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Data-Driven Actuator Allocation for Actuator
Redundant Systems

Filippos Fotiadis

Abstraci—In this article, we consider the problem of op-
timally augmenting an actuator redundant system with ad-
ditional actuators, so that the energy required to meet a
given control objective is minimized. We study this actuator
selection problem in two distinct cases; first, in the case
where the control objective of the system is not known a
priori, and second, in the case where the control objective
is a linear state-feedback control law. In the latter sce-
nario, knowledge of the system’s state and input matrices
is required to solve the corresponding actuator selection
problem. However, we relax this requirement by exploiting
trajectory data gathered from the system, and using them to
iteratively approximate the antistabilizing solution of an as-
sociated algebraic Riccati equation (ARE). Notably, the pro-
posed iterative procedure is proved to be small-disturbance
input-to-state stable even though the ARE associated with
it entails no strictly positive-definite constant term; a result
that significantly extends prior work. Finally, to further ex-
ploit the obtained trajectory data, we show that these can
be used to perform online actuator fault detection without
knowledge of the system’s matrices, and with complexity
lower than that of existing methods. Simulations showcase
the theoretical findings.

Index Terms—Actuator selection, learning, redundancy,
unknown systems.

[. INTRODUCTION

CONTROL system is defined to be actuator redundant
A when: 1) the number of actuators composing it is larger
than the number of high-level control inputs available for control
design; and 2) it is possible to construct any high-level control in-
put using an appropriate choice of actuator commands [1], [2]; a
couple of examples include the ADMIRE benchmark aircraft [3]
and the Innovative Control Effectors aircraft [4]. Owing to their
two aforementioned characteristics, actuator redundant systems
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provide the control designer with plenty of degrees of freedom:
They allow any desired control objective to be precisely achieved
with an appropriate choice of actuator commands, but they also
provide the designer with additional flexibility to optimize other,
completely unrelated specifications. The problem of optimally
allocating these additional degrees of freedom is often referred
to as the control allocation (CA) problem, and comprehensive
surveys regarding it are given in [5], [6], and [7].

Minimizing the control energy expended in the closed loop
is a universal specification in control systems, as it is related to
minimizing monetary cost and increasing the longevity of the
system’s components. In fact, this is one of the objectives in-
cluded in a variety of common control techniques, such as model
predictive control [8] and linear quadratic regulation [9]. Ac-
cordingly, minimizing closed-loop actuation energy is a popular
CA specification in actuator redundant systems [2], [10], where
the additional degrees of freedom provided by the actuation
redundancy are exploited so that the desired control objective
is met while expending the lowest possible control energy. The
solution to this allocation problem is well known and involves
a generalized inverse of the actuation matrix [10], though one
may need to resort to numerical methods in constrained cases
that consider saturation limits [11].

The aforementioned results render clear that actuation com-
mands should be carefully chosen in order to save control energy.
However, the careful selection of the actuators themselves is also
of crucial importance since an inconsiderate choice of these
could also lead to excess energy expenditure. In the optimal
CA problem in actuator redundant systems, this energy can be
significantly large when the generalized inverse of the actuation
matrix is close to being ill-posed [10].

This work draws motivation from the aforementioned facts.
Specifically, since the control energy required to meet a given
control objective in an actuator redundant system may be unrea-
sonably large, we study the problem of augmenting that system
with additional actuators. The actuators should be optimally
selected so that the resulting control energy is minimized, while
also taking into account the constraint that a given control ob-
jective must be simultaneously achieved.! To further generalize
our results, we perform this actuator selection procedure in a
model-free manner by gathering trajectory data from the system
and using them to evaluate the control energy that a given set of
actuators will yield.

Considerable research effort has been put towards solving
the actuator selection problem in a variety of setups. Most

IThis is different than classic minimum energy formulations involving Grami-
ans, which select actuators without taking into account the control objective to
be achieved.

1558-2523 © 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 21,2024 at 14:41:40 UTC from IEEE Xplore. Restrictions apply.



2250

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 4, APRIL 2024

often, one is usually tasked with choosing the actuators of a
system so that either controllability or resilience is maximized.
For example, the authors in [12], [13], [14], and [15] designed
and optimized Gramian-related objective functions, which quan-
tified the minimum energy required to steer a linear system
between two distinct states. On the other hand, in the context
of cyber-physical security, the authors in [16], [17], and [18]
formulated security-related specifications for actuator/sensor se-
lection in order to enhance resilience towards adversarial inputs.
Various other specifications exist as well, such as metrics that
quantify linear-quadratic optimality [19], [20], [21]. However,
the aforementioned studies do not consider the actuator selection
problem in the context of optimal CA. In addition, and most
importantly, all these works consider that the model of the
system, i.e., the system’s state and input matrices, is completely
known.

Learning and estimation are often used as a tool to deal with
unknown dynamics in control systems [22], with applications
that range from robust control [23] to reinforcement learn-
ing [24]. Learning also finds applications in the context of actua-
tor selection. For example, the authors in [25] used classification
methods to optimize indices of dynamic performance, while [26]
used sparse learning techniques and parameter estimation to
select the most control efficient actuators to place on a fuselage.
However, mathematical guarantees, in the sense of proving that
the optimal set of actuators will be learnt, were not provided.
In [27], online learning was used to adaptively select the set of
actuators optimizing a Gramian-based metric of controllability,
without knowledge of the system’s dynamics. However, the
problem of actuator selection in the context of optimal CA,
which requires the employment of different technical tools and
is more theoretically challenging, was not considered in [27],
which motivates our present article.

Contributions: Different from the aforementioned studies,
this article concentrates on the problem of actuator selection in
the context of optimal CA, where one is tasked with augmenting
a redundant system with additional actuators to decrease the
energy expended in the closed loop. Specifically, two actuator
selection metrics are proposed which, if optimized, will lead
to a decrease in the control energy needed to achieve a given
control objective. The first metric applies in scenarios where
the control objective in CA is not known beforehand, and
quantifies the energy expended in the closed loop across all
possible control directions. On the other hand, the second metric
applies in scenarios where the control objective in CA is a linear
state-feedback control law, and quantifies the energy expended
directly across the trajectories of the closed loop.

Unlike most of the existing works in actuator selection (apart
from [27]), the actuators minimizing the proposed CA metrics
are provably selected without knowledge of the system’s dy-
namics and with convergence guarantees, by gathering input
and state data from the system. We achieve this objective of
model-free actuator selection by using a modified version of
learning-based policy iteration (PI), which finds the antista-
bilizing solution of an algebraic Riccati equation (ARE) that
is directly related to the actuation energy expended in the
closed loop. Borrowing the terminology from [28], the proposed
PI algorithm is also proved to be small-disturbance input-to-
state stable (ISS) even though the ARE associated with it has
no strictly positive-definite constant term. This result further
extends prior work studying the robustness of PI [28].

Finally, to further exploit the input/state data gathered in
the closed loop, we show that the learnt ARE solution can be

used to perform online fault detection in a model-free manner.
A similar detection scheme was proposed in [29], where the
solution to an ARE was used to detect actuation attacks by using
the principle of optimality. However, our work improves the
scheme of [29] in two ways: 1) detection can take place without
requiring the high-level control input in the closed loop to be
the linear-quadratic regulator (LQR) corresponding to the ARE;
and 2) no integrals need to be computed in a receding horizon for
detection to take place, rather, only instantaneous measurements
of the state and the control input, thus significantly reducing
computational complexity.

A preliminary version of this work was presented in [30],
in which the proofs of the main results were omitted. In
addition, unlike the present work, [30] assumed knowledge
of the control input matrix, did not study the robustness
of its proposed data-driven algorithm with respect to input
noise, and did not propose any data-driven actuator fault de-
tection mechanism. Finally, unlike [30], in this article, we
also investigate how the proposed approach can be applied to
nonlinear systems.

Structure: The rest of this article is organized as follows.
Sections II and III provide preliminaries and formulate the
actuator selection problem in the context of CA. Section IV
provides a metric for actuator selection when the control objec-
tive in CA is unknown, as well as when the control objective
is a linear state-feedback control law. Section V describes a
method to optimize the actuator evaluation metric of Sections
IV-C and IV-D without knowledge of the system’s dynamics,
and Section VI exploits the output of Section V to perform
model-free actuator fault detection. Possible extensions as well
as limitations are discussed in Section VII, and simulations are
performed in Section VIII. Finally, Section IX concludes this
article.

Notation: The sets C, R, and N will denote the set of
complex, real, and natural numbers (including zero), respec-
tively. For a finite set S, card(S) will denote the cardinal-
ity of S, while 25 will denote the power set of S, i.e., the
set of all subsets of S. The operators ® and & will de-
note the Kronecker product and sum, respectively. Given a
matrix Z € R™", || Z||r will denote the Frobenius norm of
the matrix 2, VCC(Z) = [2’171 221 --- Zn, 1212222 --- me]T
will denote the vectorized form of a matrix, whereas vec™*
will perform the inverse of this operation. Moreover, Bs(Z) =
{X eR™™ : | X = Z||g < 0}, and [Z]; ; will denote the
entry in the ith row and jth column of Z. Additionally,
if Z is square and symmetric, we define as vech(Z) =
(211221 -+ Zn1 22,2232 ... Zn.n)  the half vectorized form of
Z, and as vecs(Z) = [2112221 -+ 2212222232 «+. Zn.n)T
the scaled half vectorized form of Z. We denote as I,, the
identity matrix of order n. For Y € R"*™ and X € R(2®)*(2n)

symmetric, H(X,Y) = [I, -YT|X [_L;/} . For a sequence

of matrices {X;}ien, || X |l = sup;en || Xil|r. For a vector
z € R™, ||z|| will denote its Euclidean norm, whereas [z]; will
denote its ith entry.

