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Abstract—Recently emerging WiGig systems experience limited
coverage and signal strength fluctuations due to strict line-of-sight
(LoS) connectivity requirements. In this paper, we address these
shortcomings of WiGig communication by exploiting two emerging
technologies in tandem, namely the reconfigurable intelligent
surface (RIS) and unmanned aerial vehicles (UAVs). In ultra-dense
traffic sites (referred to as hotspots) where WiGig nodes or User
Devices (UDs) experience complex propagation and non-line-of-
sight (non-LoS) environment, we envision the deployment of a
UAV-mounted RIS system to complement the WiGig base station
(WGBS) to deliver services to the UDs. However, commercially
available UAVs have limited energy (i.e., constrained flight time).
Therefore, the trajectory of our considered UAV needs to be locally
estimated to enable it to serve multiple hotspots while minimizing
its energy consumption within the WGBS coverage boundaries.
Since this tradeoff problem is computationally expensive for the
resource-constrained UAV, we argue that sequential learning can
be a lightweight yet effective solution to locally solve the problem
with a low impact on the available energy on the UAV. We
formally formulate this problem as a contextual multi-armed
bandit (CMAB) game. Then, we develop the linear randomized
upper confidence bound (Lin-RUCB) algorithm to solve the
problem effectively. We regard the UAV as the bandit learner,
which attempts to maximize its attainable rate (i.e., the reward)
by serving distinct hotspots in its trajectory that we treat as
the arms of the considered bandit. The context is defined as the
hotspots’ locations provided using GPS (global positioning system)
service and the reward history of each hotspot. Our proposal
accounts for the energy expenditure of the UAV in moving from
one hotspot to another within its battery charge lifetime. We
evaluate the performance of our proposal via extensive simulations
that exhibit the superiority of our proposed Lin-RUCB algorithm
over benchmarking methods.

Index Terms—WiGig, RIS, UAV, MAB, Lin-RUCB.

I. INTRODUCTION

To cope with the recent explosion of content-rich applications

and services demanding large bandwidth, WiGig emerged as

a promising technology by allowing Wireless Devices (WDs)

to access the non-congested 60 GHz frequency spectrum with

significantly wide channels to achieve multi-gigabit per second

speeds. Despite this superior capacity, WiGig suffers from

constrained coverage area due to stringent line-of-sight (LoS)

requirements between the transmitting and receiving nodes [1],

[2]. Consequently, WiGig technology does not scale well be-

yond indoor settings due to intricate propagation and path loss

phenomena [2], [3]. This paper aims to enhance the WiGig

communication system with unmanned aerial vehicle (UAV)-

mounted reconfigurable intelligent surface (RIS). Both UAV

and RIS technologies have advanced tremendously in recent

years. Their combined exploitation could unlock a unique capa-

bility for enhancing WiGig communication coverage and signal

strength in complex and challenging environmental settings.

Inspired by the recent work in [4]–[6], we anticipate that such

a coupling between UAV and RIS technologies may facilitate

efficient WiGig communication and data transfer across a

range of applications from emergency response and industrial

operations to urban connectivity and precision agriculture [4],

[5]. Since WiGig communications primarily rely on LoS links

that result in poor coverage, beamforming training (BT) extends

its communication range. This can be implemented by directing

the beams of the WiGig base station (WGBS) towards the RIS

board, which adjusts its phase shifts (PSs) to direct the beam

to the WiGig User Device (UD) [7], [8].

