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ARTICLE INFO ABSTRACT
Keywords: Solar radiation is a critical factor in advanced envelope design and solar energy’s building integration, neces-
Solar irradiation sitating a shift from broadband solar radiation analyses towards more precise narrowband or spectrum-focused

Solar envelope design and simulation
Machine learning

Spectral selective

Building integrated photovoltaics
Transparent photovoltaics

approaches. Understanding the performance potential of spectral-selective materials or structures requires ac-
curate solar spectral information at specified locations, a feature often overlooked by conventional modeling
tools. This work presents an innovative solar decomposing model capable of differentiating key solar irradiation
components—yvisible and infrared—from broadband solar irradiance, without the need for expensive spectrum
measurements. Our approach employs the extreme boosting regression tree method and leverages existing or
easily derivable data from typical weather files. An exploratory analysis of the importance and interaction of
different features in predicting solar irradiation components is also conducted. The results show that the pro-
posed algorithm has an R? of 0.981 and 0.990, RMSE of 18.280 and 18.390, and MAE of 7.989 and 8.011, for
predicting VIS and NIR amount in DNI, respectively (for the strongest model using all the predictors within the
dataset). This research offers an added layer of practicality by including case studies demonstrating how the solar
decomposition models serve in real-world applications, especially in the integration of wavelength-selective
devices like window systems and transparent solar cells into advanced envelope designs. Such real-world
testing has verified the presence of a disparity between the power output calculation of NIR-selective trans-
parent photovoltaics upon the broadband solar radiation data and the suggested narrowband solar radiation
data, potentially resulting in a maximum deviation of 15.7 %. The decomposing models developed empower
researchers and designers to generate new weather files comprising narrowband solar irradiance data, thereby
enhancing their capacity to examine the influence of spectral-selective materials on a building’s solar perfor-
mance using existing solar simulation programs. The proposed method will be further improved by including
more data from different climate zones and weather characteristics in the training model and validating through
field measurements.

design. Typically, a full year’s weather data is assimilated into a simu-

1. Introduction lation program to emulate a building’s daylight environment, energy
consumption, and other related conditions. In this context, a reliable

Solar radiation is a pivotal element in the sphere of advanced en- solar radiation dataset becomes indispensable to ensure superior pre-
velope design, particularly for those designs that incorporate solar cells ~ dictive performance for solar projects. Both the variability of solar re-
or similar devices. This focus is aimed at harnessing solar power to sources, as mirrored in historical solar data, and the precision of the
cultivate energy-efficient building structures. The use of computational dataset, hold immense significance in the accurate estimation of the
analysis tools such as EnergyPlus and Comfen has been adopted to projects [1]. There are several widely available datasets: 1) the National

dissect the thermal and optical properties of solar-based architectural Solar Radiation Data Base (NSRDB), developed by the National
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Nomenclature

NIR Near-Infrared Light

uv Ultraviolet Light

GHI Global Horizontal Irradiance, W/m?
DHI Diffuse Horizontal Irradiance, W/m?
VIS Visible Light

DNI Direct Normal Irradiance, W/m?
CART Classification and Regression Tree

RMSE Root Mean Square Error

MBE Mean Bias Error

T™MY Typical Meteorological Year

AOD Aerosols Optical Depth

PWV Perceptible Water Vapor

Io Extraterrestrial Solar Irradiance, W/m?

TPV Transparent Photovoltaic
SZA Solar Zenith Angle

Ky Normal Clearness Index
AM Air Mass

SKC Total Sky Cover, 1/tenth

Opqcld Opaque Sky Cover, 1/tenth
Ted Cloud Transmittance

Dry Dry Bulb Temperature, °C
Dew Dew Point Temperature, °C
RH Relative Humidity

Wdir Wind Direction

Wspd Wind Speed, m/s

DT Decision Tree

R? R-squared

PCE Power Conversion Efficiency

Renewable Energy Laboratory (NREL) and Sandia National Laboratory,
2) the Canadian Weather Energy and Engineering Datasets (CWEEDS),
which are available through Environment Canada, and 3) SolarGIS,
which merges ground observations, satellite data, and an atmospheric
patterns database to deliver highly accurate global solar radiation data.
The typical meteorological year (TMY) data files were developed from
these datasets, which are also the most popular weather files in building
envelope simulations. Each TMY data file consists of a full year of data
constructed from 12 months chosen as most typical from the years that
made up the database. Three broadband solar components including
global horizontal irradiance (GHI), direct normal irradiance (DNI), and
diffuse horizontal irradiance (DHI) are available in the TMY data and are
mostly all needed for a solar analysis or energy simulation. Notably, all
three solar irradiance types (GHI, DNI, DHI) in the typical weather data
files are broadband and represent the total amount of ultraviolet (UV),
visible light (VIS), and near-infrared radiation (NIR), three major com-
ponents of the solar spectrum.

In recent years, growing evidence from the building and solar
simulation perspective has demonstrated the necessity of separating
broadband solar radiation into narrowband or even specific spectrum-
focused design and analytics. For instance, of these three solar compo-
nents, solar VIS radiation is beneficial to building electrical lighting
energy savings and indoor health related to its circadian stimulation [2],
but it may also lead to negative impacts on indoor visual comfort, such
as glare issues. While the solar NIR transmission into the building could
help to reduce the overall heating load in cold climates, it is undesirable
in hot climates. Similarly, it has also recently been reported that solar
VIS and NIR transmitted through glazing have different effects on the
user’s thermal comfort near window zones [3]. From the solar device or
system design perspective, with the recent development of
spectral-selective materials, independent spectral band modulation of
solar radiation has become increasingly viable as a potential means of
improving building energy efficiency and maintaining indoor visual
comfort. For example, metallic nanoparticle-based nanocomposites
have been recently studied and developed to decouple the modulation of
solar VIS and NIR by using their plasmonic resonance effect at specific
infrared wavelengths. Jahid et al. proposed reversible photothermal
windows based on nanoscale solar infrared-induced plasmonic photo-
thermal effects, which can modulate solar heat, independent of visible
light conditions [4]. Shen et al. explored the potential of using silver
nanorods (AgNRs) for energy-saving applications, with an adjustable
plasma resonance band from the visible light to the infrared, they can
ensure higher luminous transmittance than 50 %, while blocking solar
radiation by about 80 % [5]. Forrest et al. conducted a comprehensive
review of the recent advancements in semitransparent organic photo-
voltaics for various building applications, including power windows.
The unique feature of narrow and intense absorption spectra exhibited

by organic materials presents an exciting opportunity for the develop-
ment of highly efficient organic photovoltaic devices. These devices can
maintain semitransparency in the visible spectral range while exhibiting
strong absorption in the ultraviolet and infrared spectral bands that are
invisible to the human eye [6]. Other researchers also developed some
light/heat splitting materials by designing spectral trans-
mittance/absorptance of glazing materials in different solar spectra
[7-10].

As such, to meet the above-mentioned needs of separating solar
spectral components and understand the potential performance of the
spectral-selective materials/structures, accurate solar spectral informa-
tion in weather files of the selected locations is necessary. If solar sim-
ulations only take broadband solar radiation into consideration, the
potential performance of the aforementioned materials/structures in
building envelopes may not be fully understood. Even worse, it may
yield misleading or erroneous results. For example, if one studies a
spectral-selective glazing material (e.g., low-solar-heat-gain low-e
coatings - low transmittance in the NIR region but high transmittance in
VIS region), normal broadband simulations would get erroneous results
because they lack the corresponding solar components to be multiplied
with VIS or NIR transmittance. Nonetheless, the measurement of solar
spectral irradiation is a challenging and costly process. Current predic-
tive tools are limited to forecasting broad-spectrum solar radiation by
relying on historical patterns through empirical methods like Autore-
gressive Integrated Moving Average (ARIMA) or Artificial Neural
Network models (ANN). Alternatively, they can estimate specific,
narrowband solar radiation using physical models such as SMARTS and
MODTRAN, which are based on the physics of solar radiation. Conse-
quently, conventional weather files typically lack the inclusion of
spectral distribution or narrowband data regarding solar irradiation.

To address this research gap, a reconstruction algorithm decom-
posing solar visible and infrared irradiance from broadband solar radi-
ation and weather data for building simulations needs to be developed.
The solar radiation data used for building simulations include GHI, DHI,
and DNI, so all these three solar components need to be decomposed to
narrowband data. In our previous work, we have already developed a
predicting model using the CART algorithm for decomposing VIS and
NIR components in GHI based on the typical weather file [11].
Accordingly, this work focuses on building spectral solar radiation
models for DNI and DHI based on extracted and added features from
readily available weather files without adding new measurements and
sensors. By leveraging these models, it becomes feasible to develop a
web-based application that can effectively break down conventional,
broad-spectrum weather files into distinct, narrowband weather files.
Furthermore, as part of this research, a case study focused on the anal-
ysis of (semi)transparent solar cell performance is conducted using the
developed models.
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Fig. 1. The workflow of generating new weather files with narrowband solar components and the schema of decomposing DNI components by using machine

learning algorithms.

