;, Ca, Cm
18.59% cj/cq at k=64, 21.58% c; at k=65, 0.0% cq at k=0
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Fig. 19. Final shape of Trajectory 1.
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Fig. 20. Error histograms of ¢, c¢,;, and c,, - Matrix of trajectories.

6.2. Sensitivity analysis

The proposed online learning is compounded by two main parameters: m, the number of steps to morph in every iteration; and N, the length of
the prediction horizon. Since we use a fixed time window of 15, the value of N is defined by the number of real-time data points used for prediction.
It is important to evaluate how the performance of the shape algorithm varies as we increase the number of collected real-time data points.
For this sensitivity analysis, we analyzed 33 different trajectories. For all scenarios, the shape algorithm provides a significant reduction on error
prediction when compared to the surrogate model. Table 8 presents the sensitivity analysis of the “Trajectory 19” to the number of real-time data

points.

As shown in Table 8, the accuracy of the shape algorithm is directly affected by the quantity of real-time data-points used for prediction. Based
on these results, we can conclude that for “Trajectory 19” just two real-time data points are necessary to achieve a significant reduction of error to
predict ¢; in comparison to the surrogate model. In the case of ¢, and c,,, we need to use at least 5 real-time data points to achieve a good reduction
of prediction error. Fig. B.1 in Appendix B presents the evolution of ¢;, ¢, and c,, for “Trajectory 19” for different values of real-time data points.
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Table 7
Robustness analysis of the shape algorithm.
Shape Algorithm w/ noise DNN
Data points ~ Max Abs Errorin¢; ~ Max Abs Errorinc; ~ Max Abs Errorine¢,,  Max Abs Errorin¢;,  Max Abs Errorin ¢y ~ Max Abs Error in ¢,
. 5 1.42% 0.10 (drag count) 0.63% o o
Traj 6 10 0.37% 0.10 (drag count) 0.26% 12.94% 0.10 (drag count) 15.83%
. 5 0.92% 0.24 (drag count) 4.07% o o
Traj 7 10 0.22% 0.1 (drag count) 2.30% 14.83% 0.22 (drag count) 31.22%
. 5 0.32% 0.09 (drag count) 1.27% o o
Traj 8 10 0.26% 0.03 (drag count) 1.27% 0.72% 0.08 (drag count) 1.28%
. 0.06% 0.78 (drag count) 0.73% o o
Traj 9 10 0.04% 0.31 (drag count) 0.48% 0.83% 1.06 (drag count) 1.80%
. 5 0.40% 1.17 (drag count) 0.42% o o
Traj 10 10 0.15% 0.54 (drag count) 0.16% 0.32% 2.13 (drag count) 2.32%
. 5 0.09% 0.31 (drag count) 1.99% o o
Traj 11 10 0.05% 0.17 (drag count) 1.99% 0.47% 0.74 (drag count) 2.0%
. 5 0.49% 0.32 (drag count) 8.03% o o
Traj 12 10 0.41% 0.23 (drag count) 0.65% 0.58% 1.07 (drag count) 8.07%
. 5 0.47% 0.15 (drag count) 3.91%
Traj 1 .94% 1.2 .35%
@13 4, 0.19% 0.08 (drag count) 2.97% 0.94% 7 (drag count) 60-35%
. 5 0.70% 0.29 (drag count) 10.53% o o
Traj 14 10 0.22% 0.39 (drag count) 6.75% 2.83% 1.56 (drag count) 102.57%
A 5 0.58% 0.05 (drag count) 3.40% 5 o
Traj 15 10 0.30% 0.05 (drag count) 3.74% 5.49% 2.09 (drag count) 107.68%
. 5 0.13% 0.09 (drag count) 1.82% o o
Traj 16 10 0.23% 0.14 (drag count) 1.12% 7.04% 0.97 (drag count) 113.81%
. 5 0.23% 0.35 (drag count) 0.22% N o
Traj 17 10 0.18% 0.1 (drag count) 0.21% 0.65% 0.11 (drag count) 0.24%
. 5 0.35% 0.21 (drag count) 1.65% 5 o
Traj 18 10 0.18% 0.18 (drag count) 0.88% 1.19% 0.35 (drag count) 1.65%
. 0.11% 0.44 (drag count) 1.66% o o
Traj 19 10 0.19% 0.24 (drag count) 0.47% 2.81% 0.78 (drag count) 3.54%
. 5 0.21% 0.74 (drag count) 2.22% N o
Traj 20 10 0.14% 0.66 (drag count) 0.22% 4.56% 0.97 (drag count) 5.36%
. 5 0.24% 0.49 (drag count) 0.18% o o
Traj 21 10 0.18% 0.35 (drag count) 0.18% 0.28% 0.65 (drag count) 0.15%
. 5 0.12% 1.36 (drag count) 0.43% N o
Traj 22 10 0.15% 0.66 (drag count) 0.43% 0.15% 0.93 (drag count) 0.39%
. 5 0.49% 0.99 (drag count) 0.17% o o
Traj 23 10 0.51% 0.22 (drag count) 0.18% 0.49% 3.72 (drag count) 0.18%
. 5 0.33% 0.25 (drag count) 0.39%
Traj 2: .34% .2 .32%
24 g, 0.32% 0.28 (drag count) 0.37% 0.34% 0.25 (drag count) 0.32%
. 5 0.14% 1.12 (drag count) 0.24% o o
Traj 25 10 0.12% 0.53 (drag count) 0.18% 0.19% 1.19 (drag count) 0.25%
Table 8
Sensitivity analysis for Trajectory 19.
Shape Algorithm
Max Abs Error in ¢, Max Abs Error in ¢ Max Abs Error in ¢,
2 0.23% 0.50 (drag count) 3.22%
3 0.21% 0.43 (drag count) 3.07%
a 4 0.15% 0.46 (drag count) 2.23%
-g 5 0.11% 0.44 (drag count) 1.66%
3 6 0.16% 0.41 (drag count) 1.28%
5 7 0.21% 0.37 (drag count) 0.88%
o 8 0.23% 0.32 (drag count) 0.46%
E | 9o | 023% 0.28 (drag count) 0.53%
T'.") 10 0.19% 0.24 (drag count) 0.47%
; 11 0.13% 0.20 (drag count) 0.47%
o 12 0.14% 0.16 (drag count) 0.24%
13 0.11% 0.13 (drag count) 0.11%
14 0.07% 0.04 (drag count) 0.19%
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7. Conclusion and future work

