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Abstract: Every numerical general relativistic investigation starts from the solution of the initial value

equations at a given time. Astrophysically relevant initial values for different systems lead to distinct

sets of equations that obey specific assumptions tied to the particular problem. Therefore, a robust

and efficient solver for a variety of strongly gravitating sources is needed. In this work, we present

the OpenMP version of the Compact Object CALculator (COCAL) on shared memory processors.

We performed extensive profiling of the core COCAL modules in order to identify bottlenecks in

efficiency, which we addressed. Using modest resources, the new parallel code achieves speedups of

approximately one order of magnitude relative to the original serial COCAL code, which is crucial

for parameter studies of computationally expensive systems such as magnetized neutron stars, as

well as its further development towards more realistic scenarios. As a novel example of our new

code, we compute a binary quark system where each companion has a dimensionless spin of 0.43

aligned with the orbital angular momentum.

Keywords: neutron stars; initial data; quark stars; OpenMP

1. Introduction

Gravitational wave astronomy was launched in 2015 with the first-ever gravitational
wave detection of the inspiral and merger from a binary black hole system, as reported by
the LIGO scientific collaboration—event GW150914 [1]. Two years later, the simultaneous
detection of gravitational waves from an inspiraling binary neutron star system, event
GW170817, and its postmerger emission of electromagnetic radiation spurred the era of
multimessenger astronomy [2–6]. Merging binary neutron stars and black hole–neutron
stars are not only important sources of gravitational radiation, but also promising candi-
dates for coincident electromagnetic counterparts, which could give new insight into their
sources. To understand these observations and, in particular, to understand the physics
of matter under extreme conditions, it is crucial to compare them with predictions from
theoretical modeling which, due to the complexity of the underlying physical phenomena,
are largely numerical in nature.

Numerical modeling of strongly gravitating systems typically involves two steps: first,
the ab initio calculation of the initial values that describe the astrophysical system at a
given time; and second, the evolution of these initial data in order to describe it at later
times. These two general relativistic calculations involve two distinct codes: one that solves
the elliptic problem to find out the initial data and another that solves the hyperbolic one
that simulates their evolution. For these reasons, we have developed the Compact Object
CALculator (COCAL) code, which is a serial code that solves for any compact object in
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equilibrium or quasiequilibrim in a variety of settings and/or mathematical formulations.
In particular, COCAL has been used to calculate: (i) rotating neutron stars and quark stars
(axisymmetric or triaxial, uniformly or differentially rotating) [7–12]; (ii) binary black holes
in quasicircular orbits [13–15]; (iii) binary neutron stars and quark stars (irrotational or
spinning) in quasicircular orbits [16,17]; (iv) magnetized rotating neutron stars with generic
mixed poloidal and toroidal magnetic fields and a magnetosphere [18–20]; and (v) self-
gravitating, tilted black hole-disks (where the angular momentum of the disk is tilted
with respect to the angular momentum of the black hole) [21]. The main characteristics
of the COCAL code is the use of finite differences and a Green’s function approach, as
first developed in [22] for neutron stars and in [23] for black holes, to achieve a convergent
solution through a Picard type of iteration, known as the Komatsu–Eriguchi–Hachisu
(KEH) method [24,25]. The field equations are solved in spherical coordinates in multiple
patches, and a smooth solution is obtained everywhere through boundary surface integrals.
For the fluid equations, surface-fitted coordinates are being implemented that allow for an
accurate representation of the neutron star surface, which is important in order to impose
boundary conditions.

Similar to COCAL, there are a number of other codes whose purposes are to solve
for initial data in general relativity. For binary as well as single compact object codes,
these include the TwoPunctures [26], LORENE [27], KADATH/FUKA [28–30], SGRID
[31], Spells [32], Elliptica [33], and NRPyElliptic [34] codes. Each code uses its own
numerical methods, and depending on the problem, it may use different mathematical
formulations too.

Compact systems (i)–(v) employ different mathematical formulations that nevertheless
share common characteristics. For example, one well-known method for the calculation of
initial data [35] is the Isenberg–Wilson–Mathews (IWM) [36–39] formulation, where the
spatial three-dimensional metric is assumed to be conformally flat and the trace of the
extrinsic curvature is zero. This method is applied from rotating neutron/quark stars [7,11]
to binary black holes [13–15] and binary neutron stars [16,17] and results in five elliptic
equations, i.e., a truncated system of the Einstein field equations. Notwithstanding the
approximate nature of the method, its robustness and accuracy (especially for neutron
stars) make the IWM method a workhorse in initial data construction. On the other hand,
more intricate methods have been developed that can treat the full Einstein system, both
for neutron stars and black holes. In [8], rotating axisymmetric or triaxial neutron stars
were computed using the waveless method [40,41], while in [18–20], this method was
employed to calculate generic magnetized equilibria with mixed poloidal and toroidal
magnetic fields as well as a force-free magnetosphere. In [42,43], the same method was
used to compute binary neutron stars in quasicircular orbits. This method is referred to
as the “waveless” formulation. For spacetimes that contain a black hole, a new method
has been developed in [21] that solves the complete initial data equations. Contrary to
the IWM method, the formulations that try to address the whole Einstein system [21,40]
result to a significantly larger number of elliptic equations. For neutron star spacetimes
[40], we have fourteen nonlinear Poisson-like equations, with four of them resulting from
imposing gauge conditions. For black hole spacetimes, we have a total of seventeen
equations, with four of them resulting from imposing gauge conditions and another three
being used for an additional decomposition of the extrinsic curvature [21]. The inclusion of
magnetohydrodynamics will increase the total number of elliptic equations to be solved
even more. Therefore, it is evident that in order to be able to study these astrophysically
realistic systems in a systematic manner, an efficient parallelization scheme for the COCAL
code needs to be developed.

In this paper, we present the OpenMP version of the COCAL code, which we call
the Parallel Compact Object CALculator or PCOCAL for short. For the first time, we
have systematically analyzed the whole serial COCAL code and identified the bottlenecks
both for single objects (e.g., rotating neutron stars) as well as for binaries (e.g., binary
neutron stars) using either the IWM or the waveless formulation. In order to implement the
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OpenMP directives for parallelization, we had to revise and sometimes completely rewrite
many of the original subroutines. Using modest resources of 30–40 cores, both the single
rotating neutron star module as well as the binary neutron star one achieve a speedup of an
order of magnitude. In the binary case, we observed a smaller speedup than in the single
star case, mainly due to the communication between different coordinate systems, which is
absent in the latter calculation. As an application of our new code, we computed for the
first time a spinning binary quark star system where each companion has a dimensionless
spin of 0.43 aligned with the orbital angular momentum.

In the equations presented, Greek indices are taken to run from 0 to 3 while Latin
indices run from 1 to 3. We use a signature (−,+,+,+) for the spacetime line element and
a system of units in which c = G = M⊙ = 1 (unless explicitly shown).