One uniqueness of this research is to leverage the typical meteoro-
logical data from the ground-based weather station, such as dew-point
temperature, relative humidity, and broadband solar irradiance into
the decomposition models without additional measures. In other words,
it deploys accurate, efficient machine-learning algorithms to decompose
solar spectral bands, with easy-to-get weather files. This method enables
more comprehensive and precise building performance simulations,
especially with respect to building elements and products that have
spectral-selective features. Second, through comprehensive feature
importance and feature interaction analyses, certain underlying and
intrinsic relationships between the narrowband solar irradiance (VIS or
NIR) and meteorological features are first known. This presents some
evidence for the rough or simplified estimation of spectral features of
solar radiation based on weather features, which can be useable for
designers and engineers in solar architecture areas for rapid in situ
decision-making. Last, this research is not merely theoretical or limited
to the realms of scientific investigation - it has practical implications and
real-world applicability, as demonstrated through a case study. This case
study functions as a concrete illustration of the application’s intended
purpose and how it can be deployed in real-life scenarios, particularly
concerning advanced building envelopes with solar energy utilization
and/or generation.

2. Related work

Since the 1940s, many spectral irradiance models have been devel-
oped. There are five types of spectral irradiance models including
empirical models, rigorous and sophisticated codes, simple trans-
mittance parameterizations, semiempirical models, and reconstruction
models. Empirical models such as Moon’s spectral radiation curve,
Leckner’s model, Brine and Igbal’s model, and SOLAR2000 usually
combine historically measured weather and other solar irradiance data.

Some rigorous and sophisticated codes including BRITE and FLASH,
LOWTRAN 7, MODTRAN 6, SEA, and SOLMOD models can consider the
physical characteristics of the atmosphere and vertical profiles of
gaseous and aerosol constituents. The simple transmittance parameter-
ization models such as the SPECTRAL2 and the SMARTS models pro-
posed by the National Renewable Energy Laboratory (NREL) simplify
the atmosphere’s vertical profile. Semiempirical models involve both
physical and statistical modeling processes while reconstruction models
focus on modeling solar spectral irradiance variability. However, these
five representative solar spectral irradiance models cannot be applied to
building energy efficiency analysis because of the need for additional
measurement and data input, implementation complexities, and wave-
length range limitations [12].

A more practical way of integrating solar spectral irradiance in the
application of building energy analysis is to develop models that can
decompose major solar spectral components, such as UV, VIS, and NIR
within GHI, DNI, and DHI. The most previous work is Bird’s solar
spectral model for direct-normal and diffuse horizontal irradiance [13].
It uses simple mathematical expressions and tabulated look-up tables to
generate direct normal and diffuse horizontal irradiance for cloudless
days (0.3-4 pm wavelength range). Nann et al. pushed this work further
by developing a semiempirical model, called SEDESI, to predict the solar
spectral irradiance under clear and cloudy skies, with only a few inputs
including global and diffuse broadband irradiance measurements, pre-
cipitable water-vapor data, and the solar position [14]. With the
improvement of ground and satellite-based solar spectral irradiance
measurement, more accurate solar irradiance decomposition methods
can be derived by calibrating with the measured spectral data, for
example, Tatsiankou et al. developed a decomposition algorithm for
deriving the broadband DNI and DHI irradiances from 1-min spectral
global horizontal irradiance measurements performed by the
SolarSIM-G. Spectral clearness indexes of different sky conditions were
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derived based on measured/calculated atmospheric parameters
(including solar position, Rayleigh scattering, and the transmittances,
spectral AOD, total column ozone at 600 nm, precipitable water vapor at
940 nm, cloud transmittance with a spectral cloud correction, etc.),
which were then used to decompose broadband solar irradiance. The
algorithm was calibrated and validated at five stations, and it showed
promising results: For the DNI estimation, the root mean square error
(RMSE) ranged from 26 W/m? to 48 W/mz, while the largest mean bias
error (MBE) was 4 W/m?. For the DHI estimation, the RMSE ranged from
14 W/m? to 27 W/m?, while the largest MBE was 3 W/m? [15]. Kos-
mopoulos et al. looked into AOD-solar irradiance interactions in the
eastern Mediterranean area and found that under extreme dust events (i.
e., when AOD reaches 3.5), GHI could attenuated by 40-50 %, and DNI
could decrease even more (80-90 %), with spectrally attenuated 37 % in
the UV region, 33 % in the visible and around 30 % in the infrared [16].
Another characteristic research done by Charuchittipan et al. aims to
estimate diffuse solar NIR radiation in Thailand using ground- and
satellite-based data for mapping applications, three major atmospheric
parameters were analyzed and used as predictors in the model: cloud
effect, solar zenith angle, and precipitable water. This semiempirical
model showed reasonable agreement with independent diffuse NIR,
giving an RMSD and MBD of 16.7 % and 1.5 %, respectively [17]. There
are also researchers trying to implement machine learning/deep
learning algorithms in solving solar irradiance spectra or modeling solar
radiation. Taylor et al. utilized neural network radiative transfer solvers
for the generation of high-resolution solar irradiance spectra parame-
terized by cloud and aerosol parameters [18]. Hassan et al. explored the
potential of tree-based ensemble methods in solar radiation modeling.
But most of these works were either trying to model the solar irradiance
spectral with a very high resolution (continuous spectrum), for meteo-
rological and astronomical studies [19-23], or trying to predict the total
solar radiation for renewable energy applications [24-30]. A relatively
simpler way of implementing solar spectral irradiance in solar archi-
tecture design and energy simulation is to decompose the broadband
solar irradiance into individual solar components/fractions. For
instance, Szeicz verified that 0.5 is a better approximating ratio of the
visible energy to the total received by the photosynthetically active part
of the spectrum, his study indicated the VIS fraction of total global
irradiance is closely associated with two factors: the presence of clouds
and scattering caused by aerosol [31]. The NIR fraction is closely related
to the total amount of column water vapor [32].

In summary, all previous works mentioned above studied solar
spectral irradiance from meteorological or astronomical perspectives, or
for the applications of photovoltaic and agriculture. For the applications
of solar architecture design and building energy simulation in terms of
all three solar components with good accuracy, few of these works seem
applicable. Meanwhile, these studies unveiled the key impacting factors
for solar spectral irradiance, including clearness index, precipitable
water vapor, aerosols, solar position, and cloud level, which provides us
with a valuable foundation for our work. With the aforementioned
meteorological/astronomical feature, we can build an ease-of-
manipulation tool by using newly developed machine learning algo-
rithms, which are compatible with most of the current building energy
simulation software or plug-ins, so that a more accurate, detailed solar
radiance model could be built with this software.

3. Methodology

As shown in Fig. 1, firstly, we built two estimation models for
decomposing solar components (VIS and NIR) from the broadband GHI
and DNI, respectively. The GHI decomposing model and the framework
of the data portal have been presented in our prior work [10] The scope
of this paper focuses on the procedure for decomposing models from the
broadband DNI, which consists of six major steps from data collection to
cleaning, feature selecting, model training, comparing, and validating.
The best model was selected based on its performance. Based on these
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two parts (GHI and DNI), one can compute the VIS and NIR components
in DHI via the transposition equation (shown in Fig. 1) [33]. Subse-
quently, one can import their original weather files (TMY), and then
export processed weather files (TMY) with individual solar components
in replace of broadband GHI, DNI, and DHI information.

3.1. Solar and weather data curation

In this study, all the datasets were obtained from the BMS database of
the NREL Solar Radiation Research Laboratory. All the datasets were
based in Golden, Colorado with latitude of 39.742° N, longitude of
105.18° W, and elevation of 1828.8 m AMSL [34]. In general, two major
datasets were curated: weather datasets (including broadband solar
irradiance and other typical meteorological data) and spectral solar
irradiance data from multiple sources.

1) Weather dataset

This dataset includes three components. The major component was
based on and included most independent variables for modeling, such as
GHI, DNI, DHI, cloud coverage, and dry-bulb temperature. The HMM is
hourly data by averaging the value of all measurements taken from the
1-h interval and was collected from Jan 1, 2016, to December 31, 2019.
In addition, based on the prior studies, both aerosol optical depth and
precipitable water vapor parameters are often found in typical weather
stations’ data collection and are important to the solar spectra, while
they are not included in HMM datasets. As such, in this work, we ob-
tained these two atmospheric data from the NREL BMS AOD and PWV
(GPS-based PWV) database. As a result, the curated weather dataset has
identical variables and formats to the TMY weather file that has been
widely applied to solar radiation and building energy performance
simulations. All these weather data including broadband solar irradi-
ance were used as the predicting variable candidates in this work.

