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Abstract—An innovative method to raise wireless communi-
cation systems’ efficiency is to use Reconfigurable Intelligent
Surface (RIS). Unfortunately, determining the quantity and
locations of the RIS elements continues to be difficult, requiring
a clever optimization framework. Concerning the practical over-
lap between the related multi-RISs in wireless communication
systems, this paper attempts to minimize the number of RISs
while considering the average possible data rate and technological
constraints. In this regard, a novel Enhanced Artificial Rabbits
Algorithm (EARA) is developed to minimize the number of
RISs to be installed. The novel EARA is inspired by the
natural survival strategies of rabbits, including detour eating
and random concealment. A more effective method of exploring
the search space around the best solution so far is produced by
the suggested EARA by combining an upgraded Collaborative
Searching Operator (CSO) arrangement. Also, an adaptive time
function is included to increase the effect of this exploitation tactic
by the increasing number of iterations. The simulation results
show that the suggested EARA is highly efficient in reaching
the maximum success rate of producing the smallest number
of RISs under various feasible rate threshold settings. When
EARA is compared to standard Artificial Rabbits Optimizer
(ARO), Growth Optimizer (GO), Artificial Ecosystem Optimizer
(AEO), and Particle Swarm Optimization (PSO), the average
number of RISs is improved by 5.32%, 6.7%, 16.73%, and
20.06 %, respectively. Furthermore, according to simulation data,
the EARA outperforms AEO, GO, ARO, and PSO in terms of
success rate at 6 = 1.4 by 6.66%, 6.66%, 45.43%, and 99 %,
respectively.

Reconfigurable intelligent surfaces, Wireless communica-
tion, Artificial Rabbits Algorithm, Achievable rate limitation.

I. INTRODUCTION

While the Sth-generation cellular network (5G) continues
to be deployed globally, academic and industry communities
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have focused on imagining the post-5G future, also known
as Beyond 5G (B5G). The upcoming sixth-generation cellular
networks (6G) is now in the spotlight, as it is intended to meet
even more demanding requirements than its predecessor [1]-
[5]. These requirements include incredibly high data speeds,
energy efficiency, flawless global coverage and connectivity,
outstanding dependability, and low latency. But meeting these
demanding standards with current technological trends—Ilike
Enhanced Mobile Broadband (eMBB), Ultra Reliable Low
Latency Communications (URLLC), and massive Machine
Type Communications (mMTC)—tailored for 5G services
poses difficulties begging for innovative solutions [4], [6]-[8].
Using the RIS in wireless communications is one of these
creative solutions [9], [10].

With arrays of antenna elements, RISs can assist in estab-
lishing a Line-of-Sight (LOS) link between the transmitter and
the receiver even in the presence of obstacles or when the
received power from the direct path is insufficient to create
a dependable connection [10]-[13]. Hybridization holds great
promise with its potential to accomplish significant network
capacity growth cost-effectively and guarantee sustainability
going forward. However, even with its great potential, new
challenges arise when RIS is integrated into wireless networks,
which must be successfully overcome. They consist of precise
channel estimation, reflection mechanism optimization, and
the challenging work of installing RIS while maintaining
the integrity of communication design principles [4]. The
effectiveness and efficiency of RISs are significantly impacted
by their placement. The number of access points may be
decreased by optimally locating the RISs. As such, one of
the issues facing the deployment of RISs [14] is the selection
of these places. We summarize the related work, then go into
a motivation and research problem, and end the introduction
section with a quick discussion of the research gap and the
paper’s main contribution.

A. Related Work

Numerous studies have been conducted on the use of
optimization algorithms for RIS placement. With the aid of
RISs, the authors in [15] examined how well range estimation
performs for a cellular user in a millimeter-wave (mm-wave)
network utilizing received signal strength indicator (RSSI)
measurements. First, they present the best practice for RIS
deployment, which is to minimize the total likelihood of



blocking both the user’s connection to the base station (BS)
and the RIS connection. The authors then go on to describe
a method of range estimation based on specific constraints.
In [16], the authors discussed localization algorithms based
on near-field (NF) and offered RIS as a solution to a partic-
ular issue. Accurate and simultaneous localization of several
energy-constrained devices is a crucial need in a variety of
location-based Internet of Things (IoT) applications.