2. The Initial Value Equations

In this section, we summarize the 3 + 1 decomposition of Einstein’s equations for
two representative problems that will be discussed below: (i) single rotating neutron
stars in the waveless formalism [8,40] and (ii) spinning binary neutron stars in the IWM
formalism [16,17]. While details on these methods can be found in the aforementioned
papers, here we provide a broad overview of the equations that need to be solved in order
to discuss the time footprint of each one in the iteration procedure, the possible bottlenecks
with the parallelization, and the optimizations we perform.

We assume that a spacetime M is foliated by a family of space-like hypersurfaces Σt,
parametrized by a time coordinate t ∈ R as M = R× Σt. The future-pointing unit normal
one form to Σt, nα = −α∇αt, is related to the generator of time translations tα as

tα := αnα + βα, (1)

where tα∇αt = 1. Here, α and βα are, respectively, the lapse function and the shift vector,
which is spatial, βα∇αt = 0. The projection tensor γα

β to Σt is introduced as γα
β :=

gα
β + nαnβ. The induced spatial metric gij on Σt is the projection tensor restricted to it. By

introducing a conformal spatial geometry with spatial metric γ̃ij = ψ−4γij, where ψ is the

conformal factor, we can write the line element on a chart {t, xi} of Σt as

ds2 = −α2dt2 + ψ4γ̃ij(dxi + βidt)(dxj + βjdt). (2)

The conformal rescaling is determined from a condition γ̃ = f , where γ̃ and f are
determinants of the rescaled spatial metric γ̃ij and the flat metric fij, respectively. We

denote by hij and hij the differences between the conformal and flat metric

γ̃ij := fij + hij , γ̃ij := f ij + hij. (3)

The extrinsic curvature of each slice Σt is defined by

Kij = −
1

2
Lnγij (4)

where Ln is the Lie derivative along the normal vector on Σt. Hereafter, we denote the trace
of Kij by K and the trace-free part of Kij by Aij := Kij −

1
3 γijK. We define the conformal

extrinsic curvature Ãij = ψ−4 Aij, similar to the conformal spatial metric.
In this paper, we consider perfect fluid spacetimes, whose stress–energy tensor is

written as
Tαβ = (ϵ + p)uαuβ + pgαβ, (5)

where ϵ is the energy density and p is the pressure as measured by the co-moving observer,
i.e., an observer with 4-velocity uα. As discussed in [18,19], in the case where we have
magnetized neutron stars and total stress–energy tensor in addition to the perfect fluid
contribution, Equation (5) will include the contribution of the magnetic field. We decompose
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the Einstein’s equations Eαβ := Gαβ − 8πTαβ = 0 along the hypersurface as well as along
its normal nα as follows,

Eαβnαnβ = 0, (6)

Eαβγα
in

β = 0, (7)

Eαβ

(

γαβ + 1
2 nαnβ

)

= 0, (8)

Eαβ

(

γα
iγ

β
j −

1
3 γijγ

αβ
)

= 0, (9)

which correspond, respectively, to the Hamiltonian constraint, momentum constraint,
spatial trace part (combined with the Hamiltonian constraint), and spatial trace-free part.

As shown in [40], the above set of field Equations (6)–(9) are reduced to elliptic
(Poisson) equations for {ψ, β̃i, αψ, hij}, respectively, as follows,

∆
◦

ψ = SH, (10)

∆
◦

β̃i = Si, (11)

∆
◦
(αψ) = Str, (12)

∆
◦

hij = Sij, (13)

where ∆
◦

is the flat metric (in arbitrary coordinates) Laplacian, defined by ∆
◦
= f ijD

◦

iD
◦

j. The

sources SH, Si, Str, and Sij [21] depend nonlinearly on the unknown potentials {ψ, β̃i, αψ, hij}
and are written in Appendix A. In the COCAL code, we use the Cartesian components of
the elliptic Equations (10)–(13), on spherical grids (see Section 3). Equations (10)–(13) must
be supplied with conditions on the boundary of our computational region. Because we will
only consider isolated single or binary stars, the boundary conditions for the gravitational
equations will only be at spatial infinity, where we impose asymptotic flatness, i.e.,

lim
r→∞

α = lim
r→∞

ψ = 1 , lim
r→∞

βi = lim
r→∞

hij = 0. (14)

In case a black hole is present, COCAL uses excision, and boundary conditions are
applied on the excised surface (typically a sphere). Depending on the method, we have em-
ployed Robin–Dirichlet, apparent horizon [13,14,23], or simply Kerr–Schild [21] boundary
conditions.

2.1. Rotating Neutron Star in the Waveless Formalism

Coordinate gauge conditions such as the maximal slicing and generalized Dirac gauge

K = 0 (15)

Hi = 0 (16)

are assumed for rotating neutron stars. As described in Appendix A, Hi = D
◦

jγ̃
ij. These con-

ditions simplify Equations (A1)–(A4) significantly. In particular, R̃LI
ij = 0. The asymptotic

behavior of the metric potentials becomes a Coulomb-type fall-off,

ψ − 1 = O(r−1), α − 1 = O(r−1), (17)

βi = O(r−2), hij = O(r−1). (18)

Our choice of βa is the shift in an (asymptotically) inertial frame.
The Bianchi identity implies ∇αTαβ = 0. Under the assumption of rest mass con-

servation ∇α(ρuα) = 0 and an isentropic law ∇αs = 0, it leads to the relativistic Euler
equation

uβωβα = 0 , where ωαβ := ∇α(huβ)−∇β(huα) (19)
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is the relativistic vorticity and h := (ϵ + p)/ρ the relativistic specific enthalpy. We consider
two cases of single rotating stars, both of which are described by a 4-velocity

uα = utkα . (20)

Here, kα = tα + Ωϕα is the helical symmetry vector, Ω is the constant angular velocity
of the star, and ϕα is the generator of rotational symmetry. For uniformly rotating stars, it is
uβωβα = −ut∇α(huβkβ).

2.1.1. Axisymmetric Rotating Neutron Stars

For stationary and axisymmetric systems, we impose time symmetry on both the three
dimensional metric as well as the extrinsic curvature

Ltγij = LtKij = 0. (21)

Note that we do not explicitly impose the axisymmetry on our formulation. Under
these asumptions, ũij = 0 in Equation (A2) and Lαn(· · · ) = −Lβ(· · · ) for Equation (A4).

Note that the last terms involve second order derivatives of the shift vector β̃i.
The stationarity condition for the fluid variables

Lt(huα) = Ltρ = 0, (22)

reduce the Euler Equation (19) to the simple algebraic equation

h

ut
= C, (23)

where C is a constant to be determined. Note that ut is computed by the normalization
condition uαuα = −1. In this work, we also assume that neutron stars are “cold”, i.e., they
can be described by a zero-temperature equation of state (EOS),

ϵ = ϵ(ρ), p = p(ρ), (24)

or, equivalently, p = p(ϵ). This kind of one-parameter EOS is called barotropic.
Equations (10)–(13) under gauge conditions (15) and (16) and Equation (23) determine
all gravitational and fluid variables.