Il. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider a continuous-time linear system of the form

&(t) = Azx(t) + Go(t), ©(0) =20, t =0 (1)
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where z(t) € R™ denotes the state with initial condition zy €
R™, v(t) € R™ is the control policy (also referred as high-level
control input),and A € R™*", G € R™ " are the system’s state
and input matrices, respectively. The control policy v(-) satisfies
the following mapping from actuator commands:

v(t) = Bu(t), Vt > 0 2)

where B € R™** is a matrix whose columns comprise the
actuators of the system, and u(t) € R¥ is a vector containing
each actuator’s commands.

Regarding the system matrices defined above, A comprehen-
sively describes how the system’s states, such as the Euler angles
and angular velocities in an aerospace system, interact with
one another. In addition, the matrix G dictates which subspace
of the state space can be actuated. Finally, each column of B
represents an actuator of the system, and the numerical values
of these columns indicate how efficient an actuator is at actuating
a specific direction in the state space.

Throughout this article, it is assumed that the matrices A
and G are unknown. In addition, it is assumed that v(-) is a
prescribed control policy, in the sense that the actuation com-
mands u(+) should be appropriately chosen to precisely achieve
it. For example, v(-) could be a linear state-feedback control
law derived from a pole-placement procedure for system (1), or
a linear quadratic regulator.

A. Actuator Redundancy

In the specific case that B has full row rank and & > m, given
a fixed control policy v(+), (2) has an infinite number of solutions
with respect to u(-). Any systems with these two properties
are called actuator redundant [1], [2], because they have more
actuators than the minimum needed to construct v(-) from w(-).

Definition 1: [2] The system (1) is called actuator redundant
if the mapping (2) from actuator commands to control inputs
satisfies & > m and rank(B) = m. O

B. Optimal Control Allocation

Given that the system is actuator redundant, one is able to
choose u(-) so that (2) holds, while still having remaining
degrees of freedom over further modifying u(-). For example,
consider the control input [2]

u(t) = Blo(t) + B 2(t), t > 0

where Bf = BT(BBT)~! is the Moore—Penrose inverse of 5,
B, = I, — B'B is the null-space projection matrix of B, and
2(t) € R” is an arbitrary signal. Then, no matter how z(t) is
chosen, it always holds that v(t) = Bu(t). It is thus natural
to search for an actuator command vector u(t) that not only
achieves the control policy requirement (2), but also has some
form of minimum energy. This is termed as the minimum energy
CA problem.

Let W = W (B) € R*** be a positive-definite, diagonal ma-
trix that assigns a weight to each actuator, i.e., to each column
of B. Then, the minimum energy CA problem can be mathe-
matically described pointwise in time ¢ > 0 by the following
constrained optimization [1]:

u(rtr)lé%k L(u(t)) = u (t)Wu(t)
s.t. v(t) = Bu(t). 3)

Evidently, the optimization problem (3) requires that the actuator
commands u(-) be chosen so that the control objective (2) is
met, while using the remaining degrees of freedom to minimize
actuation energy. Following [1], the solution to (3) is given by

w*(t) = W BN BW BT (). “)

Note that, owing to Definition 1, the inverse here always exists
for actuator redundant systems. Hence, plugging the optimal
actuator command (4) in (3) yields the following constrained
minimum value of the weighted energy:

Li(t) == L(u* () = 0" () (BW BT Lu(t). (5

IIl. PROBLEM FORMULATION

A. Data-Based Actuator Selection

The purpose of this work is to bring connections between
CA, actuator selection, and learning. Specifically, note that the
minimum allocation energy (5) directly depends on the actuator
matrix B. Hence, if one can choose the actuators that will be
used by the system, then the minimum energy (5) can be further
optimized, but this time with respect to B.

Let the matrix B be decomposedas B = [B Bs|, where By €
R™*F1 By € R™**2 and k; + ky = k. In this decomposition,
B represents the part of B that is fixed and comprises actuators
that are already in use by the actuator redundant system, and Bs
represents the part of B that is free to be selected. Define

By =B P Br |,

By =[by by b, |
where 8; € R™, j =1,..., k; are fixed actuator columns, and
b; e R™,i=1,..., ko, are columns each of which corresponds

to an actuator to be selected. Let S = {s1, ..., sy} be the set
of available actuator columns s; € R", where N > ks. Then,
the problem to be solved in this work is to choose the columns
of the free matrix Bs by solving the optimization

min  f(B),
s.t. card(B) = ko,
B ={b1,ba, ...,bp,} (6)

where f : 25 — R is a function quantifying the optimality of the
set of actuators B with respect to (5), and is to be defined in the
following sections based on the characteristics of v(t), Vt > 0.
The optimization (6) should be solved in a data-driven manner,
without knowledge of the system’s matrices A and G.

Before proceeding, we require the following assumption,
which ensures that the system (1) and (2) is indeed actuator
redundant per Definition 1.

Assumption 1: The matrix B; € R™**1 has full row rank,
k1 > mand ky > 0. O

Remark 1: Given that Assumption 1 holds, then we can see
that rank(B) = m and k > m also hold, hence the system is
guaranteed to be actuator redundant. On the other hand, it should
be noted that, though sufficient, Assumption 1 is not always
necessary to ensure actuator redundancy. (]

B. Data-Based Actuator Fault Detection

A subsequent purpose of this work is to ensure that the
actuators of the system, which are chosen by the data-based
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actuator selection procedure formulated in Section III-A, operate
ideally and without any faults. This can be done by monitoring
data from the system and detecting any potential actuator faults
as soon as they appear. However, owing to the lack of knowledge
of the system’s dynamics, no utilization of the matrices A and
G may be used to perform this detection procedure.

To be more specific, suppose that some of the actuators
selected for system (1) suffer from a fault. Then, the actual
dynamics of (1) would be described by

i(t) = Az(t) + Gug(t), t > 0 7

where v, (t) € R™ is a high-level input that has been distorted
owing to the actuator fault. Specifically

va(t) = B(u(t) +a(t)), t >0 (8)

where a(t) € R” is the signal modeling the actuator fault. In
practice, if the ith actuator of the system, for ¢ = 1,... k, is
faulty, then the ith entry of a(t) is nonzero, otherwise it is zero.
In addition, if there are no actuator faults or failures in the system,
then a(t) = 0. Hence, to ensure that the actuators selected to be
used by the system are not faulty, we would like to evaluate
whether a(t) = 0 holds online, without precise knowledge of
either A or G.

IV. FORMULATION OF THE ACTUATOR SELECTION COST
FUNCTION

In this section, we design the cost function f of the actuator se-
lection problem (6) so that it quantifies the value of the minimum
energy (5) derived through the CA procedure. Two different
formulations are considered for this function, depending on
whether the control objective v(-) is a priori known or not. At
this point, the results will be completely model-based, i.e., we
will assume that A and G are known, but this assumption will
be relaxed in Section V by exploiting the results of the present
section.

A. Actuator Selection With No Information on the Policy

Consider a general setup in which we want to select the
actuators of the system to reduce the energy (5), but where
the nominal control policy v(-) is neither fixed nor known
beforehand. It can be seen that a direct optimization of L}
with respect to B is not possible in this scenario, because L%
depends on the undetermined value v(t), V¢ > 0. Nevertheless,
an “average” optimization approach can be applied instead,
where the actuators are chosen to minimize (5) evenly across
all possible directions of the vector v(t) [13], [14]. Particularly,
given the structure of (5), one can choose f to be equal to

fe(B) =t (BW'B")™) )

where we recall that W = W (B) is a function of B (or B) that
assigns a weight to each actuator, and is described as
W = diag [wpg,

wbl wbk2]

Wy,

with w, > 0 being the weight of each actuator s € S. 2
Albeit elegant, the choice (9) for f entails a computational
hurdle: as shown in the upcoming Proposition, the matrix

2Note that W is a function of B and not of S, as the weights present in its
diagonal depend on the choice of actuators 5.

(BW~1BT)~1 is equivalent to an inverse of a weighted con-
trollability Gramian, and there is no known algorithm that can
optimize the trace of such matrices without a combinatorial
explosion [31]. In that respect, to optimize (9), one needs to eval-
uate it for all possible realizations of B C S with card(B) = ks,
which are ( ,]c\; ) in number.

Proposition 1: Let E € R™ ™ be the null matrix. Then,
BW BT is a weighted controllability Gramian of the control
pair (E, B).

B. Relaxed Actuator Selection With No Information on
the Policy

Relaxations are usually considered to tackle the issue of
computational complexity. For example, let £ € R™*™ be
a positive-definite matrix. Then, motivated by the inequality

—1
“(I? ) > <, a common relaxation to the problem of min-
m tr(E)

imizing tr(E~1) is to maximize tr(E) instead [12], [32], [33].
Accordingly, this relaxation in the present setup would be equiv-
alent to choosing the function f in (6) as

fer(B) = —tr(BW 1 B").

