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A B S T R A C T   

Prior research has validated Photoplethysmography (PPG) as a promising biomarker for assessing stress factors in 
construction workers, including physical fatigue, mental stress, and heat stress. However, the reliability of PPG as 
a stress biomarker in construction workers is hindered by motion artifacts (MA) - distortions in blood volume 
pulse measurements caused by sensor movement. This paper develops a deep convolutional autoencoder-based 
framework, trained to detect and reduce MA in MA-contaminated PPG signals. The framework's performance is 
evaluated using PPG signals acquired from individuals engaged in specific construction tasks. The results 
demonstrate the framework has effectiveness in both detecting and reducing MA in PPG signals with a detection 
accuracy of 93% and improvement in signal-to-noise ratio by over 88%. This research contributes to a more 
reliable and error-reduced usage of PPG signals for health monitoring in the construction industry.   

1. Introduction 

Ensuring physical and mental well-being of construction workers has 
been a persistent and pressing issue. Chronic fatigue is among the pri
mary areas of concern within the construction industry, notably, in the 
United States, a substantial 40% of construction workers encounter se
vere fatigue at some stage throughout their workday [1]. Added to the 
physical health complexities, construction workers are also among the 
most prone to mental problems [2]. The implementation of continuous 
health monitoring technology for construction workers holds tremen
dous potential in addressing these multifaceted challenges. 

The significant advancements in the microchip industry witnessed 
over recent decades have paved the way for the transformation of 
physiological devices into compact wearable forms. Real-time detection 
of various stressors relating to physical and mental fatigue/stress from 
wearable sensors can help inform better decisions regarding health in 
real-time, which can thus prevent severe fatalities and related health 
problems [3]. Extensive research has been conducted on various wear
able health monitoring devices suitable for implementation in con
struction sites including electrocardiogram (ECG), electromyography 
(EMG), and photoplethysmography (PPG) [4–10]. 

PPG which measures blood volume pulse (BVP) has access to various 
cardio-pulmonary activities such as blood pressure, oxygen saturation 
(SpO2), and pulse rate, providing access to various stressors like physical 

fatigue, mental stress, and heat stress [11]. In addition, wearable PPG 
sensors also have the advantages of compact size, ease of use, and lower 
power usage [12]. However, despite these promising findings, the 
widespread adoption of photoplethysmography for health monitoring in 
the construction industry has been relatively limited. 

One significant challenge in using wearable PPG sensors for health 
monitoring is their susceptibility to motion artifacts [13]. Motion arti
facts are the distortions in signal waveform arising from bodily move
ments or external factors leading to inaccurate blood volume 
measurements. Such distorted signals can undermine the reliability and 
accuracy of health assessments using PPG signals. This issue is particu
larly exacerbated when subjects are engaged in various physical activ
ities, intensifying the occurrence of motion artifacts [12–14]. The 
construction setting, characterized by substantial physical activity, 
further magnifies the challenge of motion artifacts in acquired signals. 
Observational data and studies in construction show that tasks with 
manual labor and tool usage often cause significant hand and body 
motions [15,16]. Existing literature on ergonomic assessments in con
struction also demonstrates this, emphasizing the prevalence of hand- 
intensive tasks like material handling, rebar tying, hammering, dril
ling, and scaffold erection [17–22]. These activities involve repetitive 
and intensive hand movements, impacting the accuracy of PPG signals 
by introducing motion artifacts. 

Addressing the challenge of motion artifacts in PPG signals has been 
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the subject of extensive research, leading to the development of two 
primary approaches for the detection and filtering of MA in PPG signals: 
acceleration-based methods and non-acceleration-based methods. 
Acceleration-based methods use motion data based on acceleration as a 
reference to track device motion and subsequently use this information 
to reduce motion artifacts [23–26]. While this approach can be lever
aged for both tasks of detection and artifact reduction, it has two major 
drawbacks: (i) requirement of extra hardware and its calibration, and 
(ii) higher power requirement. While these may not be an issue in a lab 
setting under a controlled environment, they may pose challenges in 
real-world application wearable devices that require small size and 
lower power consumption. Moreover, MA in the acquired PPG signal 
and acceleration data may not strongly correlate as well [27]. 

Non-acceleration-based methods may be broadly categorized into 
feature extraction-based fiducial methods and wavelet transform 
methods. Fiducial methods rely on waveform features and statistical 
descriptors of the PPG waveform for the detection of motion artifacts. 
While these methods are easier to implement, they require manual 
feature engineering, exhibit relatively lower performance, and 
encounter challenges when confronted with diverse testing environ
ments [28]. Wavelet transform-based methods eliminate the need for 
feature engineering, offering both noise reduction and detection capa
bilities. However, they may introduce phase distortion and loss of data 
during processing [29]. 

The limitations associated with these existing methods create a 
notable knowledge gap, one that could be effectively addressed by 
leveraging deep learning-based approaches. Deep learning (DL) 
methods have been able to achieve superior performance for artifact 
removal in similar physiological signals like EEG [30–33] and ECG 
[34–36]. Furthermore, DL has also proven to be a powerful tool in 
various healthcare applications based on PPG signals [37–41]. This 
paper introduces a novel non-acceleration-based deep learning frame
work that employs an autoencoder architecture to detect and reduce 
motion artifacts in PPG signals. An autoencoder is a neural network 
architecture comprising two primary components: an encoder and a 
decoder. The encoder transforms input data into a condensed, lower- 
dimensional representation, extracting essential features. The decoder 
then reconstructs the input data from this representation, effectively 
reducing noise and capturing salient patterns. This makes autoencoders 
particularly effective for tasks like artifact detection and noise removal. 
Recent studies have underscored the effectiveness of deep autoencoder 
networks in denoising across diverse domains, including images 
[42,43], videos [44,45], audio signals [46,47], and physiological signals 
[30,48]. 

Building upon the autoencoder architecture, the proposed frame
work comprises two main components capable of screening and 
reducing motion artifacts in the input PPG signals. The initial compo
nent utilizes the autoencoder network for anomaly detection to detect 
MA-induced PPG signals. The second component employs the autoen
coder network to reconstruct MA-contaminated PPG signals, effectively 
reducing motion artifacts. The developed framework has been trained 
and validated using data acquired in a construction environment, 
featuring subjects engaged in diverse construction tasks such as material 
handling and rebar tying. This tailored approach enhances the frame
work's relevance to the construction domain, especially the ones 
involving hands-on and intensive construction activities. The integra
tion of screening and motion artifact reduction within a unified 
autoencoder network also improves computational efficiency and 
memory utilization. Consequently, this study fills a critical gap in cur
rent approaches and contributes significantly to the field by presenting a 
comprehensive framework for motion artifact screening and removal in 
PPG signals. The ensuing development is positioned to streamline scal
able and reliable deployment and expand the applications of health 
monitoring based on physiological sensing, particularly offering sub
stantial benefits to the construction industry. 

