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Abstract—Recently emerging WiGig systems experience limited
coverage and signal strength fluctuations due to strict line-of-sight
(LoS) connectivity requirements. In this paper, we address these
shortcomings of WiGig communication by exploiting two emerging
technologies in tandem, namely the reconfigurable intelligent
surface (RIS) and unmanned aerial vehicles (UAVs). In ultra-dense
traffic sites (referred to as hotspots) where WiGig nodes or User
Devices (UDs) experience complex propagation and non-line-of-
sight (non-LoS) environment, we envision the deployment of a
UAV-mounted RIS system to complement the WiGig base station
(WGBS) to deliver services to the UDs. However, commercially
available UAVs have limited energy (i.e., constrained flight time).
Therefore, the trajectory of our considered UAV needs to be locally
estimated to enable it to serve multiple hotspots while minimizing
its energy consumption within the WGBS coverage boundaries.
Since this tradeoff problem is computationally expensive for the
resource-constrained UAV, we argue that sequential learning can
be a lightweight yet effective solution to locally solve the problem
with a low impact on the available energy on the UAV. We
formally formulate this problem as a contextual multi-armed
bandit (CMAB) game. Then, we develop the linear randomized
upper confidence bound (Lin-RUCB) algorithm to solve the
problem effectively. We regard the UAV as the bandit learner,
which attempts to maximize its attainable rate (i.e., the reward)
by serving distinct hotspots in its trajectory that we treat as
the arms of the considered bandit. The context is defined as the
hotspots’ locations provided using GPS (global positioning system)
service and the reward history of each hotspot. Our proposal
accounts for the energy expenditure of the UAV in moving from
one hotspot to another within its battery charge lifetime. We
evaluate the performance of our proposal via extensive simulations
that exhibit the superiority of our proposed Lin-RUCB algorithm
over benchmarking methods.

Index Terms—WiGig, RIS, UAV, MAB, Lin-RUCB.

I. INTRODUCTION

To cope with the recent explosion of content-rich applications
and services demanding large bandwidth, WiGig emerged as
a promising technology by allowing Wireless Devices (WDs)
to access the non-congested 60 GHz frequency spectrum with
significantly wide channels to achieve multi-gigabit per second

speeds. Despite this superior capacity, WiGig suffers from
constrained coverage area due to stringent line-of-sight (LoS)
requirements between the transmitting and receiving nodes [1],
[2]. Consequently, WiGig technology does not scale well be-
yond indoor settings due to intricate propagation and path loss
phenomena [2], [3]. This paper aims to enhance the WiGig
communication system with unmanned aerial vehicle (UAV)-
mounted reconfigurable intelligent surface (RIS). Both UAV
and RIS technologies have advanced tremendously in recent
years. Their combined exploitation could unlock a unique capa-
bility for enhancing WiGig communication coverage and signal
strength in complex and challenging environmental settings.
Inspired by the recent work in [4]-[6], we anticipate that such
a coupling between UAV and RIS technologies may facilitate
efficient WiGig communication and data transfer across a
range of applications from emergency response and industrial
operations to urban connectivity and precision agriculture [4],
[5]. Since WiGig communications primarily rely on LoS links
that result in poor coverage, beamforming training (BT) extends
its communication range. This can be implemented by directing
the beams of the WiGig base station (WGBS) towards the RIS
board, which adjusts its phase shifts (PSs) to direct the beam
to the WiGig User Device (UD) [7], [8].

In order to improve the WiGig communication coverage
by providing communication links to non-LoS users via the
UAV-mounted RIS, in this paper, we describe the problem of
the route planning of the UAV. Our formulated optimization
problem aims to maximize the potential data rate across various
UD-hotspots while taking into factor the flight cost of the
UAV in terms of its energy expenditure. Herein, the UAV
is assumed to have knowledge of the UDs location via GPS
service. However, the UAV is considered to be unaware of
their respective traffic requirements prior to providing WiGig
communication links to the hotspots. Additionally, the lack
of interactivity of the RIS hinders the investigation of the
correlation between WGBS, UAV-mounted RIS, and UDs. To



address this problem, we utilize a contextual bandit, a self-
learning system [9], [10]. Contextual bandits are special multi-
armed bandit (MAB) types, in which the player maximizes
a long-term payoff by attempting the accessible bandit arms
within a pre-determined duration by utilizing supplemental
information known as the context [11]. We justify the adoption
of CMAB for addressing the UAV-mounted RIS problem in this
paper due to its advantage in overcoming the complexity of
estimating CSI and the inherent passivity of the RIS elements.