In order to improve the WiGig communication coverage

by providing communication links to non-LoS users via the

UAV-mounted RIS, in this paper, we describe the problem of

the route planning of the UAV. Our formulated optimization

problem aims to maximize the potential data rate across various

UD-hotspots while taking into factor the flight cost of the

UAV in terms of its energy expenditure. Herein, the UAV

is assumed to have knowledge of the UDs location via GPS

service. However, the UAV is considered to be unaware of

their respective traffic requirements prior to providing WiGig

communication links to the hotspots. Additionally, the lack

of interactivity of the RIS hinders the investigation of the

correlation between WGBS, UAV-mounted RIS, and UDs. To



address this problem, we utilize a contextual bandit, a self-

learning system [9], [10]. Contextual bandits are special multi-

armed bandit (MAB) types, in which the player maximizes

a long-term payoff by attempting the accessible bandit arms

within a pre-determined duration by utilizing supplemental

information known as the context [11]. We justify the adoption

of CMAB for addressing the UAV-mounted RIS problem in this

paper due to its advantage in overcoming the complexity of

estimating CSI and the inherent passivity of the RIS elements.

Based on our considered UAV-mounted RIS system, we

regard the UAV as the CMAB player, which attempts to

maximize its profit via serving various UD hotspots, i.e., the

bandit arms. However, this bandit game is limited by the

battery capacity (residual energy) of the UAV. We capture this

tradeoff as a CMAB problem and propose a linear randomized

upper confidence bound(Lin-RUCB) algorithm to effectively

solve the UAV-mounted RIS path planning problem. Based

on extensive computer-based simulations, we evaluate the per-

formance of our proposal. Our conducted simulation results

clearly demonstrate the superior performance of our proposal

over benchmarks and comparable methods.

The remainder of our paper is organized as follows. The rele-

vant research work are surveyed in section II. Next, section III

details our considered system model. Section IV formulates

the UAV-mounted RIS route planning optimization problem.

Our proposed Lin-RUCB algorithm is presented in section V.

Section VI presents simulations-based comparisons of Lin-

RUCB with comparable methods. Finally, section VII entails

concluding remarks and future research directions.

II. RELATED WORK

Recently a number of researchers attempted to employ RIS

to improve the coverage area of WiGig communications. In

particular, researchers in [12] leveraged stochastic geometry to

analyze the possible coverage improvement via RIS-enhanced

WiGig communications. The work in [13] investigated WiGig

communications with random blockers utilizing multiple RIS

panel structures. Subsequently, the authors of [14], [15] ad-

dressed the issue of extensive RIS-enhanced WiGig channel

estimation by exploiting its cascaded setup. In [16], the RIS’s

PSs and the hybrid precoding metrics of the WGBS are config-

ured under the assumption of perfect channel state information

(CSI).

Although a considerable amount of research has exam-

ined the use of RIS-enabled WiGig communications, only a

few research works have focused on its potential to enhance

WiGig communications through UAV-mounted RIS. However,

the combination of UAV and RIS was carried out in the

existing research work without considering the need for the path

optimization of the resource-constrained UAV to serve multiple

groups of UDs, referred to as hotspots, with the minimum

possible energy expense. For instance, a deep reinforcement

learning (DRL) algorithm was presented in [17] to improve the

performance of UAV-mounted RIS systems supporting WiGig

communications. However, no consideration on the UAV’s

path optimization or energy expense was made in that work.

Similarly, the work in [18] developed another DRL algorithm to

facilitate WiGig-UAV communications. Again, they focused on

placing the RIS panels on the WiGig base stations. In contrast,

we hypothesize mounting RIS on the UAV will yield a better

linkage performance due to its mobility and maneuverability.

Concerning the work mentioned above combining RIS and

UAV technologies to complement WiGig communications, neu-

ral networks that require offline, supervised training is typically

used. This is evident from the recent work in [19] that attempted

to combine UAV and RIS operating at even higher frequency

bands above 60 GHz by training a deep learning model for

predicting beam patterns. Training such models also require

acquiring a robust dataset with exhaustive network conditions,

such as channel state information (CSI). Researchers in [10],

[20] realized this issue and indicated that nested, two-stage

bandit algorithms might yield localized solutions for RIS-

assisted WiGig systems. Also, in [21], [22], the authors utilized

bandits for RIS relay probing in WiGig communications. A

reinforcement learning (RL)-aided solutions for UAV-NOMA

data offloading in B5G mmWave-enabled communications were

investigated in [23]. Furthermore, RIS load balancing and user

association using multiplayer bandits were proposed in [24].