2) Spectral solar dataset

The corresponding spectral solar components (VIS and NIR irradi-
ance) in GHI were extracted from the outdoor solar spectra data
(WISER), and the components in DNI were extracted from the outdoor
solar spectra data (PGS-100). The WISER dataset was measured by EKO
WISER spectroradiometer MS-710, MS-711, and MS-712 from 2016 to
2019. The MS-710, MS-711, and MS-712 instruments have 4 nm, 5 nm,
and 6.5 nm spectral bandwidth respectively. Their measurement range
is 300 nm-1100 nm, 300 nm-1100 nm, and 900 nm-1700 nm, respec-
tively [35]. The WISER dataset has a higher resolution measurement for
both wavelengths and time intervals (typically 5 min, but occasionally 1
min). The PGS-100 dataset was measured through a LICOR LI-1800
spectroradiometer. The instrument has a 3.6 nm spectral bandwidth
and the useable spectral range of the instrument is 350 to 1,050 nm.
Data was taken at approximately 0.7 nm intervals (slightly variable,
differs for each serial number) every 5 min [32]. The hourly spectrum
data were calculated by averaging the 5-min interval data for each hour,
The average value of all measured points each hour is defined as the
value for the time-stamp at the end of the 1-h interval. All GHI and DNI
spectral data were then integrated over the specific bandwidths (VIS:
400 nm-700 nm, NIR: 800 nm-2500 nm) to compute the overall VIS and
NIR irradiance within the broadband solar irradiation, following the
trapezoidal rule.

n—1
E(L )
VIS NIR = 3 PTG L )
1

i=

Where E(4;) represented the irradiance at a given wavelength 4;, and n
was the number of data points.
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3.2. Data processing

The raw dataset contained 35,059 data points, including the
response variables VIS and NIR, predicting variables Albedo, Wind
speed (Wspd), Wind direction (Wdr), Pressure, Relative humidity (RH),
Dew-point temperature (Dew), Dry-bulb temperature (Dry), Opaque
cloud cover (Opqcld), Total sky cover (SKC), Diffuse horizontal irradi-
ance (DHI), Direct normal irradiance (DNI) and Global horizontal irra-
diance (GHI). After collecting the data, feature processing and data
cleaning procedures were conducted to select predictors and clean
useless data, before feeding the data to machine learning algorithms.

3.2.1. Pre-processing for features used in the model

In addition to the existing weather parameters, such as dry-bulb
temperature, dew-point temperature, and relative humidity, several
new predictors were generated and added based on the domain
knowledge of solar radiation and building physics, with a focus on cal-
culations that did not require new sensors and measurements and
demanded a minimum amount of computation. These predictors are
strongly correlated with solar irradiance and therefore used in our
model.

1) Extraterrestrial solar irradiance Ij:

The hourly average extraterrestrial solar irradiance Iy is determined
using the equation [36].

R, :
=1 <7> (2)

Where I, is a solar constant (1367 W/mz), Ry is the mean Sun-Earth
distance, and R is the actual Sun-Earth distance depending on the day
of the year. An approximate equation for the effect of Sun-Earth distance
is:

R 2
(7) =1.00011 +0.034221 cos(f) + 0.001280 sin(f) -+ 0.000791 cos(26)

+0.000077 sin(2p)
3)

Where $ = 27n/365 radians and n are the day of the year.
2) Solar zenith and azimuth angle:

The solar zenith angle z is the angle between the solar and the ver-
tical, and solar azimuth angle az is the angle between the sun and north
cardinal direction. A Python package called Pysolar (developed by
Brandon et al.) was used in this study. Pysolar is a collection of Python
libraries for simulating the irradiation of any point on earth by the sun,
based on longitude, latitude, time of the day, and date. It includes code
for extremely precise ephemeris calculations and more [37].

3) Normal clearness index:

The clearness index b of direct beam irradiation is the ratio of the
direct normal irradiance to the corresponding radiation incident on a
horizontal plane at the top of the atmosphere. It depends on the altitude,
solar zenith angle, and parameters describing the optical state of the
atmosphere related to aerosols, water vapor, and other gases [38].

DNI
Ky =—— “
Iy
4) Air mass:

The air mass AM calculation was given by Kasten and Young [39], as
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Table 1
List of models, alongside with predicting features each model used.

Model Predicting features

V1,N1  Albedo, Wspd, Wdr, Pressure, RH, Dew, Dry, Opqcld, SKC, DHI, DNI, GHI,
AM, Iy, Ky, Tcld, AOD, PWV, Zenith, Azimuth
V2,N2  Wspd, Wdr, Pressure, RH, Dew, Dry, DHI, DNI, GHI, AM, I, Ky, PWV,
Zenith, Azimuth
1
AM (5)

" cos 2 + 0.50572(96.07995 — z)

5) Aerosol Optical Depth:

As a basic optical parameter, aerosol optical depth (AOD) is a mea-
sure of the extinction effect of atmospheric aerosols and is widely used as
a key parameter for assessing the degree of air pollution. Moreover,
aerosols have been analyzed in research on climate change and atmo-
spheric radiation balance [40]. We collected AODsqg data from the
NREL BMS database, which is obtained from a 7-channel Prede POM-01
Photometer (at 500 nm). Raw data collected by this photometer was sent
to the European Sky Radiometers (ESR) Network and processed using
two methods: the SkyNet SkyRad Method and the ESR SunRad Method
[41].

6) Precipitable water:

PWV (precipitable water vapor) is the total water vapor content of a
unit area in the atmospheric column (unit: kg/m?), which is equal to the
liquid water content at the same height (unit: mm), and is related to the
integrated wet profile above the station [42]. We collected Jan 1, 2016,
to Dec 31, 2019, PWV data from the NREL GPS-based PWV database,
with a time interval of 1hr, and the location at 39.7423° North,
105.1785° West (Elevation: 1828.8 AMSL). PWV can also be estimated
by surface meteorological observations if measurements are unavai-
lable, as shown in Equation (6), where e; is the saturation water vapor in
hPa, T is the dry-bulb temperature in °C, e is the actual vapor pressure
and g is the acceleration due to pressure (9.81 m/s%):

e(T) =6.112 x P55 ¢ = RH x e,(T)PWV ~ 0.1 x g (6)

7) Cloud transmittance:

The cloud transmittance is formed by using its correlation with sky
cover:

(I —=0.1%Opgcld)(1 — 0.1 « SKC + 0.1 % Opgcld)
1 —0.05 * Totcld
(1 —0.1*Opgcld)(1 — 0.1 % Trn)

- 1 —0.05 * Totcld 7

Tr[zl =

where Opqcld is the opaque sky cover, Totcld is the total sky cover, and
Trn is the translucent sky cover, in which Trn = SKC — Opqcld (This is
based on the assumption that the direct beam transmittance of opaque
clouds is zero and only valid for a large number of hours having the same
opaque cloud cover) [11,43].

After the feature-selecting procedure, 20 parameters have been
chosen as predicting features. These include the original meteorological
parameters and newly added parameters, such as Air mass (AM),
Extraterrestrial solar radiation (Ip), Normal clearness index (Kp), Cloud
transmittance (Tcld), Aerosol optical depth (AOD), Precipitable water
vapor (PWV), Solar zenith angle (Zenith) and Solar azimuth angle (Az-
imuth), as shown in V1 (decomposing VIS light) and N1 (decomposing
NIR light) models in Table 1. Since some weather stations would not
record certain parameters such as AOD, SKC, Opqcld, and Albedo, a
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Table 2
Detailed description of the raw dataset.

