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Abstract—As vehicular communication networks embrace
metaverse beyond 5G/6G systems, the rich content update via
the least interfered subchannel of the optimal frequency band
in a hybrid band vehicle to everything (V2X) setting emerges
as a challenging optimization problem. We model this problem
as a tradeoff between multi-band VR/AR devices attempting to
perform metaverse scenes and environmental updates to metaverse
roadside units (MRSUs) while minimizing energy consumption.
Due to the computational hardness of this optimization, we
formulate an opportunistic band selection problem using a multi-
armed bandit (MAB) that provides a good quality solution in
real-time without computationally burdening the already stretched
augmented/virtual reality (AR/VR) units acting as transmitting
nodes. The opportunistic use of scheduling rich content updates
at traffic signals and stand-still scenarios maps well with the
formulated bandit problem. We propose a Dual-Objective Mini-
max Optimal Stochastic Strategy (DOMOSS) as a natural solution
to this problem. Through extensive computer-based simulations,
we demonstrate the effectiveness of our proposal in contrast to
baselines and comparable solutions. We also verify the quality of
our solution and the convergence of the proposed strategy.

Index Terms—Metaverse, Content Update, Radio Frequency
(RF), Visible Light Communication (VLC), Hybrid Band Allo-
cation (HBA), MAB, and MOSS.

I. INTRODUCTION

As vehicle-to-vehicle/infrastructure (V2X) communications
meet metaverse, optimizing the scene and environment up-
dates requiring a large capacity while minimizing the resid-
ual energy of metaverse-enabled wireless devices on-board
vehicles emerges as an interesting research problem [1], [2].
While beyond 5G (B5G) network technologies exploiting both
legacy RF (radio frequency) and high spectrum bands such as
mmWave (millimeter wave) and visual light communications
(VLC), they are still likely to be challenged by the tremendous
bandwidth requirements of metaverse services and applications.
Therefore, it is crucial to efficiently perform the V2X metaverse
content updates by AR/VR devices to make the best of the
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available high-frequency spectrum while minimizing the energy
consumption of these wireless nodes onboard the vehicles as
depicted in Fig. 1. In this vein, we formulate a hybrid band
allocation (HBA) problem with regard to our considered V2X-
assisted metaverse system setting to opportunistically make
use of the best possible frequency band and its sub-channel
[3], [4]. Our optimization problem aims to maximize the data
rate while opportunistically switching to the best metaverse
roadside unit (MRSU) band/sub-channel while waiting/stopping
at traffic signals/parking within a reasonably limited time. Since
solving such a problem requires complete system information
along with high computational resources, we are motivated to
address this problem in a distributed setting by playing a multi-
armed bandit (MAB) game between the metaverse-enabled
transmitting device and the receiving MRSU in the presence
of variable-sized blockers which dramatically and adversely
impact the propagation characteristics of high-frequency, high-
capacity frequency bands and their corresponding sub-channels.
Motivated by the above, the contributions in this work are
summarized as follows:

o We formulate the band selection problem using MABs,
where the AR/VR is the bandit player attempting to upload
metaverse content to MRSU via available bands (bandit
arms). The bandit reward is the upload rate content and
the cost is the energy consumption upon the decided arm.

« We propose a dual-objective bandit strategy to solve
this problem, referred to as dual-objective minimax opti-
mal stochastic strategy (DOMOSS). Then, we incorporate
residual energy-aware (REA) features for performance
comparison.

« DOMOSS is compared with classical bandits such as
upper confidence bound (UCB), Thompson sampling (TS),
Minimax Optimal Stochastic Strategy (MOSS) schemes,
and HBA benchmarks.

« Simulation results indicate the near-optimal band selection
performance of our proposal compared to other methods
in terms of upload content rate, energy-efficiency, and
convergence performance.
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Fig. 1: Considered hybrid-band V2X metaverse content update
scenario.

The remainder of this paper is structured as follows. Section II
summarizes the related work of HBA systems. Section III
details the hybrid-band V2X metaverse content update scenario.
Section IV overviews the band optimization problem formula-
tion. Section V discusses the proposed DOMOSS scheme after
highlighting REA-UCB, REA-TS, and REA-MOSS methods.
Section VI presents the performance evaluation of our proposal
compared with other methodologies. Finally, Section VII high-
lights the concluding remarks.

