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Abstract. Solar radiation plays an important role in solar architecture design. It
not only determines the optical regime of the building envelope, but also influ-
ences the heating and cooling loads of the building. To understand the impacts
of solar radiation on building thermal and lighting performance, computational
analysis is essential. However, conventional modeling tools only take broadband
solar radiation into consideration, which limits the modeling accuracy since win-
dow glazing is spectrally dependent. In this sense, we developed a new solar
decomposing tool that can separate major solar irradiation components such as
VIS, NIR in GHI, DNI and DHI, by using machine learning algorithms such as
extreme boosting regression tree (XGBoost). The predictors are meteorological
parameters that already exist or can be easily derived from traditional weather
files (such as TMY3). Model performance is validated by NREL Solar Radia-
tion Research Laboratory’s spectral solar dataset. Integrating these decomposing
models, a web app (SolarDecomp) has been developed to enable researchers and
designers import solar spectral data into existing building simulation programs for
specific simulations in terms of spectrally selective design components.

Keywords: Narrowband solar irradiation - Solar architecture design and
simulation - TMY weather files - Spectral solar dataset - Solar architecture

1 Introduction

Solar radiation plays a crucial role in solar architectural design, which strives to opti-
mize the use of the sun’s energy for the creation of energy-efficient structures. Several
computational tools are employed to examine the thermal and optical attributes of such
designs. Typically, weather data for an entire year is loaded into a simulation program
to model conditions like a building’s daylight environment and energy consumption. A
comprehensive solar-radiation dataset is indispensable during this process, ensuring reli-
able forecasting for solar initiatives. The consistency of the solar resource, as reflected
in historical solar data, coupled with the accuracy of the dataset, significantly impacts
the accuracy of the estimates [1].

Several comprehensive datasets are readily accessible: 1) The National Solar Radi-
ation Data Base (NSRDB), a creation of the National Renewable Energy Laboratory
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(NREL) and Sandia National Laboratory. 2) The Surface Meteorology and Solar Energy
(SSE) by NASA, offering global coverage of monthly averages, annual data, and data
every three hours from 1983-2005. 3) SolarGIS, which merges ground observations,
satellite data, and an atmospheric patterns database to deliver highly accurate global
solar radiation data. The Typical Meteorological Year (TMY) data files were derived
from these datasets. Each TMY file incorporates a complete year’s data, created from 12
representative months chosen from the database’s total years. The TMY data includes
three key solar components: Global Horizontal Irradiance (GHI), Direct Normal Irradi-
ance (DNI), and Diffuse Horizontal Irradiance (DHI). These are crucial for solar analysis
or energy simulation. Importantly, all three types of solar irradiance (GHI, DNI, DHI)
in the typical weather data files are broadband, signifying the total quantum of Ultravi-
olet (UV), Visible Light (VIS), and Near-Infrared Radiation (NIR), which are the main
constituents of the solar spectrum.

In recent times, growing evidence from the building and solar simulation has under-
scored the importance of partitioning broadband solar radiation into narrowband or even
design and analytics focused on specific spectrum. For instance, among these three solar
components, solar VIS radiation is advantageous for conserving electrical lighting and
enhancing indoor health due to its ability to regulate circadian rhythm [2]. However, it
may also have adverse effects, leading to visual problems such as glare. While solar NIR
transmission into the building could aid in reducing the total heating load in cold climates,
which is undesirable in hot climates. Recent studies also show that solar VIS and NIR
that penetrate through window have different impacts on thermal comfort near window
zones [3]. Regarding the design of solar devices or systems, with the advent of spectral
selective and nano-structured thin films for energy-efficient envelopes, the independent
modulation of solar radiation in different spectral bands has become increasingly viable
as a practical solution for improving building energy savings and maintaining indoor
visual comfort. The example studies include reversible photothermal windows [4], silver
nanorods-embedded smart windows [5], and other light/heat splitting materials [6-9].