One paper that suggests and tackles the optimization prob-
lem for RIS-aided networks is [17] in which the authors
created a new optimal location-based RIS selection criteria
for RIS-aided wireless networks. They boost the signal-to-
noise ratio (SNR) for a power path loss model for outdoor
communications and an exponential path loss model for indoor
communications. n [18], an alternative optimization problem
was also put forth. The authors utilized the LoS link between
nearby RISs to construct a multi-hop cascaded LoS link
between the BS and the user. A fairly recent study on RIS-
aided network performance optimization is reported in [19].
By dynamically controlling the on-off status of each RIS
and modifying the RIS’s reflection coefficient matrix, the
network’s energy efficiency was maximized. Also, multiple
RISs are deployed to handle wireless users.

Further details on optimization problems in RIS-aided net-
works with multiple RISs may be found in [20] and [21]. A
multi-RIS-assisted system for indoor and outdoor communica-
tions was examined by [22]. To achieve the lowest complexity
of transmission, the authors proposed a RIS selection tech-
nique that selects the RIS with the maximum SNR to support
the communication. However, optimizing the RIS phase shifts
is a major challenge in real-world RIS-assisted systems [23]-
[29]. Recently, the RIS setup of point-to-point multiple-input
multiple-output (MIMO) systems has been enhanced in [23]
to boost the channel capacity. A URLLC system with a
dedicated RIS assisting the BS in transmitting brief packets
in a Finite Blocklength (FBL) scenario was explored in [30].
A greedy algorithm was used in [31] to solve the user grouping
problem, and a semi-definite relaxation technique was used to
address the proposed optimization problems. Authors in [32]
examined a RIS-assisted multiple-input single-output (MISO)
system to adjust the BS transmit beamforming and the passive
beamforming at the RIS to optimize the total achievable rate in
the infinite blocklength regime. Joint relay selection and RIS
reflection coefficient optimization were studied in cooperative
networks [33].

In [34], the authors presented a novel method for organizing
elements in centralized RIS, a set of groups comprised of
nearby RIS elements with the same reflection coefficient.
They proposed an efficient transmission protocol based on this
grouping technique, wherein the aggregate channel estimation
for each group is the only thing needed. The overhead of
training is greatly decreased by using this method. In [35], the
authors use a single RIS to optimize both the transmit beam-
forming vectors at the BS and the reflection coefficient vector
at the RIS to reduce the total transmit power. To get a locally
optimal solution in this context, an effective approach based on
the alternating direction method of multipliers (ADMM) and
second-order cone programming (SOCP) is presented. Authors

of [36] described how an RIS-assisted downlink multi-user
system’s power distribution and phase shifts were designed in
tandem to optimize energy efficiency.

For multi-hop RIS-assisted communication systems, the au-
thors of [37] suggested a hybrid beamforming approach to in-
crease the coverage range in the terahertz frequency spectrum.
The authors of [38] examined the effect of phase noise on the
optimization problem of RIS-assisted communication systems
across generalized fading channels. Furthermore, it has been
demonstrated by the authors of [39] that uniformly dispersed
deployments of the same magnitude outperform centralized
RIS deployments in terms of performance. Furthermore, [40]
examined single-RIS and multi-RIS deployment approaches
for RIS-assisted relay systems and showed that a higher system
capacity could be attained by multi-RIS deployment.

Nevertheless, the research in [41] demonstrated that the
centralized deployment outperforms the dispersed one in terms
of capacity description. These investigations compared central-
ized (single-RIS) versus scattered (multiple-RIS) installations
rather than site optimization. The study in [42] indicates that
the closer the RIS is to the user or BS, the higher the SNR
that may be yielded; however, the impact of RIS orientation
is ignored because the RIS unit was considered an isotropic
radiator.

The authors of [43] optimize the positioning of RISs to
maximize the coverage area in an indoor environment. They
offer 3D hybrid beamforming at the BS and phase adjustment
at the RISs. These tasks are simultaneously carried out at the
RISs and the BS using low-complexity codebook-based 3D
beam scanning. The transmit precoder and the placement of
active and passive components in the hybrid reconfigurable
intelligent surfaces’ coefficients are cooperatively designed
by the authors of [44] in order to maximize the SNR. The
study conducted by the authors of [45] focuses on a RIS-
assisted downlink communication system that can transmit and
reflect simultaneously. The system seeks to maximize the sum
rate of users in NLOS areas by optimizing the beamforming
at the BS and the RISs. When there is just one RIS per
sector, the authors of [46] demonstrate that the best location
for RIS to attain broader coverage is precisely opposite to
the BS. They deduce the possible sum rate in the presence
of optimal, discrete, and random phase shifters at RIS by
suggesting a novel beamforming architecture for RIS-assisted
cellular systems. A maximization problem was developed by
the authors in [47] to aid in the optimization of RIS placement
and discrete phase design, which are bounded by the coverage
probability.