However, the above work still did not consider the UAV-

mounted RIS scenario.

On the other hand, coauthors of our work investigated the

RIS-enabled UAV in an earlier research work [7], [8]. They

developed the system preliminaries for this paper that are

essential to formulate a multi-armed bandit (MAB) game for the

UAV path estimation with energy minimization while designing

the relevant side information, i.e., a context, for finding an

accurate solution to the formulated problem. To the best of

our knowledge, this paper is the first research work to propose

a contextual multi-armed bandit (CMAB) game to represent

the aforementioned problem and design an algorithm to find

a solution that converges fast by making use of the context

information, so that the performance and coverage of the

WiGiG communication can be improved via our considered

UAV-mounted RIS system.

III. SYSTEM MODEL

In this section, we describe our considered system model

with the aid of Fig. 1, which illustrates a WiGig-enhanced

communication network supported by UAV-mounted RIS. The

figure shows multiple UD-hotspots are dispersed in the WGBS

coverage area. The capacity of UDs per hotspot is adjustable

depending on the traffic requirements. It is worth noting that the

UAV-mounted RIS significantly improves the coverage of the

WGBS, particularly at the remote hotspots (toward the edge

of the portrayed area in the figure) that do not enjoy LoS

connectivity with the WGBS.

As Fig. 1 illustrates, the UDs are connected to the WGBS

directly and indirectly via the UAV-mounted RIS. The WGBS

utilizes a control channel to tune the RIS panel’s PSs and direct

its main beam toward the assisted UDs/hotspot. Therefore, a

need arises to optimize the UAV-mounted RIS route planning

to maximize the accessible data rate while accounting for the
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Fig. 1. UAV-mounted RIS-assisted WiGig communication system.
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Fig. 2. Simple demonstration of the WGBS, UAV-mounted RIS and UD
communication linkages.

UAV’s battery power usage. Before this particular problem can

be formally treated later in section IV, we provide the system

model preliminaries as follows.

First, the received power at a UD can be expressed as:

%' = %',�*� + %',�� (1)

where %',�*� and %',�� denote the indirect power delivered

from WGBS via the UAV-RIS and the direct power delivered

from the WGBS, respectively.

Next, according to the WiGig-RIS link model presented

by [25], %',�*� can be expressed as:

%',�*� =
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where, %) , _, &, W denote the WGBS radiated power,

WiGig wavelength, the number of RIS elements number,

and the RIS elements’ reflection coefficient, respectively [25].

�),�*

(
\),�* , \−33�

)
indicates the beamforming gain from

WGBS to UAV-RIS, while �',�*

(
q',�* , q−33�

)
refers to

the delivered gain from UAV-mounted RIS to UD. \−33� and

q−33� are the half power radiating and receiving beamwidths

[26], respectively. \),�� is the azimuth angle for the beam

between WGBS and UD. q',�* denotes the beam angle

between UD and UAV-mounted RIS, as described in Fig. 2.

According to this scenario, the UAV-mounted RIS can fly

from WGBS and UD once the far-field RIS radiated signal is

delivered. Hence, the antenna elements of the RIS panel have

an equal gain [25].

By adopting the WiGig antenna layout from WiGig stan-

dards [26], a two-dimensional dirigible antenna framework with

a Gaussian main loop shape, �),�*

(
\),�* , \−33�

)
, is utilized,

which can be expressed as follows,
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On the WiGig UD side, similarly we consider the parameter

�',�*

(
q',�* , q−33�

)
, by replacing the parameters \),�*

and \−33� in eq. (3) by q',�* and q−33�, respectively.

