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dropwise condensation heat transfer coefficient heavily depends on the 
contact angle for different surfaces. Neumann, Abdelmessih, and 
Hameed (1978) used well-polished copper as a substrate and found a 
strong relationship between contact angle hysteresis and a decrease in 
the heat transfer flux and coefficient. Rosengarten, Cooper-White, and 
Metcalfe (2006) examined the effects of contact angle on convective 
heat transfer in microchannels, finding that contact angle is an essential 
consideration for laminar flow/heat in micro- and nano-heat exchanger 
design. Kim and Kim (2011) developed a mathematical model to predict 
the heat transfer coefficient of dropwise condensation on a super
hydrophobic surface. They proposed a model prediction of overall heat 
flux with consideration of droplet distribution beyond a single-drop heat 

transfer model. However, the model only showed up to 10 ◦C temper
ature differences for filmwise condensation and narrowed the contact 
angle range from 90◦ to 150◦ for dropwise condensation. 

As outlined in the preceding sections, the persistent issue of green
house condensation has notable implications for plant growth and en
ergy consumption. However, much of the existing research has centred 
on the impacts of condensation on individual materials, neglecting a 
more comprehensive approach. Although some studies have indeed 
considered a range of materials, their primary focus has been the in
fluence of condensation on solar transmittance rather than on overall 
heat transfer dynamics. Consequently, the interrelationships and effects 
of surface properties of various materials on condensation heat transfer 
remain inadequately understood. This knowledge gap inhibits the 
proper selection of the greenhouse covering materials, especially 
considering the potential implications for operational energy use under 
conditions with and without condensation. An additional significant 
obstacle resides in the fact that prior research efforts have individually 
validated mathematical models for condensation heat transfer, but these 
validations were conducted under a restricted set of simulated envi
ronments or material types. This has resulted in the production of 
divergent coefficients and factors across these studies. Consequently, the 
lack of consistent and definitive mathematical models for condensation 
heat transfer applicable to greenhouse facilities hinders future heat 
transfer and energy simulations. 

To address the aforementioned challenges, the design conducted 
meticulous experiments utilising an environment chamber and hotbox 
experimental setup. These experiments, conducted with strict control 
over temperature, wind speed, and humidity, scrutinised the effects of 
surface condensation on several representative greenhouse glazing 
materials. The research emphasised filmwise condensation due to its 
prevalence in engineering applications and its characteristic formation 
on vertical surfaces (Eimann et al., 2018). Through this comprehensive 
experimental approach with different material samples, the design 
aimed to augment comprehension of the dynamics of surface conden
sation and its interplay with greenhouse glazing surfaces. Specifically, 
this study made two notable contributions: 

Firstly, this research endeavoured to investigate the influences of 
surface condensation on thermal transfer performance, considering the 
variability in glazing surface properties such as emissivity and wetta
bility, as well as varying environmental thermal conditions. Various 
technologies and products are presently deployed in greenhouse cov
erings to enhance energy efficiency and curtail condensation. None
theless, their actual effectiveness and collective impact on overall heat 
transfer during the condensation process remain to be clearly under
stood. This study explicitly delineates the variations in overall heat 
transfer before and after the onset of condensation via experiments and 
scrutinises the associated relationships and influences of different ma
terial surface properties. By shedding solar light on these relationships 
and the effects these surface properties exert on the condensation heat 
transfer coefficient, the study can facilitate a more accurate estimation 
of their energy performance. This will significantly inform the design 
process and material selection for greenhouse coverings. 

Secondly, this study aimed to identify and validate key coefficients 
necessary for analytical condensation heat transfer coefficient calcula
tions. Despite condensation being a routine phenomenon in greenhouse 
facilities, there is an existing need for an effective analytical method
ology to quantify its effects on overall heat transfer coefficient and en
ergy consumption. The validated model, generated as part of this 
research, will facilitate more accurate analytical analyses and compu
tation of the implications of condensation on heat transfer coefficient, 
thereby allowing its integration into broader energy simulations. 