In this paper, we performed a study on morphing airfoil technology in the subsonic flight regime, considering high Reynolds numbers and using
the SA turbulence model included in the high-fidelity CFD simulations. We proposed a data-driven framework to control the morphing process with
an efficient and safe way to reach a shape with improved values of the aerodynamic coefficients. The online solution is based on a data-driven
controller combined with a surrogate model and an MGDA. Without full knowledge of the aerodynamic parameters (lift, drag, and pitching moment
coefficients), the proposed learning framework searches for an airfoil shape that minimizes a metric of performance associated to drag, lift, and
pitching moment coefficients. The solution uses online data to improve the accuracy of the predictions of the aerodynamic coefficients provided by
the surrogate model along the trajectory. The optimization framework focuses on subtle airfoil deformations to assure a smooth trajectory between
the initial and the final shape. The efficiency of our proposed solution was shown in numerical examples, resulting in a significant reduction in
prediction error. The proposed online learning algorithm successfully prevented the system from reaching unsafe conditions and predicted, with

high accuracy, a trajectory toward a shape that provided an improvement of 6.17% of the ratio (cc—’) with truly reduction of c¢; and increase of ;.
d
Future work includes the improvement on online search algorithm to find efficient trajectories toward the final shape; the development of a
metric to select efficiently new trajectories to be considered for the morphing process during the flight; the use of data gathering online to improve
the accuracy of the surrogate model prediction; and inclusion of the transition-to-turbulence effects on CFD simulations. Finally, we plan to extend
the current analysis to a 3D morphing wing and evaluate the effect of morphing on airplane stability.
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Appendix A. Robustness analysis

This appendix includes the analysis of 20 different trajectories used to perform the robustness analysis of the data-driven learning algorithm
discussed in Section 6.1. The figures below describe the evolution of ¢;, ¢;, and ¢, for each trajectory considering the use of five and ten real-time
data points for prediction.