However, the full potential of the materials/structures mentioned earlier in building
envelopes may not be comprehended thoroughly if corresponding simulations only factor
in broadband solar radiation. Even worse, it may lead to misleading or even erroneous
outcomes. Traditional weather files usually do not contain the spectral distribution or
narrowband details of solar irradiation due to the complexity and high cost associated
with spectral data measurement. To bridge this research gap, it is necessary to develop a
reconstruction algorithm that is able to decompose solar visible and infrared irradiance
from broadband solar radiation and weather data for building simulations. The solar
radiation data used for such simulations include GHI, DHI, and DNI, so all these three
solar components need to be decomposed to narrowband data. In our previous work,
we have already developed predicting models using the machine learning algorithms
such as CART for decomposing VIS and NIR components in GHI, DNI, and DHI [10].
This work presents our preliminary development of a data conversion portal built
upon these predicting models so that broadband solar irradiance inside traditional TMY
datasets can be replaced by individual solar components (i.e., VIS and NIR components
in GHI, DNI, and DHI), then these modified TMY files can be used for spectrum-related
building simulations.
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2 Methodology

Firstly, we built two estimation models for decomposing solar components (VIS and
NIR) from the broadband GHI and DNI, respectively. The GHI decomposing model
and the framework of the data portal have been presented in prior work [10]. Based
on these two elements (GHI and DNI), it is possible to calculate the VIS and NIR
components in DHI via the transposition equation. Subsequently, one can import their
original weather files (such as TMY), and then export processed weather files with
individual solar components in replace of broadband GHI, DNI, and DHI information.

In this study, all the datasets were obtained from the BMS database of the NREL
Solar Radiation Research Laboratory. All the datasets were based in Golden, Colorado
with a latitude 39.742° N, a longitude of 105.18° W, and an elevation of 1828.8 m AMSL
[12]. In general, two major datasets were curated: weather datasets (including broadband
solar irradiance and other typical meteorological data) and spectral solar irradiance data
from multiple sources.

1) Weather Dataset

This dataset includes three components. The major component was based on hourly
meteorological measurements (HMM) and included the most independent variables for
modeling, such as GHI, DNI, DHI, cloud coverage, dry-bulb temperature, dewpoint,
relative humidity, and wind speed. The HMM is hourly data by averaging the value of
all measurements taken from the 1-h interval and was collected from Jan 1, 2016, to
December 31, 2019. In addition, based on the prior studies, both aerosol optical depth
and precipitable water vapor parameters are often found in typical weather stations’
data collection and are important to the solar spectra, while they are not included in
HMM datasets. As such, in this work, we obtained these two atmospheric data from
the NREL BMS AOD and PWYV (GPS-based PWYV) database. As a result, the curated
weather dataset has identical variables and formats to the TMY weather file that has
been widely applied to solar radiation and building energy performance simulations.
All these weather data including broadband solar irradiance were used as the predicting
variable candidates in this work.

2) Spectral Solar Dataset

The corresponding spectral solar components (VIS and NIR irradiance) in GHI
were extracted from the outdoor solar spectra data (WISER), and the components in
DNI were extracted from the outdoor solar spectra data (PGS-100). The WISER dataset
was measured by EKO WISER spectroradiometer MS-710, MS-711, and MS-712 from
2016 to 2019. The MS-710, MS-711, and MS-712 instruments have 4nm, 5Snm, and
6.5nm spectral bandwidth respectively. Their measurement range is 300 nm—1100 nm,
300 nm—1100 nm, and 900 nm—1700 nm, respectively [13]. The WISER dataset has a
higher resolution measurement for both wavelengths and time intervals (typically 5 min,
but occasionally 1 min). The hourly spectrum data were calculated by averaging the
5-min interval data for each hour, The average value of all measured points each hour
is defined as the value for the time-stamp at the end of the 1-h interval. The PGS-100
dataset was measured through a LICOR LI-1800 spectroradiometer. The instrument has
3.6 nm spectral bandwidth and the usable spectral range of the instrument is 350 to
1050 nm. Data was taken at approximately 0.7 nm intervals (slightly variable, differs
for each serial number) every 5 min [32].
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3 Results and Discussion

3.1 VIS and NIR Components in GHI and DNI

In our previous work, we demonstrated the feasibility of decomposing broadband GHI
into VIS and NIR components by using the CART algorithm, a simple logistic diagram
was developed to cluster VIS and NIR into different fractions of GHI, based on meteoro-
logical parameters. The regression tree models for VIS/GHI and NIR/GHI were shown
in Fig. 1.

Regression Tree for VIS/GHI Pruned Regression Tree for NIR/GHI

0.544 0.417
100.0% 100.0%

(yes FKt >= 0.415 Kt < 0.415

0.535 0.427
73.7% 73.7%
Dew < -1.05 Dew >=-1.05
0.547 0.414 0.438
33.5% 33.5% 40.2%

Fig. 1. Regression trees for VIS/GHI (left) and NIR/GHI (right)