Based on our considered UAV-mounted RIS system, we
regard the UAV as the CMAB player, which attempts to
maximize its profit via serving various UD hotspots, i.e., the
bandit arms. However, this bandit game is limited by the
battery capacity (residual energy) of the UAV. We capture this
tradeoff as a CMAB problem and propose a linear randomized
upper confidence bound(Lin-RUCB) algorithm to effectively
solve the UAV-mounted RIS path planning problem. Based
on extensive computer-based simulations, we evaluate the per-
formance of our proposal. Our conducted simulation results
clearly demonstrate the superior performance of our proposal
over benchmarks and comparable methods.

The remainder of our paper is organized as follows. The rele-
vant research work are surveyed in section II. Next, section III
details our considered system model. Section IV formulates
the UAV-mounted RIS route planning optimization problem.
Our proposed Lin-RUCB algorithm is presented in section V.
Section VI presents simulations-based comparisons of Lin-
RUCB with comparable methods. Finally, section VII entails
concluding remarks and future research directions.

II. RELATED WORK

Recently a number of researchers attempted to employ RIS
to improve the coverage area of WiGig communications. In
particular, researchers in [12] leveraged stochastic geometry to
analyze the possible coverage improvement via RIS-enhanced
WiGig communications. The work in [13] investigated WiGig
communications with random blockers utilizing multiple RIS
panel structures. Subsequently, the authors of [14], [15] ad-
dressed the issue of extensive RIS-enhanced WiGig channel
estimation by exploiting its cascaded setup. In [16], the RIS’s
PSs and the hybrid precoding metrics of the WGBS are config-
ured under the assumption of perfect channel state information
(CSD).

Although a considerable amount of research has exam-
ined the use of RIS-enabled WiGig communications, only a
few research works have focused on its potential to enhance
WiGig communications through UAV-mounted RIS. However,
the combination of UAV and RIS was carried out in the
existing research work without considering the need for the path
optimization of the resource-constrained UAV to serve multiple
groups of UDs, referred to as hotspots, with the minimum
possible energy expense. For instance, a deep reinforcement
learning (DRL) algorithm was presented in [17] to improve the
performance of UAV-mounted RIS systems supporting WiGig
communications. However, no consideration on the UAV’s
path optimization or energy expense was made in that work.

Similarly, the work in [18] developed another DRL algorithm to
facilitate WiGig-UAV communications. Again, they focused on
placing the RIS panels on the WiGig base stations. In contrast,
we hypothesize mounting RIS on the UAV will yield a better
linkage performance due to its mobility and maneuverability.

Concerning the work mentioned above combining RIS and
UAV technologies to complement WiGig communications, neu-
ral networks that require offline, supervised training is typically
used. This is evident from the recent work in [19] that attempted
to combine UAV and RIS operating at even higher frequency
bands above 60 GHz by training a deep learning model for
predicting beam patterns. Training such models also require
acquiring a robust dataset with exhaustive network conditions,
such as channel state information (CSI). Researchers in [10],
[20] realized this issue and indicated that nested, two-stage
bandit algorithms might yield localized solutions for RIS-
assisted WiGig systems. Also, in [21], [22], the authors utilized
bandits for RIS relay probing in WiGig communications. A
reinforcement learning (RL)-aided solutions for UAV-NOMA
data offloading in BSG mmWave-enabled communications were
investigated in [23]. Furthermore, RIS load balancing and user
association using multiplayer bandits were proposed in [24].
However, the above work still did not consider the UAV-
mounted RIS scenario.

On the other hand, coauthors of our work investigated the
RIS-enabled UAV in an earlier research work [7], [8]. They
developed the system preliminaries for this paper that are
essential to formulate a multi-armed bandit (MAB) game for the
UAV path estimation with energy minimization while designing
the relevant side information, i.e., a context, for finding an
accurate solution to the formulated problem. To the best of
our knowledge, this paper is the first research work to propose
a contextual multi-armed bandit (CMAB) game to represent
the aforementioned problem and design an algorithm to find
a solution that converges fast by making use of the context
information, so that the performance and coverage of the
WiGiG communication can be improved via our considered
UAV-mounted RIS system.