(10)

Indeed, such a relaxation is sufficient to reduce the computa-
tional complexity to reasonable levels. Particularly, we have

k1
1
twr(BW 'B") = tr Z @/Bjé’} + Z Ebibf

j=1 Pi

B k2 g
=> — I8P+ —Iwl”. an
=1 B i=1 Wi

As it is evident from the equation above, optimizing
tr(BW 1 BT) is equivalent to sorting the values w; !|s||? for
all s € S, and choosing B so that it contains the ko elements of
S with the largest such values. Hence, the complexity of solving
(6) with f chosen as in (10) is O(NlogN). It should be noted
here that the first summation term in (11) is constant, since the
actuators 35, j = 1,..., ky, are fixed.

C. Actuator Selection With Prior Information on the
Control Policy

The cost function (9) of Section IV-A, as well as its relaxed
version (10), quantify the energy (5) on average, across all
possible directions for v(-) on R™. This is a satisfying choice
when there is no prior knowledge available regarding the control
objective v(-), but may be a naive consideration otherwise.
Specifically, if v(+) is known beforehand, then substantially more
efficient actuators can be selected for the system by optimizing
the actuation energy (5) directly over the predicted trajectories
of v(-), rather than across any possible direction of v(-) in R™.

Motivated by this fact, this subsection considers a more
specific setup for the actuator selection problem, in which the
control objective v(-) in CA is assumed to have an a priori known
structure. Particularly, suppose that v(-) is a linear state-feedback

control policy of the form
v(t) = Kxz(t) (12)

where K € R™*™ is a known constant gain such that the
closed-loop matrix A + GK is Hurwitz. This type of feedback
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is widely employed for controlling linear systems like (1) as
it encompasses a variety of goals, including pole placement
and linear-quadratic regulation. Its design could be the result
of either a model-based procedure that exploits knowledge of
the system matrices A, (G, or of a model-free one based on data
and learning [34], [35], [36]. In addition to (12), we also assume
that the initial state o € R™ has known covariance, given by

E [zozf] =V (13)

where V' - 0.

We now show that with the setup considered above, the
metric f in (6) can be chosen to give more specific information
regarding the CA energy (5) than the metrics (9) and (10). To
this end, notice that if we combine (12) with (5), we obtain the
following expression for the value of the CA energy:

L5 () = w T (OWu* () =2 () K" (BW B ' Kx(t).

Evidently, this expression is much more informative than that
of (5), where the unknown evaluation of the control objective
v(+) was involved. Therefore, not only can one choose actuators
to optimize control energy “on average,” but we can minimize
energy directly on an infinite horizon over the trajectories of (1).
Specifically, we can choose f as

fo(B) E[/OOO Lg(t)dt] ]E[/OOO T ()W (t)dt
(14)

where the integration is taken over the trajectories of (1).

It could be argued here that the advantage of considering a
more informative cost function is diminished by the fact that
integrations and expectations are involved in (14), hence render-
ing the optimization (6) with f = f, more complex. However,
in the following theorem it is shown that (14) can be written in
a completely static and expectation-free manner, as a function
of the model matrices A and G.

Theorem 1: Consider the system (1) under the control policy
(12), and with initial state covariance given by (13). Then

fp(B) = r(QR) = u(PV) (15)

where R = KT (BW1BT)"1K, and P, Q € R™*" are sym-
metric matrices, with P = 0, @ > 0, satisfying the Lyapunov
equations (LEs)

(A+GK)'P+P(A+GK)+ R =0,
(A+GK)Q+QA+GK)' +V =o. 17)

Remark 2: Tt is evident that no integrations or expectations
are involved in the expression (15) for f,, despite the way it was
defined in (14). Therefore, (15) provides more information than
(9), (10) regarding the control energy expended in the closed
loop, but without additional complexity. O

Based on Theorem 1, optimizing the cost (14) has complexity
similar to that of optimizing (9), owing to the appearance of the
matrix inverse (BW ~1 BT)~! through R. Fortunately, however,
Theorem 1 suggests that the solution of just one LE is required
to evaluate f at all points in 2°. Specifically, if f is chosen as in
(14), then its realization is

fp(B) = u(QR) (18)

where we can see from (17) that () is completely independent of
B. Therefore, although a brute-force algorithm to solve (6) with

(16)

[ = f, mayrequire alarge number of iterations, the per-iteration
complexity will remain at relatively low levels as it will not
involve the iterative solution of the LE (17).

For the same reason, one can also avoid using the alternate
form f(B) = tr(PV) provided by Theorem 1, because P is the
solution of an LE that depends directly on B. Hence, a brute-
force algorithm that would evaluate f(B) = tr(PV') across all
possible points in 2° would have to solve the LE (16) at each
iteration, which would then lead to an increased per-iteration
complexity.

D. Relaxed Actuator Selection With Prior Information on
the Control Policy

Consider now the scenario that the gain matrix K has full row
rank. Then, it can be seen that

tr(QR) = r(QKY(BW'BT)"'K)
=t((BW'BT) 2 KQKT(BW'BT)" 7).

To reduce the complexity of optimizing (18), one can employ
the same relaxation that was used in Section IV-B; in lieu of
minimizing tr(QR), one can instead minimize

Fu(B) = —tr (((BW—lBT)—%KQKT(BW—lBT)—%)—l)
= —tr(BW 'BT(KQK™")™)

= —tr(W'BY(KQK™)'B). (19)
The inverse of KQK" exists owing to Theorem 1 and the full
row rank of K. Subsequently, a further analysis of (19) yields

k1

B = =3 w%ﬁf(KQKT)’lﬁj

j=1 Pi

ko
-> wibE(KQKT)*lbi (20)
=1

7

where the first summation term is constant. We can now notice
that the employed relaxation once again brings the complexity
down to reasonable levels: To minimize f,, one only needs to
sort the values wissT(KQKT)‘ls for all s € S, and choose B
to contain the ko elements of S with the largest such values.
Therefore, the complexity of solving (6) with f as in (20) is
O(NlogN), and only one LE of the form (17) needs to be solved.

V. MODEL-FREE COMPUTATION OF THE ACTUATOR
SELECTION COST WITH PRIOR INFORMATION

The results of the previous section, and specifically of
Sections IV-C/IV-D, were derived in a completely model-based
manner: To evaluate the energy required by a particular set of
actuators B towards achieving the control objective (12), the
cost functions (18) and (19) had to be calculated and optimized.
However, these cost functions directly depend on the system’s
matrices A and G through the LE solution (), and hence cannot
be evaluated directly in a model-free manner. This section
relaxes this requirement of system knowledge: By utilizing
state/input data gathered from the system (1), it is shown that the
matrices (Q and @', and consequently the cost functions (18)
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and (19), can be evaluated directly with no knowledge of either
AorG.

A. Antistabilizing Solution to an ARE

Existing data-driven methods, such as those in [27] and [34],
are able to solve LEs of the form (16) in a model-free manner,
but they cannot solve LEs of the form (17) owing to the transpose
operators being applied at an inconvenient position. But, as
explainedin Section I'V-C, itis the LE (17) that we are actually in-
terested in solving, first because it is independent of 3 and hence,
we need to solve only one of it to optimize f,(-), and second,
because its solution can be used to obtain the computationally
relaxed cost function f,,(-) in (20). Towards dealing with this
issue of the transpose operators of the LE (17) being misplaced,
we will use the following idea: Since () is positive-definite and
thus invertible, we can pre- and postmultiply the LE (17) by Q*
and turn it into the following ARE for the plant A + GK:

(A+GK)™X + X(A+GK)+ XVX =0

where X, = Q! is a solution to (21).

Various methods for solving AREs model-free exist in the
literature [34], [37], which are essentially a learning-based
formulation of procedures widely known as policy iteration
(PD), successive approximations, or Kleinman’s algorithm [38],
[39], [40]. Accordingly, it is tempting to use these methods to
solve (21) in a learning-based manner and compute Q! without
knowledge of A and G. However, there is a pitfall involved in the
ARE (21) that would cause the direct implementations of [34]
and [37] to fail to find Q~'; these methods can only find the
stabilizing solution to an ARE.

Definition 2: Consider the general form of an ARE

ATX+ XA+Q-X2X =0 (22)
where A, X,Q,~ € R™*", and X, Q, ¥ are symmetric. Then

1) A solution X, € R™ " to the ARE (22) is called stabiliz-
ing with respect to A if A — XX is Hurwitz.

2) A solution X, € R™*™ to the ARE (22) is called antista-
bilizing with respect to A if all eigenvalues of A — £X,
have strictly positive real parts. (]

We show next that Q! is not the stabilizing solution to (21),
hence the learning-based PI methods of [34] and [37] would fail
to compute it. In fact, we prove that Q! is the antistabilizing
solution of (21).

Lemma 1: Consider the ARE (21), where X € R™*" is the
variable to be solved for. Then

1) X = 0 is the stabilizing solution to (21) with respect to
A+ GK.

2) X, = Q' is the antistabilizing solution to (21) with
respect to A + GK.