II. RELATED WORK

Since multi-band communication in V2X-enabled meta-
verse is a relatively new concept, we present the relevant
research work available in the literature that addresses hybrid-
band/channel selection learning techniques in wireless sys-
tems [5]-[9]. In Device-to-Device (D2D)-enabled communica-
tion, the copresence of WiFi and VLC bands were considered
in [10]. A hybrid neural network-driven heuristic decision-
making was conceptualized to select the best possible band.
However, this approach requires extensive dataset collection,
preprocessing, and training. Furthermore, this approach could
not be enhanced beyond indoor settings. On the other hand, a
convolutional neural network (CNN) was employed to intelli-
gently predict the best signal-to-interfernce-noise-ratio (SINR)
band from a diverse frequency-bands pool in [11]. Despite
its potential, that methodology suffered from the limitation
of training datasets and simplistic VLC channel model as-
sumptions. In [12]-[15] coauthors of our work addressed the
HBA problem by employing distributed learning via MAB,
and introduced enhanced UCB strategies. However, according
to [16], there is significant room for improvement beyond
considering only a single objective in the MAB formulation.

III. SYSTEM MODEL

In this section, we present our considered system model.
As depicted in Fig. 1, both MRSU and on-vehicle AR/VR
nodes, and Electronic Control Units (ECUs) are assumed to
be equipped with hybrid-band radios, i.e., legacy RF, mmWave,
and VLC bands with the presence of possible vehicular blockers
with varying sizes that obstruct the line-of-sight between the
MRSU and AR/VR/ECU nodes. In this setting, the multi-
band AR/VR device is responsible for delivering the metaverse

update to the MRSU via possible frequency bands, i.e., legacy
RF (2.4/5.25GHz WiFi), mmWave (38GHz (also referred to
as WiGig), or VLC (400-800THz). Each band is split into
a number of sub-channels to upload the metaverse scene or
environment-related update bits [3].

As for the legacy RF bands, we consider 2.4GHz and
5.25GHz WiFi channel models based on log-normal shadowing
comprising zero means; standard deviations of 2.15dB and
6dB, reference path losses of 41.8 and 47.2; and path loss
exponents of 2 and 2.32, respectively [13]. Also, the multi-band
MRSU is assumed to comprise a two-dimensional directional
antenna model Next, we describe the mmWave channel in the
38GHz spectrum [3], [15]. The received mmWave power at the
ECU node depends on the antenna beamforming gain and the
effect of the vehicular blocker [3]. For the mmWave model, we
consider a zero-mean log-normal distributed path loss while
allowing the RSU-ECU beamforming. Note that the system
model mainly is interested in the Line-of-Sight (LoS) link
between the RSU and ECU nodes owing to an approximately
20dB gain in contrast with that achieved by the non-LoS
mmWave link [12]. On the other hand, for the VLC system,
we consider the Light-Emitting Diode (LED) transmitters at the
RSU node based on the Lamebrtian framework [3].We utilize
the vehicular blocker model for the legacy RF, mmWave, and
VLC bands via an empirical setup in an urban setting, obtained
from the work in [17]. In our scenario, we consider no vehicular
blocker, small vehicular blockers (comprising dimensions of
5.07x1.69x1.93m%), as well as large vehicular blockers (with
the dimensions of 7.01x2.04x2.63m%). Based on the reported
findings in [17], we then derive a vehicular blocker loss function
with regard to the frequency and blocker types as a linear
regression as follows, 7

Blockingloss[dB] = By + ap log(1 + lGHZ)’ (1)

where «;, is the gradient, 85, denotes the line intercept, and b
represents the size of the vehicular blocker.