count mean std min 25 % 50 % 75 % max
GHI 35059 194.3923 278.2403 0 0 17 337 1134
DNI 35059 233.3288 349.5303 0 0 0 447 1079
DHI 35059 66.1971 98.28129 0 0 15 95 691
VIS 35059 100.5387 150.3429 —41.7373 —0.09455 0.8431 203.3645 1095.435
NIR 35059 123.7763 192.5793 —228.87 —0.1741 0.3977 225.8207 1065.757
Opqcld 35059 0.376993 105.7841 —9900 0 0.3 1.8 9.8
Dry 35059 7.834893 183.6196 —9900 3.7 11.4 19.1 35.9
Dew 35059 —5.91199 183.2599 —9900 —8.4 2.7 3.7 17.2
RH 35059 42.1731 109.078 —9900 23.9 36.7 59.6 100.2
Pressure 35059 814.703 99.41184 —9900 813 817 820 831
Wdr 35059 191.7905 115.9286 0 80 245 284 360
Wspd 35059 3.156904 2.15405 0 1.7 2.7 4.1 22
Albedo 35059 0.130126 0.169756 0 0 0.12 0.2 2
Zenith 35059 89.67112 36.16765 17.6665 61.1429 89.6538 118.2184 162.3577
Azimuth 35059 179.9827 98.23221 7.5602 90.33525 176.0089 269.0277 352.3895
AM 35059 2.212897 4.91397 -1 -1 1.1766 2.4813 22.0847
AOD 35059 0.721639 1.604419 0 0 0.0503 0.4249 16.1398
PWV 35059 —55.4384 2560.761 —99999 5.2 8.6 14.15 36.95
10 35059 1367.176 33.11951 1321.327 1334.042 1366.225 1400.161 1414.951
Kb 35059 0.171208 0.256278 0 0 0 0.330197 0.784086
Tecld 35059 0.875956 0.195337 0.039515 0.83497 0.979592 1 1.997984
SKC 35059 1.001549 105.8108 —9900 0 0.4 3.2 9.9

smaller dataset containing only 15 predicting features was also built to
train a relatively simpler model, as shown in V2 and N2 models. A
preliminary data analysis was conducted, as shown in Table 2. It was
noticeable that some values (bold) were erroneous, for example, Zenith
greater than 90°, VIS or NIR less than 0, etc. Thus, a data cleaning
procedure needed to be performed after the feature selection.

3.2.2. Data cleaning

After building up the datasets with the predicting and responding
features described above, the quality of the raw data was enhanced by a
data cleaning process to filter out any anomaly data points. Basically, all
the anomaly data due to measurement error exceeded reasonable range,
data recorded during the night, low solar-elevation and heavily overcast
sky conditions, and combinations of narrowband data conflicted with
broadband data were eliminated. The following criteria were adopted in
the data-cleaning process:

o If the values within (SKC, PWV, Pressure, RH, Dew, Dry, Opqcld)
variables were equal to —9900 or —99999, the corresponding data

entries would be considered meaningless and omitted to remove any
possible outliers.

If data values exceed their reasonable range (e.g., Albedo>1,
RH>100 %), the corresponding data entries would be discarded.

If the meteorological parameters AOD and pressure represent
extremely rare conditions (e.g., AOD>3, Pressure<780 hPa),
Tukey’s Fences method was employed to eliminate potential outliers
that fall beyond the lower outer fence (Q; — 3 * IQR) or upper outer
fence (Qs + 3 % IQR), in which Q; and Qs respectively are the first and
third quantile of the dataset, IQR = Q3-Q; is the interquartile range
[44].

If the VIS or NIR value is less than 0, then the corresponding data
entries would be discarded.

Irradiance measurements were calculated for solar zenith angles
ranging from 17.5° to 85.5° (the range of available solar zenith an-
gles throughout the year at SRRL, excluding data near sunrise and
sunset). So if the solar zenith angle was greater than 85.5°, or less
than 17.5°, the corresponding data entries would be discarded (i.e.,
AM>11.5 would also be emitted) [2].

Table 3
Detailed description of the dataset after cleaning anomaly observations.

count mean std min 25 % 50 % 75 % max
GHI 11862 500.0664 259.6076 50 286 489 702 1087
DNI 11862 632.696 310.9543 1 382 717 911 1079
DHI 11862 138.6929 100.0174 21 64 100 191 627
VIS in DNI 11862 270.725 131.0182 0.2514 166.3186 312.1841 375.5786 810.1841
NIR in DNI 11862 342.8875 176.04 0.0518 194.221 378.8343 501.4796 959.0474
Opqcld 11862 2.276125 2.046922 0.2 0.7 1.3 3.4 9.8
Dry 11862 16.42209 9.331261 —18.4 9.6 17.1 23.8 35.9
Dew 11862 —1.8829 7.894198 —-32.2 -7.7 -1.9 4.3 16.2
RH 11862 31.74821 17.00421 1 18.8 27.8 41.7 99.9
Pressure 11862 816.2946 5.937008 792 813 817 821 831
Wdr 11862 141.2805 107.5435 0 48 109 256 360
Wspd 11862 3.192649 2.143738 0 1.8 2.7 3.9 22
Albedo 11862 0.241721 0.127577 0.08 0.19 0.21 0.24 0.96
Zenith 11862 55.74573 17.19004 17.6665 43.21168 58.7589 69.68938 84.418
Azimuth 11862 177.0164 61.28535 66.7883 124.8887 173.3167 229.6181 292.6278
AM 11862 2.500321 1.727307 1.0493 1.372925 1.93755 2.915475 11.4932
AOD 11862 0.662684 0.872402 0.0128 0.1056 0.2201 0.89135 3.9369
PWV 11862 10.22316 6.06198 0.15 5.35 8.9 14.5 33.9
10 11862 1361.798 32.68458 1321.327 1329.538 1356.183 1392.952 1414.951
Kb 11862 0.464505 0.227526 0.000753 0.280863 0.526908 0.668704 0.784086
Teld 11862 0.814888 0.166532 0.039588 0.719896 0.892737 0.939894 0.984975
SKC 11862 3.325923 2.659018 0.3 1.2 21 5.3 9.9
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Fig. 2. Correlation heatmap displaying the correlations between predictors, predictors and reponses.

If the GHI value is less than 50W/m?, the corresponding data would
be disregarded [2].

If the fractions of VIS/DNI or NIR/DNI were greater than 1, the
corresponding data entries would be neglected.

If the sum of the ratios — VIS/DNI and NIR/DNI was greater than 1 or
less than 0.9, then the corresponding data entries would be discarded
[45].

The original datasets contain all hourly meteorological and
narrowband solar spectrum data from Jan 1st, 2016, to Dec 31st, 2019.
There are 35,059 data entries in total. Within the raw dataset, 507 data
points were discarded due to measurement or documentation errors,
20,621 data points were discarded due to nighttime or low solar

elevation, 1450 data points were discarded due to narrowband-
broadband conflicts, 619 data points were discarded due to possible
outliers within meteorological parameters. After the data cleaning pro-
cess, the finalized dataset contains 11,862 observations in total. Detailed
data description after cleaning is shown in Table 3.

3.2.3. Exploratory data analysis after feature processing and data cleaning

An exploratory data analysis was conducted to explore the correla-
tions between each predictor, alongside predictors and responses. The
correlation heatmap in Fig. 2 illustrated that both VIS and NIR compo-
nents were strongly, and positively correlated with DNI, Ky, Tcld, and
negatively correlated with SKC, Opqcld, and AOD. Other noteworthy
findings include the positive correlations between DHI and Opqcld,
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Opqcld and AOD, Dew, and PWV, and negative correlations between
Dry/Dew and Iy, Opqcld and Kp, PWV and Iy, AOD and Kp, AOD and
Tcld. These findings might be helpful to evaluate the contributions of
different variables in predicting VIS and NIR solar components. Never-
theless, the interactive effects between predictors and responses have
yet to be uncovered and will be examined after the model has been
trained.

3.3. Data modeling techniques

Many machine-learning algorithms have been implemented in pre-
dicting global solar radiation (GSR) so far. For example, Hassan et al.
explored the potential of tree-based ensemble methods, such as gradient
boosting, bagging, and random forest for estimating global, diffuse, and
normal radiation components in daily and hourly time scales [25]. Kisi
et al. utilized a dynamic evolving neural-fuzzy inference system model
for modeling solar radiation based on a univariable air temperature
scheme [46]. Other machine learning algorithms include artificial
neural network (ANN), support vector regression (SVR), adaptive neu-
rofuzzy inference system (ANFIS), etc [47-49]. In this study, tree-based,
supervised machine learning algorithms were implemented because of
their robustness, parallelizability, and capability to handle non-linear
relationships. The best tree-based model was selected based on their
training, validation, and independent-testing scores, such as RMSE,
MAE, and R%

1) Decision tree

Decision trees (i.e., DT) are simple but powerful methods for
modeling. These involve stratifying or segmenting the predictor space
into a number of simple regions. Unlike the generalized linear regression
(GLM) model that pre-specifies the relationship between predictors and
responses, the DT method utilizes heuristic regression techniques to
partition along the predictor axes into subsets with homogeneous values
for the response variables. To find the best split, DT takes a top-down,
greedy approach that is known as recursive binary splitting, in which
it begins at the top of the tree, and then successively splits the predictor
space into the regions that lead to the greatest possible reduction in RSS
[50]. This process may produce good predictions on the training set but
is likely to overfit the data, leading to poor test set performance. To
address this issue, tree pruning techniques are required to produce the
best-fit subtree. In this study, a tree-pruning method called
Cost-complexity pruning is implemented. Rather than considering every
possible subtree, only a sequence of trees indexed by a non-negative
tunning parameter « is considered. For each value of a, there corre-
sponds a subtree T C Ty such that equation (8) is as small as possible.
Here |T| indicates the number of terminal nodes of the tree T, and Ty
indicates the number of terminal nodes of the full-grown tree. R, is the
rectangle (i.e. the subset of predictor space) corresponding to the mth
terminal node, and Yy, is the predicted response associated with R, (i.e.
the mean of the training observations in Rp,). The tuning parameter o
controls a trade-off between the subtree’s complexity and its fit to the
training data. When a = 0, the subtree T will simply equal Ty, and then
equation (8) just measures the training error. However, as a increases,
there is a price to pay for having a tree with many terminal nodes, and so
equation (8) will tend to be minimized for a smaller subtree.