Recently, Wang et al. presented the novel Artificial Rab-
bits Algorithm (ARA), which draws inspiration from rabbits’
innate coping mechanisms as detour feeding and spur-of-the-
moment hiding. This ARA’s main motivator highlights the
features that render it effective in solving numerous optimizing
issues [48]. The rabbit is forced to eat grass that grows
next to the nests as part of the detour foraging strategy to
keep predators from finding their home. Furthermore, a rabbit
may use the stochastic concealing technique to select any
of its private residences at random to flee to, which might
lessen the likelihood that potential adversaries would catch



it. Rabbits’ energy levels might also wane, causing them
change their planned foraging behavior in favor of carel
hiding [49], [50]. To reduce the number of RIS that m
be deployed, a unique EARA is created in this study. ]
survival tactics used by rabbits in nature, such as det
feeding and haphazard hiding, served as inspiration for
proposed EARA. It combines an improved CSO arrangem
with an adaptive time function to generate a more effect
way of exploring the search space around the best solution
far. The main contribution of the paper is shown below.

B. Motivation of the Research Problem

The IoT involves the interconnection of a multitude
devices and sensors, which are often deployed in dive
environments with varying signal strengths, interference, and
propagation conditions. RIS introduces a new paradigm in
wireless communication that can enhance the connectivity
and communication quality of IoT devices. RIS can opti-
mize communication paths and mitigate issues like signal
attenuation, interference, and multipath fading. Additionally,
RIS optimization improves energy efficiency by optimizing
communication paths and reducing the need for IoT devices
to transmit signals over longer distances.

Therefore, the optimization of RIS placement has become
an essential undertaking as RIS deployment picks up steam. In
order to take advantage of their reflected qualities and improve
the wireless environment, RIS elements must be strategically
positioned. Finding the best places to install RIS parts in a
certain environment is the basic idea behind RIS placement
optimization. The objective is to intelligently reflect and refract
electromagnetic waves in order to alter signal propagation and
establish the desired communication characteristics.

C. Research Gap and Main Contribution

Previous studies have only used the RIS to extend coverage,
considering its position; however, there is limited research
done on how to deploy the RIS to further spread out cell
coverage. Additionally, without regard to the RIS area, the
majority of research efforts in the literature concentrate on
solving conventional wireless communication issues under
the new premise of an assisted metasurface solution. Last
but not least, there has not been adequate investigation of
how to implement RIS optimally in a scenario with several
users. Considering the aforementioned, to fill this gap, this
paper explores the RIS deployment position optimization for
wireless communication systems assisted by multiple RISs
and serving multi-users. We characterize a facility placement
challenge as a RIS deployment problem, which enables us
to figure out where to deploy RIS and optimize the wireless
network’s total data flow. We also study how various parame-
ters affect communications facilitated by RIS. Furthermore,
a novel robust algorithm for jointly determining the phase
shift coefficients, number, and locations of RISs is proposed
in order to reduce the total number of RISs exposed to the
average possible data rate. The efficiency of the proposed
technique is verified through comparison with baselines in a
multiRIS-aided wireless communication system.
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Fig. 1: System model.

The main contributions made in this work are as follows:

1) Advanced optimization framework: Introduces an ad-
vanced model considering wireless communication sys-
tems employing RIS assistance to provide reflecting path-
ways that improve received power at multi-user equip-
ment.

2) Real-world application: Achieve the highest possible
rate with the minimum RISs considering real-world sys-
tem restrictions by ascertaining the number, positions, and
phase shift coefficient of RISs.

3) Novel EARA optimizer: Develop a novel efficient
EARA utilizing upgraded CSO arrangements and adap-
tive time functions to enhance exploration of the solution
space, improving the algorithm’s effectiveness in reaching
optimal solutions.