The paper is structured as follows: In Section 2, a brief literature 

review is provided, focusing on health monitoring through photo
plethysmography and the existing methods of MA reduction in photo
plethysmography signals. Section 3 describes the proposed 
methodology, including the technical details of the autoencoder-based 
framework for MA detection and removal. In Section 4, a case study is 
presented, which includes details of the experiments conducted to 
develop and evaluate the framework. The results are analyzed and dis
cussed in Sections 5 and 6. Finally, the contributions are summarized in 
Section 6 and Section 7 concludes the paper. 

2. Literature review 

2.1. PPG for health monitoring 

Photoplethysmography is a non-invasive optical method that mea
sures blood volume changes in peripheral blood vessels [49]. These 
changes generate pulsating signals captured through PPG, comprising 
an AC (alternating current) and DC (direct current) component. AC 
component is primarily induced by blood volume changes with each 
heartbeat, while the DC component represents baseline tissue absorp
tion. The AC component is essential for deriving pulsatile information, 
while the DC component is associated with static physiological condi
tions [50]. PPG sensors have gained widespread acceptance in the field 
of medicine, serving various purposes, including the assessment of blood 
oxygen saturation (SPO2), heart rates, and related metrics such as pulse 
rate, heart rate variability, and blood pressure [51]. The invaluable 
access to cardio-pulmonary data has made them a common tool for 
cardiovascular monitoring. In clinical settings, they have proven effec
tive in detecting multiple cardiovascular conditions like arterial stiff
ness, peripheral artery disease, and hypertension [52,53]. Furthermore, 
PPG sensors have also been employed for respiratory rate monitoring, 
identifying sleep apnea, and assessing pain levels [54,55]. 

The application of photoplethysmography has also been explored for 
the construction industry [56]. The author's prior research investigated 
the feasibility of utilizing PPG technology to assess the physical and 
mental well-being of construction workers [5]. The work was able to 
verify the statistical dependence of the physical and mental status of a 
worker to derivatives of PPG like heart rate variation. Numerous studies 
have been conducted in construction settings to explore the applications 
of photoplethysmography to assess construction workers' health status. 
For instance, Shakerian et al. developed a datacentric approach using 
PPG signals and machine learning algorithms for detecting heat stress 
among workers in construction sites. The work validated in the con
struction environment was able to predict distinct levels of heat strains 
among multiple subjects with the use of PPG signals [4]. In another 
work, Shayesteh et al. leveraged PPG signals as a part of a multimodal 
analysis employing convolutional neural networks to determine cogni
tive loads during construction training tasks performed in a virtual 
environment [57]. Despite the potential of PPG in accessing various 
health conditions of workers its usage in real world can be impacted by 
noise contamination. 

2.2. Motion artifact detection and removal in PPG signals 

One of the major sources of noise in acquiring PPG signals is the 
motion artifact [26,58]. Motion artifact in photoplethysmography refers 
to unwanted variations in the PPG signal caused by movement noise, 
leading to inaccurate or distorted measurements of blood volume 
changes. Because of the overlapping of MA frequency and pulsating 
component of the PPG signal, separation of the MA from the signal using 
a traditional filter-based-approach is not efficient [59]. PPG signal 
acquisition relies on the optical reflection and absorption of light in 
tissues, making it susceptible to distortion with even slight movements, 
given the rapid nature of this process. In clinical environments with 
constrained motion, mitigating motion artifact (MA) issues is feasible. 
However, in realistic operational scenarios where motion is inevitable, 
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the susceptibility to contamination poses a significant challenge in 
acquiring high-quality PPG signals [60]. 

Feature extraction-based fiducial methods have been extensively 
researched in the literature for artifact detection. One of the approaches 
is based on waveform feature extraction like peak interval, amplitude, 
pulse width, etc. based on time and period domain analysis, where MA is 
detected based on the anomalous waveform features [59,61]. The other 
type of approach is based on statistical descriptors such as skewness, 
root-mean-square, kurtosis, etc. [62,63]. While feature-extracting 
morphology-based methods are easy to implement, require less data, 
and are limited to detection tasks [29]. Advanced statistical modeling 
approaches have also been explored in the literature, for instance, Lee 
et al. used multichannel PPG signals with varying wavelengths applying 
independent component analysis to reduce MA in the acquired PPG 
signal [64]. In a separate study, Zhang et al. employed distinct wave
lengths for signal acquisition to reduce motion artifacts in PPG. Utilizing 
one wavelength as a motion reference helped diminish motion artifacts 
in the acquired PPG signals [65]. While multiple wavelengths and de
vices can offer an improved performance, the use of multiple sensors can 
encounter potential hardware configuration challenges and the place
ment location of the multiple sensors can impact the accuracy and 
consistency of the results. 

Wavelet transform-based techniques have the advantage over the 
fiducial methods as it doesn't require feature engineering and compar
atively provide a superior performance [66–69]. However, wavelet 
transform-based methods may introduce phase distortion in signals, 
which can cause a loss of information as well as provide misleading 
inferences [70]. Another frequently used method involves utilizing IMU, 
gyroscope, or accelerometers to track device motion and subsequently 
using this information to detect, estimate, and subsequently remove 
motion artifact [23–25]. While this approach can be leveraged for both 
tasks of detection and artifact reduction, it requires extra hardware, and 
calibration, and has higher power usage. Moreover, motion artifacts in 
the PPG signal and accelerometer data do not strongly correlate as well 
[27]. 

2.3. Autoencoder based artifact removal 

Deep learning offers numerous advantages over traditional signal 
processing methods. It adeptly captures complex relationships facili
tating the building of generalizable models. It can automate feature 
extraction, thus enabling faster systems and end-to-end learning 
frameworks. These desirable features have established deep learning as 
a powerful tool for signal processing and denoising tasks 
[30,31,34,36,39,71,72]. 

Recent studies have also explored various machine learning-based 
methods for artifact removal in PPG signal. Zargari et al. developed a 
non-acceleration method using a combination of Convolutional Neural 
Network (CNN) and Cycle Generative Adversarial Network (CycleGAN) 
to detect and remove MA in PPG signals [73]. CNN identifies MA in the 
first phase, and CycleGAN is then applied in the second phase for artifact 
reduction. While the model demonstrated improved performance 
compared to both fiducial and wavelet-based methods, the use of 
CycleGAN, known for its complex architecture, may bring computa
tional challenges for real-world applications. The need for separate 
neural network models for detection and reduction, along with the 
computational cost, can pose difficulties for real-time in-device 
computation, especially in wearables. 

