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Abstract—This paper addresses the user-centric clustering and
pilot assignment problems in cell-free networks, recognizing the
need to solve both problems simultaneously. The motivation of
this research stems from the absence of benchmarks, general
formulations, and the reliance on subjectively designed objective
functions and heuristic algorithms prevalent in existing literature.
To tackle these challenges, we formulate stochastic non-linear
binary integer programs for both the user-centric clustering
and pilot assignment problems. We specifically design the pi-
lot assignment formulation to incorporate user-centric clusters
when evaluating the desirability of pilot assignments, resulting
in improved efficiency. To solve the problems, the proposed
methodology employs sample average approximation coupled with
surrogate optimization for the user-centric clustering problem and
the genetic algorithm for the pilot assignment problem. Numerical
experiments demonstrate that the optimized solutions outperform
baseline solutions, leading to significant gains in spectral efficiency.

Index Terms—Cell-Free Networks, Massive MIMO, User-
Centric Clustering, Pilot Assignment, Stochastic Optimization

I. INTRODUCTION

Cell-free Massive Multiple-Input-Multiple-Output (MIMO)
has emerged as a promising physical layer technology for
supporting future deployments in beyond 5G and 6G networks.
The main concept is to go beyond the cellular paradigm by
employing an ultra dense deployment of small-sized multi-
antenna access points (APs) which cooperate to serve users in
the coverage area, eliminating the notion of boundaries between
cells. The most practical form of this paradigm is user-centric
cell-free massive MIMO [1]-[5]. Instead of allowing all the
APs to serve all the users in the network as envisioned in the
first cell-free massive MIMO paper [6], each user is served by
a subset of the APs which ensures that network operation is
scalable as the number of users grows. The main objective of
this paper is to provide an optimal benchmark for designing
the cluster of APs that serve each user which is known as
the user-centric clustering problem. On the pursuit to solve the
clustering problem, there is another problem which is tightly
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connected to it, the pilot assignment problem. Both problems
must be solved together to ensure satisfactory network-wide
performance.

The majority of research on the user-centric clustering prob-
lem [7]-[12] and the pilot assignment problem [13]-[20] has
been centered on designing heuristic algorithms. However, there
is a notable lack of optimal benchmarks in these studies.
As a result, our focus is on formulating each problem as
an optimization problem and developing optimized benchmark
solutions that can be used to evaluate heuristic algorithms.
By establishing these benchmarks, we can better understand
the effectiveness of existing algorithms and develop new ap-
proaches that lead to significant performance gains. Moreover,
the optimized solutions can be used as a reference for machine
learning algorithms.

Our contributions in this paper are summarized as follows:

e Proposing a novel formulation of the user-centric clus-
tering problem as a stochastic non-linear binary integer
program. The proposed formulation has the flexibility to
accommodate different per user performance metrics and
network-wide utility functions;

e Proposing a novel formulation of the pilot assignment
problem as a stochastic non-linear binary integer program
which takes into account the user-centric clusters in eval-
uating the desirability of pilot assignments;

o Providing nearly optimal solutions for both problems by
employing sample average approximation coupled with
surrogate optimization to solve the user-centric clustering
problem, and the genetic algorithm to address the pilot
assignment problem.

The remainder of the paper is structured as follows: Section

II introduces the correlated Rayleigh fading channel model,
the channel estimation procedure and performance metrics.
Section III formulates the use-centric clustering and pilot
assignment problems as stochastic non-linear binary integer
programs. It also highlights the connection between the two
problems. Section IV presents baseline heuristic methods for
both problems from the literature and highlights the use of
the genetic algorithm and surrogate optimization to realize the



optimized solutions. Section V discusses numerical experiments
to evaluate the proposed methodology. Finally, Section VI
concludes the paper.