4) Superior Performance: Demonstrates EARA’s su-
periority over contemporary optimization algorithms
(AEO [51], GO [52], ARO, PSO) through comprehen-
sive simulations, showcasing its ability to minimize the
number of RISs required for optimal system performance.

The rest of the paper is organized as follows. The system
model is described in Section II. The proposed EARA algo-
rithm for optimal placement of RIS elements is presented in
Section III. Numerical results are provided in Section IV to
verify the performance of the proposed algorithm, whereas
conclusions are presented in Section V.

Notation: We use boldface (lower case) for column vec-
tors, x, (upper case) for matrices, X. Let X_l, XH, XT,
and X' denote the inverse, conjugate transpose (Hermitian),
transpose, and pseudo-inverse of X, respectively. The matrix
trace function is denoted by tr(X). ||.|| is the Euclidean norm.
A circularly symmetric complex Gaussian random vector x is
denoted by & ~ CN(u,y), where p is the mean and - is the
covariance matrix. The set of all complex numbers is denoted
by C. with CV*! and CVN*M being the generalizations to
vectors and matrices, respectively. The M x M identity matrix
is written as I ;.

II. SYSTEM MODEL

We propose a multi-RIS-aided wireless communication sys-
tem in indoor settings such as stadiums and halls, as seen in



Figure 1. In this system, K single-antenna user equipment
(UE) connects with a single-antenna Access Point (AP) in
orthogonal time slots with the help of N equal-size RISs.
Our supposition is that each RIS installed on the ceiling is
a homogeneous planar array with M reflecting elements.

A. Communication Channel Model

Let&, = (£0,1,8n.2, s §n,M)T is referred to the phase shift
coefficient of RIS n, and E,, = diag{eié1 elénz .. elénn}
is used to represent the phase shift coefficient matrix of RIS
n. Along with that, we also designate g;,, € CM*1 a5 the
channel vector from RIS n to the AP, g, . € CM*! as the
channel vector from UE k to RIS n, and g, ,, € C'*! as the
channel from UE k to the AP. Both UE-RIS and RIS-AP lines
employ the Rician fading channel model. Consequently, gy, ,.
is written as

€ 1
9., = Sbor, (1/ H_ilen(Wmﬁbn) +4/ e—|—1fb’r"> (D

where S, . stands for the path loss between RIS n and the AP,
the Rician factor is represented by e. The array response of RIS
n is denoted by e,, € CM*1; where 7, is the azimuth angle
and ¢,, is the elevation angle of departure for the link between
RIS n and the AP. f, . represents the direct components and
their elements are chosen from CN(0, 1). Similarly, g, ,, is
expressed as

Irpue =

€ ’ ’ / 1
S’rn,uk <\/:en(7n7 ¢n) + G—Flfrn’uk> (2)

where ~,, and ¢,, is the azimuth and elevation angle, respec-
tively, for the link between RIS n and UE k. The direct channel
between user k and the AP is stated as

9buy, = Sb,ukfb,uk (3)

where the path loss between UE k and the AP is indicated by
Sb.u, - The received signal at the AP from RIS n is given by

ZAPmn = (gfrnanhrmuk + gb,uk)x +v (4)

where x is the transmitted symbol with power pyg,
gfrn E,h, 4, is the effective channel including RIS n phase
shift and g, is the channel gain of the direct path, v
represents the noise with NC(0,0?). The received SNR is
given by

o2

N H = 2
SNR — <pk|ab,ukgb,uk + 27,,:1 ab,rngb,rn—'ngrn,uk| >

5)
The achievable sum rate of user & is shown in (6).
Where the parameters o, and o j satisfy

0 if the link between RIS n and
AP is blocked @)
1 otherwise

Qb,r, =

0 if the link between RIS n and
AP is blocked ()
1 otherwise

ab,uk =

B. Problem Formulation

In this paper, we introduce a method for concurrently op-
timizing the quantity, distribution, and RIS reflection patterns
in an RIS-aided wireless communication system. The resulting
parameters are evaluated to demonstrate the effectiveness of
the proposed approach. The suggested method reduces the
quantity of RIS subject to the feasible rate under certain system
restrictions, which is represented as

minimize N 9
Nv{ynvzn}vgn
subject to

1 X
% > Ri>9 (10a)

k=1
Tmin < Ty < xmamvn € {1 : N} (10b)
Ymin < Yn < ymar,Vn S {1 : N} (100)
min{|x, — x|, |Yn — Ye|} > L,¥n,c€ {1: N}  (10d)
Nmin é N S Nmax (106)

where {z,,y,} is the location of RIS n and L denote the
size length of each RIS. The constrain (10a) ensures that the
achievable rate for all users is larger than 4, (10b) and (10c)
illustrate the location restrictions of the RISs. We use (10d) to
ensure that RISs are not overlapping, and (10e) ensures that
the number of RISs is between [Nyin, Nmaz]-