2.1.2. Triaxial Rotating Neutron Stars

For nonaxisymmetric rotating neutron stars, we impose time symmetry on the three
metric but helical symmetry (stationarity in the rotating frame) on the extrinsic curvature

Ltγij = 0, and LkKij = 0. (25)

Under the conditions of (25), we have ũij = 0 in Equation (A2) and Lαn(· · · ) =
−Lω(· · · ), where ωα = βα + Ωϕα is the so-called corotating shift vector ωα.

The helical symmetry condition for the fluid variables

Lk(huα) = Lkρ = 0, (26)

reduce Euler Equations (19)–(23) similarly to the stationary and axisymmetric case.

2.2. Binary Neutron Stars in the IWM Formalism

Binary neutron stars are computed within the IWM formalism, where

hij = 0, and K = 0, (27)
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which means that Equation (13) is absent, while in Equations (10)–(12), the magenta terms
in the sources (A1)–(A3) are zero. The spacetime helical symmetry

Lkγij = LkKij = 0 (28)

implies that Equation (A10) can be written as

Ãij =
1

2α
(L̃ω̃)ij (29)

where ωi the corotating shift.
The 4-velocity of the fluid here can be written as

uα := ut(kα + Vα), (30)

where Vi is the fluid velocity in the corotating frame and the helical Killing vector kα refers
to a binary system having orbital angular velocity Ω. For irrotational binaries [44–47],
we have ωαβ = 0, so the specific enthalpy current huα can be derived from a potential

huα = ∇αΦ. In order to allow for arbitrary spinning binary configurations, a 3-vector si is
introduced according to [48]

ûi := γα
i huα = DiΦ + si , (31)

where the DiΦ part corresponds to the “irrotational part” of the flow and si the “spinning
part” of the flow. Equations (30) and (31) yield

Vi =
DiΦ + si

hut
− ωi. (32)

For arbitrary spinning binaries under the assumptions of helical symmetry

Lk(huα) = 0 (33)

and the additional assumption for the spin of the neutron star

LV (sα) = 0 , (34)

yields
h

ut
+ V jDjΦ = C , (35)

where C is a constant to be determined.
The conservation of rest mass and Equation (32) for the fluid velocity will produce an

extra elliptic equation for the fluid potential Φ

∇2Φ = −
2

ψ
∂iψ∂iΦ + ψ4ωi∂i(hut) + [ψ4hutωi − ∂iΦ]∂i ln

(αρ

h

)

−ψ4

[

∂is
i + si∂i ln

(

αρψ6

h

)]

:= SΦ . (36)

Note that because hij = 0, the conformal geometry is flat γ̃ij = fij and therefore

∂iΦ = D̃iΦ. The boundary for the fluid is represented by the surface of the star; hence, the
boundary condition for Equation (36) will be of the von Neumann type, that is, in terms of
derivatives of the rest mass density and of Φ

[(

ψ4hutωi − ∂iΦ − ψ4si
)

∂iρ
]

surf.
= 0 . (37)
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Equations (10)–(12) under a maximal slicing gauge condition and Equations (35) and
(36) determine all gravitational and fluid variables. As in the rotating star case, ut is
determined from the normalization of the 4-velocity. A barotropic EOS is assumed.

3. Numerical Methods

All elliptic equations are solved using the representation theorem of partial differential
equations through a Picard type of iteration. Starting from

∇2 f = S (38)

where S is a nonlinear function of f (here, f can be any of {ψ, α, β̃i, hij, Φ} and S any
combination of them), and by using an appropriate Green’s function

∇2G(x, x′) = −4πδ(x − x′) , (39)

that satisfies certain boundary conditions, a solution for f can be written as

f (x) = −
1

4π

∫

V
G(x, x′)S(x′)d3x′ +

1

4π

∫

∂V

[

G(x, x′)∇′a f (x′)− f (x′)∇′aG(x, x′)
]

dS′
a . (40)

where V is the domain of integration, x, x′ ∈ V ⊆ Σt, the initial space-like hypersurface.
The volume V and its boundary ∂V depend on the coordinate system used and are different
for isolated rotating neutron stars and binary neutron stars. We will explain this difference
in the next sections. This method is widely known as the KEH method [24,25].

For the evaluation of the integrals in Equation (40), a multipole expansion of G(x, x′)
in associated Legendre functions, P m

ℓ
, on spherical coordinates is used;

G(x, x′) :=
∞

∑
ℓ=0

gℓ(r, r′)
ℓ

∑
m=0

ϵm
(ℓ− m)!

(ℓ+ m)!
× P m

ℓ
(cos θ) P m

ℓ
(cos θ′) cos[m(ϕ − ϕ′)] , (41)

where the radial Green’s function gℓ(r, r′) depends on boundary conditions and the coeffi-
cients ϵm are ϵ0 = 1 and ϵm = 2 for m ≥ 1. In practice, the sum over ℓ is truncated at ℓ = L.
The standard value used for single rotating stars as well as binaries is L = 12. On the other
hand, highly rotating black holes and magnetized neutron stars require a larger L ≲ 60 .

3.1. Single Rotating Neutron Star

For a single rotating neutron star, the only elliptic equations to be solved are the
gravitational Equations (10)–(13). We employ a single spherical coordinate system that
covers the region [ra, rb]× [0, π]× [0, 2π], where ra = 0 and rb ∼ O(106M), with M being
the total mass of the system. The boundary conditions (14) are applied at r = rb. Coordinate
grids (ri, θj, ϕk) with i = 0, · · · , Nr, j = 0, · · · , Nθ , and k = 0, · · · , Nϕ, are freely specifiable
except for the points at the boundary of the computational domain. The grid setup is
the same as in [8]: the radial grid intervals ∆ri := ri − ri−1 are constant when ri ∈ [ra, rc]
(i = 1, · · · , Nm

r ), which typically extends up to ∼1.25Re, where Re is the equatorial radius
of the star, and increase thereafter in a geometric progression with ∆ri = k∆ri−1. Here, k is
a constant, and ri ∈ [rc, rb] (i = Nm

r + 1, · · · , Nr). For the angular coordinate grids (θj, ϕk),
we choose equally spaced grids. Definitions of the parameters for the grid setups are listed
in Table 1.

When applying Equation (40), we use the Green’s function G(x, x′) = 1/|x − x′|.
For the quadratures, a 2nd order midpoint rule is used in r and ϕ integrations, and a 4th
order midpoint rule is used for θ integration. We also use a 2nd order finite difference
formula for the r, θ, and ϕ derivatives evaluated at the midpoints (ri+ 1

2
, θj+ 1

2
, ϕk+ 1

2
) =

((ri + ri+1)/2, (θi + θi+1)/2, (ϕi + ϕi+1)/2), except for a 3rd order finite difference formula
used in the first radial derivative evaluated at the midpoints. For derivatives at the grid
points (ri, θj, ϕk), a 4th order finite difference formula is used. We found [13,15] that these
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choices are necessary in order to maintain an overall second-order accuracy for the COCAL
code and a small error near the possible black hole excised surface [15]. Note that we use
the midpoint rule for numerical quadrature formula and hence compute the source terms,
Equation (A1)–(A4), at the midpoints of the grids.