21

B. Pl for the ARE’s Antistabilizing Solution

Although Q! is not the stabilizing solution of (21) with re-
spectto A + G K, it can prove handful that it has been character-
ized as the antistabilizing one. Particularly, due to this property,
the matrix Q' can be shown to be a stabilizing solution to an
alternate ARE and with respect to an alternate matrix instead,
as we show next.

Lemma 2: X, = Q! is the stabilizing solution of

—(A+GK)"X - X(A+GK) - XVX =0 (23)

Algorithm 1: PI to Compute Q~*.

1: Leti = 0, € > 0. Start with a matrix Yy € R™*" such
that —(A + GK) — Y is Hurwitz.

2: repeat

3:  Compute X; by solving the LE:

—(A+GK+Y)"X;, - X;(A+GK +Y;)

+Y 'V ly; = 0.

4: Compute Y; 1 as Y1 = VX,.
5: Seti=1+1.
6:until |Y; - Y, 1|[rp<e

(24)

with respect to — (A + GK).

The matrix Q! has now been characterized as a stabilizing
solution of (23) with respect to —(A + GK). Therefore, we are
finally able to use the PI procedure to compute it in an iterative
fashion, which is something we could not have done directly
on (21) with respect to A + GK. Although the PI algorithm is
inherently model-based as seen from Algorithm 1, it is the first
step towards computing Q~! in a data-based fashion, just as
in [34] and [37].

Notice now that the constant term in the ARE (23) is zero,
hence the observability assumptions imposed in [34], [37], and
[40] for the constant term do not hold. Consequently, in proving
convergence of Algorithm 1, we will need to use different
arguments from [34], [37], and [40].

Theorem 2: Consider the sequence of matrices {X;}icn,
{Y;}ien generated by Algorithm 1. Then, the following hold
forallz € N :

1) —(A+ GK +Y;) is Hurwitz;
2) Q' X1 2 Xy
3) limj o X; = QL.

Remark 3: Theorem 2 proves convergence of the PI
Algorithm 1, even though the ARE (23) involves no constant
term. However, this result is owed to the fact that —(A + GK)
is specifically an antistable matrix. If, on the other hand,
—(A + GK) was not antistable, it would not have been pos-
sible to obtain the result of Theorem 2, and the observability
assumptions of [34] and [37] for the constant term would have
been indispensable. ]

Just like all PI-based algorithms, Algorithm 1 requires that
the initial matrix Y} is stabilizing, i.e., that —(A + GK) — Y}
is Hurwitz. This assumption naturally decreases the degree to
which a learning-based PI algorithm can be model-free because
it requires some empirical knowledge regarding the state matrix
A and the input matrix G. Nevertheless, in the framework
considered here, a stabilizing matrix Yy can be constructed by
just the mere knowledge of a lower bound to the minimum
eigenvalue of A + GK, as shown next.

Theorem 3: Suppose that Yy, = —al,, where a < a* =
min;eqy, . Re(Ai(A + GK)). Then, —(A+GK)—Y, is
Hurwitz.

C. Learning-Based Pl for the Antistabilizing Solution

The analysis of the previous section allowed us to successively
approximate the antistabilizing solution Q' of (21) using PI.
In view of this result, we now proceed to derive a data-based
formulation for Algorithm 1 which does not require knowledge
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of the system’s matrices A and G. Notice that if we pre- and

0 . . 71
postmultiply (24) by x(t), where x(t) is the trajectory of (1) for Algorithm 2: Learning-Based PI to Compute Q.

allt > 0, then 1: Let7 = 0, ¢ > 0. Start with a matrix Yy € R™*"™ such
—TOATX + X, Aal) T (G + V) Kirlt) g e (A GR) 7 Yo I Hurvi:
_ xT(t)Xi(GK +Y))z(t) + a:T(t)YiTVleix(t) -0 3: Compute X; and Z; from (31).

4: Compute Y;4 as:
or equivalently V¢ > 0

d Yir1 = VX,
- §(3«”T(t)Xﬂ(t>) + 2 (1) X;Go(t) + (Go(t)) Xz (t) 5: Seti=i+1.
6:until |[Y; —Y;_||r <e¢
— 2 () X(GK + Yi)x(t) — (GK + Y;)a(t))" (8) Xz(t)
+2T()Y,"V Yz (t) = 0. (25)
t+T
Letting, for all i € N Jux(t) = / 2" (1) @ 2T (7)dr.
Z; = X,G (26) '
. Notice that the matrices A and G are not involved at all in (28).
Eq. (25) can be written V¢ > 0 as Hence, if data is gathered along the trajectories of (1) in the
d, T form of matrices Jxx (tx), Jyx(tx), and 0« (¢, ), where t,, > 0 is
- &(x () Xz () + 227 () Zi(v(t) — Ka(t)) a sampling instant for x € {0,..., Ky} and Ky € N, then the

matrices X; and Z; can be determined using (28). To this end,

— ' ()Y Xpa(t) — ' () XiYia(t) + 2" (0)Y;'V " Wia(t) = 0. denote, with a slight abuse of notation

Note that in these equations, v(-) could be any signal generating

the trajectory data of x, and not necessarily given by (12). Next, Jxx(f0) Jxx(to) Jux(to)
if we let T > 0 and integrate over [¢, ¢ + T, then O = : A : Ty = :
() Xx(t) — 2" (t+ T) X (t + T) Sxx(tiy) J(trc,) Jx(trc,)

t+T n
+ /t (27 () Zi(o(t) — Ka(t)) — 2" ()X Yia(r)

0; = [vech(vec ™ (G —Jux (YT BY[")), 2Jux—2 5 (KT®1,)]
— 2" (MY " Xiz(r) + 2 (7)Y V Wa(r)) dr = 0. (27)

. . . . ®; = —Juvee(Y;'VY))
Each term of this equation can be rewritten using Kronecker
algebra as follows: where the operator vech(vec™!(+)) is applied row-wise. Then,
xT(t)Xix(t) _ J)T(t + T)Xll‘(t + T) stacking (28) yields
=@t @a"(t) — 2 (t + T) @ 2" (t + T))vec(X,), | [vecs(Xi)} _ 5, 29)
" | vec(Z;) "

227 (1) Z;(v(1) — Ka(7))

=2 (0" (r) @ 2" (7)— (2" (7) @ 2 (1)) (K" S L)) vee(Zy), This equation can be solved for vecs(X;) and vec(Z;), provided

©; has full column rank. This will hold if the measured data is

{L'T(T) X Yix(r) + .’L‘T(T)Y;-T X;x(7) sufﬁcif?ntly rich, a condition described more concretely in the
following Lemma.
= (2T(r) @ 2T(7)) (V' @ Y, )vec(X;) Lemma 3: If
T (YIV () = (@7 (1) @ 27 (7)) vee(YIVLY;). rank[ e Jox] = n(n+1) m (30)
Hence, (27) is equivalent to )
then, ©; has full column rank for all 7 € N.
0i(t) {vecs(Xi)] = D, (t) (28) Remark 4: The rank condition of Lemma 3 is in the spirit of
vec(Z;) the persistency of excitation condition in adaptive control [36].

Rank conditions of this kind are ubiquitous in virtually all data-

with driven designs of the literature [41], [42].
0;(t) = [vech(vec ! (04 (t) — Ju () (YT @ V1)), Given condition (30), the solution to (29) is given by
2Jux(t) = 2 () (K" @ L)), vees(X;) T \—1 AT
=(076;) 0], 31)
D;(t) = —Jxx (t)vec(YTV 1Y), vee(Z;)
b(t) = 2T (t) @2T(t) — 2Tt +T) @ 2T (t + T), This gives rise to the learning-based PI Algorithm 2 for comput-
ing the antistabilizing solution Q! to (21). Consequently, we
T (1) = s T T(d are now able to solve the actuator placement problem (6) with
w(t) = . vi(r) ® 27 (7)dr, cost functions (18) and (19) in a model-free manner.
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We summarize the convergence of Algorithm 2 next.

Theorem4: Letcondition (30) hold. Consider the sequence of
matrices {X; }ien, {Yibiens {Zi }ien generated by Algorithm
2. Then, forall s € N

1) —(A+ GK +Y;) is Hurwitz;
2) QM = Xiy1 2 Xy
3) lim oo Xi = Q1 limy oo Z; = Q1G.

Remark 5: According to Theorem 4, Algorithm 2 yields
the matrix Q! as its output by only using data, and without
knowledge of the system’s matrices A and G. Subsequently,
this output can be used to evaluate the actuator selection met-
rics (18) and (19)—and to solve the actuator selection prob-
lem (6)—in a model-free manner. It is worth mentioning that
Algorithm 2 estimates only n(n + 1)/2 4+ nm parameters in
total, which are strictly fewer than the number of parameters
a system identification approach would have to estimate to
learn the matrices A and G (n? + nm in total). Accordingly,
the main operation in Algorithm 2 is the inversion of the
(n(n+1)/24+ nm) x (n(n +1)/2 + nm) data matrix. O

Remark 6: Another advantage of the proposed approach com-
pared to system identification is that, since it directly estimates
Q~*', any errors in the estimation of this matrix will manifest
themselves in the cost function (19) in a mostly linear manner.
On the contrary, any errors a system identification approach
would have in estimating the system matrices A, G would man-
ifest themselves in the cost function (19) in a highly nonlinear
manner, since () is derived as the solution of the LE (17). In fact,
in the presence of even slight system identification errors, it is
uncertain if solving the LE (17) for @, with estimates of A and
G, would be feasible at all. O

D. Robustness in the Presence of Input Noise

In this subsection, we will show that the PI Algorithm 1 (and
by extension the learning-based PI Algorithm 2), which was used
to compute (Q !, has certain robustness properties with respect to
uncertainties. Specifically, we extend the results of [28] to show
that it is small-disturbance ISS, with the advancement from [28]
being that the associated ARE (23) describing Q! entails no
constant term.