III. SYSTEM MODEL

In this section, we describe our considered system model
with the aid of Fig. 1, which illustrates a WiGig-enhanced
communication network supported by UAV-mounted RIS. The
figure shows multiple UD-hotspots are dispersed in the WGBS
coverage area. The capacity of UDs per hotspot is adjustable
depending on the traffic requirements. It is worth noting that the
UAV-mounted RIS significantly improves the coverage of the
WGBS, particularly at the remote hotspots (toward the edge
of the portrayed area in the figure) that do not enjoy LoS
connectivity with the WGBS.

As Fig. 1 illustrates, the UDs are connected to the WGBS
directly and indirectly via the UAV-mounted RIS. The WGBS
utilizes a control channel to tune the RIS panel’s PSs and direct
its main beam toward the assisted UDs/hotspot. Therefore, a
need arises to optimize the UAV-mounted RIS route planning
to maximize the accessible data rate while accounting for the
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Fig. 1. UAV-mounted RIS-assisted WiGig communication system.
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Fig. 2. Simple demonstration of the WGBS, UAV-mounted RIS and UD

communication linkages.

UAV’s battery power usage. Before this particular problem can
be formally treated later in section IV, we provide the system
model preliminaries as follows.

First, the received power at a UD can be expressed as:

Pr = Pr,up + PRr.BD (D

where Pr pyp and Pgr pp denote the indirect power delivered
from WGBS via the UAV-RIS and the direct power delivered
from the WGBS, respectively.

Next, according to the WiGig-RIS link model presented
by [25], Pr,pup can be expressed as:

Pr up =

0
Pr (E) (07)? Ar.su (01.8U»0-348) Ar.uB ($R.UB)

Ar.up (O1,up) Ar.pU (PR, DU. P-348) (XBUXUD) ™", (2)

where, Pr,A, Q, vy denote the WGBS radiated power,
WiGig wavelength, the number of RIS elements number,
and the RIS elements’ reflection coefficient, respectively [25].
At U (07,8U,0-348) indicates the beamforming gain from
WGBS to UAV-RIS, while Ag pu (¢r,pU, #-348) refers to
the delivered gain from UAV-mounted RIS to UD. 6_345 and

¢_3qp are the half power radiating and receiving beamwidths
[26], respectively. Or gp is the azimuth angle for the beam
between WGBS and UD. ¢g py denotes the beam angle
between UD and UAV-mounted RIS, as described in Fig. 2.
According to this scenario, the UAV-mounted RIS can fly
from WGBS and UD once the far-field RIS radiated signal is
delivered. Hence, the antenna elements of the RIS panel have
an equal gain [25].

By adopting the WiGig antenna layout from WiGig stan-
dards [26], a two-dimensional dirigible antenna framework with
a Gaussian main loop shape, A7 gu (07,8, 0-348), is utilized,
which can be expressed as follows,

(oo (e )

6_
At u (01,8U, 0-3a8) = Ao € 4B 1,

2

1.6162
Ap=|—r—=|. O
sin(—*z‘“f)

On the WiGig UD side, similarly we consider the parameter
Ar.pu (#r.pU> #-348), by replacing the parameters 67 gy
and 6_34p in eq. (3) by ¢rpy and ¢_34zp, respectively.
Arug (prus) and Ar.up (0:,up) are the RIS elements’ radi-
ation patterns. Ag B (¢ R,UB) can be mathematically described
as follows [25],

Ar.uB (¢ruB) =4cos (pruB) - 4

Similar formula can be implemented for A7 yp (6r,up) with
the replacement of ¢g yp instead of 07 yp. Regarding Pgr pp,
we leverage the link model provided in [26], [27] for terrestrial
WiGig communications, where Pg gy is formulated in eq. (5).

Pr.sp = PrA7.8D (07,8D.0-348) AR.DB ($R,DB> P-34B)
1 (Pros (Xap))  x (PNLos (XBD))) )
L1os (Xap) Lyros(Xgp) |’

where Ar gp (07.8D.0-308) and Gr.pg (Pr.DB, $—3a48) are
evaluated from eq. (3). n (Pros (Xpp)) is the LoS blocking
probability and y (Pyros (Xgp)) is the NLoS blocking prob-
ability of the WiGig link [26]. L ,s (Xgp) and Lyyos (Xgp)
reflect the LoS and NLoS path losses, formulated as follows,

101ogo (Lv(Xgp)) = By + 10y logyy (Xpp) + &y, (6)

where v € {LoS, NLoS},B, = 82.02 — 10a, log,,(Xo) is
the reference five meters path loss. @, denotes the path loss
coefficient, and &, -~ N (0,6,) represents the zero mean and
&, standard deviation log-normal shadowing. Hence, the g¢'"
UD’s spectral efficiency is formulated as follows.