II. NETWORK MODEL AND OPERATION

In line with [1]-[5], we consider a cell-free network with L
geographically distributed APs throughout the coverage area,
each equipped with NV antennas, such that the total number of
antennas is M = LN. The APs cooperate to serve K users
residing within the coverage area. A massive MIMO operating
regime is considered where the number of APs is considerably
larger than the number of users’ equipment (UEs) L > K
implying that M > K. The APs are connected to a central
processing unit (CPU) using high-speed fronthaul links which
manages AP cooperation. The CPU is connected using backhaul
links to the core network. There are two paradigms of cell-
free network operation: centralized and distributed; herein, we
only focus on centralized operation where almost all signal
processing is delegated to the CPU.

Each UE is served by a subset of the APs which are referred
to as user-centric clusters. Following the dynamic cooperation
clustering (DCC) framework [21], we define a set of diagonal

matrices Dy; for k=1,--- ,K and [ = 1,--- , L such that
_ Iy if AP [ serves UE k
Dy = {ONxN otherwise M

where I is the N-by-V identity matrix and Oy is the N-
by-N zero matrix.

We assume that each channel use is constrained to a channel
coherence block which is a time-frequency block time whose
duration is equal to the coherence time 7. and its frequency
width is equal to the channel coherence bandwidth B.. It
is also assumed that channel realizations of different blocks
are uncorrelated. Each coherence block is utilized for both
uplink and downlink transmissions in a time-division-duplexing
(TDD) protocol which makes it sufficient to transmit pilots
only in the uplink [1]-[5]. Each coherence block is split: 7,
for transmission of pilots, 7, for uplink data transmission and
Ta for downlink data transmission such that 7, + 7y + 74 = Te.
The channel between AP [ and UE k is represented by an
N-dimensional vector hy; € CV and the collective channel
hj, € CM of UE k is written as

hi = [hi; "hfL]T 2

A. Channel Model

The correlated Rayleigh fading channel model is used such
that the channel between AP [ and UE £ is generated as
hi, ~ Nc(On,Ry) where A is the complex circularly-
symmetric gaussian distribution. Ry; is the positive semi-
definite spatial channel correlation matrix which captures large-
scale fading characteristics including path loss, shadowing and
spatial channel correlation. The large-scale fading coefficient
Br; of AP [ and UE k is defined to be

Brl =

tr(Ry) 3)

where tr is the trace operator.

B. Channel Estimation

In the uplink, pilot sequences are transmitted by the UEs
for the purpose of channel estimation. Because pilot sequences
span 7, samples, there are only 7, mutually orthogonal pilot
sequences ¢1, - -+ , ¢, € C™ which are designed to have unit-
power ||@;||> = 7,. The number of pilots is less than the
number of users 7, < K in any practical network. Hence,
pilot reuse is necessary. To estimate the channel between of
AP [ and UE k, the received pilot signal is projected onto
#u./,/7 which is the pilot sequence assigned to UE k with
tr € {1,---,7,} being the index of the pilot assigned to UE
k. This removes interference from UEs which do not share the
same pilot sequence as UE k. The projection results in the
decision statistic yfll?t € CV which is written as

Y = imph + Y ,ﬁnnphzﬁFNl@ )

i€P/{k} \ ,

receiver noise

desired channel

interference

where P; denotes the set of UEs that share the same pilot
sequence as UE £ including UE k, 7; is the pilot transmit
power of UE i and N; € CV*7 is the independent additive

receiver noise. The MMSE estimate of hj; given yf 1;) is

ViR ¥y (5)

where ¥, ; is the received pilot correlation matrix for pilot ¢
and AP [ defined as

Wi = Z nimpRit + oIy
1€Pk

i"k‘l

(6)

The relation between the channel estimate ﬁkl and the actual
channel hy; is hy; = ﬁkl + ilkl where iz,kl is the channel esti-
mation error. The channel estimate and the channel estimation
error are independent random variables and their distribution is

[1],

by ~ Ne(On, e R ¥, | Ry (7
hii ~ Nc(On, Crr) ®)

where
Cri =Ry — nkTkal‘I’tklel )

The channel estimate Ay is computed only if AP [ serves UE
k.