Towards this end, note that (24) can be written equivalently
as H(G(X;),Y;) = 0, where for any X € R™*™ symmetric

G(X) = [—(A + GK)TXX— X(A+GK) le}
_ {[Q(X oo [G(X )]?w]
[G(X)]uz [G(X)u

Therefore, Algorithm 1 can be equivalently formulated as in the
following procedure.
Procedure 1:
1) Choose Yy € R™*™ such that —(A + GK + Y}) is Hur-
witz and let 7 = 0.
2) Solve H(G(X;),Y;) = 0 for the symmetric X; € R™*".
3) SetYi1 = [G(X)]2t[G(X:)]ux»i =i + 1and goto step
2.
From Theorem 2, we know that this procedure guarantees
lim;_,00 X; = QL. Next, to study the robustness of PI, we
follow [28] and consider the perturbed variant of Procedure 1.

Procedure 2:

1) Choose Yy € R™*™ such that —(A + GK + Y;) is Hur-
witz and let 7 = 0.

2) Obtainasymmetric G; € R(2%)*(27) a5 an approximation
of G ()A(A i), where X; € R™" is the symmetric solution of
H(G(X.),Y:) = 0.

3) Set Yii1 = [Gi]wt[Giluz» i =i + 1 and go to step 2.

The following Lemma shows that Procedure 2 is locally ISS
with respect to the induced error AG; := G —G (X'Z)

Lemma4: [28]Forany o € (0, 1), there exist dp, 67 > 0 such
that if || AG||, < 61 and X, € Bs, (Q ")

1) [Ql]uu is invertible and —(A + GK +Y;) Hurwitz, Vi €
N;

2) the following local ISS property holds:

HXz - QleF < Bo (HX() - Qfl’

i)+ 014G

where fo(y, i) = o'y, Y0(y) = csy/(1 — o), y € R and
83(50) > 0. )

Remark 7: While [28] requires the ARE associated with
the PI algorithm to have a positive-definite constant term,
it has no such limitation in the statement and proof of
Lemma 4. ]

In simple words, Lemma 4 states that the matrix sequence
XZ- in Procedure 2 will remain in a neighborhood of Q1
provided that the uncertainties AG; entering the procedure are
small. In addition, if these uncertainties vanish, then X i = QL.
However, a limitation of Lemma 4 is that it requires initializing
X within a proximity of Q~'. The following Theorem removes
this requirement, and extends the results of [28]: it shows that
Procedure 2 is small-disturbance ISS, even though the associated
ARE (23) entails no constant term.

Theorem 5: For an initial matrix Y; such that —(A+GK +

)A/O) is Hurwitz and for any € > 0, there exists do > 0 such that
if ”AQHAOO < 52 R
1) [Qi]uu is invertible, —(A + GK +Y;) is Hurwitz and
| Xille < Mo, Vi € N, for some Mo > 0;
2) limsup; . [|X; — Q7 'lr < & )

Theorem 5 shows that Procedure 2 is small-disturbance ISS
with respect to the uncertainty induced by AG. Using [28],
this result can be used to conclude that Algorithm 2 is also
small-disturbance ISS with respect to disturbances in the control
input v. Specifically, if, instead of (1), the system dynamics
were given by ©(t) = Ax(t) + Gu(t) + d(t), where d(t) € R™
is an unknown additive disturbance, then Algorithm 2 would
still converge in an e—neighborhood of Q! provided that
[ld(t)]| < 9, ¥t >0, for some strictly positive § = d(e) > 0.
This result follows by combining Theorem 5 with the proof of
[[28], Theorem 3].

VI. MODEL-FREE DETECTION OF ACTUATOR FAULTS

Generally, actuators are prone to faults and failures which can
cause deterioration of the system’s performance. These faults
should be detected as soon as possible after their appearance
because they can pose a threat to the existence of the physical
system by putting closed-loop stability and well-posedness in
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jeopardy. Nevertheless, the task of fault detection can be ex-
traordinarily difficult in cases where the matrices A and G are
not known a priori, as in the present framework. The purpose of
this section is to propose a solution to this model-agnostic fault
detection problem, by exploiting the information generated by
the learning-based PI Algorithm 2.

To detect faults using this information, consider that the output

of Algorithm 2 is given by
X, = Q_la Zo = Q_lG- (32)

By solely using this output, we can design the following data-
based filter, for all ¢ > 0:

() = — B(Z(t) — 2T () Xox(t) + 227 (t) Zov(t)
— 2T ()(X, VX, +2Z,K)x(t),
(33)

where 8 > 0 and X(¢) € R. Evidently, this filter is designed in
a data-based sense, as it uses only data from the trajectories of
x(-) and v(-) as well as the matrices X, and Z, generated by
Algorithm 2. Define now the filter error

S(t) = 2(t) — 2T (8) Xz (t).

¥(0) = xp Xowo

In the following theorem, it is shown that by checking the value
of this error, one can accurately always detect actuator faults.

Theorem 6: Consider the trajectories of = given by (7), (8),
where the control input v(-) is as in (2), and let a be (piecewise)
continuous on ¢ > 0. Consider also the filter (32) and (33). Then

1) If 3 2 0 then a # 0.
2) If ¥ = 0, then
2 ()Q 'GBa(t) =0 (34)
(almost) everywhere on ¢ > 0.

Remark 8: According to the condition (34) provided by The-
orem 6, practically all actuator faults can be detected using the
filter (33), and without knowledge of the system’s matrices A and
G. The only kind of fault that can go completely undetectable is
ifa(t) = —u(t) while g = 0, i.e., if all actuators suffer from a
failure while the system is at the origin. In this scenario, z(¢) = 0
for all t > 0, hence X(t) = 0 for all ¢ > 0. However, this fault
would not disrupt the goal of keeping the system regulated at
the origin, and the corresponding failure could be detected by
simply inspecting the values of u(t) and x(t), V¢ > 0. O

Remark 9: Note that the proposed data-based method of
detecting actuation faults enjoys similarities with the detection
mechanism introduced in [29]. Specifically, the solution to an
ARE, as well as the corresponding LQR gain, were also em-
ployed in [29] to detect exogenous inputs by exploiting the
principle of optimality. However, the detection scheme proposed
in this article significantly improves [29] in two ways; first, as
seen in (33), no integrals need to be computed in a receding
horizon in order to detect exogenous inputs, thus significantly
reducing computational complexity; and second, with the de-
tection filter employed here, the control input v(-) used in the
closed loop can be arbitrary, and not necessarily the LQR control
law corresponding to the ARE. d

Similar to most fault detection mechanisms, if the system at
hand is under the effect of input or measurement noise, the ideal
results of Theorem 6 will not hold. In this case, the appropriate
course of action would be to specify a small detection threshold

7 > 0 depending on the severity of the input/measurement noise
and declare the presence of a fault only if the detection signal
passes this threshold. It should be pointed out, however, that a
good choice for the value of the threshold is crucial in minimiz-
ing false positives and negatives and requires good intuition and
engineering. The following discussion provides a few insights
in this regard.
Consider the uncertain, noisy version of system (7)

z(t) = Az(t) + G(va(t) + ny(t)), (0) = xo,
Z(t) = z(t) + ns(¢)

where n,,(t) € R™, ny(t) € R™ denote input and measurement
noise such that ||n,, (¢)|| < Ty, ||ns(¢)]] < fig,t > 0,70, 75 > 0.
Consider also the following noisy version of the filter (33):
X, () = = B(Z,(t) — 2" () Xz (t)) + 22" (1) Zov(t)

— 2N () (X, VX, +2Z,K)z(t) (35)

where X, € R™>™, Z, € R™™  are noisy estimates of
Xo, Z, such that || X, — X,||r < AX,, | Z, — Z,||r < AZ,,
AX,,AZ, > 0. Defining the detection signal

By (t) = By (t) — (1) Xo(1)

one should declare a fault as long as [3,| > n for a properly
chosen threshold n > 0. To get an intuition about this threshold,
let S, (t) = ¥, (t) — 27(t) X, (t). Following the same analysis
as in the proof of Theorem 6, we have

O 53, 37,00
+ 207 (8) Zo(va(t) + 1 (1))
and hence

S, (1) = —BE,(t) — 227 (t) Z,Ba(t) — 227 (£) Zon., (t)
+BET () X,2(t) — 2" (1) Xoa(t)) + 22" (1) Zo — 2" (t) Zo)v

—Z () (X, VX422, K)z(t)+2" (1) (X, VX, +2Z,K)x(t).
(36)

The first two terms at the right-hand side of (36) are identical
to those of the ideal error equation (56), whereas the rest of
the terms are estimation-error/noise-based terms that can be
upper bounded (after some tedious calculations) as functions
dependent on the upper bounds of the estimation errors AX,,
AZ,, and of the noise 7,,, 5. It then follows, in the absence of
a fault and as long as the state and control signals are uniformly
bounded, that ¥, is uniformly ultimately bounded, with an ulti-
mate bound dependent on AX,, AZ,, fi,,, and 7. In addition,
for the detection signal we have %, = %, + 2T (t) X,z (t) —
zT(t)X,Z(t), where 27 (t) X2 (t) — 27 (t) X,Z(t) is another er-
ror term whose upper bound directly depends on s and AX,,.
Hence, in the presence of noise and estimation errors, the
threshold 7 can be chosen by appending all the aforementioned
ultimate bounds.

