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Abstract—The mmWave WiGig frequency band can support
high throughput and low latency emerging applications. In this
context, accurate prediction of channel gain enables seamless
connectivity with user mobility via proactive handover and beam-
forming. Machine learning techniques have been widely adopted in
literature for mmWave channel prediction. However, the existing
techniques assume that the indoor mmWave channel follows
a stationary stochastic process. This paper demonstrates that
indoor WiGig mmWave channels are non-stationary where the
channel’s cumulative distribution function (CDF) changes with the
user’s spatio-temporal mobility. Specifically, we show significant
differences in the empirical CDF of the channel gain based on
the user’s mobility stage, namely, room entering, wandering,
and exiting. Thus, the dynamic WiGig mmWave indoor chan-
nel suffers from concept drift that impedes the generalization
ability of deep learning-based channel prediction models. Our
results demonstrate that a state-of-the-art deep learning channel
prediction model based on a hybrid convolutional neural network
(CNN) long-short-term memory (LSTM) recurrent neural network
suffers from a deterioration in the prediction accuracy by 11—68%
depending on the user’s mobility stage and the model’s training.
To mitigate the negative effect of concept drift and improve
the generalization ability of the channel prediction model, we
develop a robust deep learning model based on an ensemble
strategy. Our results show that the weight average ensemble-based
model maintains a stable prediction that keeps the performance
deterioration below 4%.

Index Terms—Channel prediction, WiGig, mmWave, concept
drift, deep learning, generalization, domain adaptation.

I. INTRODUCTION

The Wireless Gigabit Alliance (WiGig) operates in the 60
GHz millimeter wave (mmWave) frequency band [1]. This
band enables high-speed data transfer rates of up to 7 Gbps
and low latency of less than 10 milliseconds [2]. These at-
tractive features are due to the large available bandwidth in
the relatively uncongested WiGig band, which allows for the
transmission of large amounts of data in a short period. As
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a result, this band can support emerging applications such as
virtual and augmented reality, high-quality video conferences,
4K multimedia streaming, real-time online gaming, etc [3]. Sev-
eral advanced technologies have been integrated into the WiGig
band to further enhance the perceived quality of service such as
directional beamforming [4], device-to-device communications
[5], and simultaneous multiple device connections [6].

One major challenge in the WiGig band is to enable seamless
connectivity with user mobility. Specifically, channel blockages
occur with user mobility resulting in signal attenuation and
channel outages. To address this issue, beamforming and proac-
tive handover strategies have been proposed in the literature.
First, beamforming is employed to direct the wireless signal to-
ward the receiver, hence, avoiding obstacles and enhancing the
signal strength. For instance, autoencoders have been adopted
in [7] to determine the optimal beam direction for uncon-
strained and hybrid beamforming in mmWave communication
systems, which demonstrated significant performance gains.
Furthermore, stochastic geometry and support vector machine
have been used in [8] for analog beam selection in millimeter-
wave heterogeneous networks. Second, proactive handovers
have been proposed in the literature to maintain a stable
signal strength with user mobility while avoiding unnecessary
handovers. In specific, a convolutional neural network (CNN)
is used in [9] to predict the future channel quality and trigger
user handovers in advance to avoid signal deterioration.

In both solutions, beamforming and proactive handover,
channel gain prediction is required. As such, several works
have examined data-driven channel prediction techniques in the
mmWave band. These data-driven approaches are motivated
as recent research demonstrated that general channel models
in high-frequency bands are inaccurate [10]. Hence, machine
learning-based channel prediction in the mmWave frequency
band has been investigated in [11]-[14]. However, one common
limitation with the existing channel prediction models is the
underlying assumption that the mmWave follows a stationary
stochastic process, and hence, the developed models cannot
generalize well under different scenarios.



In this paper, we focus on an indoor setup as 80% of mobile
data are generated indoors [15]. The contributions of our paper
can be summarized as follows:

o We demonstrate that the indoor WiGig mmWave channel
data follows a non-stationary stochastic process that de-
pends on the user mobility stage, namely, room entering,
wandering, and existing. Hence, we show that the indoor
WiGig mmWave channels suffer from concept drift as the
channel distribution changes with the user mobility stage.

e We study the impact of the WiGig channel concept
drift on a state-of-the-art deep learning-based channel
prediction model, which indicates the inability of the
prediction model to maintain a stable accurate prediction
performance across the user’s trajectory. Specifically, we
show that the accuracy of the channel prediction model
deteriorates by 11 —68% depending on the user’s mobility
stage and the model’s training.