7]
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2) Model tree

Like the traditional DT method, the model tree grows the tree the
same way as the regression tree, except it has built the multiple linear
regression model at each leaf (i.e., rather than make predictions based
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on the average value of examples that reach a leaf, it builds a linear
regression model within each leaf to predict the values of the samples
that reach that leaf). The model tree [51] takes one more step forward
compared to the traditional decision trees since it builds a piecewise
linear model to handle more complex nonlinear relationships while
preserving interpretability at the same time. Yong Wang et al. intro-
duced an algorithm called M5 tree which embodied the model tree’s
idea of growing the tree with linear models at each leaf. M5’ tree takes
three steps to train a model tree: the first step is to build the initial tree,
similar to the DT method, M5’ tree splits the predictor space into small
regions based on the greatest reduction in error, but unlike the DT
method using constant, averaged predicting values at each leaf, M5’ tree
makes predictions by using linear regression models at each leaf. The
splitting criterion of the M5’ tree also differs from the DT method. It
calculates SDR (standard deviation reduction) as its splitting criterion:

SDR=s5d(T) = > ‘?‘l x sd(T;) (9a)

After growing the initial tree, M5 tree uses a different approach to
pruning the tree. The pruning process makes use of an estimate of the
expected error that will be experienced at each node for test data. The
absolute difference between the predicted value and the actual value is
averaged for each training example that reaches that node, and this
average is multiplied by the factor (n +v)/(n — v) (where n is the number
of the training examples that reach the node and v is the number of the
parameters in the model) to compensate the underestimated expected
error for the unseen case. M5 computes a linear model (standard
regression) for each interior node of the unpruned tree, the resulting
linear model is simplified by dropping terms to minimize the estimated
error calculated using the above multiplication factor. Finally, once a
linear model is in place for each interior node, the tree is pruned back
from the leaves [51].

3) Random Forests

Despite the advantages such as easily-interpretable and non-
parametric that tree methods possess, they are not competitive with
the best-supervised learning approaches in terms of prediction accuracy.
Single regression or model trees could be highly unstable due to their
high variances. To address this issue, ensemble methods that produce
multiple trees which are then combined to yield a single consensus
prediction were also tried in this paper, such as Random Forests (RF).
The consensus prediction is the mean of the outputs of all DTs:

R(x)==>"" ri(x) (10a)
Where R(x) is the predicted output for input x, and r;(x) is the prediction
of the ith tree. The construction of an RF involves two primary sources of
randomness: bootstrap sampling and random feature selection.

4) Extreme Gradient Boosting

The most recent ensemble method is Extreme Gradient Boosting
(XGBoost), proposed by Tianqi Chen (2016) [52]. XGBoost is an opti-
mization of gradient boosting techniques applied to DTs, which itera-
tively add new learners (typically decision trees) to an ensemble, where
each new learner attempts to correct the mistakes of the combined
ensemble of existing learners. Mathematically, if f,,(x) is the prediction
of the ensemble at step m, XGBoost seeks to add h(x) such that the new
prediction, fu1(x) = fin(x)+ h(x), minimizes the following objective
function:

L(fui1) = Zl(yi7ﬁn+l(xi)> +Q(h) (11a)

i=1



C. Chen et al.

Renewable Energy 219 (2023) 119554

Obs. - Model =

Error

Predict

I

XGBoost

Predictor Variable Contributiop”s

o =T
e ——‘.. -

i

?
,IL‘LLLiLiAilLLLl
IRRS2850000080001

: i -1

Featre

SHAP value (impact on model output)

O

Interpret

SHAP Analysis

Fig. 3. SHAP method explanation.

Where [ is a differentiable loss function that measures the difference
between the predictions and the true data labels, y;, for N data points.
The term Q(h) represents a regularization term that controls the
complexity of the tree model h, preventing overfitting. By employing a
second-order Taylor expansion of the loss function and introducing
novel techniques for tree pruning, XGBoost provides computational
advantages and promotes more robust predictions. Furthermore, the
algorithm also supports parallel processing, handling missing values,
and offers built-in cross-validation capabilities.

3.4. SHAP method for feature importance and interaction analysis

To evaluate the importance of the predictive features (i.e., the
contribution of each feature to the model’s predicting accuracy), the
Shapley Additive exPlanations (SHAP) package in Python [53] was used
to calculate the feature importance scores. SHAP is a game theory
approach employed to explain the output of any machine learning
model. It connects optimal credit allocation with local explanations
using the classic Shapley values [54] from game theory and related
extensions. Shapley values provide a way of fairly distributing the
payouts among the feature values, overcoming the issue of payout
dependence on the sequence of features. It assigns each feature an
importance value for a particular prediction.

As shown in Fig. 3, once a Shapley value is assigned to a single
output/prediction, how each feature contributes to the prediction value
can be known (i.e., is it positively or negatively correlated with the
response). The overall feature importance is illustrated by a standard bar
plot that takes the mean absolute value of the SHAP values for each
feature [55].

4. Results and discussion
4.1. VIS and NIR components in DNI

In this study, we used the sklearn, m5py, and XGBoost packages in
Python to build regression models for predicting VIS and NIR from
broadband DNI. The entire dataset D was split into a training dataset (80
% of D) and a testing dataset (20 % of D). Different models were tuned by
using cross-validation to find the best training parameters so that each
individual model was optimized to fit the training set. After the
parameter tuning process, a performance evaluation was conducted to
find the best model. The optimal model was further investigated by

Table 4

Random forest parameter tuning.
Parameter Model

V1 V2 N1 N2

n_estimators 1788 1577 1577 1155
min_samples_split 5 5 5 5
min_samples_leaf 2 1 2 2
max_features ‘sqrt’ ‘sqrt’ ‘sqrt’ ‘sqrt’
max_depth 15 15 21 21
bootstrap ‘False’ ‘False’ ‘False’ ‘False’

analyzing its predictions (a simple logistical analysis) and feature
importance (using the Python package SHAP). The following sections
provide the detailed results of this study, beginning with the model
performance evaluation.

4.1.1. Model tuning

Before evaluating the models’ performances, a parameter tuning
process needed to be conducted to ensure that each algorithm reached
its optimal ability to predict the response.

For the single regression tree, in order to avoid overfitting, cost-
complexity pruning was implemented. Then, the best a was chosen, based
on the cross-validation score (k-fold cross-validation, with default k =
10). The best a was determined to be 1.214 for modeling V1, 1.012 for
modeling V2, 1.3890 for modeling N1, and 0.7741 for modeling N2. For
the M5’ tree, the use_smoothing and use_pruning parameters were set to
be true in the M5Prime function (Python m5py package), so that the
algorithm would smooth the conjunction between two neighboring re-
gions; this increased accuracy and pruned the tree to avoid overfitting.

With regards to ensemble methods, the RandomizedSearchCV
(n_iter = 100, cv = 10) was used for the random forest parameter tuning
and GridSearchCV (cv = 10) for the bagging and XGBoost regressor
parameter tuning. In the random forest regressor, n_estimators (i.e., the
number of trees in the forest), max_features (i.e., the number of features
to consider when looking for the best split), max depth (i.e., the
maximum depth of the tree), min_samples_split (i.e., the minimum
number of samples required to split an internal node), min_samples_leaf
(i.e., the minimum number of samples required to be at a leaf node), and
bootstrap (i.e., whether bootstrap samples were used when building
trees) [56] were the parameters that typically needed to be considered
for tuning. There were 100 candidates (500 fits) for the potential
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Table 5

XGBoost parameter tuning.
Parameter Model

Vi V2 N1 N2

max_depth 6 6 6 6
min_child_weight 5 0 4 2
Gamma 0.1 0.1 0.4 0.3
subsample 1.0 1.0 1.0 0.9
colsample_bytree 0.9 1.0 0.9 0.8
reg_alpha 200 100 200 300

parameters grid in total. After an exhaustive search, the best parameters
grid was found, as shown in Table 4. As for the XGBoost regressor,
max_depth (i.e., maximum tree depth for base learners), min_child_-
weight (i.e., the minimum sum of instance weight (hessian) needed for a
child), gamma (i.e., minimum loss reduction required to make a further
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influence on the final results.