Eq. (36) also provides intuition regarding the choice of the
parameter /3 of the filter. In the ideal, noise-free version of the
detector, one would set (3 to be as large as possible, to quickly
verify the presence or the absence of a fault. However, in the
presence of measurement noise and estimation errors, selecting
a large value for S can increase the magnitude of the error
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term B(zT(t) X,z (t) — 2T (t) X,z (t)) in (36). In that respect,
intuition and engineering should be used to select an appropriate
value for 3, so as to minimize the effect of noise on X,, while
still rendering the filter quick enough in detecting the presence
or absence of faults.

VIl. EXTENSIONS AND LIMITATIONS

In this section, we will discuss any limitations of the methods
of this article and seek directions to overcome them.

A. Extensions to Cases With a Positive Semidefinite
Covariance Matrix V

In the formulation of the actuator selection metrics f,(-) and
fpr(+) in Sections IV-C and IV-D, it has been assumed that
the covariance matrix V = E[zoz{] of the initial state vector
is positive-definite. In case that V' is positive semidefinite only,
it is straightforward to verify that the results of Theorem 1 still
hold, but with the differentiation that ) > 0 instead of @) > 0.
This implies that () is not necessarily invertible if V' = 0, hence
rendering the learning-based actuator selection procedure of
Section V inapplicable. This is one limitation of this article.

To deal with the case where V' > 0, the following Proposition
provides a method to reexpress () as the difference of two
positive-definite matrices ()1, @2, both of which satisfy LEs
similar to the LE that characterizes (). In that respect, ; and
@2, and subsequently @, can be readily learnt using the methods
of Section V.

Proposition 2: Assume that initial state covariance V' given
by (13) is positive semidefinite. Define V1 =V +V, Vo =V
for some user-specified matrix V' > 0. Then

fp(B) =tr(QR) = tr(Q1R) — tr(Q2R)

where @ > 0 uniquely solves (17), and @1, Q2 > 0 uniquely
solve the LEs

(A4+GK)Q1 + Q1(A+GK)T +V; =0,
(A4 GK)Q2 + Q2(A+ GK)T + V5 = 0.

In addition, Q = Q1 — Q5.

Since the matrices ()1 and Qo are strictly positive-definite,
they can be readily learnt using the methods of Section V, hence
allowing us to evaluate f,(B) even in the case where V is
positive semidefinite only. However, it is not possible here to
obtain a relaxation of f,(-) in the form of (20), because @ is
singular. A heuristic could be to add a small regulation term to
the matrix @ (or V') so that it becomes positive-definite, and
subsequently obtain a relaxation of f,(-) in the form of (20).
However, this action will lead to loss of optimality. On the other
hand, approaches based on the relaxation (10) and (11) are still
valid.

(37
(38)

B. Extensions to a Class of Nonlinear Systems

The actuator selection metrics formulated in Sections IV-A
and IV-B, which quantify the actuation energy expended on
average, are applicable even in the case where the system’s
dynamics are nonlinear. However, the same is not true for the
more direct metrics of Sections IV-C and I'V-D, which directly
quantify the energy expended in the closed loop over an infinite
horizon. In this regard, we provide a few insights on how these
metrics can be extended to the nonlinear case.

Assume that instead of (1), we have a nonlinear system of the
form

#(t) = f(z(t) + g(z(t)v(t), 2(0) = 20, t >0 (39)

where f:R"” — R™, g:R™ — R™™ are locally Lipschitz
functions with f(0) =0, and v(t) € R™ denotes again the
high-level control input, satisfying the mapping from actuator
commands (2). In an analogous manner to the linear case, assume
that the desired control policy is given by v(t) = s(xz(t)), where
s :R™ — R™ is a continuous state-feedback control law that
asymptotically stabilizes (39) for any x¢y € R"”, while expending
a finite amount of energy, i.e. [* [|s(x(t))]?*dt < oo over the
trajectories of (39) under v(¢) = s(x(t)). Following the optimal
control allocation strategy (4), the energy (14) expended over an
infinite horizon is:

£,(B) :IE[ /0 ST a)(BW LB Vst @o)

where E is taken with respect to the distribution of z(, and the
integration is over the trajectories of (39) under the stabilizing
control s(-). The main issue here is that (40) cannot be expressed
in a static form using LEs, owing to the nonlinear nature of the
dynamics (39). Nevertheless, Lyapunov-like partial differential
equations (PDEs) can be employed in this direction, given the
following regularity assumption:

Assumption 2: Each entry of the matrix function V(zg) :=
Jo s(z(t))sT (x(t))dt is continuously differentiable. O

Proposition 3: Let Assumption 2 hold. For all i,j €
{1,...,m}, denote V;;(-)=[V(:)i; si(-)=[s(-)];» and
sj(+) = [s(-)];. Then the metric (40) can be expressed as

fp(B) = tr (E[V (20)](BW'B")™) 1)

where each entry V; ; of V uniquely solves the PDE

Vo Vi (@) (f(x) + g(x)s(x)) + si(w)s;(2)=0, Vz,j(0)=(()42)

Remark 10: Notably, optimizing f,(B) in (41) with respect
to B (in the sense of (6)) can be a computationally hard task,
owing to the appearance of the inverse (BW ~* BT)~1. However,
following the same line of analysis as in Section IV-D, a relaxed
version of (41) can be defined as

fpr(B) = —te(E[V (z0)] " BW ' B") (43)
which is optimizable in O(NlogN) time. O

C. Limitations

The solutions V; ; of the PDEs (42), 4, j € {1,...,m} can be
solved without knowledge of the system’s dynamics functions
f, g, in an approximate sense, using actor-critic methods; the
specific details can be found in [43] and [44]. Consequently, the
actuator evaluation metrics (41), (43) can also be optimized in a
model-free sense, but a couple of limitations exist with respect
to the linear system case as follows.

1) The need to employ m? approximation structures to
approximate V; ;, ¢, € {1,...,m}. Such structures in-
herently work only locally, and significantly increase
computational complexity.

2) The need to know exactly the probability distribution for
x¢, instead of just its covariance, in order to compute
E[V(x0)].
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Fig. 1.

Evolution of the estimation errors in each iteration of learning-based Pl. (a) The error norm || X; — Q7 !||r, i € N. (b) The error norm

|Z; — Q*G|lr, i € N. (c) The error |tr((Q — X, ') R)| in the approximation of the optimal actuation energy, i € N.

While these limitations cannot easily be dispensed with, they
are natural owing to the nonlinear nature of (39).

VIIl. SIMULATIONS

We consider the linearized model of an electric vertical takeoff
and landing (eVTOL) aircraft [45], with n = 9 states and m =
5 high-level control inputs. Its input matrix is given by G =
{e4, es5, €6, €7, €9}, where e; € R is a unit vector with ith entry
equal to unity, so that only states 4 — 7 and 9 are actuated. The
set S = {s1, 82,..., 514} of available actuators is shown at the
bottom of this page, while a full description of the state matrix
A can be found in [45].

The initial set of actuators is By = [s1 $2 s3 S13 S14], and we
want to augment it with ko = 6 additional actuators from S. To
do this, we solve the optimization problem (6), where the cost
function f is given by (18), the matrix K is a stabilizing gain,
the covariance matrix is V' = 10731y, and the weight for each
actuator is wgs = 1, for all s € S. To learn the matrix () of the
cost (18) without knowledge of the matrices A and GG, Algorithm
2 is applied after gathering data from the system for a period of
9 seconds using the control input v(t) = Kz (t) + n(t), where
each entry of 7(t) contains 100 sinusoids imposing exploration,
each with an amplitude uniformly chosen over [0, 0.01], and
a frequency uniformly chosen over [—50, 50]. The exploration
term 7(¢) is then terminated at ¢ = 9, after which point the
control input simplifies to v(t) = Kz (t).