IIT. PROPOSED EARA FOR OPTIMAL PLACEMENT OF RIS
ELEMENTS

ARO algorithm provides a straightforward implementation
and exhibits rapid convergence towards favorable solutions by
identifying the top participants within the search region. The
ARO’s performance is effectively validated across a variety of
scenarios, including 23 benchmark functions and 5 engineering
design problems [48]. These tests showcase the algorithm’s
proficiency in solving global optimization problems. The ARO
algorithm stands out for its simplicity in implementation
and the straightforward nature of its mathematical models.
These characteristics render it well-suited for addressing chal-
lenges posed by nonlinear, high-dimensional, and multimodal
problems commonly encountered in literature. Examples of
these successful applications include improving the smart IoT
environment against botnet attacks [53], optimal power flow
in electrical power systems [54], optimal Designing of hybrid
microgrid [55], parameter calibration of flood routing [56],
dispatch in combined heat and power systems [57], load
frequency control in isolated microgrids [58], medical data
classification and emergency monitoring in hospitals [59],
Sizing of Water Storage Tank integrated with Photovoltaic
Pumping System [60]. In this section, the proposed EARA
algorithm is presented in the first part, while its adoption for
handling the proposed model is illustrated in the second part.
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A. Proposed EARA

Detour feeding and random hiding are two tactics that the
ARA mimics from how rabbits behave in their natural envi-
ronment. The diversion foraging strategy is initially mimicked,
where the rabbit is forced to eat the grass around neighbouring
nests, giving the capability to quickly hide from attackers. Sec-
ondly, by employing the randomized concealment technique,
it may be possible to lessen the likelihood that an enemy
might catch a rabbit. Thirdly, when energy is depleted, rabbits
may be forced to switch from their detour eating strategy to
an irregular hiding technique [48]. Each iteration modifies
the population of rabbits’ positions in accordance with the
fitness function. The search solutions indicate the locations of
the rabbits, which are modified and upgraded as the process
goes on. According to equation (11), each place in the initial
population is assigned a randomly chosen site inside the search
space:

ARy =Lo+ Ry x [Up—Lo|, k=1:Nagr (11)

where ARy, indicates the place of every artificial rabbit in-
dexed by (k). Lo and Up are the lower and upper limits
regarding the control variables. N4 g refers to the population
size regarding the number of the considered artificial rabbits.
Ry is a vector of Dim dimensions which includes random
continuous values between 0 and 1.

According to the ARA’s detour foraging strategy, every
pursuing rabbit decides to trade places with a different one that
is randomly selected from the swarm and combines distraction.
The forage that rabbits use as a diversion is described as shown
in equations (12), (13), (14).

_ 1L iftm=g¥),
v(m) = { 0, otherwise. ’
m=1:Dim & p=1:[z3, Dim] (13)
g = Randp(Dim) (14)

where the current iteration is denoted by ¢; The k-th rabbit’s
new and old positions are designated as AR; and ARy,
respectively; ST defines the standard function associated
with the normal distribution; z;, zo and z3 comprise three
randomly selected values spanning the interval [0, 1], and
tmaz provides the greatest number of repetitions. Randp is
a randomizing permutation function.

A rabbit usually digs many tunnels close to the nest to use
as cover when fending off predators. This is illustrated by the
formula shown in equations (15), (16).

1 tmam —t
B (t) = ARy () x (1 + (24 x ~—maz 1

k=1:Nar & m=1:Dim

),
(15)

my—{ L ifm=k
H 1 0, otherwise.

where z4 appears to be an integer chosen at random from [0,
1]; Bug,m is the m-th burrow of the k-th rabbit. Based on
this characteristic, these burrows are originally constructed in
a rabbit’s larger surroundings. This region gets smaller as the
number of iterations increases.