Appendix B. Sensitivity analysis

This appendix contains the result of the sensivity analysis of the data-driven learning algorithm discussed in Section 6.2. The figures below
describe the evolution of ¢, ¢, and c,, for “Trajectory 19” considering different quantities of real-time data points.
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Fig. A.1. Robustness analysis using 20 different trajectories.
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Fig. A.1. (continued)

19



J.M. Magalhdes Jiinior, G.L.O. Halila and K.G. Vamvoudakis

Trajectory 14 - Cycle 1

Real time data points=5, Prediction horizon=10

Aerospace Science and Technology 148 (2024) 109106

Trajectory 14 - Cycle 1
Real time data points=10, Prediction horizon=5

gy : ~@- HF-Model S 2
_022) T T mm—a S B | oo TeaT_ e ¢ = St
G 3 ——--—--—~~~~ I8} "'—--—.._.(._--—..~~
1 ~, H ==
0.21 past data . prediction horizon 0.21 past data i prediction horizon Y
102 T 102
——-_——"—!—-_‘\~ -
3 H N——-——___‘__,- o —— s\._-r?—..._~__'—-
1001 o—o ———— 100 1o . . S~ i
e e * —e——e r
0.005 3 0.005 L *
£ : .
S : &
6i656 s ety ol 1Y TN GNP SR GRS - e, ———— e S
0 2 4 6 . 8 10 12 14 0 > 4 6 3 10 12 14
(time step) (time step)
(a) Five real-time data points. (b) Ten real-time data points.
Trajectory 15 - Cycle 1 Trajectory 15 - Cycle 1
0.24 Real time data points=5, Prediction horizon=10 Real time data points=10, Prediction horizon=5
. ] — —8~- HF-Model p |
: e = Shape Al —————— "
& ~—_._._._’_._._‘_'_‘___'_'_—a—w—-"""4_‘ == DNNpe Igo 023] . s e ——t— %
. 1%} L
: - Empmm W = 3 -
- I~ — ——
0.221 == ..past Gata | predlctl-o-n horizon 0.22 —— -;I)a-s-t ;g:— =T = I op e horizon
102 , 102 .,
H / :
S i et stk atn il nlnaie bl 4 3 ______.__,__._.._—.._-:-—.-_._..__,’
100 = 100 ———
0.01 oo 0.01 = = .
§ &
0.00]  om mmtom o o o o oy o o o o e e o o i e o e :
0.00 7 o o e o o i o o o ot e e e o e e e e
0 2 4 6 . 8 10 12 14 0 2 4 6 8 10 12 14
(time step) (timol:f step)
(a) Five real-time data points. (b) Ten real-time data points.
) Trajectory 16 - Cycle 1 ) . Trajectory 16 - Cycle 1 .
Real time data points=5, Prediction horizon=10 Real time data points=10, Prediction horizon=5
-8~ HF-Model P e
0.24 74— — Shaperigo 0.241%
S =e . DNN S 1
e ———— ] ] [ S e ———
past data « prediction horizon past data prediction horizon
101 101
———-———é————————————-—————. ———-———————————-;-—-———————o
3 100 T 3 100 5
99 99
0.01 0.01{ 3 hd —
S §
() e T T T Yy Yy ey ey y—— p—y——" 0.00 s
. O T —— T ——— T g —— i — o —
0 2 4 6 g 8 10 12 14 0 2 4 6 8 10 12 14
(time step) (tim: step)
(a) Five real-time data points. (b) Ten real-time data points.
Trajectory 17 - Cycle 1 Trajectory 17 - Cycle 1
0.345 Real time data points=5, Prediction horizon=10 Real time data points=10, Prediction horizon=5
. ] —- HF-Model
_ N S —— . e = e = :— ;r;‘aNpeAlgo
O L e e e o S G 0.340
4.335 past data ! prediction horizon past data ; prediction horizon
. 0.335
101 1 101
197~ — : T o :
S <= 4‘-“:'.—.:#—_ e e i I\ Mg S T e —— & °—o
100 100
0:0525 0.0525 /
. :
G £ et
§ = g
0.0500 : 0.0500 “—J_.‘___.,_u--n— H
0 2 a 6 8 10 12 14 0 2 4 6 8 10 12 14
(time step) (time step)

(a) Five real-time data points.

Fig. A.1. (continued)
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Fig. A.1. (continued)
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Fig. B.1. Sensitivity analysis for Trajectory 19.
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