Δ',*�

(
q',*�

)
and Δ),*�

(
\C ,*�

)
are the RIS elements’ radi-

ation patterns. Δ',*�

(
q',*�

)
can be mathematically described

as follows [25],

Δ',*�

(
q',*�

)
= 4 cos

(
q',*�

)
. (4)

Similar formula can be implemented for Δ),*�

(
\),*�

)
with

the replacement of q',*� instead of \),*�. Regarding %',�� ,

we leverage the link model provided in [26], [27] for terrestrial

WiGig communications, where %',�* is formulated in eq. (5).

%',�� = %) �),��

(
\),�� , \−33�

)
�',��
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)
(
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+
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where �),��

(
\),�� , \−33�

)
and �',��

(
q',��, q−33�

)
are

evaluated from eq. (3). [ (P!>( (-��)) is the LoS blocking

probability and j (P#!>( (-��)) is the NLoS blocking prob-

ability of the WiGig link [26]. !!>( (-��) and !#!>( (-��)

reflect the LoS and NLoS path losses, formulated as follows,

10 log10 (!E (-��)) = VE + 10UE log10 (-��) + YE , (6)

where E ∈ {!>(, #!>(} , VE = 82.02 − 10UE log10 (-0) is

the reference five meters path loss. UE denotes the path loss

coefficient, and YE ∽ N (0, XE) represents the zero mean and

XE standard deviation log-normal shadowing. Hence, the @Cℎ

UD’s spectral efficiency is formulated as follows.

k@ = log2

(
1 + %'@/f0

)
, (7)

where f0 is the noise power.

Based on the system model presented in this section, we now

have the preliminaries to formally articulate the actual research

problem in the following section.



IV. UAV-MOUNTED RIS ROUTE PLANNING PROBLEM

FORMULATION

In this section, we present the UAV-mounted RIS route

planning problem that targets optimizing the UAV-mounted

RIS trajectory that maximizes data rate from serving distinct

hotspots while considering the UAV energy boundary over its

flight duration. Let ( be a set of likelihood spread hotspots,

denoted as S = {1, 2, 3, . . . ., B}. The UAV trajectory can be

expressed mathematically as 9? =

{
B1, B2, . . . .., B# 9?

}
, where

B8 ∈ S indicates the hotspot index in the route/path 9? , and

B# 9?
stands for the last indexed hotspot of the UAV path, i.e.,

the final served hotspot before the UAV’s battery is depleted.

Every existing hotspot has random UDs �B8 . Hence, the UAV-

mounted RIS route planning optimization can be formulated as

follows.

max
9?∈J

# 9?∑
8=1

ΨB8 (8)

B.C.

# 9?∑
8=1

ΞB8 ≤ Ξ1

Fℎ4A4 ΞB8 = %ℎ)ℎB8 + % 5) 5B8
,

ΨB8 =

&B8∑
@=1

k@ , )ℎB8 =
�B8

�,ΨB8

, ) 5B8
=

��GB8 ,B8+1

��
+ 5

.

Here, J represents the set of all possible paths, ΨB8 denotes

the spectral efficiency of hotspot B8 ∈ S, which equals the

sum of hotspot’s UDs’ spectral efficiencies k@ , 1 ≤ @ ≤ &B8 .

Also, let ΞB8 be the energy depleted/consumed to serve hotspot

B8 . The UAV’s hovering, and flying powers are denoted as %ℎ

and % 5 , respectively. )ℎB8 determines the hovering duration of

the UAV via hotspot :8 , which is the ratio between the :8’s

traffic demands, �B8 , and the attained data rate �,ΨB8 . ) 5B8
is

the UAV’s duration necessary for its move from hotspot B8 to

B8+1, where
��GB8 ,B8+1

�� is the distance between two consecutive

hotspots, and + 5 is the aerial velocity. The limitation specified

in (8) demonstrates that the overall energy depleted by the UAV-

mounted RIS throughout its route is constrained by its battery-

powered capacity Ξ1. The UAV should autonomously adapt its

route and be adaptable to hotspots’ traffic demands. Therefore,

the UAV must optimize the data rate of the aided hotspots while

extending their battery life through an appropriate selection

policy without any CSI calculations.