Autoencoders, a class of neural networks, have shown unique 
promise in addressing the intricacies of motion artifact detection and 
removal. These networks generally have simpler and smaller architec
ture compared to advanced models like cycleGAN while can perform 
well in denoising and generative tasks. Unlike traditional methods that 
rely on manual feature engineering, autoencoders automate the process 
of feature extraction, allowing for a more adaptive and nuanced 
approach to capturing the underlying patterns in PPG signals. Their 

ability to learn hierarchical representations of data makes them partic
ularly suited for handling the varying morphologies of physiological 
signals across individuals and environments [30,74]. 

As efficient as these methods can be such autoencoder models have 
not been investigated for motion artifact detection and removal for PPG 
signals. Therefore, this study aims to design, deploy, and validate a 
novel end-to-end framework based on an autoencoder network for MA 
detection and removal in PPG signals, specifically tailored to the con
struction environment. The development of this framework will facili
tate scalable deployment and expanded applications of physiological 
sensing-based health monitoring within the construction industry. 

3. Autoencoder network for motion artifact removal 

This section describes the different components of the proposed 
autoencoder-based framework for motion artifact screening and 
removal. The framework is developed through four primary phases 
presented in Fig. 1. In the first phase, data acquisition is performed for 
subjects in a controlled construction setting with prespecified con
struction tasks for a predetermined time frame. Through the experiment, 
motion artifact-free reference PPG signals and MA-contaminated PPG 
signals are acquired for the study. Further details regarding this phase 
are provided in Section 4. In the second phase, the PPG signals acquired 
in the first phase are preprocessed to train the autoencoder in the third 
phase. In this phase, filtering methods are applied to remove workplace- 
related extrinsic artifacts, and normalizing, windowing methods are 
used to prepare the signal into a suitable format for training the 
autoencoder network for the third phase. In the third phase, the pre
processed PPG signal is used to train an autoencoder network that learns 
to reconstruct the MA-free signal as the output of the network. The 
autoencoder network developed in the third phase is deployed in the 
final phase to develop an anomaly detector for detecting and screening 
MA in the PPG signal. In this phase, the PPG signals with MA are 
detected and screened based on the reconstruction error of the autoen
coder network. So, the developed framework comprises of two depen
dent systems based on the developed autoencoder network to screen and 
remove motion artifacts in the acquired PPG signals. For testing the 
performance of the framework, data acquired from multiple subjects 
performing construction tasks is leveraged. The second, third, and fourth 
phases are explained in the following subsections. 

3.1. Signal preprocessing 

After the PPG signals are acquired in the form of Blood volume Pulse 
(BVP) from subjects performing specific construction tasks (section: 
“Experimental Study: PPG Dataset from construction Scenarios”), the 
signals are preprocessed through four different steps. First, low pass 
filter of 10 Hz is applied to remove high-frequency extrinsic noise for 
construction environment corresponding to electrical noises, electro
magnetic, and thermal noises [75]. After applying the filter, the signals 
are normalized by minmax normalization. This normalization ensures 
that all the values lie between 0 and 1, which complies better with the 
network architecture training process. 

To enhance the autoencoder network's generalizability, the reference 
PPG signal acquired during the stationary phase is augmented with 
various types of artificial noise during the training phase. A combination 
of gaussian noise, Brownian noise, pink noise, blue noise, and violet 
noise is used to synthesize artificially contaminated PPG signals. This 
combination has been used based on work [76]. Gaussian noise uses the 
uniform normal distribution centered around 0. This adds up frequency 
invariant noise as power spectral density is constant across all the fre
quencies. Pink noise has a frequency spectrum in which the power 
spectral density (PSD) of the signal is inversely proportional to the fre
quency while Brownian noise has a frequency spectrum with the PSD of 
the signal inversely proportional to the square of frequency. Similarly, 
violet and blue noise have a frequency spectrum with the PSD of the 
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signal directly proportional to the frequency and its square respectively. 
These contaminated signals are combined with the reference signals to 
augment the training set. This ensures that the autoencoder learns to 
reconstruct artifact-reduced PPG signals from multiple variations of the 
contaminated signal thus increasing the generalizability of the devel
oped system [76]. 

Windowing is performed after the noise synthesis. Since a neural 
network can process only a fixed length of temporal data, the network 
needs to be fed with a batch of fixed-length temporal series during 
training. For creating the windowed dataset, a sliding window of 2 s 
time is used with a stride of 2 s. Thus, for a single instance of processing 
of the autoencoder network, 2 s of PPG signals are reconstructed. A 
normal healthy human has a pulse rate from 60 to 100 beats per minute 
which is a periodicity of <1 s, but for diseased cases like bradycardia, it 
may be lower to around 40–60 bpm. To make the network effective for 
extreme cases, a larger temporal range of two seconds is used as the 
input size. This enables the monitoring system to make health inferences 
based on a single instance of denoised PPG signals. A representation of 
various forms of augmented noise with sampled windows is presented in 
Fig. 2. 

3.2. Network architecture and training 

After performing the required signal processing, the designed 
autoencoder network is trained. The autoencoder network comprises 
two parts, an encoder and a decoder connected by an embedding layer, 
as shown in Fig. 3. The encoder leverages PPG signals from photo
plethysmography as input to generate column vector in latent space, v =

{v1, v2,…, v4}, that is used to reconstruct the PPG signals through the 
decoder subnetwork. The encoder is constructed of two convolutional 
blocks followed by two dense layers of 16 and 4 units respectively which 
extract features into the embedding layer. For the first convolution block 
(C1),kernel size of 5 × 1 is used to capture a larger temporal range. This 
allows the network to learn features over a broader time window. In the 
second convolution block (C2), a reduced kernel size of 3 × 1 is used to 
capture more detailed and localized features in the PPG signal. For the 
first and second convolutional blocks, 8 and 16 filter sizes are used 
respectively. The choice of increasing filter sizes facilitates a hierarchi
cal feature learning approach. Smaller filters in the first block can cap
ture simple, low-level features, while larger filters in the second block 
can focus on more complex patterns. Each convolutional block consists 

Fig. 1. Overview of the proposed study.  