Rabbits need to locate a secure area to dwell in order to
continue. They are so discouraged from picking a hole at
random from those present that they must bury themselves
in it. The algebraic equation shown below can be used to
illustrate this randomized hiding method:

. m=1:Dim (16

AR (t+1) = ARK(t) + v x (e — eltmaz))
x sin(2mze) (25 X Bug,m(t) — ARk(t)),k =1: Nagr
a7

If diversion foraging or arbitrarily hiding are successful, the
kth rabbit’s position is changed as shown in equation (18) in
next page.

Moving from the discovery phase related to detour foraging
to the exploit stage related to randomized concealment in-
cludes an energy component. The following definition applies
to the energy factor (EF):

EF(t) =4 x (M) X In— (19)

tmax Zr

In order to enhance the searching skills while avoiding local
optima, a CSO arrangement is adopted in order to effectively
support the exploration of the best solution so far. In order
to incorporate it, equation (12) is modified by substituting
the current searching rabbit (AR (t)) with the best solution
so far (ARg) as shown in equation (20). In the suggested
EARA model, both equations are activated, and an adaptive
time function is modeled in equation (21).

t

TE(t) = 2 X tmaz

2D
where T'F' is the suggested time function in terms of the
current iteration. Based on its updated value, there is a
transfer between the standard detour foraging form in equa-
tion (12) and the proposed model incorporating the CSO in
equation (20). With the increasing number of iterations, the
probability of activating the proposed CSO model is gradually
increasing, as is the effect of the exploitation tactic. Figure 2
displays the main steps of the proposed EARA for solving the
optimal placement of RIS elements.

B. Adoption of the Proposed EARA for Optimal Placement of
RIS Elements

In the proposed optimization framework, equation (9) repre-
sents the objective function, which is the minimization of the



AR (E+1) = ARy (t) + (ARu(t) — ARm(t)) x v x (¢ — e#a)?) x sin(2m25) + ST round(% x (% +21),
m,k=1:Nagr , m#k (12)
| ARg(t), if f(ARg(t) < f(AR};(t +1),
AR(b+1) = { ARL(E+1),  FARW(®) > ARt +1) a8
ARL(E+1) = ARy (t) + (ARs — ARy (1)) x v x (¢ — elia)’) x sin(2m2) + ST round(% x (% +21),
mk=1:Nagr, m#k (20)

quantity of RISs, where the design variables are N, z, and
y. Based on that, there are limitations on these variables as
displayed in Equations (10e), (10b), and (10c), respectively.
On the other side, inequality constraints due to independent
variables are handled where the constraint (10a) ensures that
the achievable rate for all users is larger than and Equa-
tion (10d) to ensure that RISs are not overlapping. In order
to adopt the proposed EARA for solving the proposed model,
different enhancements should be implemented, as displayed
in Block A in Figure 2 as follows:

First, each solution vector, the rabbit position, is assigned to
the design variables, which are the number of RIS to be placed
and their distribution patterns in the model of the RIS-aided
wireless communication system that is being shown. These
control variables come in two varieties, where the installed
locations are continuous and the number of RIS is an integer.
The number of RIS is treated as a continuous range since the
EARA typically operates in a continuous framework before
being rounded to the next integer.

Second, the fitness function measures how well a solution
performs when compared to the optimization aim. Also, the
violating control variable is replaced in this study with a
randomly chosen value that falls within the realistic bounds
of the control variable. As a result, the limitations shown in
equations (10b) to (10d) are assured.

Third, penalty components are being added to the function
of fitness to account for the dependent variable limitations
provided in equations (10a) and (10e). As a result, Equation (9)
is extended to express the fitness function (f) as follows:

N N
f=N+PyuAGH+> > PpAGK,. (22)

n=1c=1

where Py, and Pys are penalty factors, AGH and AGK are
defined as follows:

GH = { Oa L K if % Z?:l Rk Z ‘Qa (23)
|Q — % > k1 Bel, otherwise
According to the aforementioned framework, unrealistic
solutions that are unable to satisfy one or more restrictions are
going to receive a high fitness score, which makes it unlikely
that they will be carried over to the subsequent iteration.

The complete pseudo-code of the proposed methodology is
attached in the appendix section VI.

