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Prior research has validated Photoplethysmography (PPG) as a promising biomarker for assessing stress factors in
construction workers, including physical fatigue, mental stress, and heat stress. However, the reliability of PPG as
a stress biomarker in construction workers is hindered by motion artifacts (MA) - distortions in blood volume
pulse measurements caused by sensor movement. This paper develops a deep convolutional autoencoder-based
framework, trained to detect and reduce MA in MA-contaminated PPG signals. The framework's performance is
evaluated using PPG signals acquired from individuals engaged in specific construction tasks. The results

demonstrate the framework has effectiveness in both detecting and reducing MA in PPG signals with a detection
accuracy of 93% and improvement in signal-to-noise ratio by over 88%. This research contributes to a more
reliable and error-reduced usage of PPG signals for health monitoring in the construction industry.

1. Introduction

Ensuring physical and mental well-being of construction workers has
been a persistent and pressing issue. Chronic fatigue is among the pri-
mary areas of concern within the construction industry, notably, in the
United States, a substantial 40% of construction workers encounter se-
vere fatigue at some stage throughout their workday [1]. Added to the
physical health complexities, construction workers are also among the
most prone to mental problems [2]. The implementation of continuous
health monitoring technology for construction workers holds tremen-
dous potential in addressing these multifaceted challenges.

The significant advancements in the microchip industry witnessed
over recent decades have paved the way for the transformation of
physiological devices into compact wearable forms. Real-time detection
of various stressors relating to physical and mental fatigue/stress from
wearable sensors can help inform better decisions regarding health in
real-time, which can thus prevent severe fatalities and related health
problems [3]. Extensive research has been conducted on various wear-
able health monitoring devices suitable for implementation in con-
struction sites including electrocardiogram (ECG), electromyography
(EMG), and photoplethysmography (PPG) [4-10].

PPG which measures blood volume pulse (BVP) has access to various
cardio-pulmonary activities such as blood pressure, oxygen saturation
(Sp03), and pulse rate, providing access to various stressors like physical
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fatigue, mental stress, and heat stress [11]. In addition, wearable PPG
sensors also have the advantages of compact size, ease of use, and lower
power usage [12]. However, despite these promising findings, the
widespread adoption of photoplethysmography for health monitoring in
the construction industry has been relatively limited.

One significant challenge in using wearable PPG sensors for health
monitoring is their susceptibility to motion artifacts [13]. Motion arti-
facts are the distortions in signal waveform arising from bodily move-
ments or external factors leading to inaccurate blood volume
measurements. Such distorted signals can undermine the reliability and
accuracy of health assessments using PPG signals. This issue is particu-
larly exacerbated when subjects are engaged in various physical activ-
ities, intensifying the occurrence of motion artifacts [12-14]. The
construction setting, characterized by substantial physical activity,
further magnifies the challenge of motion artifacts in acquired signals.
Observational data and studies in construction show that tasks with
manual labor and tool usage often cause significant hand and body
motions [15,16]. Existing literature on ergonomic assessments in con-
struction also demonstrates this, emphasizing the prevalence of hand-
intensive tasks like material handling, rebar tying, hammering, dril-
ling, and scaffold erection [17-22]. These activities involve repetitive
and intensive hand movements, impacting the accuracy of PPG signals
by introducing motion artifacts.

Addressing the challenge of motion artifacts in PPG signals has been
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the subject of extensive research, leading to the development of two
primary approaches for the detection and filtering of MA in PPG signals:
acceleration-based methods and non-acceleration-based methods.
Acceleration-based methods use motion data based on acceleration as a
reference to track device motion and subsequently use this information
to reduce motion artifacts [23-26]. While this approach can be lever-
aged for both tasks of detection and artifact reduction, it has two major
drawbacks: (i) requirement of extra hardware and its calibration, and
(ii) higher power requirement. While these may not be an issue in a lab
setting under a controlled environment, they may pose challenges in
real-world application wearable devices that require small size and
lower power consumption. Moreover, MA in the acquired PPG signal
and acceleration data may not strongly correlate as well [27].

Non-acceleration-based methods may be broadly categorized into
feature extraction-based fiducial methods and wavelet transform
methods. Fiducial methods rely on waveform features and statistical
descriptors of the PPG waveform for the detection of motion artifacts.
While these methods are easier to implement, they require manual
feature engineering, exhibit relatively lower performance, and
encounter challenges when confronted with diverse testing environ-
ments [28]. Wavelet transform-based methods eliminate the need for
feature engineering, offering both noise reduction and detection capa-
bilities. However, they may introduce phase distortion and loss of data
during processing [29].

The limitations associated with these existing methods create a
notable knowledge gap, one that could be effectively addressed by
leveraging deep learning-based approaches. Deep learning (DL)
methods have been able to achieve superior performance for artifact
removal in similar physiological signals like EEG [30-33] and ECG
[34-36]. Furthermore, DL has also proven to be a powerful tool in
various healthcare applications based on PPG signals [37-41]. This
paper introduces a novel non-acceleration-based deep learning frame-
work that employs an autoencoder architecture to detect and reduce
motion artifacts in PPG signals. An autoencoder is a neural network
architecture comprising two primary components: an encoder and a
decoder. The encoder transforms input data into a condensed, lower-
dimensional representation, extracting essential features. The decoder
then reconstructs the input data from this representation, effectively
reducing noise and capturing salient patterns. This makes autoencoders
particularly effective for tasks like artifact detection and noise removal.
Recent studies have underscored the effectiveness of deep autoencoder
networks in denoising across diverse domains, including images
[42,43], videos [44,45], audio signals [46,471, and physiological signals
[30,48].

Building upon the autoencoder architecture, the proposed frame-
work comprises two main components capable of screening and
reducing motion artifacts in the input PPG signals. The initial compo-
nent utilizes the autoencoder network for anomaly detection to detect
MA-induced PPG signals. The second component employs the autoen-
coder network to reconstruct MA-contaminated PPG signals, effectively
reducing motion artifacts. The developed framework has been trained
and validated using data acquired in a construction environment,
featuring subjects engaged in diverse construction tasks such as material
handling and rebar tying. This tailored approach enhances the frame-
work's relevance to the construction domain, especially the ones
involving hands-on and intensive construction activities. The integra-
tion of screening and motion artifact reduction within a unified
autoencoder network also improves computational efficiency and
memory utilization. Consequently, this study fills a critical gap in cur-
rent approaches and contributes significantly to the field by presenting a
comprehensive framework for motion artifact screening and removal in
PPG signals. The ensuing development is positioned to streamline scal-
able and reliable deployment and expand the applications of health
monitoring based on physiological sensing, particularly offering sub-
stantial benefits to the construction industry.