Based on the co-presence of these multi-band radios at
the MRSU, we assume opportunistic connectivity between the
serving MRSU and each AR/VR node that attempts to perform
a metaverse update of size /. Consider that there are R vehicles
with one AR/VR node on-board and £ MRSU in a service
area. Each MRSU e (¢ E) can connect to a given AR/VR
unit » (€ R) at time ¢ over the best sub-channel of any of the
three frequency bands, models of which were described earlier.
Here, each AR/VR unit r is assumed to have its own metaverse
content update payloads. Also, we consider each transmitting
and receiving nodes pair e and r such that e can resume the
remaining metaverse content update payload (I —!") from r and
upload them with the remote metaverse server over high-speed
backhaul links. Based on the system model foundations, we are
now ready to formulate the research problem in the following

section.
IV. PROBLEM FORMULATION

A. Optimization Problem with Complete System Information

Herein, we first formulate the band selection problem based
on the pre-described system model by considering AR/VR



device r and MRSU e. This can be considered as a linear
programming problem as follows,
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where m denotes the number of frequency bands supported
by the transmitting AR/VR device r and the receiving MRSU
e while n; indicates the available sub-channels in the cor-
responding band i. Let N denote the maximum number of
available channels across all the considered frequency bands.
The objective function describes the selection of the band i
and sub-channel j at MRSU r such that the term inside the
two summation notations yield the maximum data rate at time
t. d; j refers to a decision variable for the band and sub-
channel selection that can take only a binary value between
0 and 1 while the summation of all the decision variable (i.e.,
overall i and j values) is considered to be 1 as shown by the
first two constraints. Cyg ;;(t) refers to a cost function where
PC’R denotes the transmit power of the AR/VR device upon
the utilized band N. BW;; denotes the bandwidth of channel
j that belongs to band i. The third constraint describes the
fact that all channels over the available bands must be equal
to or more than available sub-channels N. The next constraint
articulates the data download time, Tp, which is considered to
be not more than the current time ¢ plus € where the latter
parameter acts as a limited waiting time of AR/VR device r at
a traffic stoppage or parking for opportunistic connectivity with
the best possible band/sub-channel at MRSU e. Lp, refers to the
segment of the metaverse content payload to be uploaded by
the device r to serving MRSU e such that the sum of Lp and
I’ (i.e., previously uploaded segments of the metaverse content
updated to other MRSUs) are equal to or less than the size of
the entire metaverse content update. E; refers to the residual
energy of AR/VR device i which must remain at least the same
as the threshold energy level E,; so that other operations of the
AR/VR device are not disrupted. The overhead time between
r and e is denoted by 7}, ;;, which is subject to the adopted
band/sub-channel. I';;(7) refers to the spectral efficiency (bits

ij
Pyirsy ()
No+I (1)

PﬁRSU(t) indicates the received power at MRSU e at time ¢

per second per hertz) and is equal to log, (1 + ), where

using band i. Ny and [ represent the noise and interference
power, respectively.

B. Reformulation of the Original Problem into A Multi-Armed
Bandit (MAB) Game

Since the constrained maximization problem (2a) requires
the AR/VR device r to obtain the complete information of
the channel state information of all the available bands/sub-
channels of all the surrounding MRSUs, the solution to the
problem in real time is challenging. Also, the problem becomes
computationally heavy on the AR/VR devices when the number
of MRSUs is significantly high leading to high values of
m and n. As such, we transform the original optimization
problem into a sequential decision-making problem, referred to
as a stochastic multi-armed bandit by considering the blocking
phenomena of the vehicular blockers where r is the MAB
player and it plays its games to maximize a reward (i.e., the data
rate for disseminating the metaverse content update payload
to the MRSU) over a number of rounds while minimizing a
penalty in terms of the communication cost for selecting the
band/sub-channel. At each round ¢, which is bounded by a time
horizon, the transmitting device r chooses an action among a
finite set of options, referred to as arms, which describe the m
possible bands and n sub-channels. By selecting an arm (i.e.,
a band and its sub-channel), r draw an arbitrary reward y; ; (1)
from an unknown distribution that does not change with time.
At the end of each round, r updates the estimate of the mean
reward of arm i, j as follows.