Table 1. Summary of parameters used for single rotating star configurations. R(θ, ϕ) denotes the

neutron star surface.

ra: Radial coordinate where the grid ri starts.
rb: Radial coordinate where the grid ri ends.

rc:
Radial coordinate between ra and rb where the grid changes from equidistant to
non-equidistant.

Nr: Total number of intervals ∆ri between ra and rb.
Nm

r : Number of intervals ∆ri in [ra, rc].
Nf

r : Number of intervals ∆ri in [0, R(θ, ϕ)].
Nθ : Total number of intervals ∆θi for θ ∈ [0, π].
Nϕ: Total number of intervals ∆ϕi for ϕ ∈ [0, 2π].

L: Number of multipole in the Legendre expansion.

A relaxation parameter λ is used when updating a newly computed variable f ∈
{ψ, α, β̃i, hij, Φ, ρ}. If f (n)(x) is the value at the n-th iteration, and f̂ (x) the current result of
the Poisson solver, Equation (40), then the (n + 1)-th iteration value will be

f (n+1)(x) := λ f̂ (x) + (1 − λ) f (n)(x) , (42)

where 0.1 ≤ λ ≤ 0.4. Usually, λ = 0.4 for all variables except for Φ, where λ = 0.1. The
criterion used by the COCAL to stop the iteration for a variable f is based on the relative
error between two successive iterations and is given by

E
f (x) = 2

| f (n)(x)− f (n−1)(x)|

| f (n)(x)|+ | f (n−1)(x)|
< 10−6 , (43)

for all points of the grids and all variables. The coupled elliptic Equations (10)–(13) are
solved sequentially (starting from ψ, followed by α, βi, and finally the hij) at every iteration,
and Equation (42) is applied separately to each potential before moving to the next elliptic
equation.

3.2. Binary Systems

For binary configurations, the hypersurface Σt is covered by at least three coordinate
systems, as explained in detail in [13–16]. As an example of a general binary system,
we show in Figure 1 a black hole–neutron star (x − y cross-section) that consists of the
following: (i) Coordinate system COCP-BH (top-left coordinate system) centered around
the black hole extending from an inner sphere Sa (small black circle at its center) of radius
ra to a sphere Sb of radius rb (red outer circle). The surface Sa denotes the black hole region
and is excised from the grid. If M is the mass of the system, we have ra ∼ O(M) while
rb ∼ O(100M); (ii) Coordinate system COCP-NS (top-right coordinate system) centered
around the neutron star, which extends from ra = 0 to a sphere Sb of radius rb (blue outer
circle). Both COCP-BH and COCP-NS contain an excised sphere Se (although we use the
common symbol Se, these spheres are different in the two coordinate systems), which is
introduced to improve the angular resolution and reduce the number of multipoles for
resolving the companion object in a given coordinate system ; and (iii) Coordinate system ARCP,
which is positioned at the center of mass of the system and extends from an inner sphere
Sa of radius ra ∼ O(10M) (green inner circle) to an outer sphere Sb of radius rb ∼ (106M)
(outer black circle). Definitions of the parameters for the grid setups are listed in Table 2.
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Table 2. Summary of the grid the parameters used for the binary systems and, in particular, the

binary neutron stars computed here. R(θ, ϕ) denotes the neutron star surface. Every patch has its

own set of parameters above.

ra: Radial coordinate where the radial grids start. For the COCP-NS patch it is ra = 0.
rb: Radial coordinate where the radial grids end.
rc: Center of mass point. Excised sphere is located at 2rc in the COCP patch.
re: Radius of the excised sphere. Only in the COCP patch.

Nr: Number of intervals ∆ri in [ra, rb].

Nf
r :

Number of intervals ∆ri in [0, R(θ, ϕ)] for the COCP-NS patch or in [ra, ra + 1] for the
ARCP patch.

Nm
r : Number of intervals ∆ri in [ra, rc].

Nθ : Number of intervals ∆θj in [0, π].
Nϕ: Number of intervals ∆ϕk in [0, 2π].

L: Order of included multipoles.

In binary systems, elliptic Equations (10)–(12) are solved separately in all three coordinate
systems (in Figure 1), and a smooth solution emerges in an iterative process. On the other
hand, Equation (36) is only solved in coordinate systems where a neutron star exists.
Therefore, the computational cost of a binary system is significantly larger than that of a
single rotating star. Convergence to a smooth solution is achieved because in any given
coordinate system, in the calculation of the surface integrals in Equation (40), we use the
values of the potential functions f from another coordinate system as indicated by the red,
green, and blue arrows in Figure 1. For example, when we calculate the contribution of the
surface integral on the red sphere Se inside the COCP-NS coordinate system (top-right),
we use the values of the potentials on the corresponding red sphere from the COCP-BH
coordinate system (top-left) as indicated by the red curved arrow. In this way, a given
potential (α, ψ, βi) from one coordinate system is communicated to all others, and at the end
of the iterative process, a smooth solution is obtained in the whole computational domain.
For a detailed explanation of how the KEH method works in multiple coordinate systems,
see [13,14,23].



Universe 2024, 10, 229 10 of 26

COCP-BH COCP-NS

ARCP

SbSb

Sb

Sa

Se Se

Figure 1. A typical setup with multiple coordinate grid patches in the COCAL code for a black

hole–neutron star system. The left and right top patches are those for compact object coordinate

patches (COCPs) centered at the black hole and the neutron star, respectively. The smallest circle with

a thick curve in COCP-BH is the sphere Sa, where the interior region is excised and certain boundary

conditions are imposed. The ovals drawn in COCP-NS denote the neutron star. The bottom patch is

that for asymptotic region coordinate patch (ARCP), centered at the mass center of the system. The

arrows represent maps of potentials between the multiple patches. Note that the spheres Sa, Sb, and

Se of these coordinate patches are distinct despite our use of a common symbol. The radius of each

coordinate patch does not reflect the size used in actual computations.

4. Speedup and Efficiency Results

The original serial COCAL consists of more than 400,000 lines of Fortran 90 code, and
in order to use OpenMP parallelization, many of its loops had to be rewritten in a way that
would efficiently utilize OpenMP’s capabilities. In particular, in multiple loops, the code
inside the innermost one had to be written in a way that is independent between threads. For
example, in a typical triple loop over the r (loop 1), θ (loop 2), and ϕ (loop 3) coordinates,
any code between loop 1 and loop 2 and/or between loop 2 and loop 3 is written only
inside the innermost loop 3. The reason is to utilize the collapse clause, which collapses
the multiple loops into a single one, which is then divided among the multiple threads.
Most of our loops were three-dimensional, but there were many that were four or even
five-dimensional, which result in large speedups through OpenMP parallelization. For
example, in a binary system, Figure 1, the calculation of the surface integral on the excised
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sphere Se uses the Legendre functions with respect to the coordinate system at the center
of Se. Assuming θe is the spherical angle with respect to the z-axis at the center of Se, the
term cos(θe) will depend on all coordinates r, θ, ϕ of that particular patch; therefore, these
functions become five-dimensional, as they depend on the Legendre indices ℓ, m too.