The paper is structured as follows: In Section 2, a brief literature
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review is provided, focusing on health monitoring through photo-
plethysmography and the existing methods of MA reduction in photo-
plethysmography signals. Section 3 describes the proposed
methodology, including the technical details of the autoencoder-based
framework for MA detection and removal. In Section 4, a case study is
presented, which includes details of the experiments conducted to
develop and evaluate the framework. The results are analyzed and dis-
cussed in Sections 5 and 6. Finally, the contributions are summarized in
Section 6 and Section 7 concludes the paper.

2. Literature review
2.1. PPG for health monitoring

Photoplethysmography is a non-invasive optical method that mea-
sures blood volume changes in peripheral blood vessels [49]. These
changes generate pulsating signals captured through PPG, comprising
an AC (alternating current) and DC (direct current) component. AC
component is primarily induced by blood volume changes with each
heartbeat, while the DC component represents baseline tissue absorp-
tion. The AC component is essential for deriving pulsatile information,
while the DC component is associated with static physiological condi-
tions [50]. PPG sensors have gained widespread acceptance in the field
of medicine, serving various purposes, including the assessment of blood
oxygen saturation (SPO2), heart rates, and related metrics such as pulse
rate, heart rate variability, and blood pressure [51]. The invaluable
access to cardio-pulmonary data has made them a common tool for
cardiovascular monitoring. In clinical settings, they have proven effec-
tive in detecting multiple cardiovascular conditions like arterial stiff-
ness, peripheral artery disease, and hypertension [52,53]. Furthermore,
PPG sensors have also been employed for respiratory rate monitoring,
identifying sleep apnea, and assessing pain levels [54,55].

The application of photoplethysmography has also been explored for
the construction industry [56]. The author's prior research investigated
the feasibility of utilizing PPG technology to assess the physical and
mental well-being of construction workers [5]. The work was able to
verify the statistical dependence of the physical and mental status of a
worker to derivatives of PPG like heart rate variation. Numerous studies
have been conducted in construction settings to explore the applications
of photoplethysmography to assess construction workers' health status.
For instance, Shakerian et al. developed a datacentric approach using
PPG signals and machine learning algorithms for detecting heat stress
among workers in construction sites. The work validated in the con-
struction environment was able to predict distinct levels of heat strains
among multiple subjects with the use of PPG signals [4]. In another
work, Shayesteh et al. leveraged PPG signals as a part of a multimodal
analysis employing convolutional neural networks to determine cogni-
tive loads during construction training tasks performed in a virtual
environment [57]. Despite the potential of PPG in accessing various
health conditions of workers its usage in real world can be impacted by
noise contamination.

2.2. Motion artifact detection and removal in PPG signals

One of the major sources of noise in acquiring PPG signals is the
motion artifact [26,58]. Motion artifact in photoplethysmography refers
to unwanted variations in the PPG signal caused by movement noise,
leading to inaccurate or distorted measurements of blood volume
changes. Because of the overlapping of MA frequency and pulsating
component of the PPG signal, separation of the MA from the signal using
a traditional filter-based-approach is not efficient [59]. PPG signal
acquisition relies on the optical reflection and absorption of light in
tissues, making it susceptible to distortion with even slight movements,
given the rapid nature of this process. In clinical environments with
constrained motion, mitigating motion artifact (MA) issues is feasible.
However, in realistic operational scenarios where motion is inevitable,
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the susceptibility to contamination poses a significant challenge in
acquiring high-quality PPG signals [60].

Feature extraction-based fiducial methods have been extensively
researched in the literature for artifact detection. One of the approaches
is based on waveform feature extraction like peak interval, amplitude,
pulse width, etc. based on time and period domain analysis, where MA is
detected based on the anomalous waveform features [59,61]. The other
type of approach is based on statistical descriptors such as skewness,
root-mean-square, kurtosis, etc. [62,63]. While feature-extracting
morphology-based methods are easy to implement, require less data,
and are limited to detection tasks [29]. Advanced statistical modeling
approaches have also been explored in the literature, for instance, Lee
et al. used multichannel PPG signals with varying wavelengths applying
independent component analysis to reduce MA in the acquired PPG
signal [64]. In a separate study, Zhang et al. employed distinct wave-
lengths for signal acquisition to reduce motion artifacts in PPG. Utilizing
one wavelength as a motion reference helped diminish motion artifacts
in the acquired PPG signals [65]. While multiple wavelengths and de-
vices can offer an improved performance, the use of multiple sensors can
encounter potential hardware configuration challenges and the place-
ment location of the multiple sensors can impact the accuracy and
consistency of the results.

Wavelet transform-based techniques have the advantage over the
fiducial methods as it doesn't require feature engineering and compar-
atively provide a superior performance [66-69]. However, wavelet
transform-based methods may introduce phase distortion in signals,
which can cause a loss of information as well as provide misleading
inferences [70]. Another frequently used method involves utilizing IMU,
gyroscope, or accelerometers to track device motion and subsequently
using this information to detect, estimate, and subsequently remove
motion artifact [23-25]. While this approach can be leveraged for both
tasks of detection and artifact reduction, it requires extra hardware, and
calibration, and has higher power usage. Moreover, motion artifacts in
the PPG signal and accelerometer data do not strongly correlate as well
[27].

2.3. Autoencoder based artifact removal

Deep learning offers numerous advantages over traditional signal
processing methods. It adeptly captures complex relationships facili-
tating the building of generalizable models. It can automate feature
extraction, thus enabling faster systems and end-to-end learning
frameworks. These desirable features have established deep learning as
a powerful tool for signal processing and denoising tasks
[30,31,34,36,39,71,72].

Recent studies have also explored various machine learning-based
methods for artifact removal in PPG signal. Zargari et al. developed a
non-acceleration method using a combination of Convolutional Neural
Network (CNN) and Cycle Generative Adversarial Network (CycleGAN)
to detect and remove MA in PPG signals [73]. CNN identifies MA in the
first phase, and CycleGAN is then applied in the second phase for artifact
reduction. While the model demonstrated improved performance
compared to both fiducial and wavelet-based methods, the use of
CycleGAN, known for its complex architecture, may bring computa-
tional challenges for real-world applications. The need for separate
neural network models for detection and reduction, along with the
computational cost, can pose difficulties for real-time in-device
computation, especially in wearables.