1
lﬁ‘ Je = 1](t_ l) ZW! /(P)II,,_z ) (3)

where T; (¢t — 1) refers to the number of times arm i, j was
played prior to the commencement of round 7. Next, Iy, ; is
an indicator function that equals O if the arm i,j is not played
during round ¢ or equals 1, otherwise. In this manner, after
playing for a finite number of rounds, the observed mean will
approach the mean reward of the arm. Thus, the reformulated
problem via the stochastic MAB game needs to be solved
with a strategy that can allow updating these estimates at the
AR/VR device after each round to select a good arm (i.e., a
high SINR band/sub-channel) in the following round. In the
following section, we design the solution methodology for the
re-formulated problem. Therefore, the optimal dual objective
arm is the lowest cost one from highly rewarded arms that
attains:

{i,j}" =argmax (1 —e)u; ; s.t. argminG;, ;. ()
ij irj

Gur i (0 = LT 5)
VR,N,, () = )
ot = B, gy O

where MAB is applied MAB technique (e.g., DOMOSS, UCB,
and TS), Cvg,n;,,, (¢) is the VR battery/energy consumption to
upload data content of D L bits with a speed of BWy;: [ T", . (1)

bps. In the following section, we discuss the methodw ﬁogy
for solving this transformed problem in a distributed manner
with high-quality solutions close to the optimal solution to the
original problem.



V. PROPOSED BASELINE METHODS AND ENVISIONED
NEAR-OPTIMAL SOLUTION

Herein, we present a systematic methodology to solve the
aforementioned MAB problem using UCB, TS, and MOSS
[18], respectively. We incorporate residual energy awareness
(REA) with regard to the transmitting AR/VR device into these
three strategies, referred to as REA-UCB, REA-TS, and REA-
MOSS, respectively. Then, wen design a dual-objective MOSS
algorithm to solve the MAB game.

A. Designed baseline 1: REA-UCB Method

REA-UCB is a modified UCB approach where the energy-
related term is subtracted from the exploration term of the basic
UCB equation as follows [13], [14],

2log Ty X
Pit BEvr,i(1)

m;EAfu(jB(t) =arg mlf‘lx{'pi([)"' }, (6)
where ;(t) denotes the upload rate from AR/VR device to
MRSU and p;; reflects how many times arm i was played
within round/time ¢. The term = —y accounts for the VR/AR
energy expense due to transmlttlng to MRSU over the chosen
band/sub-channel (i.e., the arm) i at time .

B. Designed baseline 2: REA-TS Method

REA-TS is designed by modifying the basic Thompson
Sampling (TS) strategy by taking into account the VR/AR
energy consumption in its exploration phase. In this vein, the
term ﬁ is included in the basic TS formula expressed as
[13], [15],

Mppa_ts (1) =

- 1
l(t)} 0i(1) ~ N(Wi(1), P

) denotes a normal distribution with i; (¢)

arg maX{@ (r) - ), (D

where N (¢; (1),
mean and

Pit +1
variance.

pip+l
C. Designed baseline 3: REA-MOSS Method

Again we incorporate residual energy-awareness (REA) term
into conventional MOSS [19]. Our customization is as follows,

Mpea-moss(t) =

t
masx (10g (47 .9) My g
pi(1) Bvr,i(1) "
D. Envisioned Dual-Objective MOSS (DOMOSS) Algorithm

From hereon, we describe our envisioned DOMOSS al-
gorithm by jointly taking into consideration two objectives,
namely maximizing data rate and minimizing energy con-
sumption of AR/VR device for metaverse content update to
the MRSU. For this purpose, we exploit the strengths of the
classical MOSS algorithm [19] and apply it to the Explore Then
Commit (ETC) algorithm [16] instead of UCB. The idea is to
subsidize from the maximum rewards to pull the cheapest arm
(lowest cost). This is more effective than deducting the cost in
the exploration part as in the baseline methods, i.e., REA-UCB,

arg max{y; () +

Algorithm 1: Proposed DOMOSS algorithm.