Another commonly used command is the reduction clause, which is used to perform
summations, for example in the calculation of the volume and surface integrals. In this
case, the code is written in a way that the summation appears only inside the innermost loop
so that a combination of the collapse and reduction clauses can execute this operation
in multiple threads. The reduction clause is also used in finding the maximum error in
Equation (43) for every variable in each coordinate system. The private clause is used
extensively for local nested-loop variables so that multiple threads executing a parallel
region are independently calculated. Listing a variable as private causes each thread
that executes that construct to receive a new temporary variable of the same type, and the
multiple loop can be performed independently in parallel.

Below, we will describe the two main modules of the PCOCAL code: (a) the paral-
lelized single rotating star module (Section 2.1); and (b) the parallelized binary neutron
star module (Section 2.2). For the single star solver (a), the computational infrastructure
is straightforward (one spherical grid), but the mathematical formalism used requires the
solution of 14 elliptic equations. On the other hand, for the binary solver (b), a simpler
mathematical formalism requires the solution of six elliptic equations in a more intricate
computational domain, which involves at least three coordinate systems (see Figure 1).

In order to quantify the speedup and efficiency of PCOCAL, we define the following
measures:

• Tp(n): CPU wall-clock time of parallelized part of the code using n threads.
• Ts: CPU wall-clock time of serial (nonparallelized) part of the code. Input/Output

(IO) and copying between arrays are excluded.
• TIO: CPU wall-clock time of serial IO.
• Tm: CPU wall-clock time of memory copy between arrays.

The reason for timing Tm is because in COCAL/PCOCAL, every main variable (e.g.,
the 3D conformal factor ψ) exists in all coordinate systems (which are at least three) and
is stored in a higher dimensional array (for the case of ψ, in a 4D array) where the extra
index determines the patch (COCP-1, COCP-2, or ARCP). When calculating quantities in
one patch where we want to access a quantity in another patch, an array copy is necessary.
The time for these copies is measured by Tm.

The total time for a calculation is T = Tp + Ts + TIO + Tm. We define the speedup of
the code using n threads as

Sp(n) =
Tp(1)

Tp(n)
, S(n) =

T(1)

T(n)
(44)

while the efficiency is defined as

Ep(n) =
Sp(n)

n
, E(n) =

S(n)

n
. (45)

The speedup Sp(n) and efficiency Ep(n) refer to the parallelized part of code (which
constitutes the large majority of the solver), while S(n) and E(n) refer to the total speedup
and efficiency, which include the serial parts of the code, the input/output, and memory
handling. Note that for the tests performed in this paper, the input/output routines were
neither optimized nor minimized (for diagnostic purposes), and thus, the total speedup
shown underestimates the real one.

To make sure that the parallelized PCOCAL code produces the same results as COCAL
itself, we perform a pointwise check for every parallelized subroutine against the serial code
and confirm that the differences between the two codes are ≲10−12 in all variables.
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Most of the runs have been performed in server A, which has 36 cores with 2 threads
per core (72 threads total) and an Intel(R) Xeon(R) Gold 6254 CPU 3.10 GHz. We have also
used server B, which has 40 cores with 2 threads per core (80 threads total) and an Intel(R)
Xeon(R) Gold 6242R CPU 3.10 GHz. Both servers are dual-socket. An Intel compiler
(2021.3.0 20210609) is being used.

4.1. Single Rotating Neutron Star

Following the methods of Sections 2.1 and 3.1, we test our new code in three grid
resolutions, as can be seen in Table 3. Resolution H2 has Nr × Nθ × Nϕ = 442,368 intervals
(number of points in the r, θ, ϕ directions are Nr + 1, Nθ + 1, and Nϕ + 1, respectively),
while resolutions H3, H4 have twice and four times as many intervals in every dimension,
i.e., 8 and 64 times more intervals in total, respectively. The default value of terms in the
Legendre expansions is L = 12. Below, we also investigate the performance of the code
with respect to L.

Table 3. Three different resolutions used for the single rotating star tests. The parameters are shown

in Table 1. The number of points that cover the largest star radius is Nf
r . Resolutions H2, H3, and H4

correspondingly use 2, 10.3, and 80.1 GB of RAM.

Type ra rb rc Nr Nm
r Nf

r Nθ Nφ

H2 0 106 1.25 192 80 64 48 48
H3 0 106 1.25 384 160 128 96 96
H4 0 106 1.25 768 320 256 192 192

In Algorithm 1, we sketch the most salient steps taken for a solution. In parentheses
with green fonts, we show the percentage of time needed for a given calculation per
iteration using a single core using the H3 resolution. Lines that do not have a number
indicate that the time it took for completion was less than 1%. The rest of the time is spent in
the calculation of diagnostics as well as further output. Steps 2–12 are repeated iteratively
until condition 13 is fulfilled, and hence, convergence to a solution is achieved. As we can
see, the most time-consuming routines are the computation of the momentum constraint
sources Si (15%), the calculation of the sources Sij (13%), followed by the calculation of the

conformal Ricci tensor R̃ij (11%) and the Poisson solvers themselves (11%). The reason
that the three source arrays Si of the momentum constraint took more time to be computed
than the six source arrays Sij was mainly due to the modular way that COCAL implements
various mathematical formulations. In particular, for the waveless formulation, the sources
(right-hand side of the Poisson equations) are split into two parts: (i) the part that comes
from the conformal flat part of the metric and (ii) the ones that come from the nonconformal
one. In this way, one has the flexibility of choosing a specific method (conformal flat vs.
nonconformal flat) without repeating the writing of a code. The disadvantage is that triple
loops all over the gridpoints may be repeated; therefore, speed is sacrificed in view of
modularity. In the computation of the momentum constraint sources Si for the waveless
formulation (which is not conformally flat), both the fluid part and the gravitational part of
the source computation are performed twice, which leads to a larger time footprint than
the six source arrays Sij. Overall the bottleneck for the rotating neutron star module in the
waveless formulation is the computation of the sources (lines 2–8) rather than the Poisson
solvers (line 9). As we will see, this is in contrast with the binary neutron star module in
the conformal flat approximation, where the latter dominates over the former.
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Algorithm 1 Rotating star in the waveless formalism

1: procedure RNS
2: Interpolate variables to SFC ▷ (8%)
3: Compute Kij (8%), Ci

kj (8%), R̃ij (11%) ▷ (27%)

4: Compute volume sources SH, Equation (A1) ▷ (5%)
5: Compute volume sources Str, Equation (A3) ▷ (6%)
6: Compute volume sources Si, Equation (A2) ▷ (15%)
7: Compute volume sources Sij, Equation (A4) ▷ (13%)
8: Compute right-hand side of Equation (A22) ▷ (3%)
9: Compute ψ, α, β̃i, hij, ξ i, Equation (40) ▷ (11%)

10: Variable update, Equation (42) ▷ (2%)
11: Use Equation (23) to compute the rest mass density ρ.