Autoencoders, a class of neural networks, have shown unique
promise in addressing the intricacies of motion artifact detection and
removal. These networks generally have simpler and smaller architec-
ture compared to advanced models like cycleGAN while can perform
well in denoising and generative tasks. Unlike traditional methods that
rely on manual feature engineering, autoencoders automate the process
of feature extraction, allowing for a more adaptive and nuanced
approach to capturing the underlying patterns in PPG signals. Their
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ability to learn hierarchical representations of data makes them partic-
ularly suited for handling the varying morphologies of physiological
signals across individuals and environments [30,74].

As efficient as these methods can be such autoencoder models have
not been investigated for motion artifact detection and removal for PPG
signals. Therefore, this study aims to design, deploy, and validate a
novel end-to-end framework based on an autoencoder network for MA
detection and removal in PPG signals, specifically tailored to the con-
struction environment. The development of this framework will facili-
tate scalable deployment and expanded applications of physiological
sensing-based health monitoring within the construction industry.

3. Autoencoder network for motion artifact removal

This section describes the different components of the proposed
autoencoder-based framework for motion artifact screening and
removal. The framework is developed through four primary phases
presented in Fig. 1. In the first phase, data acquisition is performed for
subjects in a controlled construction setting with prespecified con-
struction tasks for a predetermined time frame. Through the experiment,
motion artifact-free reference PPG signals and MA-contaminated PPG
signals are acquired for the study. Further details regarding this phase
are provided in Section 4. In the second phase, the PPG signals acquired
in the first phase are preprocessed to train the autoencoder in the third
phase. In this phase, filtering methods are applied to remove workplace-
related extrinsic artifacts, and normalizing, windowing methods are
used to prepare the signal into a suitable format for training the
autoencoder network for the third phase. In the third phase, the pre-
processed PPG signal is used to train an autoencoder network that learns
to reconstruct the MA-free signal as the output of the network. The
autoencoder network developed in the third phase is deployed in the
final phase to develop an anomaly detector for detecting and screening
MA in the PPG signal. In this phase, the PPG signals with MA are
detected and screened based on the reconstruction error of the autoen-
coder network. So, the developed framework comprises of two depen-
dent systems based on the developed autoencoder network to screen and
remove motion artifacts in the acquired PPG signals. For testing the
performance of the framework, data acquired from multiple subjects
performing construction tasks is leveraged. The second, third, and fourth
phases are explained in the following subsections.

3.1. Signal preprocessing

After the PPG signals are acquired in the form of Blood volume Pulse
(BVP) from subjects performing specific construction tasks (section:
“Experimental Study: PPG Dataset from construction Scenarios”), the
signals are preprocessed through four different steps. First, low pass
filter of 10 Hz is applied to remove high-frequency extrinsic noise for
construction environment corresponding to electrical noises, electro-
magnetic, and thermal noises [75]. After applying the filter, the signals
are normalized by minmax normalization. This normalization ensures
that all the values lie between 0 and 1, which complies better with the
network architecture training process.

To enhance the autoencoder network's generalizability, the reference
PPG signal acquired during the stationary phase is augmented with
various types of artificial noise during the training phase. A combination
of gaussian noise, Brownian noise, pink noise, blue noise, and violet
noise is used to synthesize artificially contaminated PPG signals. This
combination has been used based on work [76]. Gaussian noise uses the
uniform normal distribution centered around 0. This adds up frequency
invariant noise as power spectral density is constant across all the fre-
quencies. Pink noise has a frequency spectrum in which the power
spectral density (PSD) of the signal is inversely proportional to the fre-
quency while Brownian noise has a frequency spectrum with the PSD of
the signal inversely proportional to the square of frequency. Similarly,
violet and blue noise have a frequency spectrum with the PSD of the
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Fig. 1. Overview of the proposed study.

signal directly proportional to the frequency and its square respectively.
These contaminated signals are combined with the reference signals to
augment the training set. This ensures that the autoencoder learns to
reconstruct artifact-reduced PPG signals from multiple variations of the
contaminated signal thus increasing the generalizability of the devel-
oped system [76].

Windowing is performed after the noise synthesis. Since a neural
network can process only a fixed length of temporal data, the network
needs to be fed with a batch of fixed-length temporal series during
training. For creating the windowed dataset, a sliding window of 2 s
time is used with a stride of 2 s. Thus, for a single instance of processing
of the autoencoder network, 2 s of PPG signals are reconstructed. A
normal healthy human has a pulse rate from 60 to 100 beats per minute
which is a periodicity of <1 s, but for diseased cases like bradycardia, it
may be lower to around 40-60 bpm. To make the network effective for
extreme cases, a larger temporal range of two seconds is used as the
input size. This enables the monitoring system to make health inferences
based on a single instance of denoised PPG signals. A representation of
various forms of augmented noise with sampled windows is presented in
Fig. 2.