4.1.2. Performance evaluation

To evaluate the prediction models’ performances, we performed two
tests. First, prediction accuracies were measured by three widely
accepted statistical indictors: root mean square error (RMSE), mean
absolute error (MAE), and R-squared (R?). Second, the reliability levels
of the regression models were screened by performing a hetero-
scedasticity test (i.e., residual analysis); if the residuals became more
spread out at higher fitted values (i.e., the residuals were not equally
distributed at each predictor level), then there was a high probability
that heteroscedasticity (i.e., non-linearity, unequal error variances, and
outliers) might be present in the regression model (i.e., the regression
model was unreliable).

partition on a leaf node of the tree), subsample (i.e., the subsample ratio (9b)
of the training instance), colsample_bytree (i.e., the subsample ratio of
columns when constructing each tree), and reg_alpha (i.e., the L1 reg- |
ularization term on weights) [57] were the parameters tuned for optimal MAE =— Z| yi — i (10b)
model training. The results are shown in Table 5. Note that in the i=1
XGBoost parameters tuning, not all parameters were tuned together
because of limited computational power, which may have had a certain
Table 6
Model comparison for VIS/DNI.
Model Algorithm Training Cross-Validation Testing
RMSE MAE R? RMSE MAE R? RMSE MAE R?
\%1 DT 15.932 11.672 0.986 24.400 14.043 0.967 20.929 13.030 0.976
M5’ tree 14.671 7.639 0.988 19.911 10.537 0.977 19.014 10.108 0.981
RF 7.139 2.987 0.997 18.575 10.023 0.981 18.307 9.701 0.982
XGBoost 0.001 0.0006 0.999 18.796 9.715 0.981 18.080 9.192 0.983
V2 DT 16.001 11.774 0.986 25.357 13.826 0.973 27.416 14.105 0.959
M5’ tree 15.296 8.125 0.988 18.589 10.801 0.979 20.977 10.690 0.976
RF 0.352 0.148 0.999 18.540 10.385 0.985 21.183 12.062 0.980
XGBoost 0.001 0.0008 0.999 19.681 10.575 0.976 18.985 10.181 0.980
N1 DT 16.405 12.073 0.992 23.177 13.692 0.984 23.425 13.634 0.983
MS5' tree 14.159 8.015 0.994 18.589 10.666 0.989 21.331 10.828 0.986
RF 6.583 1.926 0.999 17.809 9.768 0.990 19.905 9.804 0.988
XGBoost 7.361 4.836 0.998 16.980 8.597 0.991 15.868 8.383 0.993
N2 DT 15.350 11.334 0.993 23.323 13.353 0.984 24.555 13.436 0.982
MS5' tree 15.231 8.458 0.993 18.589 11.047 0.989 21.115 10.728 0.986
RF 6.908 2.285 0.998 18.452 10.370 0.990 20.231 10.331 0.987
XGBoost 8.067 5.315 0.998 17.733 9.732 0.989 17.606 9.506 0.990
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Table 6 summarizes all models’ prediction accuracies for the training
and testing sets (training set accuracies were evaluated using 10-fold
cross-validation). Among all the regression methods, XGBoost had the
lowest RMSE and MAE values and the highest R? value for the training
datasets, followed by random forest, M5’ tree, and cost complexity tree.
For the testing datasets, XGBoost also produced the best results, in which
the RMSE equaled 18.280 and 18.390 for VIS and NIR, respectively. The
MAE values were 7.990 for VIS and 8.011 for NIR. The R? equaled 0.981
for VIS and 0.990 for NIR. The least accurate regressor was the cost
complexity tree, as it produced nearly 1.6 times the RMSE value than did
XGBoost. It should be noted that when cross-validation was not per-
formed, the random forest regressor could have extremely high accuracy
(wt. 0.217 and 0.120 RMSE for VIS and NIR, respectively) for the
training dataset, though this was not the case for the testing dataset. For
the models’ reliability tests (see Figs. 3-7), it was obvious that the
random forest regressor had conical-shaped residuals versus the pre-
diction plots for both the VIS and NIR models, indicating that hetero-
scedasticity existed. For the M5’ tree and XGBoost regressors, the
residuals “bounced randomly” around the zero-residual line and roughly
formed a horizontal band. The sampled quantiles were similar to the
theoretical quantiles throughout the whole prediction space, suggesting
that the variances in the error terms were equal and errors were nor-
mally distributed. Thus, these two regressors were reliable for pre-
dictions. To summarize, although the random forest regressor could
produce highly accurate results for the training dataset, it might have
been over-fitted so that it was untrustworthy when used for independent
testing. XGBoost, however, produced the least errors in predicting the
validation datasets and showed its reliability through the hetero-
scedasticity test. Thus, it was trustworthy and selected to serve as our
model algorithm.

After evaluating the model performances and determining the best
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model, there was one more step before the process could be used for DNI
decomposition: checking the predicted VIS and NIR values in case of
errors. To do so, a simple logistics test was performed, obeying the
following conditions: (1) whether predicted VIS and NIR values were
positive; (2) whether the sum of predicted VIS and NIR values at each
timestamp was smaller than the DNI value at that timestamp; and (3)
whether the sum of the predicted VIS and NIR values at each timestamp
was greater than 90 % of the DNI value at that timestamp. The results
showed that there were 11 data points that had negative predicted VIS
values and 18 with negative NIR values in the training dataset. In the
validation dataset, six data points had less-than-zero predicted VIS
values, and three had less-than-zero predicted NIR values. Most of the
negative predictions occurred when the DNI values were small. These
non-positive predictions needed to be fixed to satisfy the real-world
situation. For the second condition, 548 data points disagreed with
Condition 2 (i.e., the sum of the predicted VIS and NIR values being
greater than the corresponding DNI value) in the training dataset, with
an average deviation of 11.70 %. A total of 186 data points disagreed
with Condition 2 in the testing dataset, with an average deviation of
9.80 %. A large deviation always arose with a small DNI value (lower
than 10 Wh/m2). Sometimes, a DNI value of 1 Wh,/m? had a deviation of
nearly 468 %, as compared to the predicted VIS + NIR at that timestamp.
This indicates the model’s deficiency at lower DNI values. It is also
worth noting that in these extreme cases, NIR predictions are always
strongly overestimated, while VIS predictions are underestimated. As for
the third condition, there were 128 data points that predicted VIS + NIR
values less than 90 % of the corresponding DNI in the training datasets.
In the validation datasets, 31 data points had predicted VIS + NIR values
less than 90 % of the total corresponding DNI. Any predictions that
disobeyed Condition 3 needed to be fixed so that all VIS + NIR pre-
dictions met the greater than 90 % DNI rule since DNI will normally
have greater than 90 % energy stored in the VIS and NIR spectrums.
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Fig. 9. XGBoost feature importance for V2.
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4.2. Discussion

4.2.1. Feature importance
From the model performance evaluations, XGBoost was clearly the

best algorithm for decomposing broadband DNI. However, the mecha-
nism behind which weather affects narrowband DNI remains unclear.
We tried to determine this through feature importance and interaction
analysis based on the XGBoost model. For the feature importance
analysis, the SHAP values were calculated for all sampled features on

each training point and then averaged to obtain the overall feature
importance score. Features with higher absolute SHAP values contrib-
uted more to the output and thus were relatively more important.
Negative SHAP values meant that the feature negatively affected the
output (i.e., the output was lower than average) while positive values
had a counteraction effect on the output. As illustrated in Figs. 8-11,
DNI and K}, were two of the most important features for both the VIS and
NIR decomposition models. AOD played a more important role in the
VIS model as compared to the NIR model, while GHI affected NIR more
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than VIS. PWV and Opqcld also exhibited a certain level of feature architecture design and analysis have less important impacts (i.e., lower
importance in the prediction of the VIS and NIR components of DNI. SHAP values) on prediction.

Relatively speaking, the typical meteorological parameters (e.g., dry

bulb temperature, wind, and relative humidity) often considered in solar

14



C. Chen et al.

40

30

20

10

SHAP value for

SHAP value for

AOD

Fig. 14. AOD dependence plots with SKC as the interaction feature (left: AOD vs.