Yg =log, (1+ Pry/00), @)

where oy is the noise power.

Based on the system model presented in this section, we now
have the preliminaries to formally articulate the actual research
problem in the following section.



IV. UAV-MOUNTED RIS ROUTE PLANNING PROBLEM
FORMULATION

In this section, we present the UAV-mounted RIS route
planning problem that targets optimizing the UAV-mounted
RIS trajectory that maximizes data rate from serving distinct
hotspots while considering the UAV energy boundary over its
flight duration. Let S be a set of likelihood spread hotspots,
denoted as S = {1,2,3,....,s}. The UAV trajectory can be

expressed mathematically as j, = {s1, $2, oo SN, , where
s; € S indicates the hotspot index in the route/path j,, and
SNj, stands for the last indexed hotspot of the UAV path, i.e.,
the final served hotspot before the UAV’s battery is depleted.
Every existing hotspot has random UDs Fj,. Hence, the UAV-
mounted RIS route planning optimization can be formulated as
follows.

max Z ¥y, ®)

where ES,. = PhThs,« + Pfos,»’

v _% N _ s
T e S e T Y

Here, J represents the set of all possible paths, ¥y, denotes
the spectral efficiency of hotspot s; € S, which equals the
sum of hotspot’s UDs’ spectral efficiencies ¢4, 1 < g < Q.
Also, let E;, be the energy depleted/consumed to serve hotspot
s;. The UAV’s hovering, and flying powers are denoted as Pj,
and Py, respectively. Tj,  determines the hovering duration of
the UAV via hotspot k;, which is the ratio between the k;’s
traffic demands, Fy;, and the attained data rate BWY,. Ty, is
the UAV’s duration necessary for its move from hotspot s; to
si+1, wWhere |xs,«,s,«+, is the distance between two consecutive
hotspots, and V7 is the aerial velocity. The limitation specified
in (8) demonstrates that the overall energy depleted by the UAV-
mounted RIS throughout its route is constrained by its battery-
powered capacity Zp. The UAV should autonomously adapt its
route and be adaptable to hotspots’ traffic demands. Therefore,
the UAV must optimize the data rate of the aided hotspots while
extending their battery life through an appropriate selection
policy without any CSI calculations.

Given that this problem is computationally hard to solve and
the UAV has limited energy and computational resources on
board, we seek to find a localized yet efficient solution at the
UAV level in the following section.

V. PROPOSED LIN-RUCB ALGORITHM

In this section, we consider exploring a sequential algorithm
for localized decision-making at the resource-constrained UAV
to serve the hotspots to maximize the data rate while mini-
mizing the overall energy expenditure. In this vein, we convert

the optimization problem in (8) into a CMAB. In our formu-
lated CMAB game, the UAV acts as the learner/player which
progresses through the sequence of trials. It is rewarded with
cumulative gains for their choices (choosing arms/ hotspots).
At every trial, the learner decides its action based on the
context vector (side information) and reward history of the
previous rounds. Hence, the learner only collects the reward
of the decided arm/hotspot [9]. By using the features to encode
the context is derived from supervised machine learning, while
exploration is essential for optimizing the learning performance,
such as with the reinforcement learning technique. Therefore,
the converted problem (i.e., the CMAB game) can be regarded
as a commonly accepted compromise between supervised
learning and reinforcement learning. The CMAB problem is
typically addressed by postulating a linear correlation between
the resultant reward and its respective contexts [28], which
motivates us to design our algorithmic solution as follows.

As a solution to the aforementioned CMAB game, we
design the Lin-RUCB algorithm to efficiently locate the ex-
ploration parameter instead of relying on a fixed value like in
LinUCB [29]. This approach aims to generate a randomized
confidence interval and pick the optimal arm at each process
round by adjusting the exploration parameter, Z;, Z;, .. Zs, by
using a random variable. The value V is determined via the
discretization of the interval [L, U] into N = 100 points, where
Z is calculated as Z = (L+ (U - L)/(N)) [29].

It is possible to predict the probable reward of an arm by
ascertaining a linear relation between the prior rewards of the
arm and its existing context vector. Lin-RUCB utilizes the
features vector of the existing round and the coefficients and
rewards from the previous rounds to anticipate the reward for
the current round by interpreting them into a linear combination
of the feature vectors observed in prior rounds. At trial ¢, let G;
be an m X d matrix, in which each of the m rows corresponds to
the contexts observed for arm/hotspot i. The application of ridge
regression to the training data (G;, b;) provides an estimate of
the coefficients as follows,

0= (GTGi+1) b ©)

It has been demonstrated that when the components of a;
are independent given the corresponding rows of G;, then b; =
QiTa,-, where a; is an m-dimensional vector containing the past
observed rewards of arm/hotspot i.