12: Compute E
ψ, Eα, E

β
i , Eh

ij, E
ρ Equation (43) ▷ (1%)

13: if (Eψ, Eα, E
β
i , Eh

ij, E
ρ < 10−6) then

14: exit

In Figure 2, we plot in the upper two panels the speedup Sp (top) and efficiency Ep

(bottom) of the parallelized part of the code (solid lines), as well as the corresponding mea-
sures S and E for the total code (dashed lines). As we mentioned above, S underestimates
the real speedup as the input/output routines were neither optimized nor minimized (for
diagnostic purposes). Thus, in the discussion below, we focus on the speedup Sp and
efficiency Ep. One characteristic of the speedup is that for all resolutions, it reaches a
maximum at ∼36 threads and drops slightly afterwards, from which point it continues to
increase. The maximum speedup of the parallelized part of the code is 18–20 times the serial
one (when ≲60 threads are used) which can be achieved with a minimum of ∼36 threads.
At that point, the efficiency is ∼50%. At maximum speedup, the whole rotating neutron
star code (including the serial routines that are nonparallelized, such as the calculation of
the parameters Ω in Equation (20), C in Equation (23), and the coordinate scaling R0 [8,16])
is ∼12, 13, and 14 times faster than the serial analog for resolutions H2, H3, and H4 and
occurs at 36, 34, and 35 threads, respectively. This can be seen in Figure 2 on the lower three
panels, where blue bars signify the parallelized routines of the code, red bars the serial part
of the code, and yellow bars the memory copy between arrays. From this plot, we see that
the parallelized code constitutes the vast majority of the total number of subroutines and is
responsible for the achieved speedup. Also, we observe that the higher the resolution (H4),
the larger the total speedup, which is a promising result for high-resolution campaigns.
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coordinates systems (two COCPs and one ARCP in Figure 1), while resolutions E3.0 and
E3.5 have ∼1.3, and 2 times as many intervals in every dimension, i.e., 2.4 and 8 times more
intervals in total, respectively. In all binary cases, we use L = 12 as the number of terms
in the Legendre expansions. Notice that the BH coordinate system (COCP-BH, top-left,
red patch in Figure 1) is now replaced by an NS coordinate system, similar to the blue,
top-right patch COCP-NS. Therefore, there is no inner surface Sa (no boundary conditions),
and ra = 0 for the red patch in Figure 1 for the binary neutron/quark case.

Table 4. Three different grid structure parameters used for the circular binary computation in COCAL.

The amount of RAM used in each resolution is written in the first column. All variables are explained

in Table 2, and the distances are in normalized quantities [16]. There are two COCP grids centered

around each neutron star and one ARCP centered at the center of mass of the system (see Figure 1).

Resolutions E2.5, E3.0, and E3.5 correspondingly use 5.0, 9.9, and 30.6 GB of RAM.

Type Patch ra rb rc re Nf
r Nm

r Nr Nθ Nφ L

E2.5 COCP 0.0 40 2.51 2.375 80 151 288 72 72 12
ARCP 5.0 106 6.25 − 24 30 288 72 72 12

E3.0 COCP 0.0 40 2.51 2.35 100 188 384 96 96 12
ARCP 5.0 106 6.25 − 32 40 384 96 96 12

E3.5 COCP 0.0 40 2.51 2.355 152 286 576 144 144 12
ARCP 5.0 106 6.25 − 48 60 576 144 144 12

In Algorithm 2, we sketch the most important steps taken for a binary neutron star
solution using a single core in the E3.0 resolution. As in Algorithm 1, we report the percent-
age of time needed for the completion of each step with green fonts inside a parenthesis,
while when such number is absent, it means that the time it took for completion was less
than 1%. The rest of the time is spent in the calculation of diagnostics as well as further
output. Steps 2–14 are repeated iteratively until the condition in line 15 is fulfilled. The
main differences between the RNS and NSNS modules are: (i) Steps 3–15 are performed in
three coordinate systems (two for COCP-NS and the ARCP) as seen in Figure 1 instead of
one in the RNS module; (ii) the calculation of every potential ψ, α, β̃i in the two COCP-NS
coordinate systems is significantly more involved because of the excised sphere Se (the
reason for the existence of Se in the COCP patches is explained in detail in [13–15]); (iii) the
additional calculation of the velocity potential Φ (∼4%) (absent in the RNS module) is
another important difference between the NSNS module and the RNS one; (iv) because
for binary neutron stars we solve for conformally flat initial data, potentials hij = 0 and, in
addition, the source terms (Equation (A1)–(A3)) are significantly simpler as the magenta
terms are zero.

As mentioned above, surface integrals (see Equation (40)) on Se do not exist in the
single coordinate system of the RNS module. When computing those integrals as well
as the surface integrals at Sb and Sa in a given coordinate system (e.g., on COCP-NS-1),
the integrands are computed using the variables of another coordinate system (e.g., from
COCP-NS-2). In this way, solutions between coordinate systems communicate between
each other in order to achieve a smooth solution everywhere. Therefore, to compute the
integrands on the surface integrals at Sa, Sb, and Se, three-dimensional interpolations from
nearby points of another coordinate system is needed. In total, the Poisson solvers take
∼41% of the time of an iteration. The time of the Poisson solvers in each COCP-NS patch is
∼17%, while in the ARCP, it is ∼7%. The big difference between them is due to the fact
that patch ARCP does not have an excised sphere Se. The surface integral in the off-center
sphere Se is the most time-consuming operation (∼11%), and it involves the computation
of the corresponding associated Legendre functions, which are five-dimensional arrays of
(r, θ, ϕ, ℓ, m). In the current implementation, this time-consuming operation is performed
on the fly every time such an integral is calculated in order to have a smaller memory
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footprint. Note that these functions do not change during the iteration procedure and in
principle can only be calculated once. Such an array in the E3.5 resolution will be ∼9 GB.