3.2. Network architecture and training

After performing the required signal processing, the designed
autoencoder network is trained. The autoencoder network comprises
two parts, an encoder and a decoder connected by an embedding layer,
as shown in Fig. 3. The encoder leverages PPG signals from photo-
plethysmography as input to generate column vector in latent space, v =
{V1,V2,...,v4}, that is used to reconstruct the PPG signals through the
decoder subnetwork. The encoder is constructed of two convolutional
blocks followed by two dense layers of 16 and 4 units respectively which
extract features into the embedding layer. For the first convolution block
(C1),kernel size of 5 x 1 is used to capture a larger temporal range. This
allows the network to learn features over a broader time window. In the
second convolution block (C;), a reduced kernel size of 3 x 1 is used to
capture more detailed and localized features in the PPG signal. For the
first and second convolutional blocks, 8 and 16 filter sizes are used
respectively. The choice of increasing filter sizes facilitates a hierarchi-
cal feature learning approach. Smaller filters in the first block can cap-
ture simple, low-level features, while larger filters in the second block
can focus on more complex patterns. Each convolutional block consists
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of 1D convolution followed by batch normalization and max pool layer.
Batch normalization helps in stabilizing and accelerating the training
process by normalizing the input of each layer. Max pool layer is used for
down sampling the learned features, thus focusing on the most impor-
tant feature, and reducing computational load for the network. Two
dense layers follow the convolutional blocks with 16 and 4 units,
respectively. The reduction in units in the second dense layer is aimed at
reducing the dimensionality of the latent space, potentially extracting
more salient features for reconstruction. The decoder leverages the
output of the encoder, a column vector in latent space, to reconstruct the
PPG signals by reducing the artifacts. The decoder is constructed of two
transposed convolutional blocks followed by a dense layer, to generate
the denoised PPG signals. In the transposed convolutional blocks, a
kernel size of 3 x 1 is used in the first deconvolution layer (C;), while a
kernel size of 5 x 1 is chosen in the second deconvolution layer (C,).
These kernel sizes are selected to reverse the effects of the convolutional
layers effectively, allowing the network to learn to denoise the PPG
signals. The first deconvolution layer comprises of 16 filters, and the
second deconvolution layer comprises of 8 filters. The use of decreasing
filter sizes helps the network gradually reconstruct the PPG signals while
reducing the complexity of learned features. Each transposed convolu-
tional block consists of 1D deconvolution followed by batch normali-
zation, which is used to stabilize and accelerate the training process by
normalizing the input for the next layer. The final dense layer comprises
of 16 units pertaining to the final output size of the reconstructed signal,
ensuring that the final output size of the reconstructed signal aligns with
the input PPG signals.

For the training process, the mean absolute error is used as the loss
function #(6) (Eq. (1)). During each iteration, the weight parameters
(8) of the network are updated to 6" to minimize the given loss function
as given by Eq. (1).

N
o — argmiﬂe< Z |fre (X;76) —Xi { ) @

The reference signals and the augmented signals acquired during the
stationary phase are utilized for training the autoencoder network. Here,
X; is the input augmented PPG signal where as X; is reference motion
artifact free PPG signal and the autoencoder reconstructed output
fre (Xl , 9) is the output of the network. Eq. (1) will measure the difference
between the reference signal (X;) and the autoencoder reconstructed
signal f. (X;,0) and reduce the mean absolute difference by optimizing
weights of the autoencoder network (0). Through iterating and opti-
mizing value for the weights (6), the autoencoder network learns to
generate the PPG signals without noises. During the training of the
autoencoder, the loss function as described in Eq. (1) was minimized
using the Adam optimizer [67]. A learning rate of 0.001 was chosen for
the training process. The value was determined using a learning rate
scheduler where performance was evaluated for varying range of
learning rate for 1e — 5 to 0.1. TensorFlow API with Keras backend was
used for developing and training the autoencoder network [77]. During
the training, a ratio of 80:20 was used for the training and validation set.
Moreover, to ensure generalizability during data split, two primary

methodologies were leveraged: stratified sampling and the inclusion of a
holdout set [78]. Stratification, conducted on a subject-wise basis,
ensured that data from all subjects was represented in both the training
and test sets, exposing the network to a diverse range of data within the
specified set. Additionally, a distinct holdout set was allocated
comprising data from ten subjects, enabling the evaluation of the net-
work's performance on unseen data that played no role in the training
process. This incorporation of a holdout set served as a crucial measure
for assessing the model's efficacy in handling novel and untrained
instances.

The performances of the training were evaluated based on Mean
absolute error (MAE), Mean squared error (MSE), and Signal-to-noise
ratio (SNR) as defined in [79]. For the validation set, improvement
SNR as defined by [68] and given in Eq. (2) was used as the evaluation
metrics.

o2 o2
ASNR = 10logo | = | — 10logo | " 2
denoised Gnoisy
Rref — Rdenoised)
=100(1—-————— 3
v ( Rref - Rnoisy

2

Here, oZ;,

02 0iseas and 62, represents the variance of the MA free

noisy
reference PPG signal, denoised PPG signal, and contaminated PPG signal
respectively. For the reduction in motion artifact (y) (Eq. (3)), Ryer,
Renoised> and Ryoisy T€present correlation coefficient for MA free reference

signal, denoised signals and noisy signal respectively.

3.3. Motion artifact detection using anomaly detection

An anomaly detection algorithm is further developed by leveraging
the trained autoencoder network for screening PPG signals with motion
artifacts. A separate set of experiments as described in section 4.2 are
performed to examine the performance for four different variations of
MA-induced PPG signals. For each MA-inducing activity, acquired PPG
signals are fed as the input to the autoencoder, and reconstruction MAE
is computed against the PPG signal output by the autoencoder network.
The time-averaged reconstruction MAE is leveraged to examine and
compare motion artifacts for various MA-inducing activities as given by
Eq. (4). The minimum reconstructing MAE value is used as the reference
to screen motion artifacts in the acquired PPG signals. For each sequence
of PPG signals processed through the autoencoder, the reconstruction
MAE is computed using Eq. (4). If the computed value exceeds the
reference reconstruction MAE, the signal is flagged as an artifact signal
and undergoes the denoising process. Otherwise, it is classified as a no
artifact signal, and thus is not processed for the denoising process.

1Q
T(X) = a Z lv; — Xil 4
i=1

Here, T(X) represents the reconstruction MAE value for the given
sequence of PPG signals, y, represents the reconstructed PPG signals
which is output by the autoencoder network whereas x; represents the
MA induced PPG signals, which is the input for the autoencoder
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network. The subscript i represents i™ data point in the given sequence
of PPG signal.

3.4. Evaluation of individual differences

The acquired PPG signals can have varying morphology across
different individuals and construction tasks which can cause variations
in the performance of the developed framework. An evaluation method
specifically targeting individual differences is set to assess the robust-
ness of the developed framework and validate its performance across
individual variations. Recognizing potential variations in PPG signal
patterns among participants, a Kullback-Leibler (KL) divergence test
[80] was integrated into the evaluation process. The KL divergence test
quantifies the information difference between two given distributions. It
assesses the dissimilarity between the two distributions P and Q by
calculating the sum of the products of the probability of each event in P
with the logarithm of the ratio of the probabilities in P and Q (Eq. (5))
[801.