Given that this problem is computationally hard to solve and

the UAV has limited energy and computational resources on

board, we seek to find a localized yet efficient solution at the

UAV level in the following section.

V. PROPOSED LIN-RUCB ALGORITHM

In this section, we consider exploring a sequential algorithm

for localized decision-making at the resource-constrained UAV

to serve the hotspots to maximize the data rate while mini-

mizing the overall energy expenditure. In this vein, we convert

the optimization problem in (8) into a CMAB. In our formu-

lated CMAB game, the UAV acts as the learner/player which

progresses through the sequence of trials. It is rewarded with

cumulative gains for their choices (choosing arms/ hotspots).

At every trial, the learner decides its action based on the

context vector (side information) and reward history of the

previous rounds. Hence, the learner only collects the reward

of the decided arm/hotspot [9]. By using the features to encode

the context is derived from supervised machine learning, while

exploration is essential for optimizing the learning performance,

such as with the reinforcement learning technique. Therefore,

the converted problem (i.e., the CMAB game) can be regarded

as a commonly accepted compromise between supervised

learning and reinforcement learning. The CMAB problem is

typically addressed by postulating a linear correlation between

the resultant reward and its respective contexts [28], which

motivates us to design our algorithmic solution as follows.

As a solution to the aforementioned CMAB game, we

design the Lin-RUCB algorithm to efficiently locate the ex-

ploration parameter instead of relying on a fixed value like in

LinUCB [29]. This approach aims to generate a randomized

confidence interval and pick the optimal arm at each process

round by adjusting the exploration parameter, /C , /1, .. /T , by

using a random variable. The value + is determined via the

discretization of the interval [!,*] into # = 100 points, where

/ is calculated as / = (! + (* − !)/(#)) [29].

It is possible to predict the probable reward of an arm by

ascertaining a linear relation between the prior rewards of the

arm and its existing context vector. Lin-RUCB utilizes the

features vector of the existing round and the coefficients and

rewards from the previous rounds to anticipate the reward for

the current round by interpreting them into a linear combination

of the feature vectors observed in prior rounds. At trial C, let G8

be an m×d matrix, in which each of the < rows corresponds to

the contexts observed for arm/hotspot i. The application of ridge

regression to the training data (G8 , 18) provides an estimate of

the coefficients as follows,

\̂8 = (G)
8 G8 + �3)

−1
18 . (9)

It has been demonstrated that when the components of 08
are independent given the corresponding rows of G8 , then 18 =

G)
8 08 , where 08 is an <-dimensional vector containing the past

observed rewards of arm/hotspot 8.

|C)
8,C\8,C − � [k8,C |C8,C ] | ≤ /!8=−'*��C

)
8,CB

−1
8 �8,C , (10)

where B8 = G)
8 G8 + �3 . Hence, the best hotspot is selected as:

8∗C = arg max
8∈�

(
98,C

)
, (11)

where 98,C = - 8,C
) \̂8,C + /!8=−'*��

√
�8,C

)�−1
8
�8,C

Algorithm 1 highlights the main steps of Lin-RUCB to

optimize the UAV-mounted RIS route via a proper selection

of the next hotspot using embedded side information which

are the hotspot places and previous reward history of each

hotspot. Initially when C = 0, the selection counter of each

hotspot B8 ∈ (,,B8C
and their corresponding data rates,k̄B8C

are



Algorithm 1 Lin-RUCB for UAV-mounted RIS.

1: Input: S, )� , ΞB8 , Ξ1

2: Initialization: C = 0, ,B8C
= 0, k̄B8C

= 0, ∀B8 ∈ S, B8 = �3 ,

18 = 03×1 .