C. Performance metrics

The main performance metrics that are utilized as an opti-
mization objective to design receive combining and transmit
precoding vectors, power control and power allocation coeffi-
cients are the uplink and downlink spectral efficiencies of every
UE k denoted as SE‘,il and SEY'; respectively. We utilize the
spectral efficiency expressions derived using the use-and-then-
forget bounding technique which are widely used in cell-free
massive MIMO literature [22], [23].



An achievable uplink and downlink spectral efficiency of UE
k is

SEY = ; log, (1+ SINRY) (10)

C

SEd = % log, (1+ SINR) (11)

where SINR',Q1 and SINR‘,? are the uplink and downlink signal-
to-interference-and-noise ratios (SINR); respectively, which are
defined as follows.

pi |E {vf Dk} |”

SINRE1 = (12)
ZfilpiIE{‘v,?thif} _
v [E{vof Dihy} [ + o3E {||Dyvi]|?)
2

SINR?CI _ |E {thDkwkH
Zfil E { |thDiwi|2} - |]E {thDkwk} |2 + Ugl
(13)
where Dy, = diag(Dyg1,- -+ ,Dgyr) is a block diagonal matrix

containing the clustering matrices of UE k, pj is the uplink
transmit power of UE k, v, and wj are the centralized
receive combining and transmit precoding vectors of UE k,
respectively. Moreover, 02 and o3 are the average uplink and
downlink noise powers, respectively.

III. PROBLEM FORMULATION
A. User-Centric Clustering
We define K binary assignment vectors z;, € {0,1}F, k =

1,---, K to represent the user-centric clusters.
1 AP serves UE k
TRl = {0 otherwise. a4

Note that the clustering matrix Dy, of every UE k has a one-
to-one relationship with the clustering vector xj;. The user-
centric clustering problem is concerned with designing the K
clusters to maximize a utility function or a performance metric.
There are two viewpoints for assessing the performance of
a clustering algorithm: each individual UE performance, and
network-wide performance which is a collection of simulta-
neously achievable UE performances. Each UE £ is assumed
to have a performance function g : R — R of the SINR
which measures the degree of satisfaction of the UE by its
quality of service. The mathematical structure of the SINR
differs between the uplink and downlink, leading to distinct
downlink and uplink performances. Accordingly, we define the
individual performance of each UE k as the set

{91 (SINR}), g (SINRY) } . (15)

which includes the uplink and downlink performances given by
gx(SINRY) and g, (SINRY), respectively.

Design of user-centric clusters is adapted on a larger time
scale compared to the coherence time, primarily to match
variations in large-scale fading characteristics. Denote the time
interval for which the clusters are kept fixed as T' = n.7. where
1. 1s the number of coherence frames within 1" which we refer

to as the clustering interval. Without loss of generality and
inspired by the approach in [24], the user-centric clustering
problem can be formulated as the following multi-objective
optimization problem (MOP)

max_ {gr (SINR} (1)), gx (SINRY{ (n)) :

Ty, o, TK

(16)
k=1,--- K,

where SINRY(n) and SINR{'(n) are the uplink and downlink
SINR at time n, respectively. The MOP can be interpreted
as searching for the clusters x,--- , Tk that maximize the
performance of all UEs during the clustering interval 7. Since
the performances of different UEs are coupled, there is gener-
ally no single transmit strategy that simultaneously maximizes
the performance of all UEs. Furthermore, the clusters are
designed before the start of the clustering interval 7'. Hence,
the performance metrics of the UEs defined by the set in (16)
are unknown. In such case, we need to deal with the uncertainty
in the objective functions. We address the uncertainty by opti-
mizing the expected value of the performance functions rather
than the instantaneous value. Accordingly, we reformulate the
problem defined in (16) as follows:

max {E {gk (SINR‘,ICI)} JE {gk (SINR%I)} :
ey, K
k=1, K}

where [E is the expectation operator. The expectation is com-
puted with respect to the time index n which we dropped for
convenience in the notation.