Dy (P ||Q> = Zf(i)log(%) ®)

Here, Dy, (P ||Q) represents the KL divergence values for given dis-
tribution P and Q whereas, P and Q represent the distributions of SNR
values obtained from the MA-induced and MA-reduced PPG signals
respectively. The values obtained from the KL divergence test for these
two distributions are then evaluated for the varying tasks and in-
dividuals using one-way analysis of variance ANOVA. The one-way
ANOVA is a statistical test used to determine whether there are any
statistically significant differences between the means of the given
groups. Mathematically, it is the ratio of between-group variability and
within-group variability as given by Eq. (6).

S -%°/(k-1)

F= 2
;Zj (X5 —Xi)" (N — k)

©

Here, n is the number of observations in the i group. Each type of
construction task can be considered as a different group to evaluate the
variance across varying tasks, X; is the mean of the i group, X is the
overall mean, Xj is the j observation in the i group, k is the number of
group (types of construction tasks) and N is the total number of obser-
vation (number of individuals). The parameters and results are pre-
sented and discussed in more detail in Section 5.

4. Experimental study: PPG dataset from construction scenarios

To assess the developed framework's performance in screening and
removing motion artifacts from PPG signals, a case study was conducted
in a construction setting. An off-the-shelf wristband biosensor was used
to acquire PPG signals from the subject (“E4 wristband”) [81]. In total,
15 subjects were employed for the study providing a relatively diverse
sample. The inclusion of multiple individuals helps capture a range of
physiological variations that may be present in PPG signals. The data
collection was performed in two sets of distinct phases: the stationary
phase and the construction phase. Data acquired during the stationary
phase was used as a reference signal during training and data acquired
during the specific construction task was used for evaluating the
developed framework. In total four construction tasks were performed,
three construction tasks were performed in a real environment whereas,
for the fourth task, virtual reality (VR) was used where subjects per-
formed material handling task in a high-rise building designed in virtual
environment. As the sensor used in the study is wristband type device,
the experimental construction tasks had been carefully selected to
ensure their common occurrence in the construction workplace as well
as involve significant hand or upper body motion. Three specific
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material handling tasks were selected for the study, given that manual
material handling stands out as one of the most prevalent activities in
construction, demanding substantial hand and body motions [22].
Additionally, manual rebar tying, another common construction task,
also involving significant hand movements was also chosen for the
experimental tasks [82]. The chosen tasks are not only widely encoun-
tered in the construction environment but also exhibit significant mo-
tion, ensuring the relevance of the experiments to both the construction
setting and the MA reduction framework. Additionally, the VR based
material handling task was included to add diversity to the acquired PPG
signals by introducing a more immersive and potentially stressful con-
struction environment for the subjects. The inclusion of various tasks
aimed to capture different stressors and physical activities that might
affect the morphology of the PPG signals differently across individuals.
Across the subjects, the mean age, weight, and height were 24.6 years,
182 pounds and 511" respectively with a standard deviation of 3.5
years, 14 pounds and 5" respectively. The experiments are illustrated in
Fig. 4.

4.1. Data acquisition for training and evaluation of the autoencoder
network

For every subject, initially, PPG signals were acquired for the sta-
tionary phase which is leveraged as the motion artifact-free reference
signal for training the autoencoder network. The subjects were seated
comfortably and asked to rest their hand on a table in a stationary po-
sition and the PPG signal was acquired. In case the subjects wished to
move or take a break, the signals acquisition was temporarily halted and
then resumed once the subject was ready. For each subject, PPG signals
were acquired for one hour in the stationary phase. 10% of the data
acquired during the stationary experiment is allocated for testing the
screening system. For further examining the developed framework for
the construction environment, PPG signals were acquired in construc-
tion settings where the subjects performed various construction related
tasks like material handling and rebar tying. Data from ten subjects is
used as holdout set for evaluation of the framework in construction
environment. Four different tasks were performed in the construction
environment, which mainly comprised of material handling and rebar
tying, which are among the most common manual tasks in construction
[22]. The diversity in tasks aimed to cover a spectrum of motion artifacts
that might be induced by different hand and body movements. The first
task was a rebar-tying task. In this task, the subjects tied up rebars set up
in an area of 1.21 m by 0.6 m for a total of 20 min with a small voluntary
break if required by the subject. The subjects use manual wire twister to
tie up the rebar with a wire tie. The second task was a low-intensity
material handling task where subjects transported a load of 2.3 Kg (5
lbs.) within a distance of 6 m. This task was performed for around 15 min
with a short voluntary break if required by the subject. The third task
was high-intensity material handling, for which the same setup as that of
material handling task was used but with a load of weight 13.6 Kg (30
1bs.). The fourth task was performed in a virtual environment, subjects
were asked to carry a lightweight interactable load between two given
locations at 6 m distance in the virtual environment. In the virtual
environment, the subjects were working in a high-rise building steel
structure lacking fences and a concrete base. This task was performed to
acquire signals from subjects in a more realistic construction setting
without compromising the safety of the subject. Subjects reporting or
doubtful of acrophobia were excluded from this experiment as the vir-
tual environment is set up at a significant height and open environment.
For the construction setting, thus 3.456 million instances of data points
of PPG signal were available for developing and examining the
autoencoder-based framework.

4.2. Experiment to set threshold values for MA detection

To develop and assess the performance of the MA screening
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Fig. 4. Experimental setup and tasks for the case study; 4 A: Experimental setup for the construction tasks and a subject performing material handling task; 4B:
Subject performing material handling task in a virtual environment with the interactable load; 4C: Subject performing rebar tying task with the wristband bounded in

white outlined box; 4D: A coordinate system for the wristband used in this study.

component of the developed framework, the authors conducted a
separate set of tasks to acquire MA-induced PPG signals. In this exper-
iment, MA-induced PPG signals were acquired from subjects by inducing
various forms of hand motion of the subject. The experimental protocol
is designed based on the work of [83], where various amplitude and
frequencies of vertical head motion were induced for subjects in a
controlled environment during EEG signal acquisition for studying
various forms of motion artifacts in EEG signal. Since similar experi-
mental protocols were not available in the literature for studying MA in
PPG signals, the experimental design drew inspiration from the previ-
ously mentioned investigation.