Fig. 2. Sample of augmented signals compared with reference PPG signal. 2 A: Reference PPG signal; Various noise added to the reference signal as follows: 2B: 
White noise added signal; 2C: Brown noise added signal; 2D: Pink noise added signal; 2E: Blue noise added signal; 2F: Violet noise added signal. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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of 1D convolution followed by batch normalization and max pool layer. 
Batch normalization helps in stabilizing and accelerating the training 
process by normalizing the input of each layer. Max pool layer is used for 
down sampling the learned features, thus focusing on the most impor
tant feature, and reducing computational load for the network. Two 
dense layers follow the convolutional blocks with 16 and 4 units, 
respectively. The reduction in units in the second dense layer is aimed at 
reducing the dimensionality of the latent space, potentially extracting 
more salient features for reconstruction. The decoder leverages the 
output of the encoder, a column vector in latent space, to reconstruct the 
PPG signals by reducing the artifacts. The decoder is constructed of two 
transposed convolutional blocks followed by a dense layer, to generate 
the denoised PPG signals. In the transposed convolutional blocks, a 
kernel size of 3 × 1 is used in the first deconvolution layer 

(
Cʹ

3
)
, while a 

kernel size of 5 × 1 is chosen in the second deconvolution layer 
(
Cʹ

4
)
. 

These kernel sizes are selected to reverse the effects of the convolutional 
layers effectively, allowing the network to learn to denoise the PPG 
signals. The first deconvolution layer comprises of 16 filters, and the 
second deconvolution layer comprises of 8 filters. The use of decreasing 
filter sizes helps the network gradually reconstruct the PPG signals while 
reducing the complexity of learned features. Each transposed convolu
tional block consists of 1D deconvolution followed by batch normali
zation, which is used to stabilize and accelerate the training process by 
normalizing the input for the next layer. The final dense layer comprises 
of 16 units pertaining to the final output size of the reconstructed signal, 
ensuring that the final output size of the reconstructed signal aligns with 
the input PPG signals. 

For the training process, the mean absolute error is used as the loss 
function L (θ) (Eq. (1)). During each iteration, the weight parameters 
(θ) of the network are updated to θ* to minimize the given loss function 
as given by Eq. (1). 

Θ* = argminθ

(
∑N

i

⃒
⃒fre
(
X*

i , θ
)

− Xi
⃒
⃒

)

(1) 

The reference signals and the augmented signals acquired during the 
stationary phase are utilized for training the autoencoder network. Here, 
X*

i is the input augmented PPG signal where as Xi is reference motion 
artifact free PPG signal and the autoencoder reconstructed output 
fre
(
X*

i , θ
)

is the output of the network. Eq. (1) will measure the difference 
between the reference signal (Xi) and the autoencoder reconstructed 
signal fre

(
X*

i , θ
)

and reduce the mean absolute difference by optimizing 
weights of the autoencoder network (θ). Through iterating and opti
mizing value for the weights (θ), the autoencoder network learns to 
generate the PPG signals without noises. During the training of the 
autoencoder, the loss function as described in Eq. (1) was minimized 
using the Adam optimizer [67]. A learning rate of 0.001 was chosen for 
the training process. The value was determined using a learning rate 
scheduler where performance was evaluated for varying range of 
learning rate for 1e − 5 to 0.1. TensorFlow API with Keras backend was 
used for developing and training the autoencoder network [77]. During 
the training, a ratio of 80:20 was used for the training and validation set. 
Moreover, to ensure generalizability during data split, two primary 

methodologies were leveraged: stratified sampling and the inclusion of a 
holdout set [78]. Stratification, conducted on a subject-wise basis, 
ensured that data from all subjects was represented in both the training 
and test sets, exposing the network to a diverse range of data within the 
specified set. Additionally, a distinct holdout set was allocated 
comprising data from ten subjects, enabling the evaluation of the net
work's performance on unseen data that played no role in the training 
process. This incorporation of a holdout set served as a crucial measure 
for assessing the model's efficacy in handling novel and untrained 
instances. 

The performances of the training were evaluated based on Mean 
absolute error (MAE), Mean squared error (MSE), and Signal-to-noise 
ratio (SNR) as defined in [79]. For the validation set, improvement 
SNR as defined by [68] and given in Eq. (2) was used as the evaluation 
metrics. 

ΔSNR = 10log10

(
σ2

ref
σ2

denoised

)

− 10log10

(
σ2

ref
σ2

noisy

)

(2)  

γ = 100
(

1 −
Rref − Rdenoised

Rref − Rnoisy

)

(3) 

Here, σ2
ref ,σ2

denoised, and σ2
noisy represents the variance of the MA free 

reference PPG signal, denoised PPG signal, and contaminated PPG signal 
respectively. For the reduction in motion artifact (γ) (Eq. (3)), Rref ,

Rdenoised, and Rnoisy represent correlation coefficient for MA free reference 
signal, denoised signals and noisy signal respectively. 

3.3. Motion artifact detection using anomaly detection 

An anomaly detection algorithm is further developed by leveraging 
the trained autoencoder network for screening PPG signals with motion 
artifacts. A separate set of experiments as described in section 4.2 are 
performed to examine the performance for four different variations of 
MA-induced PPG signals. For each MA-inducing activity, acquired PPG 
signals are fed as the input to the autoencoder, and reconstruction MAE 
is computed against the PPG signal output by the autoencoder network. 
The time-averaged reconstruction MAE is leveraged to examine and 
compare motion artifacts for various MA-inducing activities as given by 
Eq. (4). The minimum reconstructing MAE value is used as the reference 
to screen motion artifacts in the acquired PPG signals. For each sequence 
of PPG signals processed through the autoencoder, the reconstruction 
MAE is computed using Eq. (4). If the computed value exceeds the 
reference reconstruction MAE, the signal is flagged as an artifact signal 
and undergoes the denoising process. Otherwise, it is classified as a no 
artifact signal, and thus is not processed for the denoising process. 

T(X) =
1
n
*
∑N

i=1
|yi − Xi| (4) 

Here, T(X) represents the reconstruction MAE value for the given 
sequence of PPG signals, yi represents the reconstructed PPG signals 
which is output by the autoencoder network whereas xi represents the 
MA induced PPG signals, which is the input for the autoencoder 

Fig. 3. Architecture of the developed autoencoder network for artifact reduction.  
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network. The subscript i represents ith data point in the given sequence 
of PPG signal. 

3.4. Evaluation of individual differences 

The acquired PPG signals can have varying morphology across 
different individuals and construction tasks which can cause variations 
in the performance of the developed framework. An evaluation method 
specifically targeting individual differences is set to assess the robust
ness of the developed framework and validate its performance across 
individual variations. Recognizing potential variations in PPG signal 
patterns among participants, a Kullback-Leibler (KL) divergence test 
[80] was integrated into the evaluation process. The KL divergence test 
quantifies the information difference between two given distributions. It 
assesses the dissimilarity between the two distributions P and Q by 
calculating the sum of the products of the probability of each event in P 
with the logarithm of the ratio of the probabilities in P and Q (Eq. (5)) 
[80]. 