As with any MOP, there are many operating points that we
can choose from. Therefore, we need a way to assess the
desirability of each operating point. The common approach
is to choose an aggregate system utility function f(g) which
takes an operating point g = (g1, - , gk ) as an input where
g; is the value of objective ¢ and outputs a scalar value.
Candidates of the aggregate system utility function are weighted
arithmetic mean f(g) = >, wrgr and weighted geometric
mean f(g) =[], g;*. The weights wy, can be used to prioritize
certain objectives over others [24]. We adopt the ergodic
spectral efficiency E{ gy (SINRy)} = log, (1 +E{SINR}) as a
performance function and the sum spectral efficiency as the
aggregate system utility function which is equivalent to the
weighted arithmetic mean with all the weights set to one. This
results in the following single objective optimization problem

K
max > log, ( (1+E{SINR}'}) (1+E {SINR }) )
|
(18)

The problem is regarded as a binary integer non-linear
program which belongs to the class of NP-complete problems.
It is usually hard to compute closed forms of the SINR expected
values. However, we can generate random realizations of the
SINR which can be used to estimate their expected values as
follows:

n:]-a"'vnc}

a7

1,

N,
E {SINR} } ~ Ni Z SINRY (19)
" n=1



N
1 o

E{SINR}'} ~ > SINR{! (20)
" n=1

where NN, is the number of generated realizations. The tech-

nique is known as sample average approximation.

B. Pilot Assignment

The main purpose of transmitting pilots in the uplink is
to utilize the received pilots in channel estimation. From the
decision statistic yf:?t given in equation (4), there are four ways
to improve channel estimation performance: 1) Increase the en-
ergy of the desired channel 7,7, || Ry ||* by boosting the transmit
power 7; 2) Decrease the interference energy by limiting the
transmit powers of pilot sharing UEs n; for i € Py/{k}, 3)
Choose AP [ to serve UE k if ||hy;||? is large enough; and 4)
Reduce the number of pilot-sharing UEs.

The first two strategies appear to be conflicting as prioritizing
one user by increasing its transmit power while limiting the
power of other pilot-sharing users may lead to a consider-
able decrease in network-wide performance. The third strategy
involves the selection of user-centric clusters, which is the
problem that we aim to solve in this paper. The fourth strategy
pertains to pilot assignment, which is a separate problem.
Nevertheless, both pilot and cluster assignment are closely
intertwined, as evident from the arguments presented here.

We define a set of binary assignment vectors a; € {0,1}7»,
k=1,---, K to represent the pilot allocation such that

1 pilot j i igned to UE k
ar; = { pilot j is assigned to @1

0 otherwise.

Using the assignment vectors, we can rewrite equation (6) and
(9), respectively, as follows:

K
‘I’jl = ZmTpRilaij + G'EIIN (22)
i=1
Cii = Ri — me7p ) Ria¥;' Ruay; (23)
j=1

j€{17...77-p}

We adopt the expected value of the Lo norm of the channel
estimation error as the optimization criterion which is written
as follows:

E{i‘bgilkl} = tI‘(Ckl)

Tp
=tr(Ryy) — tr NkTp Z Rkl\I’j_llelakj
J=1

(24)

As discussed, there is a strong connection between the cluster-
ing and pilot assignment problems. Consequently, our formula-
tion of the pilot assignment problem considers the user-centric
clusters. Hence, we refer to this as the clustering-aware pilot
assignment problem formulation. Assuming that the clusters

x1,- -, T are known, we formulate the clustering-aware pilot
assignment optimization problem as follows:

K L
' E{hfih
al?}%?akzz {hiihr} o

k=11=1

(25)