The experiments aimed to obtain MA-induced PPG signals through
controlled hand motion for the wristband type PPG sensor. The direction
of motion for the x, y, and z axes was defined relative to the device
coordinate system, as depicted in Fig. 4D. To simulate hand motion, the
wristband was subjected to periodic, forceful displacement of 10 mm in
the x-direction for a duration of 60 s during PPG signal acquisition from
the subject's wrist. The same procedure was implemented to induce y-
motion and z-motion, wherein the wristband underwent forceful
displacement in the y-axis and z-axis directions with an amplitude of 10
mm, respectively. In the fourth task, the wristband was worn with a
loose fit with a circumferential clearance of 2 mm and 4 mm. Two sets of
experiments were performed at these two levels. Random hand waving
task was performed during the experiments to generate MA-induced
PPG signals. In total, the fourth task was performed for about 6 min,
as signals acquired during this task were also leveraged to test the MA
detection algorithm.

For testing the accuracy of the motion detection algorithm, station-
ary phase and MA-induced PPG signals were combined in equal pro-
portions. For stationary signals, signals acquired in section 4.1 are
leveraged whereas for MA-induced PPG signals, data acquired during
the loose-fit task explained in the previous paragraph is leveraged.

5. Results

This section presents the results of training and testing the
autoencoder-based framework for MA detection and reduction. For MA
reduction, the performances were evaluated based on Mean absolute
error (MAE), Mean squared error (MSE), and Signal-to-noise ratio (SNR)
[73]. A further evaluation of the performance of the denoising method
was performed on signals acquired from the construction tasks as
explained in Section 4.1. For evaluating the performance of the high MA
screening component, reconstruction MAE as given by Eq. (4) was used
as the evaluating metric, and data acquired during tasks explained in
section 4.2 was leveraged.

5.1. MA removal using autoencoder

For the development of the framework, the autoencoder network was
trained as explained in Section 3. During the training of the autoencoder,
the loss function as described in Eq. (1) was minimized using the Adam
optimizer [77]. TensorFlow API with Keras backend was used for
designing and developing the autoencoder network [78]. For training
and validation purposes, MSE, SNR and improvement SNR as described
in Section 4.1 was leveraged. A sample of denoised PPG signal compared
with the contaminated signals is presented in Fig. 5.

For computing reduction in motion artifact (y) (Eq. (3)), the MA
induced and the denoised PPG signals' correlation coefficient is
measured against the MA free reference signal. Also, the correlation
coefficient for the reference signal (Rref) is set to 1 as the R, is used as
the reference for calculating the correlation coefficient for the given
equation. During the training of the autoencoder network, for the
training and the validation set, improvement SNR were 2.01 and 1.90
respectively, whereas the reduction in motion artifact was 10.94% and
3.7% respectively.
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Fig. 5. Sample output for the denoised signal from the test set; A: Autoencoder output of the denoised PPG signal compared with the reference signal; B:

Contaminated PPG signals compared with the reference PPG signal.

For further testing the performance of the developed autoencoder for
the construction environment, PPG signals acquired from subjects per-
forming construction tasks as defined in Section 4.1 were leveraged. The
contaminated SNR was computed for the unprocessed PPG signals ac-
quired during the construction task whereas the denoised SNR was
computed for the MA removed signals reconstructed by the autoencoder
network. The subject-wise calculation for SNR values for various con-
struction tasks is presented in Fig. 6.

Upon evaluation of subject-wise SNR values, Rebar tying tasks have a
comparatively lower initial SNR which may be attributed to the fact that
rebar tying involves continuous motion of hand in jerky manner which
can induce comparatively more MA than material handling tasks which
involves only limited hand motion during loading and unloading ac-
tivities. Also, it is observed that subject 9 has a consistently high SNR
value for all three real construction tasks compared to other subjects
(Fig. 6). This may be caused by personal working style with limited or
controlled hand motion which could have induced less MA in the ac-
quired PPG signals. As expected, M3, or the material handling task

performed in VR has the highest SNR values both for MA contaminated
and denoised signals. The VR material handling didn't involve loading
and unloading tasks, the subjects were walking between the given points
in the virtual construction environment transporting the load with
minimal movement of the hand because of which MA corruption in the
signal could have been lower thus resulting in higher SNR values. In
average rebar tying task had an increase in SNR by 90% whereas the VR
based material handling it was only 59%. In average, the initial SNR
values for the raw PPG signals acquired had a SNR value of 9.579
whereas the average SNR value for the MA reduced PPG signal was
18.05, thus providing an increase in the SNR values by 88%.

5.2. MA detection and thresholding using the autoencoder network

The reconstruction MAE values obtained for the previously defined
MA-inducing tasks are presented in Table 1. The threshold values along
X, ¥, and z directions were comparatively higher as in these cases MA
was induced by direct forceful movement of the device along the wrist to

A: Rebar tying B: Low-intensity material handling
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Fig. 6. Subject-wise SNR values for various construction tasks; 6 A: SNR value
handling; 6C: SNR value for VR material handling.
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Table 1
Threshold values for various types of MA introduced in the study.

S.no. Type of MA induced MAE reconstruction MSE threshold
1 X-motion 0.242 0.119
2 Y-motion 0.244 0.094
3 Z-motion 0.094 0.014
5 Loose fit - random motion 0.0405 0.108

a specified amplitude of 10 mm. For the loose fit random motion, the
natural movement of the device was leveraged without directly applying
displacement to the device along the wrist. A sample of reconstruction
for all the experiments is presented in Fig. 7. As the loose fit-random
motion resembled more to natural hand motion like waving its recon-
struction error was used as the reference threshold value for the
autoencoder-based anomaly detector. Thus, a reconstruction error of
0.0405 was set as the threshold value for detecting MA-induced PPG
signals. The sample of detected MA signals is presented in Fig. 8.

The algorithm was further tested on a test set comprising of signals
acquired during loose fit-random motion and stationary phase data
acquisition as described in Section 4.2 and Section 4.1 respectively. The
algorithm has an accuracy of 93% with a precision of 95% and a recall of
90%. In this scenario, prioritizing higher precision is paramount. By
doing so, the screening process for MA induced PPG signals is enhanced,
ensuring a more accurate filtering mechanism. This, in turn, prevents
the erroneous inclusion of MA induced PPG signals in the health
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monitoring system, thereby reducing the risk of incorrect health
inferences.