3: For t=1,2,...,)�
4: For 8 = 1, 2, ....S

5: Attempt each hotspot B8C .

6: Collect its corresponding rate ΨB8C
and traffic request �B8C

.

7: Notice features of ∀B8 ∈ � : CB8C
∈ C ⊆ R3

8: While ΞB8C
≥ Ξ1

9: \̂8 = B−1
8 18

10: 98,C = C8,C
) \̂8,C + /!8=−'*��

√
�8,C

)B−1
8 C8,C

11: End While

12: End For

13: Choose hotspot 8∗C = arg max8
(
98,C

)
and observe kB8∗,C

14: B8∗C
= B8∗C

+ C8∗C ,C
C
8∗C ,C

)18∗C = 18∗C + kB∗
8C
CB∗

8C
,C

15: Ψ̄B8C+1
=

1
,B8C+1

∑,B8C+1

A=1
ΨB8A

16: Update ,:∗ ,C = ,:∗ ,C−1 + 1.

17: Update Ψ̄B8∗C
=

1
,B

8∗C

∑,B
8∗C

A=1
ΨB8A

18: End For

set to zero. The algorithm initializes by attempting each hotspot

once and collecting its corresponding reward with the side

information (i.e., context) that contains the previous rewards

and the distance of the UAV from each hotspot. Afterward,

during the remaining time horizon, Lin-RUCB’s main selection

strategy, as in (10), is applied to select the next hotspot. Finally,

the algorithm parameters are updated for the next round.

VI. PERFORMANCE EVALUATION

In this section, simulations are conducted to evaluate the

performance of the envisioned Lin-RUCB method against other

solutions, such as classical UCB (upper confidence bound),

random, and nearby selection methods. In UCB, the hotspot

corresponding to the highest spectral efficiency is chosen with-

out taking into consideration the UAV battery. The random

selection stochastically draws the following hotspot in the

UAV route, whereas the nearby election technique always

opts for the closest hotspot. Furthermore, the optimum rate

performance is provided as the UAV has the complete envi-

ronmental information and draws the hotspot that offers the

maximum accessible rate. The simulation setup places two

hundred hotspots uniformly in a 16  <2 area. Each hotspot

has UDs that are uniformly distributed between 1 and 50. The

simulation parameters are listed in Table I. The performance

evaluation metrics are the data rate and energy efficiency (EE).

In this context, EE of hotspot B8 is equal to ΨB8/ΞB8 .

The data rate and EE performances of the schemes involved

in the comparison versus different numbers of hotspots uni-

formly located within 16  <2 simulation area are presented in

Figs. 3(a) and 3(b), respectively.

From Fig. 3(a), we can notice that the data rate is propor-

tionally related to the hotspot numbers except for nearby and

random methods since they present a fixed data rate perfor-

mance. The nearby method delivers the worst rate performance

TABLE I
CONSIDERED SIMULATION PARAMETERS.

Parameters Value

%) , �, 1 Watt, 2.16 GHz

_, ", Γ 0.005, 64, 0.9

ℎ, )ℎ 10m,60 sec

\−33�, q−33� 30°

)� 1000

f0 (3�<) −174 + 10;>610(, ) + 10

':8 Uniform [10, 70] Gbit

because of its policy that achieves a low accessible data rate.

Our proposed Lin-RUCB algorithm delivers the maximal rate

performance, followed by UCB. At 300 hotspots, our pro-

posal (Lin-RUCB), UCB, nearby, and random methods achieve

around 86%, 45%, 1.3%, and 1.5% of the ideal selection

scheme, accordingly.

Next, Fig. 3(b) exhibits the EE performance evaluation ver-

sus varied hotspot numbers. The proposed Lin-RUCB scheme

delivers a superior EE performance due to valuable side in-

formation (context). Furthermore, note that the nearby election

technique outperforms the random one because of its policy of

drawing the closest hotspot, hence minimizing the energy cost.