The evolution of the norm of the trajectories during the
data-gathering phase is shown in Fig. 2, while Fig. 1(a) and
(b) show the distance of the sequences {X;}ien, {Zi}ien

Il @1l

0 2 4 6 8 10
t [sec]

Fig.2. Evolution of ||z(t)|| and ||v(¢)| during the data-gathering phase.
We notice that the state and the control input were perturbed only slightly
in order to gather enough data for Algorithm 2.

from the matrices Q~', Q 'G, respectively. It can be seen
that after 15 iterations, these distances practically vanish, and
X5~ Q7Y, Z15 ~ Q'G. Subsequently, the matrix X ¢ is
used as a substitute of () and the actuator placement optimization
problem (6) is solved. The optimal solution is found to be
B* = {s2, 83, 84, S6, S7, S11 }» Which yields an optimal average
actuation energy value of tr(QR) = 4.8 - 103. The approxima-
tion error |tr((Q — X; ')R)| of this optimal actuation energy

0.6825 1074 0 —0.6825
0.8888 1074 1074 0.8888
S = —0.1503 [, o |,| o |,| 0.1503
—0.3510 1074 1074 —0.3510
—0.6197 0 0 —0.6197
0 0 —1.2330 0
0 0 —0.2469 0
104, o |,| 00419 |,| —10"*
1074 1074 —0.0332 1074
0 0 —0.4254 0

—107% 0 1.2330 0
107 107 —0.2469 0

, 0 1 0 |,|—-00419(,10*],
1074 1074 —0.0332 1074
0 0 —0.4254 0

0 0

0 0

1074, o

1074 1074

0 0
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Fig. 3. Evolution of the residual (t) for ¢ € [12, 18]. The residual

is immediately disturbed as soon as the actuator fault appears, and
converges back to zero rapidly when the fault vanishes.

value per iteration of Algorithm 2 is also shown in Fig. 1(c),
where it evidently converges to O as the number of iterations
increases.

Next, we investigate the efficiency of the proposed data-based
actuator selection approach in dealing with model uncertainties.
In this direction, we assume that there is knowledge of the system
matrices A and G, but the entries of matrix A are known only up
to an error of +0.01. Then, under the same choice of parameters
as previously and using a model-based approach, the estimated
optimal set of actuators is {ss, s4, S5, Sg, S7, S11}, where we
notice that the second actuator has been substituted in favor
for the fifth. In addition, the estimated minimum value of the
average energy (18)is 13 x 10°, which significantly differs from
the true optimal value 4.8 X 103, Therefore, we conclude that,
in the quest to find the best set of actuators for the system, using
input—output data and performing Algorithm 2 is superior to
using even slightly inaccurate prior knowledge about the system.

Finally, we proceed to test the operation of the fault detection
mechanism of Section VI. Specifically, we employ for all ¢ €
[12, 18] the filter (33) with damping rate 5 = 10, and with the
matrices X, and Z, set to be equal to the output of Algorithm
2,1.e., X, = X5 and Z, = Z;g. To verify the efficacy of this
data-based filter, we assume that the first actuator of the system
is under the effect of a fault over ¢ € [14, 16], so that the first
entry of a(t) is equal to 0.1cos(t?) over ¢ € [14, 16] and zero
everywhere else. The results are shown in Fig. 3, where it can be
seen that the value of the residual ¥ becomes nonzero as soon
as the fault begins affecting the first actuator. In addition, when
the effect of the fault disappears, 3 converges rapidly back to
Zero.

IX. CONCLUSION

We considered the problem of data-based actuator selection
in the context of optimal CA. Specifically, two metrics for
evaluating the efficiency of actuators were proposed, based
on the value of the minimum energy required to achieve a
given control objective in the CA problem. Subsequently, a
data-driven method was proposed to perform the corresponding
actuator selection procedure model-free, without knowledge of
the system’s state and input matrices. This task was achieved
by successively approximating the antistabilizing solution to an
associated ARE using trajectory data. Finally, the solution to

this ARE was used to perform data-based fault detection, with
complexity lower than that of similar methods in the literature.

Future work will include an extension to acompletely adaptive
system, where both learning, actuator selection, and control
allocation take place in real time.

APPENDIX

A. Proof of Proposition 1
One possible weighted controllability Gramian for the control
pair (E, B) is given by

1 1
/ ETBW BT T dr = / BW 'BYdr=BW BT
0 0

where we used the fact that e®™ = I,,, for any 7 > 0. [ |

B. Proof of Theorem 1

The system (1) in closed loop with the control policy (12) is
#(t) = (A + GK)x(t). Then, we have
fr(B)=E / xT(t)KT(BwlBT)le(t)dt]
LJo
[ T (A+GK)"t p (A+GK)t
=E ; Tpe Re zodt

=E

o /oo 6(A+GK)TtR6(A+GK)tdtl,OxE:|
0

. /oc (ATGE)"t p (A+GE)t 4 {mowﬂ
0

=tr(PV)

where P = [® e(ATGE)'t Re(A+CGK)tqt gatisfies the LE (16)
because A + GK is Hurwitz [46]. Since R = 0, one also has
P = 0. Similarly

fr(B)=E _/OOO a:T(t)KT(BW‘lBT)‘le(t)dt]

=E -/OO :cge(AJrGK)TtRe(AJrGK)txodt]
LJo

_E tr/oo e(A+GK)tx0mge(A+GK)TtdtR:|
0

={r /OO €(A+GK)t]E |:{E0£L'E;:| €(A+GK)TtdtR
0

— «(QR)

where Q = [ e(A+HCR)Y (A+CK) ¢ satisfies the LE (17)
because A + GK is Hurwitz [46]. Note that @ is positive-
definite because V' is also positive-definite. |

C. Proof of Lemma 1

Both items will be verified by inspecting the stabil-
ity properties of the matrix A(X) = (A+ GK)+ VX, per
Definition 2.

For the first item, it can be seen by inspection that X, = Oisa
solution to (21). Additionally, one has A(O) = A+ GK, which
is a Hurwitz matrix by assumption, hence Xy = 0 is indeed the
stabilizing solution to (21).
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For the second item, it can be seen that X, = Q~ Lisasolution
to (21) by pre- and postmultiplying (17) by @~!. Moreover, a
negation and a further manipulation of (21) yields

—(A+GK+VX)'X - X(A+GK +VX)

+ XVX =0. (44)

Notice that (44) can be seen as an LE for the matrix —(A +
GK + VX). Additionally, for X = X, = Q~', both the ma-
trices X and XV X in the LE are strictly positive-definite, i.e.,
—(A+ GK +VQ~') is Hurwitz [46]. This in turn implies that
A(Q™") = (A+ GK) +VQ ! is a matrix whose eigenvalues
have strictly positive real parts. |

D. Proof of Lemma 2

Q! is a solution to (23) due to the fact that (23) is just the
negation of (21). In addition, —(A + GK) — VQ~! is Hurwitz
owing to Lemma 1, hence Q! is stabilizing with respect to
—(A+ GK). |

E. Proof of Theorem 2

Parts of the proof follow from [39] and [40], and from the
fact that Q1 is the stabilizing solution to (23) due to Lemma 2.
However, since no constant term is involved in the ARE (23), 1)
and 3) need to be proved. We will use induction for this purpose.

For i = 0, the matrix —(4 + GK +Y}) is Hurwitz by con-
struction. For ¢ € N, let us assume that —(A 4+ GK +Y;) is
Hurwitz. Then, since (24) is an LE for —(A + GK +Y;) and
YiTV’lYi is positive semidefinite, it follows that X; will be
strictly positive-definite, if the pair (—(A + GK +Y;), V" 2Y))
is observable [46]. If we suppose that this pair is not observable,
then from [46] there exists A € C such that

My, + (A+GK +Y;)

ank V-1 y, 45)
Therefore we can find a nonzero vector v € C"™ such that
(M + (A+GK +Y))v =0,V Y0 =0
from which we derive the equivalent set of equations
—(A+GK +Y)v =z, —(A+ GK)v = Iv. (46)

Eq. (46) imply that A is an eigenvalue of both —(A + GK +
Y;) and —(A + GK). However, —(A + GK +Y;) is Hurwitz,
hence its eigenvalues have strictly negative real parts. On the
other hand, (A + GK) is also Hurwitz, hence the eigenvalues
of —(A + GK) have strictly positive real parts. We therefore
conclude that there cannot exist A € C such that (45) holds,
hence (—(A 4+ GK +Y;),V~2Y;) is indeed observable and X;
is strictly positive-definite. Subsequently, a manipulation of (24)
yields

—(A+GK +Yi41)'X; — X;(A+ GK +Yiy1)
F(VEX; —VEIY)T(VEX; — V 2Y;) + X,V X; = 0.

Since X; was proved to be strictly positive-definite, the above LE
implies that —(A + GK + Y;41) is Hurwitz, which concludes
the induction and proves item 1).

For 2), given that each matrix in the sequence { — (A + GK +
Y;)}ien has been proved to be Hurwitz, the proof follows
from [40].

For 3), notice that X, = lim;_,~, X exists because { X; };en
is a decreasing sequence bounded below, and X, satisfies the
ARE (23). Therefore, (23) for X = X, yields

—(A+GK+VQ H' X, — Xoo(A+GK +VQ ™)
— XooVXo + XoVQ '+ Q7 'VX = 0. (A7)

In addition, Q’l is another solution to (23), hence

—(A4+GK+VQQ HYQ'-Q 'A+GK+VvQ™)

+Q 'V =o. (48)
Subtracting (47) from (48) yields
—(A+GK+VQ Q" — X)
- Q' =X )A+GK+VQ™)
+ (X —Q N (X —QH=0. (49

Note that (Xo, — Q 1)V (Xo — Q1) = 0. In addition, (49) is
an LE for the matrix —(A + GK + VQ™'), which is Hurwitz
because Q! is the stabilizing solution to (23) with respect
to —(A + GK). Hence, it follows that (Q~! — X)) = 0, or
equivalently X, = Q~'. On the other hand, from 2) of the
Theorem we have X, = Q! hence X, = Q' > X,.. This
means that lim;_,., X; = QL. [ |

F. Proof of Theorem 3
Let v € C™ be an eigenvector of A+ GK, and A € C the
corresponding eigenvalue. Then:

(—(A+GK)-Yy)v=—(A+GK)v+av = (a — A)v.