The performance of the developed framework was further evaluated
to validate variations in response to individual differences. To address
potential individual variations in PPG signal patterns and ensure the
generalizability of test results, a Kullback-Leibler (KL) divergence test
was employed. The KL divergence quantified the variance in signal-to-
noise ratio distributions in the PPG signals with and without motion
artifacts i.e., the MA induced input signal and MA reduced output signal.
This value was computed for every individual (10 individual) in the test
set across every experimental task (3 material handling and 1 rebar
tying). The test allowed for a nuanced examination of how the proposed
MA removal technique was performed across diverse individuals and
conditions. The values obtained from the KL divergence test were
compared for individuals using one-way ANOVA to analyze differences
across individuals. The test yielded values as follows: an f-statistic of
0.89 and a p-value of 0.46. The f-statistic value of 0.89, closer to 1,
indicated that the differences between individuals were not much larger
than the differences within individuals (inter-variability within various
tasks for a given individual). As the p-value of 0.46 is >0.05, it suggests
that any observed differences between the individuals could be due to
random variability rather than variability between the groups. This in-
dicates there were no significant differences between the performance of
the framework for different individuals. Not having significant differ-
ences between individuals suggests an effective generalization of the
proposed framework.
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Fig. 7. Sample of MA-induced signals and corresponding reconstructed signals; 6 A: X-axis MA-induced PPG signal; 6B: Y-axis MA-induced PPG signal; 6C: Z-axis

MA-induced PPG signal; 6D: Loose fit MA-induced PPG signal.
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Fig. 8. MA detector results on test set; A: No MA classification; B: MA induced signal classification; C: Normalized confusion matrix for the test set with key metrics.

6. Discussion

The proposed autoencoder-based framework demonstrated its effi-
cacy in screening and reducing motion artifacts in PPG signals acquired
during intense and dynamic activities such as construction tasks. For
signals acquired during construction tasks, the framework was able to
provide improvement in SNR by over 88% and detect high MA PPG
signals with an accuracy of 93%. The authors also compared the per-
formance of this framework with that of existing non-acceleration-based
motion artifacts detection and removal approaches which have
comprehensively been evaluated by literature and have approved per-
formance, these were mainly chosen based on literature review
comparing performance metrics. A separate comparison was performed
for MA detection and MA reduction. For MA reduction, the compared
methods are namely (1) Wavelet decomposition method, (2) Statistical
Evaluation, and (3) Interval dependent denoising based on wavelet
decomposition [68,84,85]. The results for are presented in Fig. 9. The

2 Unprocessed Signal

= Wavelet Decomposition Method

Db 20 i Statistical Evaluation
18 7 Interval Dependent Denoising
16

i Proposed Framework

NMMHmmmiio

proposed method provides a 27% higher increase in SNR compared to
the competing best method of Interval Dependent denoising.

Similarly, for the comparison of the MA detection function following
methods were used leveraged: (1) Gramian Angular Field and 2D CNN,
(2) 1D CNN, (3) Adaptive Template Matching, and (4) Random Distor-
tion Testing. The comparison has been summarized in Table 2. Notably,
two methods demonstrated comparable detection accuracy to the

Table 2
MA detection performance comparison with other works.

Study Method Accuracy (%)

93
94.3
94.5
91.5
83

Autoencoder based reconstruction
Gramian angular field and 2D CNN

1D CNN

Our study
[86]
[29]
[87]
[88]

Adaptive template matching
Random distortion testing
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Fig. 9. Comparison of the proposed autoencoder with other denoising methods.
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proposed method [29,86]. However, it's important to highlight that
these methods comprised of detection systems only and did not incor-
porate any denoising functionality for the MA-induced PPG signal.

Another important finding was revealed by evaluating the PPG sig-
nals acquired during construction activities with the MA detection
component of the developed framework. The task-wise classification for
instances of signals having MA as a percentage is presented in Table 3.
When tested for construction tasks, rebar tying had the highest instances
of MA. This may be attributed to the fact that rebar tying involves
continuous motion of the hand in a jerky manner which can induce
comparatively more MA than material handling tasks which involve
only limited hand motion during loading and unloading activities. For
the low-intensity and high-intensity material handling, instances of
motion artifact fluctuated significantly from subject to subject i.e. for
around half of the subject percentage of high MA was higher for task M1
whereas the opposite is for the remaining half. This variation may be
because of the variation of load handling behavior of subjects for various
loads. As expected, M3, or the material handling task performed in VR
had the lowest instances of high MA and almost 0 for most subjects. The
VR material handling didn't involve loading and unloading tasks, the
subjects were walking between the given points in the virtual con-
struction environment transporting the load with minimal movement of
the hand because of which MA instances may be comparatively lower in
this task.

The framework was also applied to access motion artifacts in various
common construction tasks, distinguishing between hands-on activities,
prone to frequent body motion, and supervisory roles, which are
generally less physically intensive. Within hands-on activities, MA in-
stances were evaluated for material lifting, hammering, and drilling,
while supervisory roles were assessed for walking and computer
browsing. The comparative analysis is summarized in Table 4. Tasks
involving intensive hand motion, such as hammering and drilling,
exhibited a notable incidence of MA. Conversely, less intensive super-
visory activities, like walking and computer browsing, showed relatively
lower instances of MA. This observation is consistent with the experi-
mental results, where tasks featuring vigorous hand movements tended
to have a higher occurrence of motion artifacts. In contrast, activities
with lower manual intensity, exemplified by supervisory roles, demon-
strated comparatively fewer instances of motion artifacts. This trend
aligns with the experimental tasks, where hands-on activities like rebar
tying, characterized by intense hand motions, showed a higher fre-
quency of motion artifacts. In contrast, less intensive activities like VR-
based material handling, devoid of lifting or intense physical activity,
displayed fewer instances of motion artifacts. Understanding these dy-
namics contributes valuable insights for optimizing MA reduction stra-
tegies in construction environments, emphasizing the need for tailored
approaches based on the nature and intensity of the tasks involved.

According to the above discussion, the proposed autoencoder-based
framework has the potential to promote more efficient health moni-
toring in the construction industry for construction workers. The
framework enables a more reliable usage of PPG signals for various types
of cardio-pulmonary monitoring of construction workers both on and off
the field in real time. Furthermore, the framework can be integrated into
algorithms for detecting various cardio-pulmonary health situations like
hypertension, heat stroke, heart attack, etc. This can lead to improved
health and quality of life for construction workers, which in turn may

Table 3
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Table 4
Instances of motion artifacts detected (in percentage) for other common con-
struction tasks.