Result: Best band N at te€ [Ty].
Input: t=0, YN()=0, pns=0,
Emn-EvrN(=1), 1<N<J,
Pure Exploration Stage:
for te [1J] do
I; =t mod J;
play arm [; and observe reward Yy, ;
pitt+ 1) =pi()+1 {l; =i} ¥V ie[J]
update
Evr,i () =Evr,i (1) =Cvr,; (1), {Is =i} V i€ [J]
end
UCB Stage:
for te[rJ+1:Ty] do

1<t<Ty.

max|log|—=),0
Ai (1) « (D) pi(1), Bi(1) « %,
UpdatquCB(t) & /JLCB(I) using Egs.9,10
m; = argmax; LCB(I)
P = (i 1B - (1 -
Iy = argmin;ep () Ci;
Play arm I; then obtain
reward/achievable data rate y,(f);
pit+ ) =pi(t)+1 {l; =i} V ie[J]
update Eyg,j, (1) =Eyr,, (t) = Cvr,1, (1)
end

g B(1) 20 ;

REA-TS, and REA-MOSS. Such subtraction is not suitable
in a lot of realistic application scenarios, particularly if the
payoffs and costs are not the same category/type [16]. Hence,
in our envisioned DOMOSS algorithm, first, the UCB and lower
confidence bound (LCB) for the bandit’s arms are determined
using MOSS policy. Then, a feasibility set containing the arms
of payoffs exceeding the maximum LCB value of entire arms
is established. Finally, from the constructed feasibility set,
DOMOSS elects the lowest-cost arm. Algorithm 1 outlines the
main steps of our proposed DOMOSS algorithm. Its input is
all existing bands N and e tuning parameter. The output of
the algorithm is the decided channel to connect with N3, , B(t)
At t=0, p,, the counter of each band/channel N = N.j is
decided and their attained upload data rates, li’N,-, , are initiated
by 0. The algorithm comprises two key stages, namely the pure
exploration and selection stages. In pure exploration phase, the
AR/VR attempts all bands/channels, i.e., if =t mod J, to notice
their update rates ¥, ;e Also, Pl are updated, and the average

rates of the AR/VR‘I‘/H are estlmated This is done for an

2/3
investigation period of 7J, where 7 = (TTU) ( [16]). On the
other hand, during the selection stage, at trial ¢t € [7J + 1,Ty],

the UCB and LCB arms are calculated as follows:
“IUCB(I) «— min f; (t) + B (1), ©
uECB (1) max fi; (1) - Bi(1). (10)

Now, the feasible set of chosen arms with F(¢) = {i :
7B (1) —(1-)ukCB (1) > 0 are established. Out of F(r), the

arm attributed with the minimum energy cost Cy, is decided
to upload the metaverse update payload as follows:
I; = argmin C;. (11

i€F (1)



Lastly, DMOSS parameters are updated, and residual en-
ergy levels of AR/VR sets are enumerated upon the decided
band/sub-channel. The proceeding trial repeats the whole pro-
cess if the AR/VR device needs to upload new metaverse
content update payloads to the MRSU.

VI. PERFORMANCE EVALUATION

Herein, we conduct numerical simulations and evaluate the
performance of our proposed DOMOSS algorithm in contrast
with the baseline methods, i.e., REA-UCB, REA-TS, REA-
MOSS, and benchmark (e.g., optimum, exhaustive, and ran-
dom) HBA algorithms. The optimal HBA solution is found
via the simultaneous election of the best channel with the
cheapest cost. The exhaustive HBA first attempts all existing
bands then chooses the supreme one after significant overhead.
On the other hand, the random HBA method pulls a random
band/channel without any information by giving priority to the
decision time. Table I lists the considered simulation parameters
including vehicular blocker details.

Fig. 2 presents the performance of spectral efficiency in terms
of the achieved data rate of our proposal at £ = 0.5 with regard
to the baseline and benchmark methods. In other words, this
performance measure signifies the selection of the arms that
are attributed with larger than or equal to half of the maximum
payoff. The results are presented over increasing separation
distances by considering three vehicular blocker scenarios,
i.e., no blockage (line-of-sight between AR/VR device and
MRSU), small vehicular blocker, and large vehicular blocker,
respectively. The obtained reward or data rate was reported to
be inversely related to the vehicular blockage type as demon-
strated in the plots of Figs. 2(a), 2(b), and 2(c), respectively.
From the results, we notice that with the increasing distances,
the metaverse content update rate drops for all the compared
methods owing to the path loss effect for the selection of the
respective band/sub-channel. Additionally, with the introduction
of blockers with larger blockers, the drop in the data rate
appears even more significant. Interestingly, the performance
of our proposed DOMOSS algorithm is near-optimal, i.e.,
99% with regard to the optimal benchmark solution, for all
the considered separation distances between the transmitting
AR/VR device in the vehicle and the destination MRSU.