Hence, o — A is an eigenvalue of (—(A + GK) —Y}). Since
Re(ar — 1) < oo — a* <0, it follows that (—(A + GK) — Y)
is Hurwitz. u

G. Proof of Lemma 3
Let X € R™*" Z € R™"™, with X symmetric, satisfy

vecs(X)

vec(Z) =0

(50)

Dropping the dependence of x(¢) and v(t) on ¢, we have

d _ _ _ _
—&(xTXx) = 2" (ATX + XAz — 22" X Gw.

After adding and subtracting identical terms, this turns into
— —(2"Xz) - 2" XYz — 2", Xz + 22" Zv — 22" Z K
= 2" ((A+GK+Y)"X + X(A+GK +Y))
+(Z-XG)K +K"Z - XG)a +22"(Z — XG)v.
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Integrating this equation over [t,, ¢, + 7], k € {0,..., Ko},
and stacking it, we obtain
X M
o. Vecs(_ ) _ |:Jxx va} vec(My) 51)
vec(Z) vec(Ms)
where
My =—(A+GK+Y)'X - X(A+GK +Y;)

—(Z-XG)K - K"(Z - XG)",
My =2(Z - XG).

Using the fact that M7 is symmetric, (51) can be rewritten as

o, Vecs({() _ |:jxx VX} vecs (M) 52)

vec(Z) vec(My)
where Jy = [Jo...Jk,|T and J, = [/ T vech(vec ! (z ®
x))dt, k € {0,. KO} Note here that 1f (30) is true, we must

also have rank[.],(X Jux] = "(”2“) + nm. Therefore, from (50)
and (52) we conclude that My = 0, My = 0. From Ms =0
we conclude that Z = X @G, hence from M; = 0 we also con-
clude that — (A + GK + Y;)TX — X(A+ GK +Y;) = 0.But
by Theorem 2, —(A + GK + ;) is Hurwitz hence this LE has
X=0asa unique solution. This also implies that Z =0 by
the fact that Z = X G. Therefore, given condition (30), the only
solution to (50) is the trivial one, hence the kernel of ©); is trivial
forallz € N. |

H. Proof of Theorem 4

Given condition (30) and from Lemma 3, (29) has a unique
solution that is given by (31). Additionally, any matrix X;
satisfying (24) also satisfies (29) together with Z; = X, G, for
all7 € N. Hence, the proof follows directly from Theorem 2 and
(26). |

. Proof of Theorem 5

Consider the nominal sequence {X;};cy of Procedure 1
under Yy = Y. Then, we have that G(X)]uuw =V 1= 0is
invertible, and has strictly positive eigenvalues. For the perturbed
sequence, since Yj = Yo we have Xo Xo, and thus go
G(Xo) + AGp. By the continuity of the eigenvalues, we can
find 31 > 0, such that if | AG|| < f1 then [Go)u. is invertible.
Given that this condition holds, we have by [47]

V1 = [GolualGoluz = [G(X0) + AGol4e[G(X0) + AGo]us
= Y1 — V[AGo]uul[Golwl[G(X0)]uz + [Golui[AGo] ua

which implies ¥; = Y + AY;(AG) where ||AY; (AG)]||r — 0
as | AG||o — 0. Therefore, there exists 3; > 0, such that if
[AG|s < f1 then —(A+ GK +Y,) = —(A+GK +Y;) —
AY1(AG) is Hurwitz.

Continuing to the next step, X is derived as the solution to
the equation 7(G(X1), Y1) = 0, or equivalently of

—AY)TX, - X A+ YV Y =0

where A(Y) := A+ GK + Y. Since —A(Y;) is Hurwitz, the
unique solution to this equation is [46]

(A(Y) ® AY)) Tvec(YTV Y, + AY TV,
+YVTIAY, + AV TIAY)
= (A1) @ A(Y1) + AY; @ AYy)
+ A VY, + YV TIAY, + AYVTIAY).

vee(X;) =

“Tyvec(Y'V iy,

But A(Y7) @ A(Y1) is invertible since —A(Y7) is Hurwitz.
Therefore, from [47] we have

(A(V1)eAM))
Tvec(YVIVy) +

vee(X1) = vec(X;) —
(A7) ® A7)
-vec(AY

T(AY;0AY;)T
(A1) ® A(Y) T

VY + YIVTIAY + AYTVIAY)

whichimplies X; = X + F;(AG), where || B (AG)|[g — Oas
|AG|ls — 0. Thus, we have Gy = G(X) 4+ Fi(AG), where
Fi1(AG) = G(E1(AG)) + AG;. Therefore, since [G(X1)]uu =
V~! » 0isinvertible and has strictly positive eigenvalues, there
exists Gy > 0 such that if [|AG||s < Bo then [G1]uu = is also
invertible. Given that this condition holds, we have

Y2 = [G1]14[G1)ua=[G(X1) +F1(AG) L [G(X1)+FL (AG) o

= Yo VIF1(AG)uulG1]uulG (X)) ue +[G1]u [FL (AG)

which implies Y5 = Y5 + AY5(AG) where [|AY5(AG) [ — 0
as ||AG|loo — 0. Therefore, there exists By > 0, such that if
|[AGls < B2 then —(A+ GK +Y3) = —(A+ GK + Y) —
AY5(AG) is Hurwitz.

Continuing the process indeﬁnitely and combining all derived
bounds on ||AG||«, for any i* € N and ¢ > 0, we can find
v = 71(i*,€) > 0 such that if ||AG||« < 71 then [Ql]w is
invertible, —(A + GK + Y;) is Hurwitz, ||X — Xl < 0 and

|Y; — YHF < 5" for alli=0,1,2,...,7*. Leti* be such that
| Xi- — Q7 YF < , then it follows by the triangle inequality

that ||XZ* — 1||1; < do. Since Xj» € Bs, (Q 1), all of the
results then follow by applying Lemma 4. |

J. Proof of Theorem 6
Note that owing to (21), one has
(A+GE)"Q '+ Q YA+ GK)+Q'vQ ' =0

Hence, pre-, and postmultiplying this equation by the trajectories
of z, and using (32), we derive

2T (1) (ATX, + X,A)z(t)

+ 2T () (X, VX, +2Z,K)xz(t) = 0. (53)
Combining (53) with (33) yields V¢ > 0
N(t) = — B(Z(t) — 2" (t) Xox(t)) + 227 (t) Z,v(t)
V(1) (ATX, + X, A)x(t). (54)
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However, owing to (7) and (8) one has V¢ > 0
d(a" () X,x(t))

dt
+ 227 () Zova (1),

= 2()T(ATX, + X, A)z(t)
(55)

Hence, combining (54) and (55), and taking (2) and (8) into
account, we obtain V¢ > 0

S(t) = —BS(t) — 227 (1) ZoBalt) (56)
where, owing to the initialization in (33)
2(0)=0 (57)

Items 1 and 2 may now be proved as follows.

Item 1: If a(t) = 0, then from (56) and (57) it is straight-
forward to verify that ¥(¢) = 0. Thus, by the contrapositive
argument, if ¥(¢) # 0 then a(t) # 0.

Item 2: An integration of (56) and (57) yields, forallt > 0

t
S(t) = -2 / e P11 (1) ZyBa(T)dr.
0

Thus, if ¥(¢) = 0, it follows from the (piece-wise) continuity of
a that 2T (t) Z,Ba(t) = 0 (almost) everywhere. |

K. Proof of Proposition 2

Following the same analysis as in the proof of Theorem 1, it
follows that f,,(B) = tr(QR), where @ > 0 uniquely satisfies
the LE (17). Next, note that /; and V5 are both positive-definite
matrices, and A + G K is Hurwitz. Hence, the LEs (37)—(38) ad-
mit unique positive-definite solutions @)1, Q2 > 0, respectively.

Next, subtracting (38) from (37), we obtain

(A+GK)(Q1 — Q2) + (Q1 — Q2)(A+ GK)" +V =0.

However, this LE with respect to the matrix (1 — Q) is exactly
the same as the LE (17), which is uniquely solved by Q). There-
fore, @ = Q1 — @2, and it follows that f,(B) = tr(Q1R) —
tI'(Qg R) . |

L. Proof of Proposition 3
We have

fp(B) =E UOOO ST(x(t))(BwlBT)ls(af(t))dt}
=E {tr </Ooo s(x(t))sT(x(t))dt(BWlBT)1) ]
|

—tr ]E/O s(x(t))sT(x(t))dt}(BW_lBT)_l)
= tr (E[V (20)](BW ' B")™Y)

where V(zg) = [, s(z(t))sT(z(t))dt. Therefore, it follows
that V; ;(z0) = [y si(x(t))s;(x(t))dt, Voo € R", and using
standard arguments [39], we conclude that V; ; is the unique
solution of the PDE (42). [ |
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