E{hiihu} = tr(Rus) — 7y

Tp K -1
> tr [ R <Z7)iTpRilaij+031IN> Ry | ax; (26)

j=1 i=1

27)

Za;ﬂ':l
i=1
Vke{l,---,K}

The objective function in (25) is the sum of channel estimation
errors between each AP [ and UE k, only if AP [ serves UE k.
If we ignore the user-centric clusters (assuming xj; = 1 for all
k and 1), the objective function becomes the sum of all channel
estimation errors between every AP [ and UE k, regardless
of whether or not AP [ serves UE k. However, by taking
into account the user-centric clusters, we gain more degrees
of freedom and potentially improve overall performance. The
constraints in equation (27) ensure that each UE is assigned
only one pilot. Like the user-centric clustering problem, the pi-
lot assignment problem is a binary integer non-linear program,
which is known to be NP-complete. However, a closed-form
expression of the expected value E{ilfl izkl} given in equation
(26), is available, eliminating the need for sampling.

IV. METHODOLOGY
A. Baseline

We utilize the joint pilot assignment and clustering algorithm
proposed in [1] as baseline. The algorithm employs a greedy
strategy for pilot assignment and user-centric clusters design.
Initially, it assigns orthogonal pilot sequences to the first 7,
UEs. For the remaining UEs, each UE £k is assigned a pilot
that causes the least interference at the best AP. The best AP
for UE k is the one with the highest average channel gain Sy
with UE k. Subsequently, each AP [ serves only 7, UEs to
avoid pilot-sharing on the same AP. Each UE £ is served by
AP [ on pilot ¢, if it has the highest channel gain ; among
all the UEs sharing the same pilot.

B. Optimized Solution

Both the user-centric clustering and pilot assignment prob-
lems are classified as non-linear binary integer programs.
There is generally no optimization algorithm that can find the
global optimum in a reasonable timeframe. We use the genetic
algorithm to solve the pilot assignment problem and surrogate
optimization to solve the user-centric clustering problem. Both
algorithms can be readily applied to this type of optimization
problems. The genetic algorithm, which is a structured ran-
dom search optimization method inspired by natural selection,



proved to be effective in solving the pilot assignment problem.
However, it had limited efficacy with the user-centric clustering
problem due to the high computational cost of the objective
function. Hence, surrogate optimization, which is designed to
deal with time-consuming objective functions, is used for the
user-centric clustering problem. Detailed explanation of the
algorithms is outside the scope of the manuscript. However,
the reader is encouraged to refer to [25], [26], and references
therein.

V. RESULTS AND DISCUSSION

This section examines the effectiveness of optimized solu-
tions for the user-centric clustering and pilot assignment prob-
lems, compared with the baseline algorithm outlined in Section
IV-A. Section V-A introduces the simulation setup utilized
in this paper. Section V-B presents the numerical experiment
conducted to evaluate the performance of the algorithms.

A. Simulation Setup

In line with [1], we assume ultra-dense deployment in an
urban area where the APs are deployed in a plane ten meters
above the UEs. This matches the 3GPP Urban Microcell Model
defined in [27]. The path loss coefficient is computed as

Bri [dB] = —30.5 — 36.7log; (iﬁi) + Fr (28)

where dy; is the three dimensional distance between AP [ and
UE k. F; ~ N(0,4%) represents the shadow fading. The
shadowing terms are correlated as

422—5;“;/9 mo =
B Fhfy} = { 0 k 7AJZ‘

where dy; is the distance between UE k and UE 3.

To evaluate the performance of the optimized solutions, we
define a simulation setup which will be maintained throughout
the paper. The total coverage area is 0.5 km x 0.5 km, the
number of APs is L = 30, each equipped with NV = 4 antennas,
and the number of users is K = 12. Each coherence block
extends for 7. = 200 samples and the length of pilot sequences
is 7, = 5. Both APs and UEs are uniformly distributed
throughout the coverage area, and wrap-around topology is used
to avoid cell-edge effects. The full parameters of the simulation
setup are summarized in Table I.