Next, we evaluate the energy-efficiency of our proposal
compared with other methods in Fig. 3. DOMOSS works
at ¢ = 0.7 which means 70% of maximum content upload
rates are grouped to decide the cheapest arm. Our proposed

TABLE I: Simulation parameters.
Simulation parameter Value

N 4, i.e. (38,5.252.4,10°) GHz
BW, fe1, PL_.Th,1 | 40MHz, 38GHz, 20mW, 0.28msec
BW,, fc.2, P%x, Thp 40MHz, 5.25GHz, 20mW, 3.6usec
BWs, fe3, Py T3 | 20MHz, 2.4GHz, 20mW, 3.6psec
BWi, fe4, Py Tha | 20 MHz, 10°GHz, 20mW, 3.6usec
Evra(t=1), By uniform [0.01 — 1], 1%

X0, X 5 m, [10 - 100] m
Ty, DL, Tp 150, 1TB, 0.1 S
Xsmall» Bsm,ull 2.6, 3 [17]
Qlarge> ﬂlarge 3.6, 7.7 [17]

DOMOSS algorithm outperformed other schemes due to proper
channel allocation strategy that minimizes the AR/VR device’s
consumed energy. With growing separation distances between
the transmitter and the receiving MRSU, the energy expenditure
of all the methods was found to increase as well. Interestingly,
the REA-UCB, REA-TS, REA-MOSS, and DOMOSS exhibit
significantly low energy consumption in the AR/VR device. In
particular, DOMOSS achieves the highest energy-efficiency in
terms of the residual energy of the transmitting AR/VR device.
On the other hand, the brute-force HBA method results in the
highest energy consumption. This is because of exhaustively
searching all possible frequency bands and their respective sub-
channels without paying any attention to the residual energy
constraint of the transmitter.

Now, we evaluate the convergence of our proposal as de-
picted in the plot of Fig. 4 at x = 20m. The convergence
trends of the comparable methods are also shown in the plot. As
evident from these results, our proposed DOMOSS algorithm
achieves 99.8% of the optimal performance during all the trials
until the time horizon of 400 trials. Thus, the viability of our
proposal is verified in terms of metaverse content updates while
substantially improving the AR/VR device’s energy budget.

Regarding the computational complexity of our proposed
DOMOSS algorithm, its space complexity is O(N) while the
time complexity is O(NTy) based on the analysis provided in
[18] where N refers to the number of arms and Ty, denotes the
time horizon.

VII. CONCLUSION

The introduction of vehicular communication networks be-
yond 5G/6G systems into the metaverse presents a challenge
in terms of optimally updating rich content via an interference-
free subchannel in a hybrid-band V2X setting. To address this,
we model this optimization problem as a tradeoff between
multi-band AR/VR devices performing metaverse scenes and
environmental updates to MRSUs while minimizing energy
consumption of the transmitting AR/VR devices. Given the
computational hardness of this optimization requiring detailed
channel state information of all possible bands/sub-channel
links for the nearby MRSUs, we formulate an opportunistic
band selection problem based on MAB game. This solution
effectively balances the competitive demands of both AR/VR
units acting as transmitting nodes without challenging compu-
tational requirements. To exploit stand-still scenarios, e.g., at
traffic signals for a brief stoppage, we proposed a DOMOSS
algorithm. We evaluated the effectiveness of our proposal in
comparison to three designed baselines and several benchmark
solutions and verified the quality of our solution in terms of its
fast convergence, near-optimal data rate, and energy-efficiency
performances.
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Fig. 3: EE comparison of our proposal and other methods over increasing V2I distances by considering various sized vehicular
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Fig. 4: Convergence rate performance of our proposed DO-

MOSS algorithm and other compared methods.
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