100 .

80

60

40

PWV

20

SHAP value for

SHAP value for

PWV

Fig. 15. PWV dependence plots with SKC as the interaction feature (left: PWV vs.

4.2.2. Interaction analysis

After identifying the key influential factors for DNI solar decompo-
sition, the next step was to determine their relationships to the predic-
tion of and correlations with other parameters. To achieve this, SHAP
dependence plots for the key influential factors (identified above) with

the interaction parameters were produced and are described below.

e It can be inferred from Figs. 12 and 13 that both DNI and K}, were
positively and linearly correlated with VIS and NIR in DNL
Comparatively, the linear relationship and impacts were slightly
stronger in the VIS prediction than in the NIR prediction. In theory,
Kp and DNI have strong interactions with sky conditions, as
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represented by features including SKC, Opqcld, AOD, and Tcld. SKC,
Opqcld, and Tcld are inter-correlated with one another, as well.
Usually, a higher Opqcld means a higher SKC and thus lower Tcld.
These sky-cover parameters affect DNI and Kb in a negative way.
With a higher sky cover ratio (i.e., lower cloud transmittance), DNI
and Ky, will be smaller. These interaction characteristics can also be
seen in these two figures.

Fig. 14 presents the SHAP dependence plot for AOD with the inter-
action features related to sky cloud coverage. In the left portion
referencing VIS, the steep slope when AOD approaches zero indicates
that AOD had a strong negative linear relationship to the VIS pre-
diction, meaning that the increase in AOD significantly reduced the
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Fig. 16. GHI dependence plots with AM as the interaction feature (left: GHI vs. AM in VIS decomposition; Right: GHI vs. AM in NIR decomposition).
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VIS quantity. Regarding AOD’s effect on NIR (see Fig. 14, right), AOD
seems to have had little impact on the infrared. AOD’s influence
became much weaker as it got even larger. In such situations, the sky
cloud coverage is usually also high. In other words, when more
portions of the sky are covered by clouds, a greater amount of aerosol
may interfere with both visible and infrared solar light, but there is
no clear relationship in-between.

PWV is another important feature of both VIS and NIR. It has a
negative relationship with VIS but a positive relationship with NIR
(see Fig. 15). PWV is the depth of water in the atmospheric column
when all the water in that column is condensed and precipitated. In
theory, an increase in PWV should reduce both the VIS and NIR from
the sun, but this is different from the relationships exhibited in
Fig. 15. With the interactive feature of the sky cover ratio (SKC), the
relationships became clearer. When SKC was high (see the red dots),
referring to an overall cloudy sky, PWV had little influence on the VIS
and NIR of DNI. However, such relationships were more significant
when the SKC variable was at a low level (see the blue dots), in which
a clear sky was the dominant situation. In general, column water
vapor content in the clear sky is significantly lower than that in the
cloudy sky. Thus, it seems that the only reason causing the PWV
increase was related to the formation of thick partial cloud cover.
This type of cloud tends to have a strong reflective capacity for VIS
and causes its’ reduction in DNI [58]. However, PWV’s enhancement
effect on NIR was unexpected, as past studies have shown that longer
wavelengths (i.e., near-infrared light) show a reduction when PWV
increases [29]. This phenomenon may be due to “cloud enhance-
ment,” in which scattering from the clouds around the position of the
sun disk may be enhanced by 20 %-30 % from solar radiation [59].
This unexpected feature related to the PWV-NIR relationship re-
quires further investigation in the meteorology domain.

Figs. 16 and 17 present the influence of GHI and DHI on decom-
posing components, respectively. Overall, both GHI and DHI had a
greater influence on NIR in DNI than VIS. Also, there existed a pos-
itive, linear correlation between GHI and the amount of NIR in DNI,
while DHI exhibited a non-linear but generally negative correlation
with NIR in DNI. This meant that DNI tended to contain more NIR
when GHI was high, while NIR tended to be less in DNI when DHI
was high. This notion is basically aligned with the fact that most NIR
comes from direct solar radiation, rather than reflected and scattered
solar radiation. Conversely, these two features had less of an impact
on the VIS portion of DNI, as shown on the left sides of Figs. 16 and
17. Comparatively, GHI had a relatively clearer negative relationship
with VIS. In other words, with a higher GHI, the VIS portion
decreased and the NIR portion increased. Additionally, it can be seen
from these two figures that GHI and DHI both had a negative cor-
relation with AM, as AM represented the distance of the atmospheric
depth through which the solar irradiation had to travel. Thus, the
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greater the air mass is, the less solar irradiation (such as GHI and
DHI) will reach the ground.

5. Application on performance analysis of transparent solar
cells

The GHI, DNI, and DHI solar decomposing models have been
seamlessly integrated into an executable web application using the Py-
thon streamlit package. Once users select their desired solar component,
they will be prompted to upload a weather file (e.g., TMY file) and
specify its location. SolarDecomp will then autonomously employ a pre-
trained XGBoost model to perform the decomposition process. The result
will be a modified weather file where the original broadband GHI, DNI,
and DHI values have been replaced with the corresponding narrowband
solar components (VIS or NIR). The final output will consist of two new
weather files labeled TMY_VIS and TMY_NIR. With such new weather
files, advanced envelope researchers, designers, and engineers are now
able to incorporate narrowband solar components when simulating
building solar devices.

The introduction section highlighted the recent emergence of
transparent solar cells, a technology that promises to harness solar en-
ergy without disrupting the aesthetics or functionality of building en-
velopes. Unlike traditional opaque solar cells, transparent ones,
however, typically demonstrate lower power conversion efficiency
(PCE) at present. This phenomenon arises from the inherent compromise
between transparency and light absorption; transparent solar cells must
delicately balance the need to allow visible light to pass through while
simultaneously capturing sufficient solar energy. The materials and
design paradigms currently in use for transparent solar cells are still in
the developmental stages. Still, researchers are engaged in vigorous ef-
forts to boost their efficiency. While the PCE of transparent solar cells
currently falls short when compared to opaque alternatives, there is a
promise of significant enhancement in their efficiency as advancements
are made in the realms of materials, device architecture, and
manufacturing techniques. When it comes to evaluating the perfor-
mance of transparent solar cells, the standard approach involves the use
of rated PCE under Standard Testing Conditions (STC: 1000 W/mz,
25 °C, spectral distribution according to IEC 60904-3). Yet, the accuracy
of such assessments may be susceptible to compromise, given the
wavelength selectivity feature of transparent solar cells in practical
applications (i.e., they absorb light selectively within specific wave-
length ranges while permitting other wavelengths, particularly visible
light, to pass through). Some researchers have studied the impact of
solar spectral irradiance on the yield of different PV technologies, for
instance, Daniela et al. proposed a method to gauge the energetic
spectral impact by calculating the spectral mismatch factor (MM) be-
tween the actual, measured spectral response of various PV technologies
and their standard, referenced spectral response in Freiburg im Breisgau,
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Table 7

PCE values in broadband, VIS, and NIR.
TPV Device PCEoyerall PCEyis PCEnr
A 1.7 % 1.9% 1.4%
B 4.0 % 6.5 % 3.5%
Cc 51% 7.0 % 4.6 %
D 0.4 % 0.28 % 0.58 %

Germany [60]. Jessen et al. proposed new standardized spectra for DNI
and Global Tilted Irradiance (GTI), in which different climatic and at-
mospheric conditions were considered, to address the spectral mismatch
of current solar devices [61]. Despite the high accuracy level these
works possessed, they require detailed, local spectral irradiance data to
derive the accurate spectral mismatch factor, which is hard to get and
lacks applicability to building solar simulation software. In light of this,
this research puts forward a new approach to generating narrowband
solar components to bolster the performance evaluation of
spectral-selective solar cells, without the need to measure the actual
spectral irradiance in specific locations. This advancement offers more
convenient and effective analytics, thereby aiding in the informed se-
lection, deployment, and integration of solar cells on building
envelopes.

In this study, we demonstrate the usage of our model by employing
NIR-selective transparent photovoltaic (TPV) solar cells in a building-
integrated photovoltaic (BIPV) system. Fig. 18 illustrates the imple-
mentation case study, featuring four types of NIR-selective TPVs: (a) a
TPV device based on small molecules (12-cells, series-integrated mini-
module), (b) a high-efficiency single-junction polymer-based wave-
length-selective TPV, (c) a series-integrated TPV module, and (d) an
efficient, NIR-absorbing transparent LSC [62]. The PCE of these TPV
solar cells ranges from 0.4 % to 5.1 %, with an average visible trans-
mittance exceeding 50 %. It is important to note that the PCE measur-
ements/computations of these solar cells were conducted under the
AML1.5 standardized solar spectrum and subsequently evaluated and
reported for potential applications using simulations with broadband
solar radiation data. Instead of relying solely on an overall PCE value to
calculate the final power output, we derived separate PCE values for the
visible (VIS) range and the near-infrared (NIR) range. These separate
PCE values were obtained using the listed functions and the reported
spectral PCE values of the four solar cell types, where Js is the
short-circuit current, @(4) is the photon flux at wavelength 4, q is the
elementary charge, Pmax is the maximum power, Pin is the input power,
Voc is the open-circuit voltage and FF is the fill factor for solar cells.
Table 7 reported the PCEyjs and PCEyy for all four kinds of TPV solar
cells.