« We improve the generalization ability of the channel pre-
diction model using an ensemble strategy that utilizes only
the wireless channel data without requiring any additional
information on the user’s location or mobility stage. Our
results show that the ensemble-based model maintains a
stable prediction that keeps the performance deterioration
below 4% regardless of the user’s mobility stage.

The rest of this paper is organized as follows. Section II
discusses the system model. Section III presents the statistics
of the dynamic indoor WiGig channel gain, which indicates
a non-stationary behavior. Section IV discusses a state-of-the-
art deep learning channel prediction model and presents its
performance under concept drift. Also, this section discusses
the improvement of the channel prediction model following
a voting ensemble strategy that offers a stable prediction
performance under concept drift.

II. SYSTEM MODEL

This section presents the indoor layout, the user mobility
model, and the generation of the dynamic WiGig channel data.

A. Indoor Setup

In this paper, we consider an indoor layout that has been used
in the literature [16]-[18]. However, it should be highlighted
that the conclusions of this paper are not limited by this specific
layout, as indoor human mobility that influences the WiGig
channel data exhibits scale-free statistics [19].

Consider a 5mx5mx3m office room with nine desks. The
dimension of the desks and their distribution in the room are
shown in Fig. 1. The room is covered by four WiGig base
stations (BSs) that are evenly distributed across the ceiling as
shown in Fig. 1. Mobile users are represented by cuboids with
dimension 1.8mx0.2mx0.45m, mass of 70 kg, a maximum
speed of 2.1 m/s, and a maximum acceleration of 1 m/s.

B. Mobility Model and Channel Data Generation

To mimic indoor human mobility, the realistic mobility
model of [10] is adopted, which has been validated in [10]
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Fig. 1. Illustration of the indoor layout.

against real measurements. This model simulates human be-
havior on two timescales, namely, macro and micro scales. The
macro-scale determines when and where a person moves to the
next destination point using a semi-Markov renewal process
incorporating regular return patterns and bounded Levy-walk
behavior. The micro-scale captures the details of mobility,
namely, the shortest path, steering behavior, and user equipment
(UE) orientation. The details of the adopted mobility model are
summarized in the top half of Fig. 2.

Once the mobility traces are generated, the location and
orientation of the UE and the location of the BSs are used
to decide channel blockage and calculate the channel gain.
Define the mmWave line-of-sight (LoS) channel gain from the
transmitter (BS) to the receiver (UE) as [20]

G = GLos + GNLos, (1)
where

GLos = V/Ge (0Los) LLose’?a (GLos, OLos) , ()
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where it is assumed that the beams are grouped under C
clusters and each cluster contains S, sub-rays, and -y stands
for a normalization gain factor among sub-rays defined by
v =, /ﬁ, Be,s ~ CN(0,1) is the complex path gain, a(-)
is the receiver’s response vector, ¢ and 6 represents the azimuth
and elevation arrival angles with respect to the receiver’s
broadside, \ denotes the wavelength, d is the transmission
distance, X, ~ N(0,0?) is the fading term in logarithmic
units, and o ~ U[0, 27]. Once an LoS is judged as blocked by
any object (desks, another user, or the user’s own body) using
the method in [10], the term Gr,s = 0, and the reception is
mainly due to Gnros-
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Fig. 2. Framework to generate dynamic channel impulse response.

III. DYNAMIC WIGIG CHANNELS STATISTICS

This section studies the statistics of the dynamic WiGig
channel in terms of the average channel gain and the empirical
cumulative distribution function (ECDF) of the channel gain
considering indoor user mobility.

Using the framework presented in Fig. 2, we simulated
the WiGig channel gain over 800 mobility traces that cover
a user entering the room, wandering across the room, and
exiting the room given the layout in Fig. 1. The average
channel gain over all mobility traces is shown in Fig. 3. It
is evident that the average channel gain varies over time with
three distinct mobility stages, namely, entering, wandering, and
exiting. These three distinct stages can be defined as follows:

o Entering stage: It indicates the user’s mobility near the
room entrance moving inwards the room.

o Wandering stage: It indicates the user’s mobility away
from the room entrance moving across the room.

« Exiting stage: It indicates the user’s mobility near the room
entrance moving outwards the room.

The spatio-temporal variations in the average channel gain
suggest a non-stationary stochastic process. The average chan-
nel gain is lower in the entering and exiting mobility stages
than in the wandering mobility stage. This is because, in the
wandering mobility stage, the user walks in close proximity to
the BSs, while in the entering and the exiting mobility stages
the user walks toward or away from the BSs. To elaborate
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Fig. 3. Average channel gain over 800 mobility traces.
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Fig. 4. ECDF of the WiGig channel gain for different mobility stages.

more, we show the ECDF of the WiGig channel gain for each
mobility stage in Fig. 4. As shown, the statistics of the WiGig
channel gain vary according to the mobility stage. Since the
user trajectory changes over space and time, the channel gain
could belong to any of these three different statistics. In the next
section, we will investigate the impact of this non-stationarity
on the performance of the WiGig channel prediction.