Table 1. Model comparison for VIS, NIR in DNI

Model VIS NIR

RMSE | MAE R2 RMSE MAE R2
Cost complexity tree | 25.1084 | 12.9560 | 0.9650 |26.1609 | 16.9067 | 0.9791
M5’ tree 19.9164 | 9.6899 | 0.9780 213417 | 10.6917 | 0.9861
Random forest 19.1448 193176 09797 | 19.9415  9.7087 | 0.9879
XGBoost 18.2803 |7.9894 |0.9814 |18.3894 [8.0108 | 0.9897

In this study, the general process of predicting VIS and NIR from broadband DNI is
shown as an example illustrating the steps of constructing the embedded machine learn-
ing algorithm in our SolarDecomp tool. Firstly, by using sklearn, m5py, and XGBoost
packages in Python, we built various regression tree models, including Cost-complexity
tree, M5’ tree, Random forest and Extreme boosting tree. The entire dataset D was split
into a training dataset (80% of D) and a testing dataset (20% of D). Different models
were tuned by using cross-validation to find the best training parameters so that each
individual model was optimized to fit the training set. After the parameter tuning process,
a performance evaluation was conducted to find the best model. As shown in Table 1,
XGBoost was found as the best-fit model for predicting both VIS and NIR components
in DNI, as it provided the lowest RMSE, MAE, and R? results when fitting the testing
datasets. Tuned parameters for this optimized XGBoost model are shown in Table 2.
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Table 2. XGBoost Parameter Tuning

Parameter Model type

VIS NIR
max_depth 6 4
min_child_weight 5 4
gamma 0 0.4
subsample 0.8 1.0
colsample_bytree 0.8 1.0
reg_alpha 100 100

3.2 VIS and NIR Components in DHI

Solar transposition rule has been frequently used to describe the mathematical relation-
ship among GHI, DHI, and DNI on a horizontal surface: GHI is the sum of incident DHI
plus the DNI projected onto the horizontal surface.

GHI = DNI x cos(sza) + DHI @))

Theoretically, one can use this equation to compute VIS and NIR components in
DHI if one takes VIS and NIR components in DNI and GHI as input. However, it is
unknown whether this relationship is still valid for each spectral solar component. To
verify the transposition model, two datasets (collected between May 12th and June 1st
2021) in the BMS database of the NREL Solar Radiation Research Laboratory were
selected. The measured spectral DHI data were obtained by EKO MS-711 and MS-712
sensors, and then VIS and NIR of DHI were prepared. On the other hand, the RG 780
dataset (Schott Glass filter with a cut-on wavelength at 780nm) was used to extract VIS
and NIR components from GHI and DNI, which were then input into the transposition
equation to compute the VIS and NIR components of DHI. As such, both measured and
calculated VIS and NIR irradiance of DHI were obtained and then compared.

Figure 2 shows the comparison results of VIS in DHI, the comparison of NIR in
DHI has similar results. The average relative error between the measured VIS and NIR
data and the data calculated by the transposition model is 7.62% and 6.89% for VIS
and NIR, respectively. This comparison demonstrates that the diffuse, direct, and global
spectral solar irradiance values are also complying with the relationship defined by the
transposition model. After the solar transposition model was validated in the broadband
solar spectrum, VIS and NIR components in DHI can be calculated by using previously
predicted VIS and NIR in GHI and DNI as inputs to the solar transposition model. In
general, NIR occupies a small portion of DHI since the most diffused solar irradiance is
from the sky and tends to be in short wavelengths. There are potential errors with this
prediction and computation method as the calculated spectral component of DHI might
accumulate prediction errors from both DNI and GHI. As such, in the actual application,
a set of calibrations will be processed before the final spectral data of solar are reported
to users.
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Fig. 2. Comparison of measured/calculated VIS results in DHI

4 Web Portal Development of Solar Decomposing in Solar
Architecture Design

The GHI, DNI, and DHI solar decomposing models were integrated into an executable
web app, SolarDecomp, via Python streamlit package. After a user chooses their prefer-
able solar component, they will be asked to upload a weather file (e.g., TMY file) and the
location of that weather file, then SolarDecomp would automatically execute previously
trained XGBoost model and generate a different weather file in which the original broad-
band GHI, DNI, and DHI are replaced with the narrowband solar components (VIS or
NIR). The final outputs would be new weather files labeled TMY_VIS and TMY_NIR.
Note that the input weather file should be pre-processed to ensure that the input file is
in.csv format (it is recommended to use EnergyPlus™ Weather Converter to convert
the original.epw file to.csv file), all features used for predicting exists (except for newly
added parameters, such as K}, and sza, which will be automatically computed based on
the existing parameters) and all features’ names and units should be in the same format.
Table 3 summarizes all the required input variables and their name formats. General
instruction of using SolarDecomp is shown in Fig. 3.