DKL

(

P ∣∣Q

)

=
∑

i
P(i)log

(
P(i)
Q(i)

)

(5) 

Here, DKL(P ∣|Q) represents the KL divergence values for given dis
tribution P and Q whereas, P and Q represent the distributions of SNR 
values obtained from the MA-induced and MA-reduced PPG signals 
respectively. The values obtained from the KL divergence test for these 
two distributions are then evaluated for the varying tasks and in
dividuals using one-way analysis of variance ANOVA. The one-way 
ANOVA is a statistical test used to determine whether there are any 
statistically significant differences between the means of the given 
groups. Mathematically, it is the ratio of between-group variability and 
within-group variability as given by Eq. (6). 

F =

∑
i ni(Xi − X)

2
/

(k − 1)

∑

i

∑
j
(
Xij − Xi

)2
(N − k)

(6) 

Here, n is the number of observations in the ith group. Each type of 
construction task can be considered as a different group to evaluate the 
variance across varying tasks, Xi is the mean of the ith group, X is the 
overall mean, Xij is the jth observation in the ith group, k is the number of 
group (types of construction tasks) and N is the total number of obser
vation (number of individuals). The parameters and results are pre
sented and discussed in more detail in Section 5. 

4. Experimental study: PPG dataset from construction scenarios 

To assess the developed framework's performance in screening and 
removing motion artifacts from PPG signals, a case study was conducted 
in a construction setting. An off-the-shelf wristband biosensor was used 
to acquire PPG signals from the subject (“E4 wristband”) [81]. In total, 
15 subjects were employed for the study providing a relatively diverse 
sample. The inclusion of multiple individuals helps capture a range of 
physiological variations that may be present in PPG signals. The data 
collection was performed in two sets of distinct phases: the stationary 
phase and the construction phase. Data acquired during the stationary 
phase was used as a reference signal during training and data acquired 
during the specific construction task was used for evaluating the 
developed framework. In total four construction tasks were performed, 
three construction tasks were performed in a real environment whereas, 
for the fourth task, virtual reality (VR) was used where subjects per
formed material handling task in a high-rise building designed in virtual 
environment. As the sensor used in the study is wristband type device, 
the experimental construction tasks had been carefully selected to 
ensure their common occurrence in the construction workplace as well 
as involve significant hand or upper body motion. Three specific 

material handling tasks were selected for the study, given that manual 
material handling stands out as one of the most prevalent activities in 
construction, demanding substantial hand and body motions [22]. 
Additionally, manual rebar tying, another common construction task, 
also involving significant hand movements was also chosen for the 
experimental tasks [82]. The chosen tasks are not only widely encoun
tered in the construction environment but also exhibit significant mo
tion, ensuring the relevance of the experiments to both the construction 
setting and the MA reduction framework. Additionally, the VR based 
material handling task was included to add diversity to the acquired PPG 
signals by introducing a more immersive and potentially stressful con
struction environment for the subjects. The inclusion of various tasks 
aimed to capture different stressors and physical activities that might 
affect the morphology of the PPG signals differently across individuals. 
Across the subjects, the mean age, weight, and height were 24.6 years, 
182 pounds and 5′11″ respectively with a standard deviation of 3.5 
years, 14 pounds and 5″ respectively. The experiments are illustrated in 
Fig. 4. 

4.1. Data acquisition for training and evaluation of the autoencoder 
network 

For every subject, initially, PPG signals were acquired for the sta
tionary phase which is leveraged as the motion artifact-free reference 
signal for training the autoencoder network. The subjects were seated 
comfortably and asked to rest their hand on a table in a stationary po
sition and the PPG signal was acquired. In case the subjects wished to 
move or take a break, the signals acquisition was temporarily halted and 
then resumed once the subject was ready. For each subject, PPG signals 
were acquired for one hour in the stationary phase. 10% of the data 
acquired during the stationary experiment is allocated for testing the 
screening system. For further examining the developed framework for 
the construction environment, PPG signals were acquired in construc
tion settings where the subjects performed various construction related 
tasks like material handling and rebar tying. Data from ten subjects is 
used as holdout set for evaluation of the framework in construction 
environment. Four different tasks were performed in the construction 
environment, which mainly comprised of material handling and rebar 
tying, which are among the most common manual tasks in construction 
[22]. The diversity in tasks aimed to cover a spectrum of motion artifacts 
that might be induced by different hand and body movements. The first 
task was a rebar-tying task. In this task, the subjects tied up rebars set up 
in an area of 1.21 m by 0.6 m for a total of 20 min with a small voluntary 
break if required by the subject. The subjects use manual wire twister to 
tie up the rebar with a wire tie. The second task was a low-intensity 
material handling task where subjects transported a load of 2.3 Kg (5 
lbs.) within a distance of 6 m. This task was performed for around 15 min 
with a short voluntary break if required by the subject. The third task 
was high-intensity material handling, for which the same setup as that of 
material handling task was used but with a load of weight 13.6 Kg (30 
lbs.). The fourth task was performed in a virtual environment, subjects 
were asked to carry a lightweight interactable load between two given 
locations at 6 m distance in the virtual environment. In the virtual 
environment, the subjects were working in a high-rise building steel 
structure lacking fences and a concrete base. This task was performed to 
acquire signals from subjects in a more realistic construction setting 
without compromising the safety of the subject. Subjects reporting or 
doubtful of acrophobia were excluded from this experiment as the vir
tual environment is set up at a significant height and open environment. 
For the construction setting, thus 3.456 million instances of data points 
of PPG signal were available for developing and examining the 
autoencoder-based framework. 

4.2. Experiment to set threshold values for MA detection 

To develop and assess the performance of the MA screening 
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component of the developed framework, the authors conducted a 
separate set of tasks to acquire MA-induced PPG signals. In this exper
iment, MA-induced PPG signals were acquired from subjects by inducing 
various forms of hand motion of the subject. The experimental protocol 
is designed based on the work of [83], where various amplitude and 
frequencies of vertical head motion were induced for subjects in a 
controlled environment during EEG signal acquisition for studying 
various forms of motion artifacts in EEG signal. Since similar experi
mental protocols were not available in the literature for studying MA in 
PPG signals, the experimental design drew inspiration from the previ
ously mentioned investigation. 