IV. DEEP LEARNING-BASED CHANNEL PREDICTION

As demonstrated in the previous section, the dynamic WiGig
channel gain follows a non-stationary stochastic process. This
suggests that deep learning-based channel prediction models
will suffer from concept drift, i.e., deterioration in the prediction
model performance depending on the user’s spatio-temporal
mobility stage. So, in this section, we will discuss data prepara-
tion, prediction model architecture, training, and testing. Then,
we present the performance of the channel prediction models
under concept drift and countermeasures.

A. Data Preparation

To prepare the time-series channel gain data for the predic-
tion task, we carried out a min-max normalization step and con-
verted the data into a labeled format. Min-max normalization
is used to scale the input features to a specific range between 0
and 1, which allows fast convergence during the model training.
In addition to normalization, the time-series channel data is
converted to a labeled format to allow for supervised learning to
carry out the prediction task. This involves creating input-output
pairs, where the model’s input consists of historical channel
gain, and the model’s output represents the next time step of
the channel gain value to be predicted.

B. Prediction Model Architecture

We propose a deep learning channel prediction model based
on a hybrid convolutional neural network (CNN)-long-short-
term-memory (LSTM) recurrent neural network (RNN). The
reason for selecting this model for channel prediction is that
the channel gain represents time-series data, which is better
predicted using an LSTM-RNN model that efficiently captures
the temporal correlation within the data. However, to further
enhance the convergence of the model training and enhance the
prediction accuracy, the model is better trained using relevant



features rather than using raw channel data. Hence, the first
stage of the model consists of CNN layers used to extract
relevant features and pass them to the next stage consisting
of LSTM layers to further process the features and make
predictions in the output layer. Specifically, CNNs are well-
suited for capturing channel patterns/features related to the
user’s movement across different locations. On the other hand,
LSTM layers are designed to capture sequential dependencies
and temporal patterns in the channel data. Hence, the first layer
is a 1D Convolutional (Conv1D) layer with an input shape that
is based on the number of time steps in the input data, and it has
one feature. The next layer is a 1D Max Pooling layer with a
pool size of 2. This layer helps reduce the spatial dimensions of
the output from the previous ConvlD layer, effectively down-
sampling the feature map. The pooling layer is followed by
LSTM layers that adopt dropout to prevent overfitting during
training. The LSTM layers are followed by a Flatten layer that
transforms the output into a 1D array, which is then fed into
the dense output layer. The output layer of the regression task
is a dense layer with 1 neuron that predicts a single continuous
value that represents the next time step of the channel gain.

C. Model Training and Hyper-parameter Optimization

The channel data is split into training and testing data with a
split ratio of 3 : 1. Model training is carried out on the training
data using backpropagation. Also, hyper-parameter optimiza-
tion is done using a random grid search on the validation set
created by cross-validation. The considered hyper-parameters
are the number of LSTM layers (an integer between 1 and 10),
the number of LSTM units per layer (an integer between 32 and
300), the activation function used in the LSTM layers and the
Conv1D layer (ReLu or Tanh), and the dropout rate applied
to the LSTM layers (a float between 0 and 0.5). Our hyper-
parameter optimization led to the following parameters: using
ReLu activation function with two LSTM layers with each layer
having 200 neurons and a dropout of 0.3.

D. Performance Metrics

We evaluated the performance of the channel prediction
models on the testing data using the root mean squared error
(RMSE) metric, which measures the model’s accuracy based
on the square root of the average of the squared differences
between predicted and actual channel gain values. Specifically,
the RMSE can be described as

N
1
RMSE = , | — — )2,
N;:l(y, ¥i)

where N denotes the total number of samples in the test dataset,
y; represents the actual channel gain value for the ¢-th sample,
and gy; represents the predicted value for the i-th sample.

E. Performance Evaluation and Countermeasure

This subsection presents the performance of the channel pre-
diction models under concept drift and countermeasure. First,
we establish benchmark performance for channel prediction.