For power control, we consider that the UEs transmit with
full power in both pilot and data transmission phases which has
been shown to be nearly optimal in many scenarios [1], i.e.,

k=1, K (30)

(29)

Nk = Pk = Pmax;

where pmax 1S the maximum uplink transmit power. Further-
more, we use the following heuristic to determine the power
allocated to each UE during the downlink which is commonly
known as fractional centralized power allocation [1], i.e.,

(VEew i) e
maxye my, ZiE’Dl (W)il (\/‘7%)

Pk = Pmax

TABLE I
PARAMETERS OF THE SIMULATION SETUP.

Value
0.5 km X 0.5 km
Uniformly distributed
Uniformly distributed

Parameter
Network Area
AP distribution

Users distribution

Number of APs 30
Number of users 12
Number of antennas per AP 4
Samples per coherence block 200
Samples per pilot 5
Bandwidth 20 MHz
Receiver noise power —94 dBm
Maximum uplink transmit power 100 mW
Maximum downllink transmit power 200 mW

with wy, = maxjepm, E {||1Dkl|\2} where w;,; is the direction
of the portion of the centralized precoding vector wy, assigned
to AP [, pmax is the maximum downlink transmit power, pj is
the downlink transmit power assigned to UE k, D; is the set
of UEs served by AP [, and My, is the set of APs that serve
UE k.

B. Numerical Experiments

We conduct an experiment to assess the performance of
optimized solutions relative to the baseline, outlined in Section
IV-A. The performance is evaluated for the Minimum Mean-
Square-Error (MMSE), Partial MMSE (PMMSE), Partial-
Regularized-Zero-Forcing (PRZF) and Maximum-Ratio (MR)
combining/precoding methods. Figure 1 displays the cumulative
distribution function (CDF) of the sum spectral efficiency
achieved by UE k for different combining/precoding schemes.
The optimized solutions exhibit superior performance compared
to the baseline solutions for all combining and precoding
schemes.

To further illustrate these observations, we present the 95%
likely sum spectral efficiency which is computed by drawing a

0.8

0.6 -

© MMSE (Baseline)
0.4 === MMSE (Optimized)
—: PMMSE (Baseline)
m— PMMSE (Optimized)
=+ PRZF (Baseline)
= PRZF (Optimized)
= MR (Baseline)

0.0 === MR (Optimized)

CDF

0.2

0 5 10 15 20
Sum Spectral Efficiency (bits/s/Hz)

Fig. 1. CDF of the sum spectral efficiency of UE k.
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horizontal line at CDF = 0.05 on Figure 1 and computing
the sum SE from the intersection points with each curve.
The results are shown in Figure 2. The optimized solutions
consistently show superior performance. It is worth noting that
even small enhancements in spectral efficiency can translate to
significant gains in the information rate. For instance, a 0.1
increase in spectral efficiency corresponds to a 0.1 x 20 Mbps
increase in the information rate.

VI. CONCLUSION

In this work, we studied the user-centric clustering and
pilot assignment problems in cell-free networks, recognizing
the necessity of solving both problems together. The main
motivation for approaching these problems is the lack of bench-
marks and general formulations, as well as the subjectively
designed objective functions and heuristic algorithms used in
most literature. Stochastic non-linear binary integer programs
were formulated for both the user-centric clustering and the
pilot assignment problems. The pilot assignment formulation
was developed to consider user-centric clusters when evaluating
the desirability of the pilot assignment, making it more efficient.
There is no known algorithm that guarantees optimal solutions.
However, surrogate optimization and the genetic algorithm were
used to solve the user-centric clustering and the pilot assign-
ment problems; respectively. Numerical experiments showed
that the optimized solutions outperformed baseline solutions,
resulting in significant spectral efficiency gains.
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