The experiments aimed to obtain MA-induced PPG signals through 
controlled hand motion for the wristband type PPG sensor. The direction 
of motion for the x, y, and z axes was defined relative to the device 
coordinate system, as depicted in Fig. 4D. To simulate hand motion, the 
wristband was subjected to periodic, forceful displacement of 10 mm in 
the x-direction for a duration of 60 s during PPG signal acquisition from 
the subject's wrist. The same procedure was implemented to induce y- 
motion and z-motion, wherein the wristband underwent forceful 
displacement in the y-axis and z-axis directions with an amplitude of 10 
mm, respectively. In the fourth task, the wristband was worn with a 
loose fit with a circumferential clearance of 2 mm and 4 mm. Two sets of 
experiments were performed at these two levels. Random hand waving 
task was performed during the experiments to generate MA-induced 
PPG signals. In total, the fourth task was performed for about 6 min, 
as signals acquired during this task were also leveraged to test the MA 
detection algorithm. 

For testing the accuracy of the motion detection algorithm, station
ary phase and MA-induced PPG signals were combined in equal pro
portions. For stationary signals, signals acquired in section 4.1 are 
leveraged whereas for MA-induced PPG signals, data acquired during 
the loose-fit task explained in the previous paragraph is leveraged. 

5. Results 

This section presents the results of training and testing the 
autoencoder-based framework for MA detection and reduction. For MA 
reduction, the performances were evaluated based on Mean absolute 
error (MAE), Mean squared error (MSE), and Signal-to-noise ratio (SNR) 
[73]. A further evaluation of the performance of the denoising method 
was performed on signals acquired from the construction tasks as 
explained in Section 4.1. For evaluating the performance of the high MA 
screening component, reconstruction MAE as given by Eq. (4) was used 
as the evaluating metric, and data acquired during tasks explained in 
section 4.2 was leveraged. 

5.1. MA removal using autoencoder 

For the development of the framework, the autoencoder network was 
trained as explained in Section 3. During the training of the autoencoder, 
the loss function as described in Eq. (1) was minimized using the Adam 
optimizer [77]. TensorFlow API with Keras backend was used for 
designing and developing the autoencoder network [78]. For training 
and validation purposes, MSE, SNR and improvement SNR as described 
in Section 4.1 was leveraged. A sample of denoised PPG signal compared 
with the contaminated signals is presented in Fig. 5. 

For computing reduction in motion artifact (γ) (Eq. (3)), the MA 
induced and the denoised PPG signals' correlation coefficient is 
measured against the MA free reference signal. Also, the correlation 
coefficient for the reference signal (Rref

)
is set to 1 as the Rref is used as 

the reference for calculating the correlation coefficient for the given 
equation. During the training of the autoencoder network, for the 
training and the validation set, improvement SNR were 2.01 and 1.90 
respectively, whereas the reduction in motion artifact was 10.94% and 
3.7% respectively. 

Fig. 4. Experimental setup and tasks for the case study; 4 A: Experimental setup for the construction tasks and a subject performing material handling task; 4B: 
Subject performing material handling task in a virtual environment with the interactable load; 4C: Subject performing rebar tying task with the wristband bounded in 
white outlined box; 4D: A coordinate system for the wristband used in this study. 
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For further testing the performance of the developed autoencoder for 
the construction environment, PPG signals acquired from subjects per
forming construction tasks as defined in Section 4.1 were leveraged. The 
contaminated SNR was computed for the unprocessed PPG signals ac
quired during the construction task whereas the denoised SNR was 
computed for the MA removed signals reconstructed by the autoencoder 
network. The subject-wise calculation for SNR values for various con
struction tasks is presented in Fig. 6. 

Upon evaluation of subject-wise SNR values, Rebar tying tasks have a 
comparatively lower initial SNR which may be attributed to the fact that 
rebar tying involves continuous motion of hand in jerky manner which 
can induce comparatively more MA than material handling tasks which 
involves only limited hand motion during loading and unloading ac
tivities. Also, it is observed that subject 9 has a consistently high SNR 
value for all three real construction tasks compared to other subjects 
(Fig. 6). This may be caused by personal working style with limited or 
controlled hand motion which could have induced less MA in the ac
quired PPG signals. As expected, M3, or the material handling task 

performed in VR has the highest SNR values both for MA contaminated 
and denoised signals. The VR material handling didn't involve loading 
and unloading tasks, the subjects were walking between the given points 
in the virtual construction environment transporting the load with 
minimal movement of the hand because of which MA corruption in the 
signal could have been lower thus resulting in higher SNR values. In 
average rebar tying task had an increase in SNR by 90% whereas the VR 
based material handling it was only 59%. In average, the initial SNR 
values for the raw PPG signals acquired had a SNR value of 9.579 
whereas the average SNR value for the MA reduced PPG signal was 
18.05, thus providing an increase in the SNR values by 88%. 

5.2. MA detection and thresholding using the autoencoder network 

The reconstruction MAE values obtained for the previously defined 
MA-inducing tasks are presented in Table 1. The threshold values along 
x, y, and z directions were comparatively higher as in these cases MA 
was induced by direct forceful movement of the device along the wrist to 

Fig. 5. Sample output for the denoised signal from the test set; A: Autoencoder output of the denoised PPG signal compared with the reference signal; B: 
Contaminated PPG signals compared with the reference PPG signal. 

Fig. 6. Subject-wise SNR values for various construction tasks; 6 A: SNR value for Low-intensity material handling; 6B: SNR value for high-intensity material 
handling; 6C: SNR value for VR material handling. 
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a specified amplitude of 10 mm. For the loose fit random motion, the 
natural movement of the device was leveraged without directly applying 
displacement to the device along the wrist. A sample of reconstruction 
for all the experiments is presented in Fig. 7. As the loose fit-random 
motion resembled more to natural hand motion like waving its recon
struction error was used as the reference threshold value for the 
autoencoder-based anomaly detector. Thus, a reconstruction error of 
0.0405 was set as the threshold value for detecting MA-induced PPG 
signals. The sample of detected MA signals is presented in Fig. 8. 

The algorithm was further tested on a test set comprising of signals 
acquired during loose fit-random motion and stationary phase data 
acquisition as described in Section 4.2 and Section 4.1 respectively. The 
algorithm has an accuracy of 93% with a precision of 95% and a recall of 
90%. In this scenario, prioritizing higher precision is paramount. By 
doing so, the screening process for MA induced PPG signals is enhanced, 
ensuring a more accurate filtering mechanism. This, in turn, prevents 
the erroneous inclusion of MA induced PPG signals in the health 

monitoring system, thereby reducing the risk of incorrect health 
inferences. 