Since the channel gain data follows three distinct statistics
depending on the mobility stage, the best channel prediction
performance is expected when prediction models are trained
and tested using channel data from the same mobility stage. We
refer to those as stage-specific channel prediction models. Then,
we show that these stage-specific models do not generalize
well when tested using data from different mobility stages by
quantifying the deterioration percentage in RMSE. Next, we
study the performance of a prediction model that is trained
using channel data from all mobility stages, referred to as all
stages channel prediction model. Again, we show performance
deterioration in RMSE. Finally, we present a countermeasure
based on an ensemble model that combines predictions from
stage-specific models and we demonstrate a stable RMSE
performance regardless of the mobility stage.

1) Stage-Specific Channel Prediction Models: Herein, we
develop three channel prediction models, each is trained using
channel data from a specific mobility stage. Hence, we have (a)
an entering model that is trained using channel data collected
from the user’s entering stage, (b) a wandering model that is
trained using channel data collected from the user’s wandering
stage, and (c) an exiting model that is trained using channel
data collected from the user’s exiting stage. Table I shows
the RMSE performance of the three models when tested on
the channel data collected from the same mobility stage. It is
expected that this is the best performance that can be attained
since the training and testing channel data used in each model
follows the same distribution. To study the generalization ability
of the three models, we test each model on channel data
collected from the other two mobility stages. Table II shows
the performance results in terms of RMSE deterioration with
respect to the benchmark performance shown in Table I. In
Table II, the RMSE deterioration equals 0% when the model is
trained and tested using channel data collected from the same
mobility stage. However, the prediction accuracy in terms of
RMSE deteriorates by 11 — 54% when the models are trained
and tested on channel data collected from two different mobility
stages. This is because the channel data in each mobility stage
presents a distinct distribution, as shown in Fig. 4.

2) All Stages Channel Prediction Model: Herein, we train a
prediction model using channel data collected from all mobility
stages. To test the model’s generalization ability, we report in
Table II the deterioration in the prediction’s RMSE, compared
with the benchmark performance in Table I, when the all stages
model is tested against channel data collected from specific
mobility stages. As shown in Table II, the deterioration in
prediction accuracy ranges from 15% to 68%. This performance
reduction compared with stage-specific models is expected as
the channel data used in the model’s training comes from
different distributions, which confuses the model during testing.

The results for the stage-specific and all stages models indi-
cate poor generalization ability, with performance degradation
ranging from 11% to 68%. This performance is attributed to
concept drift in dynamic WiGig channels. Next, we present a
countermeasure and study its performance.



TABLE 1. Benchmark performance of WiGig channel prediction.

Model | Entering Model | Wandering Model | Exiting Model

RMSE 1x 104 1.3 x 104 1.3x 104

3) Ensemble Channel Prediction Models: Ensemble model-
ing combines the predictions of multiple individual models to
create a more accurate and robust final prediction. Herein, we
study two ensemble techniques, namely, simple averaging and
weight averaging [21]. The simple averaging technique involves
combining the predictions from multiple individual models by
calculating their average. Each model provides its prediction of
the channel gain, and the final ensemble prediction is obtained
by taking the average of these individual model predictions.
On the other hand, the weights average ensemble technique
introduces individual weights for each model’s prediction.
Instead of giving equal importance to all models, we assign
specific weights that reflect the relative importance of each
model in the ensemble. In this work, we considered the weights
of different models as hyper-parameters that are optimized via
random search using cross-validation data. The optimal weights
are found to be 70%, 15%, and 15% for the entering model,
wandering model, and exiting model, respectively. As shown
in Table I, the simple average ensemble maintains performance
deterioration of < 9%. The most stable performance is attained
using the weight averaging ensemble strategy, which results in
a deterioration performance of < 4%.

TABLE II. Deterioration in performance of channel prediction models
relevant to the benchmark models.

Channel Prediction Model Data
Entering | Wandering Exiting

Entering Model 0% 54% 48%
Wandering Model 31% 0% 11%
Exiting Model 19% 17% 0%
All Stages Model 15% 68% 48%
Simple Averaging Ensemble 9% 1% 1%
Weight Averaging Ensemble 3% 4% 0.3%

V. CONCLUSION

In this paper, we demonstrated that dynamic indoor WiGig
channels suffer from concept drift as the probability distribution
of the channel gain varies according to the user’s spatio-
temporal mobility with 3 distinct stages, namely, entering,
wandering, and exiting. This concept drift causes deep learning-
based channel prediction models to suffer from performance
degradation ranging between 11—68%. To improve the model’s
generalization ability while relying only on channel gain data,
two ensemble techniques have been adopted, namely, simple
averaging and weight averaging, which improved the robustness
of the prediction accuracy, with the best performance achieved
by the weight averaging ensemble that maintains performance
degradation < 4%.
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