Algorithm 2 Binary neutron star

1: procedure NSNS
2: for all Coordinate Systems A do
3: Interpolate variables from SFC ▷ (3%)
4: Compute Kij ▷ (9%)
5: Compute volume source Equation (A1), SH

6: Compute volume source Equation (A3), Str

7: Compute volume source Equation (A2), Si ▷ (6%)
8: Compute sources on excised surface Se ▷ (1%)
9: Compute ψ, α, β̃i Equation (40) ▷ (41%)

10: Variable update Equation (42) ▷ (1%)
11: Use Equation (35) to compute the rest mass density ρ.
12: Compute Φ Equation (36), (40) ▷ (4%)

13: Compute E
ψ(A), Eα(A), E

β
i (A), Eρ(A), EΦ(A) ▷ (1%)

14: Variable copy between CSs ▷ (2%)

15: if (Eψ(A), Eα(A), E
β
i (A), Eρ(A), EΦ(A) < 10−6

for all A) then
16: exit

In Figure 5, we plot in the upper two panels the speedup Sp (top) and efficiency
Ep (bottom) of the parallelized part of the binary NSNS code (solid lines), as well as the
corresponding measures S and E for the total code (dashed lines). Similar to the RNS
module, Figure 2, we find that for all resolutions the speedup increases until a certain
number of threads; then, it exhibits a sudden small drop, from which point it continues
to increase with the number of threads. One difference with respect to Figure 2 is that the
speedup curves are distinct for resolutions E2.5, E3.0, and E3.0, while for the RNS module
we observe a broad overlap of these curves between resolutions H2, H3, H4. The reason for
this behavior is the communication between the different coordinate systems in the binary
code, which is absent in the single neutron star module. Despite that, the speedup of the
parallelized code reaches values of 12–16 using just ∼36 threads. The efficiency at that
point is ∼40%. This speedup can further increase if more than 60 threads are used. Another
finding in Figure 5 is the fact that for the highest resolution E3.5, the speedup is broadly
constant from ∼26 to ∼35 threads, which is due to the domination of data communication
between the different grids in the calculation process. In the lower three panels of Figure 5,
we also see that the total binary code (including the routines that are nonparallelized) is
six, five, and five times faster than the serial analogue for resolutions E2.5, E3.0, and E3.5
and occurs at 33, 34, and 26 threads, respectively. The distribution of times in the whole
code can be seen on the lower three panels of Figure 5. In the future, we will address the
data communication and memory handling in order to make the binary speedup scale
similarly to the RNS code. In practice, a binary neutron star in quasicircular orbit that
took approximately six days of continuous computation in the E3.0 resolution with the
COCAL code; with PCOCAL, it needs approximately one day using a modest amount of
∼30 threads.

The differences between the PCOCAL and COCAL for a binary neutron or quark
star are ≲10−12 in all coordinate systems for the gravitational variables ψ, α, βi and fluid
variables ρ, Φ, as well as for the constants Ω, C and R0 that appear in the calculation.





Universe 2024, 10, 229 20 of 26

5. Spinning Binary Quark Stars

Given the fact that the state of matter at supranuclear densities is an open question,
there is the possibility that conventional neutron stars contain in their core a phase transition
to strange quark matter, i.e., up, down, and strange free quarks. A quark-gluon plasma has
been observed in heavy ion collision at CERN and RHIC [49]. Also, Bodmer and Witten [50,
51] pointed out that it is possible that the ground state of matter at zero pressure and a large
baryon number is not iron but strange quark matter. Thus, from a theoretical standpoint,
one can have pure quark stars. In [11,12,52–54], we have computed rotating isolated
axisymmetric, triaxial, and differentially rotating quark stars, while in [55], irrotational
binary quark stars have been evolved in grid-based hydrodynamics. Here, we present an
example using the PCOCAL code of a spinning binary quark star, where each companion
has a spin along the axis of the orbital angular momentum.

As in our previous studies, the quark EOS is the MIT model with p = 1
3 (ϵ − 4B) or in

a parametric form

p = Kρ4/3 − B, (47)

ϵ = 3Kρ4/3 + B (48)

where B = ϵs/4 is the bag constant, which is set to 52.5 MeV fm−3, and ϵs is the surface
energy density. The parameter ρ could be regarded as the rest mass density and K is
constant. As explained in [54], changing K does not affect the EOS; thus, we choose this
constant such that at the surface ρs = ϵs, i.e., hs = 1. This is accomplished for

K =

(

c8

256B

)

1
3

= 3.119 × 1015 cm3

s2g1/3
. (49)

Assuming ρs = 1.4ρnuc, this EOS predicts a maximum spherical mass of a quark star

of M
sph
max = 2.1M⊙ with R

sph
max = 11.5 km.

Using the formalism described in Section 2.2 with a spin vector

si = 0.13(−ys, xs, 0) (50)

(xs, ys are coordinates with respect to the quark star center) in Equation (31), and solving
Equations (10)–(12), (31), (35) and (36), we compute here a spinning binary quark star at
37.3 km separation and Arnowitt–Deser–Misner mass of M = 2.84. The quasilocal spin [17]
of each companion is Jql = 0.858 along the axis of orbital motion. This spin angular

momentum corresponds to an approximate dimensionless spin of Jql/(M/2)2 = 0.43. In
Figure 6, we plot the rest mass density (left quark star), velocity potential (right quark
star), contour plots of the conformal factor ψ (green dashed lines), and velocity potential
(brown dashed lines), as well as the fluid velocity with respect to the corotating frame. The
direction of the velocity arrows show that the spin angular momentum is along the positive
z-axis (contrary to the irrotational case) in accordance with Equation (50). From the density
colorbar, we see that the central density ρc is approximately 1.55 times the surface density ρs.
The nonzero surface density is characteristic of the self-bound quark stars, contrary to their
neutron star analogs. For nonspinning (irrotational) binaries of the same surface density
(and rest mass), the central density is higher and ρc/ρs = 1.63. This behavior is similar to
binary neutron stars as well as to isolated rotating neutron/quark stars. Note that in order
to find the quasiequilibrium solution, a root finding method over the central quark star
densities is needed, and therefore, a number of cycles (∼10) of Algorithm 2 is performed.
Pointwise comparison between PCOCAL and COCAL solutions show differences ≲10−12

for all variables.
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Appendix A. Source Terms

The source terms SH, Si, Str, and Sij in Equation (10)–(13) are

SH =
1

8
ψR̃ − hijD

◦

iD
◦

jψ + γ̃ijCk
ijD

◦

kψ

−
ψ5

8

(

Ãij Ã
ij −

2

3
K2

)

− 2πρHψ5, (A1)

Si = −R̃ij β̃
j − habD

◦
aD
◦

b β̃i

+ γ̃ab[D
◦

a(C
m
bi β̃m) + Cm

abD̃m β̃i + Cm
aiD̃b β̃m]

−
1

3
D
◦

iD
◦

j β̃
j −

2α2

ψ6
Ã

j
i D

◦

j

(

ψ6

α

)

+
4α

3
D
◦

iK + γ̃jmD̃jũim + 16παji, (A2)

Str =
αψ

8
R̃ − hijD

◦

iD
◦

j(αψ) + γ̃ijCk
ijD

◦

k(αψ)

+ αψ5

(

7

8
Ãij Ã

ij +
5

12
K2

)

− ψ5LαnK + 2παψ5(ρH + 2S), (A3)

Sij = −
1

3
γ̃ijD

◦

khabDk
◦

hab +
2

3
γ̃ijD

k
◦

Ca
ak

+ 2

[

R̃LI
ij + R̃NL

ij + ψ4

(

1

3
KÃij − 2Ãik Ãk

j

)