At 300 hotspots, the envisioned Lin-RUCB, UCB, nearby and

random techniques achieve EE of around 16.7, 2.19, 0.032, and

0.42 Gbps/mJ, respectively.

Furthermore, the data rate and EE performances of various

methods versus the utilized number of RIS antenna elements &

via 200 randomly spread hotspots within 16 <2 are presented

in Figs. 4(a) and 4(b), respectively. As & increases, both data

rate and EE performances slightly improve because of the

major effect of the LoS link between the WGBS and UD.

However, at large numbers of antenna elements 256, 512, the

performance is improved due to the increased effect of the

UAV-UD path. The proposed Lin-RUCB delivers near-optimal

rate performance and the best EE followed by the UCB

scheme. At 512 elements, the data rate performance of Lin-

RUCB, UCB, nearby, and random techniques attained 88.6%,

40.5%, 2.7%, and 2.6% of the optimum rate performance.

Also, they attained EE performance of 16.3, 2.5,0.88, and 0.06

Gbps/mJ, respectively.

The data rate and EE performances of various methods,

when simulated across a range of areas from 1 to 100  <2

with 128 RIS antenna elements and 200 randomly distributed

hotspots, are evaluated in Figs. VI and VI, respectively. In

small areas, the high density of UDs leads to increased data

rates and, consequently, elevated EEs. The opposite is true for

large areas. The proposed Lin-RUCB experiences a superior

data rate and EE performances, followed by the classical UCB.

Also, the random scheme’s data rate exceeds that of the nearby

method, and the opposite observation is made regarding the

EE performance. This also can be attributed to the previously

presented rationale. In a simulated area of 1 km2, 78.6%,

14%, 4.8%, and 4.7% of the optimum rate performance were

achieved using the proposed Lin-RUCB, UCB, nearby, and
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Fig. 3. Data rate and EE Comparison of Lin-RUCB against UCB, nearby, and Random schemes at distinct hotspots and 64 RIS elements within 16  <2

coverage area.
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Fig. 4. Data rate and EE Comparison of Lin-RUCB against UCB, nearby, and Random schemes at distinct RIS antenna elements and 200 hotspots within 16
 <2 coverage area.
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Fig. 5. Data rate and EE Comparison of Lin-RUCB against UCB, nearby, and Random methods at distinct simulated areas using 200 hotspots and 128 antenna
elements.



random methods, respectively. When the simulated area was

increased to 81 km2, these rates became 90%, 77%, 1.3%, and

1.7%, respectively.

In an area of 1  <2, the EE of the proposed Lin-RUCB

algorithm was superior to that achieved by UCB, nearby, and

random selection methods by a factor of 26, 44, and 97,

respectively. Furthermore, these values changed to 10.3,41.5,

and 520 when the simulation area was set to 81  <2.

The computational complexity of the proposed in-RUCB

scheme is analogous to the traditional UCB since its major

complexity arises from the size of the context vector and the

number of probed hotspots/arms as it is in the order of O
(
32 

)
[29]. Since 3 is fixed to 2, the complexity depends mainly on

the number of hotspots.

VII. CONCLUSION

This work investigated the utilization of UAV-mounted RIS

to enhance the coverage of WGBS in high-traffic areas. It

also presented the rationale behind optimizing the UAV route

to serve a large number of hotspots, hence maximizing the

data rate and concurrently prolonging the UAV flight time

by minimizing the UAV’s travel cost in terms of energy

expenditure. The optimization problem was reformulated into

a contextual multi-armed bandit (CMAB) game, and the Lin-

RUCB algorithm was proposed to find a real-time solution

to this problem by choosing and serving the appropriate UD-

hotspots along the UAV route. Performance evaluations verified

the superior performance of the proposed algorithm over bench-

mark solutions. Future work may include embedding CSI as a

context and multiplayer bandit formulation.
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