The remainder of this work is organised as follows. Section 2 presents 
the experimental setup used in the lab and the selected representative 
greenhouse glazing samples’ thermal and wettability characteristics. 
Section 3 contains the results obtained from the condensation and 
thermal transfer tests and an analysis of the influence of the surface 

Table 1 
Previous studies on condensation in greenhouse facilities.  

Research goal Condensation 
affects 

Method Reference 

To study the influence of 
water condensation 
on the effective 
emissivity of the 
greenhouse surface. 

mean surface 
emissivity 

Emissivity 
measurements 
during 
condensation 
events using IR 
camera. 

Trosseille, 
Mongruel, 
Royon, and 
Beysens 
(2022) 

To compare overall 
heating loads for the 
greenhouse with or 
without condensation 

vegetation 
temperature. air 
temperature. 

Simulations using 
Gembloux 
Greenhouse 
Dynamic Model 
(G.G.D.M.) 

Pieters and 
Deltour 
(1997) 

To determine the effect 
of condensation on 
the heat transfer 
coefficient of plastic 
films and glass 

U-factor Experiments using 
the isothermal hot 
box method with 
various covering 
materials. Also 
include water 
mass 
measurements and 
validate with a 
computational 
model. 

Feuilloley 
and 
Issanchou 
(1996) 

To determine the 
radiation 
transmittances of two 
samples (PE and 
glass), including the 
effect of water 
condensation. 

solar 
transmittance 

Using laser beams 
as light source and 
measuring solar 
transmittance 
during distinct 
phases of covering 
materials. 

(Pollet & 
Pieters, 1999; 
2000a; 
2000b) 

To determine PAR 
transmittance as a 
function of incident 
angle and 
wavelength. (Glass, 
Low-E, PE plastic) 

PAR 
transmittance 

Using a laser beam 
as a light source, 
measure PAR (400 
nm–700nm) 
transmittance for 
various cladding 
materials. 

Pollet and 
Pieters 
(2002) 

To determine the effect 
of condensate film on 
solar chimney 
performance (solar 
radiation 
transmittance). 

solar 
transmittance 

Using a solar 
chimney model 
and data 
collection for one 
month. 

Al-Kayeim, 
Aurybi, and 
Gilani (2019) 

To investigate the mean 
heat transfer 
resistance of the 
condensate droplets 
which form on the 
substrate surface. 

mean 
condensation 
layer heat 
transfer 
coefficient (hd) 

Experiments using 
heat flux 
measurements and 
thermography (IR 
camera) recording 
to calculate heat 
transfer 
coefficient. 

Eimann, 
Zheng, 
Philipp, 
Fieback, and 
Gross (2018) 

To present a 
mathematical model 
for dropwise 
condensation heat 
transfer prediction of 
superhydrophobic 
surface 

heat flux A developed single 
drop heat transfer 
model with drop 
size distribution 
and predict overall 
heat transfer rate 
per unit area (heat 
flux). 

Kim and Kim 
(2011)  
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making regarding material and additive selections for greenhouse fa
cilities. This work is the first to systematically investigate the role of 
contact angle and emissivity in the overall condensation heat transfer. 

One aspect of this study that invites further exploration is the ex
amination of a single representative condensation scenario (filmwise 
condensation across the entire surface, attributable to the size of the 
glazing sample used in the experiments). In practical scenarios, it’s 
common to observe another form of condensation, which primarily 
occurs at the perimeter areas of the surface. In these instances, the 
original material’s surface emissivity might still influence the U-factor, 
especially if the condensate water film doesn’t entirely envelop the base 
surface. Such scenarios are frequently encountered in real-world 
greenhouse conditions, attributable to non-uniform thermal distribu
tion on the surface and/or localised heating conditions. In these cases, 
the U-factor should be assessed using an area-weighted method, ac
counting for condensate and non-condensate surface characteristics. The 
double-film theory and parameters validated in this study can also be 
applied to the condensate section. These aspects offer promising di
rections for future investigation. 
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