+
1

αψ2

(

−D
◦

iD
◦

j(αψ2) + Ck
ijD

◦

k(αψ2)

+ 4D
◦

i(αψ)D
◦

jψ + 4D
◦

iψD
◦

j(αψ)
)

−
1

α
Lαn(ψ

4 Ãij)− 8πSij

]TF

, (A4)

where with magenta color, we signify terms that are due to the nonconformal flat con-
tribution hij. Such terms are zero in the IWM formulation used in the binary neutron
star calculations of Section 2.2. We also define the conformally rescaled shift as β̃i = βi;
therefore, β̃i = γ̃ij β̃

j = ψ−4βi. The covariant derivatives associated with γij, γ̃ij, and fij are,

respectively, D, D̃, and D
◦

. It is

Diβ
k = D̃iβ

k + C̃k
ijβ

j (A5)

D̃iβ
k = D

◦

iβ
k + Ck

ijβ
j (A6)

where

C̃k
ij =

2

ψ
(γ̃k

iD̃jψ + γ̃k
jD̃iψ − γ̃ijγ̃

kmD̃mψ) (A7)

Ck
ij =

1

2
γ̃km(D

◦

ihmj + D
◦

jhmi − D
◦

mhij) (A8)

and

Ck
kj =

1

2γ̃
D
◦

jγ̃ = 0, C̃k
kj =

1

2γ
D̃jγ (A9)

as γ̃ = f . In the case where Cartesian coordinates are used for the flat metric, i.e., fij = δij,

then D
◦

is the usual partial derivative ∂ and ∆
◦

is the Laplacian in Cartesian coordinates. The
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superscript TF means the trace-free part. The conformal trace-free extrinsic curvature is
written as

Ãij =
1

2α
[(L̃β̃)ij − ũij], ũij := [∂tγ̃ij]

TF, (A10)

where L̃ is the conformal Killing operator: (L̃β̃)ij = D̃i β̃ j + D̃j β̃i −
2
3 γ̃ijD̃k β̃k.

The matter sources that appear on the right-hand side of Equations (A1)–(A4) are

ρH := Tµνnµnν, (A11)

ji := −Tµνγ
µ
in

ν, (A12)

S := Tµνγµν, (A13)

Sij := Tµνγ
µ
iγ

ν
j. (A14)

Another important term in our system is the one that involves R̃ij, the 3D Ricci tensor
associated with the conformal geometry γ̃ij. One can show [56] that

R̃ij = −
1

2
∆
◦

hij + R̃LI
ij + R̃NL

ij , (A15)

where

R̃LI
ij :=

1

2
( fikD

◦

jΓ̃
k + f jkD

◦

iΓ̃
k), (A16)

R̃NL
ij := −

1

2
(habD

◦
aD
◦

bhij + D
◦

ih
abD

◦

bhaj + D
◦

jh
abD

◦
ahib)

+
1

2
[D
◦

i(hkjΓ̃
k) + D

◦

j(hikΓ̃k)]

− D
◦

iC
k
kj + Ck

kmCm
ij − Γ̃kCkij − Ck

imCm
kj, (A17)

and
Γ̃i := −D

◦

jγ̃
ij = −D

◦

jh
ij (A18)

Notice that the terms R̃LI
ij , R̃

NL
ij enter into Equation (A4), which we discuss below. The

nonlinear term R̃NL
ij is second order in hij and therefore smaller than the first-order terms

R̃LI
ij and ∆

◦
hij in Equation (A15). The term R̃LI

ij involves the gauge functions Γ̃i, which are

the conformal connection functions in the BSSN formulation [57–59]. For initial data, in
order for the whole system (A1)–(A4) to converge, these functions must be fixed [21,56]

Γ̃i = −Hi (A19)

where Hi is known. Equation (A19) is related to our freedom in choosing spatial coordinates.
In order to impose Equation (A19) to the solutions of the system Equation (A1)–(A4) and
thereby having a self-consistent iteration scheme, an adjustment is necessary for the hij.
Following [43], (or [8] Equations (29)–(32)) gauge vector potentials ξa are introduced
through the transformation

δγij → δγij − Di
◦

ξ j − Dj
◦

ξ i, (A20)

which are then used to adjust hij as

hij ′ = hij − Di
◦

ξ j − Dj
◦

ξ i +
2

3
f ijD

◦

kξk . (A21)
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Here, hij ′ are chosen to satisfy the condition D
◦

ih
ij ′ = H j given by (A18). The gauge

vector potentials ξ i are then solved from the elliptic equations,

∆
◦

ξ i = D
◦

jh
ij −

1

3
Di
◦

D
◦

jξ
j − Hi, (A22)

and subsequently, the hij are replaced by Equation (A21).
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53. Zhou, E.; Tsokaros, A.; Rezzolla, L.; Xu, R.; Uryū, K. Rotating Quark Stars in General Relativity. Universe 2018, 4, 48.

https://doi.org/10.3390/universe4030048.



Universe 2024, 10, 229 26 of 26

54. Zhou, E.; Kiuchi, K.; Shibata, M.; Tsokaros, A.; Uryu, K. Evolution of bare quark stars in full general relativity: Single star case.

Phys. Rev. D 2021, 103, 123011. https://doi.org/10.1103/PhysRevD.103.123011.

55. Zhou, E.; Kiuchi, K.; Shibata, M.; Tsokaros, A.; Uryu, K. Evolution of equal mass binary bare quark stars in full general

relativity: Could a supramassive merger remnant experience prompt collapse? Phys. Rev. D 2022, 106, 103030. https:

//doi.org/10.1103/PhysRevD.106.103030.

56. Shibata, M.; Sekiguchi, Y. Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general

relativity. Phys. Rev. D 2004, 69, 084024.

57. Nakamura, T.; Oohara, K.; Kojima, Y. General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes.

Prog. Theor. Phys. Suppl. 1987, 90, 1–218. https://doi.org/10.1143/PTPS.90.1.

58. Shibata, M.; Nakamura, T. Evolution of three-dimensional gravitational waves: Harmonic slicing case. Phys. Rev. D 1995,

52, 5428–5444. https://doi.org/10.1103/PhysRevD.52.5428.

59. Baumgarte, T.W.; Shapiro, S.L. Numerical integration of Einstein’s field equations. Phys. Rev. D 1999, 59, 024007. https:

//doi.org/10.1103/PhysRevD.59.024007.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	The Initial Value Equations
	Rotating Neutron Star in the Waveless Formalism
	Axisymmetric Rotating Neutron Stars
	Triaxial Rotating Neutron Stars

	Binary Neutron Stars in the IWM Formalism

	Numerical Methods
	Single Rotating Neutron Star
	Binary Systems

	Speedup and Efficiency Results
	Single Rotating Neutron Star
	Binary Neutron Stars 

	Spinning Binary Quark Stars
	Conclusions
	Appendix A
	References