IV. NUMERICAL RESULTS

In this section, we perform numerous case studies to
evaluate the superiority of the EARA algorithm over the
other techniques. These methods were all developed with the
goal of simultaneously optimizing RIS quantity and location.
Take into consideration a wireless communication system with
several RISs in which users are dispersed randomly within a
square with vertices of [0, 0, 0], [0, 10, 0], [10, 10, 0], and
[10, 10, O] m. The RISs are arranged within the square with
vertices of [0, 0, 10], [0, 10, 10], [10, 0, 10], and [10, 10, 10]
m. Four vertices at [0, 0, 0], [0, 0, 2.25], [10, 0, 2.25], and [10,
0, 0] m specified the location of the wall, and the coordinates
of the AP were also set to [5, -10, 1] m (c.f. Figure 1).

Path loss modeling is done as follows: PL = PLy —
108 1og(%); path loss at reference distance dy = 1m is
PLy = 20dB; d is the distance between transmitter and
receiver; and the path loss exponents of the UE-RIS-AP link
and the UE-AP link are set to 8 = 2.2 and 3 = 4, respectively.
Each RIS in the simulation has M = 100 elements, and there
are K = 20 single antenna users. The transmit power of user
k is pr = 1mW, the size length of each RIS element is
L = 0.3m, and the Rician factor is ¢ = 10. o2 is the noise
power for SNR = —23dB and number of RISs is between
Npin =1 and Np,q, = 10.

There are four subsections within the simulation section.
The box plot in the first part displays the number of RIS
elements that are retrieved by various algorithms, with the
lowest, median, and maximum values displayed. In the second
part, the number of RISs for different optimization algorithms
is displayed. The convergence plot presented in the third sec-
tion illustrates the fitness value. In the end, each optimization
technique’s success rates are presented.

The box plot ! of the number of RISs for various opti-
mization strategies is shown in Figure 3, which compares the

A box plot presents the data set’s five-number summary. These numbers
are minimum, first quartile, median, third quartile, and maximum. The first
quartile to the third quartile is where we draw a box in a box plot. Through
the box at the median is a vertical line.
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Fig. 2: Main steps of the proposed EARA.
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Fig. 3: Box plot of the minimum number of RISs obtained by the proposed algorithm and the baselines over thirty runs.

the EARA optimizer algorithm has the fewest number of RISs.
The EARA optimizer attains a minimal number of RIS that

EARA algorithm to others. Through all conceivable configu-
rations of the rate cutoff §, the simulation demonstrates that



isequal to N =2, N =3, and N =4 for § = {1,1.1,1.2},
d=1{1.3,1.4,1.5,1.6},and § = {1.7,1.8,1.9, 2}, correspond-
ingly. Furthermore, the AEO and ARO are the EARA-closest
algorithms at § = {1.1,1.3}. EARA further demonstrated the
algorithm’s resilience by guaranteeing the nearest values for
every run (small box size).

Following the display of the box plot, which illustrates
the lowest, median, and maximum number of RISs for each
optimization procedure, we simulate in Figure 4 the number of
RISs for various optimization strategies. This figure indicates
that EARA is superior at all rate threshold values §. When
EARA is compared to standard ARO, GO, AEO, and PSO, the
average number of RIS is improved by 5.32%, 6.7%, 16.73%,
and 20.06%, respectively.

-©-Go
| |[-A&-Pso
AEO

~

-8-ARO

-©-EARA

(o]
T

Number of RISs

o (bps/Hz)

Fig. 4: Number of RISs obtained by the proposed algorithm
and the baselines over thirty runs.

A useful metric for contrasting optimization techniques is
the fitness value. The fitness value for several algorithms
is plotted against the number of iterations in Figure 5. We
observed that the value of the rate threshold § is correlated with
the number of iterations required for each optimization tech-
nique to converge. The number of iterations required grows
with the rate §. As stated otherwise, all algorithms converge
after 9, 18, 35, 55, 90, and 100 iterations, respectively, for
0=1,6=12,0=14,6=16,9 =18 and § = 2. In
addition, the GO, ARO, and EARA algorithms converge more
quickly than other algorithms.