T range = / (EQE() + @ (2) * q)da (100)
Pmax—range :J.u’—mn;:e * Voo *x FF (1 1C)
PCErange = Pmax—rangc/Pin—mnge (12)

5.1. Solar cell performance analysis between the broadband and
narrowband solar data

A building solar irradiation analysis was carried out in ClimateStu-
dio, Rhino, using the new TMY_VIS and TMY_NIR as imported weather
files. Fig. 19 compares traditional broadband solar irradiation analysis,
conducted with the original weather file, with two narrowband radiance
analyses performed using the newly-created weather files. The total
solar irradiation on all surfaces amounted to 883 kWh/m2-yr for the
broadband solar irradiation analysis. In contrast, the solar irradiation
values in the VIS range were 436 kWh/m?-yr and in the NIR range 358
kWh/mZyr. Subsequently, the power outputs for four different TPV
solar cells were computed by multiplying the solar irradiation value
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with the respective PCE in the associated ranges. The energy output of
these four solar cells in the broadband, VIS, and NIR ranges is summa-
rized in Table 8. The re-calculated overall output, obtained by summing
the output of VIS and NIR, is also included in the last column.

From this table, it can be inferred that when using the newly
developed weather files featuring narrowband solar radiation data, the
total energy output of all four solar devices differed (ranging from 4.3 to
15.7 %) from the energy output calculated using traditional weather
files with broadband solar radiation data. Notably, for the TPV solar cell
— B, the difference percentage was approximately 15.7 %. This can be
attributed to the significant variance in its PCE between the VIS and NIR
regions (6.5 % vs. 3.4 %). In essence, basic solar simulations using
conventional weather files, which only include broadband solar radia-
tion data, might either underestimate or overestimate the energy output.
This discrepancy can result in significant errors, especially if the
wavelength-selectivity feature of the solar devices is more pronounced.

5.2. Solar cell selection and envelope integration consideration

The integration of TPV solar cells into the building envelope is a
complex process that demands a thorough analysis from two primary
perspectives - visible light transmittance and energy output. This
complexity arises from the functional and aesthetic demands placed on
modern architectural design, where energy efficiency must coexist with
a pleasant visual environment and electrical lighting for energy-saving
purposes. In general, TPV solar cells are often compatible with fenes-
tration systems due to their suitable visible light transmittance. In
essence, their semi-transparent nature allows for the passage of a sig-
nificant portion of visible light, contributing positively to the indoor
lighting environment. This factor is crucial in the evaluation of potential
envelope surfaces for TPV solar cell integration.

A primary condition for integration is that the envelope surface re-
ceives strong incident VIS and NIR solar radiation. Surfaces that meet
this requirement are more applicable for integration, as they provide
both aesthetic and functional benefits. Visible light that passes through
can be used for indoor daylighting, enhancing the visual environment
and contributing to lighting energy savings. Simultaneously, the NIR
component can be harnessed and converted into electrical energy,
contributing to the building’s overall energy efficiency.

In this case study, the rooftop area, as denoted by the blue circles
(shown in Fig. 20), meets these criteria. This area can, therefore, be
considered a potential zone for the integration of both skylights and TPV
solar cells, maximizing the benefits of natural lighting and solar energy
conversion. Secondary envelope surfaces, such as the south and west
facades, which receive both moderate and comparably equal levels of
VIS and NIR radiation (also denoted by green circles), can also be
considered. This balanced incident radiation could facilitate a steady
energy output and a stable visual environment throughout the day.
Contrarily, if an envelope surface area receives minimal NIR radiation,
the integration of TPV solar cells might not be beneficial. The NIR ab-
sorption property of these cells is crucial for energy production. Thus,
low incident NIR would translate to significantly reduced energy output.
In this case study, the north-facing envelopes serve as examples of such
surfaces (denoted by red circles).

As such, narrowband solar radiation analysis, involving separate
solar simulations with VIS and NIR, can provide more precise and
insightful information for the integration of TPV solar cells. Compared to
a broadband solar radiation analysis, this approach enables more
nuanced decision-making, taking into account the unique spectral
response of TPV cells and the irradiation characteristics of the building
envelope. This aids in optimizing both the energy efficiency and visual
comfort provided by the building envelope design.

6. Conclusion

This work demonstrated the feasibility and excellent prediction
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Table 8
Power outputs for the four NIR-selective TPVs in broadband, VIS range, and NIR
range.

TPV Output in Output in Output in Sum (VIS Difference
Device Broadband VIS kWh/ NIR kWh/ + NIR) %
kWh/m%yr m?-yr m2-yr kWh/m?-
yr
A 15.011 8.284 5.012 13.296 11.4 %
B 35.320 28.340 12.530 40.870 15.7 %
C 45.033 30.520 16.468 46.988 4.3 %
D 3.532 1.221 2.076 3.297 6.7 %

accuracy of using machine learning methods to decompose the VIS and
NIR components of broadband DNI. To develop the decomposition
model, several databases of the NREL Solar Radiation Research Labo-
ratory were curated. After the data cleaning process, typical missing
data, outliers, and physically erroneous information were removed. The
finalized dataset contained 11,862 observations. Easy-to-obtain meteo-
rological parameters were employed to build a generalized model for
different locations’ solar decomposition. There were 20 predictive var-
iables used in the full estimation model and 15 predictive variables used
in the simplified model (with a deficiency of hard-to-get meteorological
variables). Four commonly used supervised, non-parametric machine
learning algorithms (i.e., Decision tree, M5’ tree, random forest, and
XGBoost) were used to train the models. The algorithms were compared
with one another to evaluate their accuracy and reliability. The results
showed that XGBoost was the most accurate and reliable technique for
DNI decomposition, in both full and simplified estimation models, with
the lowest RMSE test (18.282 for VIS and 18.389 for NIR) and MAE
(7.922 for VIS and 8.011 for NIR) and highest R? (0.981 for VIS and
0.990 for NIR). Among all the prediction variables, DNI and Ky, were the
most important features for both VIS and NIR decomposition. Some
atmospheric parameters were also helpful when making predictions,
such as AOD, PWV, and total and opaque sky cover. Through feature
importance and interaction analyses, some hidden correlations between
predictors and other predictors and predictors and responses became
clear, which will help in determining the key factors affecting solar
spectral irradiance on the ground.

This research significantly contributes to the advancement of solar
technology by leveraging machine learning algorithms to transform
conventional weather files, which contain broadband solar data, into
more specific files incorporating direct normal solar spectral compo-
nents. This innovative approach negates the need for complex and
expensive solar spectra measurements. Instead, it leverages easily
accessible and readily available meteorological data, providing a more
efficient and cost-effective approach. Importantly, this methodology has
a substantial potential for enhancing the design and efficiency of
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wavelength-selective solar devices such as window systems and TPV
solar cells. By providing a more detailed analysis of solar spectral
components, our approach can enable a more accurate prediction of
these devices’ performance, leading to more informed decisions in the
design and integration of these systems into building envelopes. The
implication is a potential improvement in both the energy efficiency and
aesthetic value of buildings.

Nevertheless, despite the significant strides made in this research,
there are areas yet to be fully explored. One such area is solar spectra
analyses on tilted and vertical surfaces. Existing solar modeling algo-
rithms, such as the Perez and Liu-Jordan models, could potentially be
employed for computing incident solar spectra radiation on these sur-
faces. We aim to delve into these possibilities in future research. Addi-
tionally, our model has not been tested under varying climatic
conditions due to the unavailability of long-term solar spectral data from
different locations. Current models could also confront some limitations,
such as the lack of certain predicting variables (e.g., AOD and PWV may
not be available in some weather files). Consequently, further devel-
opment and validation tests under different geographical locations,
climate zones, and solar spectra are essential. This will aid in estab-
lishing the universality and adaptability of our work, thereby broad-
ening its potential application. By filling these research gaps, we
anticipate contributing more comprehensively to the field of solar
technology, pushing the boundaries of energy-efficient design, and
paving the way for a more sustainable future.
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