S.no Tasks Instances of MA (%)
1 Material Lifting 47.3

2 Hammering 58.2

3 Drilling 52.5

4 Walking 6.2

5 Computer Browsing 15.5

also increase overall productivity in construction.

Future research should focus on addressing the various limitations
that are still present in this study. Firstly, the accuracy of the MA
reduction and detection framework may be negatively impacted by the
presence of externalities during signal acquisition sites like dust and
sweat which are common in a construction setting. These externalities
can be very difficult to tackle as they can completely block any usable
signals from being acquired. For instance, the presence of sweat in the
wrist may occlude the photoreceptor or the emitter surface which may
distort the acquired signals to be unusable for any inference. To over-
come this challenge, developments may be necessary for material and
hardware design to avoid sweat in the photoreceptors/emitters or use
other alternatives for photon-based signal acquisition. Secondly, the
current framework mainly focuses on reconstruction errors to detect the
high-motion artifact signals and leverages the autoencoder network
trained to reduce the noise. To further improve the efficiency of the
detection algorithm, the framework can be enhanced by integrating a
dedicated ML-based network to detect and classify levels of MA using
other variables like wrist acceleration. To this end, one potential avenue
for future research is to develop more robust frameworks to tackle
problems in construction sites like sweat and dust corruption of the PPG
Sensors.

7. Contribution

The scientific contribution of this study is highlighted by the intro-
duction of an innovative framework for PPG artifact removal tailored to
the construction environment. Through the development of a deep
convolutional autoencoder-based framework, the study has achieved a
substantial advancement in the accuracy and reliability of PPG signals
for health monitoring applications. The proposed framework presents
93% detection accuracy for motion artifacts and a notable improvement
of over 88% in the SNR. In contrast to conventional methods that often
rely on external hardware or manual feature engineering, the proposed
deep learning approach autonomously identifies and rectifies motion
artifacts, a critical feature in the dynamic and physically demanding
environment of construction sites where traditional methods may prove
insufficient.

The technical contributions of the study are underscored by the
development of a unified autoencoder framework. This framework can
simultaneously detect and reduce MA in PPG signals, simplifying the
processing pipeline, and significantly enhancing overall system effi-
ciency in terms of computation and memory usage. The dual function-
ality within a single framework marks a significant advantage for PPG
signal processing. Furthermore, the framework has undergone testing in
construction settings, ensuring its practical applicability and

Instances of motion artifacts detected (in percentage) for the construction tasks. R1: Rebar tying task; M1: Low-intensity material handling; M2: High-intensity material

handling; M3: VR material handling.

Tasks S1 S2 S3 sS4 S5 S6 S7 S8 S9 S10
R1 30.5 10 41.7 3.3 10 13.3 8.3 1.7 19.3 56.3
M1 10.2 18.3 31.7 20.0 8.3 3.3 0.0 0.0 9.2 8.3
M2 8.6 15 21.7 10.0 7.0 18.3 0.0 3.3 7.0 8.3
M3 1.7 0.0 0.0 0.0 5.2 8.0 0.0 0.0 2.5 0.0
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effectiveness. Tailored to address the specific needs and challenges of
the construction industry, including the high occurrence of motion ar-
tifacts due to physical activities, the solution emerges as a relevant and
impactful tool for continuous health monitoring of construction
workers.

In a broader context, the implementation of this framework has the
potential to enhance health monitoring practices in the construction
industry. With enhanced accuracy and reliability in detecting stress
factors including physical fatigue and mental stress, through PPG sig-
nals, the approach can lead to more informed and timely interventions.
This will ultimately contribute to the reduction of stress and fatigue-
related incidents and improving overall worker well-being. Beyond the
construction industry, this research sets a new standard for physiological
monitoring in various settings. The principles and methodologies
developed here can be adapted and applied to other fields where reliable
and efficient health monitoring is crucial, potentially influencing a wide
range of health-related practices and technologies.

8. Conclusions

This paper presents a framework to screen and reduce motion arti-
facts in photoplethysmography signals using a deep autoencoder. An
autoencoder network for removing motion artifacts in PPG signals was
developed. The developed autoencoder network was further extended to
detect and screen MA in the acquired PPG signals. The effectiveness of
the developed framework for MA screening and removal was evaluated
using PPG signals acquired from human subjects working in a controlled
construction environment. The results demonstrated successful imple-
mentation of the developed framework with a detection accuracy of
93% and SNR improvement of 88%. The framework developed and
evaluated using data acquired in a construction setting, is tailored for
the construction environment specially for hands-on and intensive
construction activities. The employment of an autoencoder-based MA
screening and removal framework can set up the stage for a more reli-
able health monitoring system for construction workers using PPG sig-
nals. The study's findings are relevant for improving the reliability of
PPG signals in the health monitoring of construction workers. The pro-
posed framework has the potential to facilitate the digital trans-
formation of health monitoring in construction sites by allowing for
accurate and dependable utilization of physiological signals acquired
from wearable sensors.

The study has its limitations with real-time deployment as the
framework was developed and evaluated on prerecorded data acquired
in a controlled construction setting. Real-time deployment may have
constraints from existing computation resources in terms of time and
memory. In this regard, future research can focus on the real-time
deployment of such a framework, optimizing for operational factors
like model size, speed, and latency. Another limitation of the proposed
framework lies in its susceptibility to external factors, such as dust and
sweat, commonly encountered in construction settings. The presence of
these externalities can obstruct signal acquisition, particularly when
sweat interferes with photoreceptors or emitter surfaces, distorting
signals and rendering them unusable for accurate inference. Over-
coming this challenge requires innovations in material and hardware
design, aiming to either prevent sweat from affecting photoreceptors/
emitters or explore alternative methods for photon-based signal acqui-
sition. Furthermore, future investigations can investigate the perfor-
mance of such frameworks by integrating them to real-time health
monitoring systems for better evaluation. It is also recommended to
examine other efficient learning models for removing noise like the
diffusion models which may provide even better performance. The study
successfully implemented the developed framework to address motion
artifacts in PPG signals during material handling and rebar tying tasks,
including evaluation for individual differences. However, for broader
applicability to similar construction tasks, additional validation from
future studies may be required to ensure the framework's effectiveness.
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Similarly, future research could explore the efficacy of the proposed
autoencoder-based methods on analogous physiological signals from
sources like ECG, EMG, and EEG, which have been utilized in con-
struction health monitoring literature. This could help broaden the
scope of applicability of the developed framework.
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