Several recent artificial intelligence optimization algorithms
are employed in this study to optimize and solve the proposed
complex problem. In the context of optimization algorithms,
Artificial intelligence (AI) techniques are applied to create
algorithms that can adapt, learn, and improve their perfor-
mance over time. Examples of the Al optimization algorithms
employed in our study include standard ARO, GO, AEO,
and PSO. We investigated and conducted a more comparative
analysis, which is divided into different main parts, as follows:

1) Analysis of the performance indices in terms of the
obtained Mean, Median, and Success Rate for GO, PSO,
AEO, ARO and improved ARO (EARA) for different
values of §. (c.f. Table I)

2) Analysis of Best and Worst Case Scenarios. This can
provide a more comprehensive understanding of its per-
formance across various scenarios. (c.f. Table II)

3) Standard Deviations: Discuss the implications of stan-
dard deviations in the obtained results. The proposed
EARA provides relatively low standard deviations, which
indicate the stability and consistency of the EARA’s
performance. (c.f. Table II)

Table I displays the mean, median, and success rate 2 for
every optimization procedure for various rate values 6. While
Table II displays the best, worst, and standard deviation for
various rate values  for different optimization algorithms. It
is observed that for all rate values §, the EARA yields the
lowest mean and median of the number of RISs. Furthermore,
while considering the success rate in comparison to the other
algorithms, the EARA’s advantage is rather evident. The
EARA is able to reach, at all values of rate threshold ¢, the
minimum number of RISS (Equation (9)). At § = 1.1,1.2},
ARO was unable to reach the minimum, whereas AEO had
two failure rates at § = {1.6,1.7}. At § = 1.2, both GO and
PSO have a zero success rate. Numerically, at § = 1.4, the
EARA promotes improvements in the success rate by 6.66%,
6.66%, 45.43%, and 99% in comparison to AEO, GO, ARO,
and PSO.

V. CONCLUSION

In this paper, the optimization of wireless communications
locations with multi-RIS support is examined. To cut down
on the number of RISs exposed to success rates, a novel
Enhanced Artificial Rabbits Algorithm Optimizer was sug-
gested to optimize the RISs’ positions, numbers, and phase
shift coefficients simultaneously. The proposed algorithm’s
usefulness was illustrated through comparisons with a va-
riety of algorithms, including ARO, GO, AEO, and PSO.
The simulation results demonstrate the high efficiency of the
proposed EARA algorithm in achieving the highest success
rate of obtaining the minimum number of RISs under different
threshold values of the achievable rates. The average number
of RIS is improved by 5.32%, 6.7%, 16.73%, and 20.06%,
respectively, when comparing EARA to standard ARO, GO,
AEO, and PSO. Moreover, simulation results show that the
EARA increases the success rate at 6 = 1.4 by 6.66%, 6.66%,
45.43%, and 99% in comparison to AEO, GO, ARO, and PSO,
respectively.
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VI. APPENDIX

Algorithm 1 Proposed EARA

Input: Population size (N 4r), Maximum iterations number

(tmaz), upper lower bounds (Up and Lo)

Output: Best RIS elements and their installed positions

: procedure EARA

:Sett=1

: Initialize ARy, using Eq. (10)

: Assign to the design variables

: Round the number of RIS to be placed and extract their
distribution patterns

6 for k=1: Nygr do

7: Evaluate AGK using Eq. (24)

8

9

D AW N =

Evaluate AGH using Eq. (23)
Evaluate the fitness of the rabbit location f(ARy)
using Eq.(22)
10: end for
11: Extract the best position with the minimum fitness
score (ARg)
12: while ¢ < t,,,4, do

13: for k=1: Nyg do

14: Evaluate E'F(t) using Equ. (18)

15: if EF(t) <1 then

16: Update AR; using Equ. (16)

17: else

18: Update AR;, using Equ. (16)

19: Generate a random number (RNV) inside the
range [0,1]

20: if RN > TF(t) then

21: Update AR; via Equ. (11)

22: else

23: update AR} via Equ. (19)

24: end if

25: end if

26: Assign to the design variables

27: Round the number of RIS to be placed and
extract their distribution patterns

28: Evaluate AGK using Equ. (24)

29: Evaluate AGH using Equ. (23)

30: Evaluate the fitness of the rabbit location
(f(ARy)) using Equ. (22)

31: Update the rabbit location using Equ (17)

32: end for

33: Update the best position with the minimum fitness
score (ARg)

34: end while

35: Print the best RIS elements and their installed posi-
tions regarding the best position (ARg)
36: end procedure
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