It’s also worth mentioning that the predicting values will be automatically calibrated
before exporting the final output files. The calibration logic is shown in Fig. 4. While
feeding the model with weather files, if any features were missing or their numbers
were meaningless (e.g., some stations do not provide Albedo, liquid precipitation depth,
snow depth, AOD, or PWYV data), a simplified model will be used to replace of the full
model. This simplified model could only use part of the features to make predictions: for
example, GHI, DNI, DHI, SKC, Opqcld, Dry, Dew, RH, AM, Iy, Kb, and Tcld. Normally,
the simplified model can be used at most of the locations, but this generalizability is
a consequence of losing accuracy (e.g., the simplified model has a testing RMSE =
20.6103, MAE = 10.2091, R = 0.9764 for VIS/DNI decomposing).

With such new weather files, designers and researchers are now able to integrate
separable solar irradiance when simulating a building solar environment by using sim-
ulation tools such as ClimateStudio, EnergyPlus, etc. Figure 5 demonstrates a simple
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Table 3. Model required input variables and their unified formats

Feature Name format | Units format Source
Global Horizontal Irradiance GHI W/m? ™Y
Direct Normal Irradiance DNI W/m? ™Y
Diffuse Horizontal Irradiance DHI W/m?2 ™Y

Total sky cover SKC 1 ™Y
Opaque sky cover Opqcld 1 ™Y
Dry-bulb temperature Dry °C ™Y
Dew-point temperature Dew °C ™Y
Relative Humidity RH % ™Y
Atmospheric pressure Pressure Mbar ™Y
Zenith angle Zenith ° Calculation
Air mass AM Calculation
Extraterrestrial Direct Normal Radiation 10 W/m? Calculation
Normal clearness index Kb Calculation
Cloud transmittance Tcld Calculation
Azimuth angle Azimuth ° Calculation
Wind direction Wdr ° from N ™Y

Wind speed Wspd m/s ™Y
Albedo Albedo .01 ™Y
Liquid precipitation depth Precip mm ™Y
Snow depth Snow cm ™Y
Aerosols Optical Depth AOD .001 ™Y
Precipitable Water Vapor PWV mm ™Y

example of investigating the surface irradiance in a high-dense urban area. The urban
model contains all-glass buildings, on which Double Low-E windows were applied.
These Low-E windows had relatively high VIS transmittance (51%) but extremely low
NIR transmittance (0.1%) (glazing materials’ spectral properties modeled in LBNL
Optics software, and averaged across the spectrum). The original weather file (Philadel-
phia_International_Ap:: 724080:: TMY3) was modified by the data conversion tool
and then imported to simulation software (ClimateStudio in Rhino). With the original
weather file as the input, ground solar irradiance in July was around 138 kWh/m?, how-
ever, after separating the simulation into VIS and NIR parts, the total summation of
VIS and NIR irradiance was around 176 kWh/m?, much larger than the original simula-
tion. Although this demonstration is simple and inaccurate, it still reveals the necessity of
separating solar components for building solar simulations, especially when considering
spectral-selective windows.



10 C. Chen et al.

Convert .EPW file into .CSV using
EnergyPlus weather file
converter

Formatting .CSV file's header
row (feature names should be
the same)

Upload the file to web, input
location details

Download handled .CSV file, then
use weather file converter again
to convert back to .EPW file

Fig. 3. Instruction for converting traditional weather file to VIS/NIR weather file by using
SolarDecomp
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VIS=NIR= Yes No Yes VIS=0.6*DHI
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Fig. 4. Logistic diagram of model calibration
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Fig. 5. Urban solar irradiance simulation demo: Bottom left: Ground solar irradiance with original
weather file; Bottom right: VIS and NIR solar irradiance with modified weather file

5 Conclusion

In conclusion, we have successfully developed an executable web app, SolarDecomp,
leveraging the Python streamlit package, which integrates models for decomposing GHI,
DNI, and DHI solar data. Users can upload a weather file and its location, and the app
will use the pre-trained XGBoost model to generate a modified weather file with distinct
narrowband solar components (VIS or NIR). The result is new weather files, TMY_VIS
and TMY_NIR. The input file should be pre-processed into a.csv format, with all nec-
essary predictive features present and correctly formatted. This research highlights the
effective use of machine learning to convert broadband solar data into separate com-
ponents, utilizing readily available meteorological data. Despite these advancements,
there remain research gaps such as the need for solar analyses on tilted and vertical
surfaces and model validation under different climate conditions, the generalizability of
trained model by using solar spectral information from different locations, which will
be addressed in future work.
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