The performance of the developed framework was further evaluated 
to validate variations in response to individual differences. To address 
potential individual variations in PPG signal patterns and ensure the 
generalizability of test results, a Kullback-Leibler (KL) divergence test 
was employed. The KL divergence quantified the variance in signal-to- 
noise ratio distributions in the PPG signals with and without motion 
artifacts i.e., the MA induced input signal and MA reduced output signal. 
This value was computed for every individual (10 individual) in the test 
set across every experimental task (3 material handling and 1 rebar 
tying). The test allowed for a nuanced examination of how the proposed 
MA removal technique was performed across diverse individuals and 
conditions. The values obtained from the KL divergence test were 
compared for individuals using one-way ANOVA to analyze differences 
across individuals. The test yielded values as follows: an f-statistic of 
0.89 and a p-value of 0.46. The f-statistic value of 0.89, closer to 1, 
indicated that the differences between individuals were not much larger 
than the differences within individuals (inter-variability within various 
tasks for a given individual). As the p-value of 0.46 is >0.05, it suggests 
that any observed differences between the individuals could be due to 
random variability rather than variability between the groups. This in
dicates there were no significant differences between the performance of 
the framework for different individuals. Not having significant differ
ences between individuals suggests an effective generalization of the 
proposed framework. 

Table 1 
Threshold values for various types of MA introduced in the study.  

S.no. Type of MA induced MAE reconstruction MSE threshold 

1 X-motion 0.242 0.119 
2 Y-motion 0.244 0.094 
3 Z-motion 0.094 0.014 
5 Loose fit - random motion 0.0405 0.108  

Fig. 7. Sample of MA-induced signals and corresponding reconstructed signals; 6 A: X-axis MA-induced PPG signal; 6B: Y-axis MA-induced PPG signal; 6C: Z-axis 
MA-induced PPG signal; 6D: Loose fit MA-induced PPG signal. 
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6. Discussion 

The proposed autoencoder-based framework demonstrated its effi
cacy in screening and reducing motion artifacts in PPG signals acquired 
during intense and dynamic activities such as construction tasks. For 
signals acquired during construction tasks, the framework was able to 
provide improvement in SNR by over 88% and detect high MA PPG 
signals with an accuracy of 93%. The authors also compared the per
formance of this framework with that of existing non-acceleration-based 
motion artifacts detection and removal approaches which have 
comprehensively been evaluated by literature and have approved per
formance, these were mainly chosen based on literature review 
comparing performance metrics. A separate comparison was performed 
for MA detection and MA reduction. For MA reduction, the compared 
methods are namely (1) Wavelet decomposition method, (2) Statistical 
Evaluation, and (3) Interval dependent denoising based on wavelet 
decomposition [68,84,85]. The results for are presented in Fig. 9. The 

proposed method provides a 27% higher increase in SNR compared to 
the competing best method of Interval Dependent denoising. 

Similarly, for the comparison of the MA detection function following 
methods were used leveraged: (1) Gramian Angular Field and 2D CNN, 
(2) 1D CNN, (3) Adaptive Template Matching, and (4) Random Distor
tion Testing. The comparison has been summarized in Table 2. Notably, 
two methods demonstrated comparable detection accuracy to the 

Fig. 8. MA detector results on test set; A: No MA classification; B: MA induced signal classification; C: Normalized confusion matrix for the test set with key metrics.  

Fig. 9. Comparison of the proposed autoencoder with other denoising methods.  

Table 2 
MA detection performance comparison with other works.  

Study Method Accuracy (%) 

Our study Autoencoder based reconstruction 93 
[86] Gramian angular field and 2D CNN 94.3 
[29] 1D CNN 94.5 
[87] Adaptive template matching 91.5 
[88] Random distortion testing 83  
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proposed method [29,86]. However, it's important to highlight that 
these methods comprised of detection systems only and did not incor
porate any denoising functionality for the MA-induced PPG signal. 

Another important finding was revealed by evaluating the PPG sig
nals acquired during construction activities with the MA detection 
component of the developed framework. The task-wise classification for 
instances of signals having MA as a percentage is presented in Table 3. 
When tested for construction tasks, rebar tying had the highest instances 
of MA. This may be attributed to the fact that rebar tying involves 
continuous motion of the hand in a jerky manner which can induce 
comparatively more MA than material handling tasks which involve 
only limited hand motion during loading and unloading activities. For 
the low-intensity and high-intensity material handling, instances of 
motion artifact fluctuated significantly from subject to subject i.e. for 
around half of the subject percentage of high MA was higher for task M1 
whereas the opposite is for the remaining half. This variation may be 
because of the variation of load handling behavior of subjects for various 
loads. As expected, M3, or the material handling task performed in VR 
had the lowest instances of high MA and almost 0 for most subjects. The 
VR material handling didn't involve loading and unloading tasks, the 
subjects were walking between the given points in the virtual con
struction environment transporting the load with minimal movement of 
the hand because of which MA instances may be comparatively lower in 
this task. 

The framework was also applied to access motion artifacts in various 
common construction tasks, distinguishing between hands-on activities, 
prone to frequent body motion, and supervisory roles, which are 
generally less physically intensive. Within hands-on activities, MA in
stances were evaluated for material lifting, hammering, and drilling, 
while supervisory roles were assessed for walking and computer 
browsing. The comparative analysis is summarized in Table 4. Tasks 
involving intensive hand motion, such as hammering and drilling, 
exhibited a notable incidence of MA. Conversely, less intensive super
visory activities, like walking and computer browsing, showed relatively 
lower instances of MA. This observation is consistent with the experi
mental results, where tasks featuring vigorous hand movements tended 
to have a higher occurrence of motion artifacts. In contrast, activities 
with lower manual intensity, exemplified by supervisory roles, demon
strated comparatively fewer instances of motion artifacts. This trend 
aligns with the experimental tasks, where hands-on activities like rebar 
tying, characterized by intense hand motions, showed a higher fre
quency of motion artifacts. In contrast, less intensive activities like VR- 
based material handling, devoid of lifting or intense physical activity, 
displayed fewer instances of motion artifacts. Understanding these dy
namics contributes valuable insights for optimizing MA reduction stra
tegies in construction environments, emphasizing the need for tailored 
approaches based on the nature and intensity of the tasks involved. 

According to the above discussion, the proposed autoencoder-based 
framework has the potential to promote more efficient health moni
toring in the construction industry for construction workers. The 
framework enables a more reliable usage of PPG signals for various types 
of cardio-pulmonary monitoring of construction workers both on and off 
the field in real time. Furthermore, the framework can be integrated into 
algorithms for detecting various cardio-pulmonary health situations like 
hypertension, heat stroke, heart attack, etc. This can lead to improved 
health and quality of life for construction workers, which in turn may 

also increase overall productivity in construction. 
Future research should focus on addressing the various limitations 

that are still present in this study. Firstly, the accuracy of the MA 
reduction and detection framework may be negatively impacted by the 
presence of externalities during signal acquisition sites like dust and 
sweat which are common in a construction setting. These externalities 
can be very difficult to tackle as they can completely block any usable 
signals from being acquired. For instance, the presence of sweat in the 
wrist may occlude the photoreceptor or the emitter surface which may 
distort the acquired signals to be unusable for any inference. To over
come this challenge, developments may be necessary for material and 
hardware design to avoid sweat in the photoreceptors/emitters or use 
other alternatives for photon-based signal acquisition. Secondly, the 
current framework mainly focuses on reconstruction errors to detect the 
high-motion artifact signals and leverages the autoencoder network 
trained to reduce the noise. To further improve the efficiency of the 
detection algorithm, the framework can be enhanced by integrating a 
dedicated ML-based network to detect and classify levels of MA using 
other variables like wrist acceleration. To this end, one potential avenue 
for future research is to develop more robust frameworks to tackle 
problems in construction sites like sweat and dust corruption of the PPG 
sensors. 

7. Contribution 

The scientific contribution of this study is highlighted by the intro
duction of an innovative framework for PPG artifact removal tailored to 
the construction environment. Through the development of a deep 
convolutional autoencoder-based framework, the study has achieved a 
substantial advancement in the accuracy and reliability of PPG signals 
for health monitoring applications. The proposed framework presents 
93% detection accuracy for motion artifacts and a notable improvement 
of over 88% in the SNR. In contrast to conventional methods that often 
rely on external hardware or manual feature engineering, the proposed 
deep learning approach autonomously identifies and rectifies motion 
artifacts, a critical feature in the dynamic and physically demanding 
environment of construction sites where traditional methods may prove 
insufficient. 

The technical contributions of the study are underscored by the 
development of a unified autoencoder framework. This framework can 
simultaneously detect and reduce MA in PPG signals, simplifying the 
processing pipeline, and significantly enhancing overall system effi
ciency in terms of computation and memory usage. The dual function
ality within a single framework marks a significant advantage for PPG 
signal processing. Furthermore, the framework has undergone testing in 
construction settings, ensuring its practical applicability and 

Table 3 
Instances of motion artifacts detected (in percentage) for the construction tasks. R1: Rebar tying task; M1: Low-intensity material handling; M2: High-intensity material 
handling; M3: VR material handling.  

Tasks S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

R1 30.5 10 41.7 3.3 10 13.3 8.3 1.7 19.3 56.3 
M1 10.2 18.3 31.7 20.0 8.3 3.3 0.0 0.0 9.2 8.3 
M2 8.6 15 21.7 10.0 7.0 18.3 0.0 3.3 7.0 8.3 
M3 1.7 0.0 0.0 0.0 5.2 8.0 0.0 0.0 2.5 0.0  

Table 4 
Instances of motion artifacts detected (in percentage) for other common con
struction tasks.  

S.no Tasks Instances of MA (%) 

1 Material Lifting 47.3 
2 Hammering 58.2 
3 Drilling 52.5 
4 Walking 6.2 
5 Computer Browsing 15.5  
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effectiveness. Tailored to address the specific needs and challenges of 
the construction industry, including the high occurrence of motion ar
tifacts due to physical activities, the solution emerges as a relevant and 
impactful tool for continuous health monitoring of construction 
workers. 

In a broader context, the implementation of this framework has the 
potential to enhance health monitoring practices in the construction 
industry. With enhanced accuracy and reliability in detecting stress 
factors including physical fatigue and mental stress, through PPG sig
nals, the approach can lead to more informed and timely interventions. 
This will ultimately contribute to the reduction of stress and fatigue- 
related incidents and improving overall worker well-being. Beyond the 
construction industry, this research sets a new standard for physiological 
monitoring in various settings. The principles and methodologies 
developed here can be adapted and applied to other fields where reliable 
and efficient health monitoring is crucial, potentially influencing a wide 
range of health-related practices and technologies. 

8. Conclusions 

This paper presents a framework to screen and reduce motion arti
facts in photoplethysmography signals using a deep autoencoder. An 
autoencoder network for removing motion artifacts in PPG signals was 
developed. The developed autoencoder network was further extended to 
detect and screen MA in the acquired PPG signals. The effectiveness of 
the developed framework for MA screening and removal was evaluated 
using PPG signals acquired from human subjects working in a controlled 
construction environment. The results demonstrated successful imple
mentation of the developed framework with a detection accuracy of 
93% and SNR improvement of 88%. The framework developed and 
evaluated using data acquired in a construction setting, is tailored for 
the construction environment specially for hands-on and intensive 
construction activities. The employment of an autoencoder-based MA 
screening and removal framework can set up the stage for a more reli
able health monitoring system for construction workers using PPG sig
nals. The study's findings are relevant for improving the reliability of 
PPG signals in the health monitoring of construction workers. The pro
posed framework has the potential to facilitate the digital trans
formation of health monitoring in construction sites by allowing for 
accurate and dependable utilization of physiological signals acquired 
from wearable sensors. 

The study has its limitations with real-time deployment as the 
framework was developed and evaluated on prerecorded data acquired 
in a controlled construction setting. Real-time deployment may have 
constraints from existing computation resources in terms of time and 
memory. In this regard, future research can focus on the real-time 
deployment of such a framework, optimizing for operational factors 
like model size, speed, and latency. Another limitation of the proposed 
framework lies in its susceptibility to external factors, such as dust and 
sweat, commonly encountered in construction settings. The presence of 
these externalities can obstruct signal acquisition, particularly when 
sweat interferes with photoreceptors or emitter surfaces, distorting 
signals and rendering them unusable for accurate inference. Over
coming this challenge requires innovations in material and hardware 
design, aiming to either prevent sweat from affecting photoreceptors/ 
emitters or explore alternative methods for photon-based signal acqui
sition. Furthermore, future investigations can investigate the perfor
mance of such frameworks by integrating them to real-time health 
monitoring systems for better evaluation. It is also recommended to 
examine other efficient learning models for removing noise like the 
diffusion models which may provide even better performance. The study 
successfully implemented the developed framework to address motion 
artifacts in PPG signals during material handling and rebar tying tasks, 
including evaluation for individual differences. However, for broader 
applicability to similar construction tasks, additional validation from 
future studies may be required to ensure the framework's effectiveness. 

Similarly, future research could explore the efficacy of the proposed 
autoencoder-based methods on analogous physiological signals from 
sources like ECG, EMG, and EEG, which have been utilized in con
struction health monitoring literature. This could help broaden the 
scope of applicability of the developed framework. 
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