ICl,0i = E[Wi4|Ci ]| € ZLin-rucsCl B 'Ciy,  (10)

where B; = ng G + 1. Hence, the best hotspot is selected as:

an

iy =argmax ( ji,).,
i€A
where j;; = X,-,,Téi,r + ZLimRUCB\/Ci,rTB{lCi,z
Algorithm 1 highlights the main steps of Lin-RUCB to
optimize the UAV-mounted RIS route via a proper selection
of the next hotspot using embedded side information which
are the hotspot places and previous reward history of each
hotspot. Initially when ¢ = 0, the selection counter of each
hotspot s; € S, Wy, and their corresponding data rates,lﬁyit are



Algorithm 1 Lin-RUCB for UAV-mounted RIS.
. Input: S, Ty, Ey;, Ep
2: Initialization: 1 =0, W, =0, 5, =0,Vs; €S, B; = I,
b; = 0gx1 .
3: For t=1,2,....Ty
4: Fori=1,2,...8
5: Attempt each hotspot s;, .
6: Collect its corresponding rate Wy, and traffic request Fj, .
7
8
9

: Notice features of Vs; € A : G, € C CRY
: While E‘Sir > Hy
0 = Bi_lbi
10: jir = Ci,tTéi,z + ZLin—RUCB\/Ci,tTB[_ICi,t
11: End While
12: End For
13: Choose hotspot i} = argmax; (j; ) and observe .,
14: Bit* = B,-;f + Ci;f,t Cl.t*’th,'; = b[;« + lﬁs;ft Cglf‘t’t
_ W,
15: lPSiHl = ﬁm Z:r=1t+1 \Psir
16: Update Wy ; = Wk*,t_v%/+ 1.
17: Update ‘i‘si? = ﬁ Zr;‘? Vs,
18: End For '

set to zero. The algorithm initializes by attempting each hotspot
once and collecting its corresponding reward with the side
information (i.e., context) that contains the previous rewards
and the distance of the UAV from each hotspot. Afterward,
during the remaining time horizon, Lin-RUCB’s main selection
strategy, as in (10), is applied to select the next hotspot. Finally,
the algorithm parameters are updated for the next round.

VI. PERFORMANCE EVALUATION

In this section, simulations are conducted to evaluate the
performance of the envisioned Lin-RUCB method against other
solutions, such as classical UCB (upper confidence bound),
random, and nearby selection methods. In UCB, the hotspot
corresponding to the highest spectral efficiency is chosen with-
out taking into consideration the UAV battery. The random
selection stochastically draws the following hotspot in the
UAV route, whereas the nearby election technique always
opts for the closest hotspot. Furthermore, the optimum rate
performance is provided as the UAV has the complete envi-
ronmental information and draws the hotspot that offers the
maximum accessible rate. The simulation setup places two
hundred hotspots uniformly in a 16 Km? area. Each hotspot
has UDs that are uniformly distributed between 1 and 50. The
simulation parameters are listed in Table I. The performance
evaluation metrics are the data rate and energy efficiency (EE).
In this context, EE of hotspot s; is equal to ¥y, /Ey,.

The data rate and EE performances of the schemes involved
in the comparison versus different numbers of hotspots uni-
formly located within 16 Km? simulation area are presented in
Figs. 3(a) and 3(b), respectively.

From Fig. 3(a), we can notice that the data rate is propor-
tionally related to the hotspot numbers except for nearby and
random methods since they present a fixed data rate perfor-
mance. The nearby method delivers the worst rate performance

TABLE I
CONSIDERED SIMULATION PARAMETERS.

Parameters Value

Pr, BW 1 Watt, 2.16 GHz

A, M, T 0.005, 64, 0.9

h, Ty 10m,60 sec
0_34B, $-3dB 30°

T 1000
oo(dBm) —174 4+ 10log10(W) + 10
Ry, Uniform [10, 70] Gbit

because of its policy that achieves a low accessible data rate.
Our proposed Lin-RUCB algorithm delivers the maximal rate
performance, followed by UCB. At 300 hotspots, our pro-
posal (Lin-RUCB), UCB, nearby, and random methods achieve
around 86%, 45%, 1.3%, and 1.5% of the ideal selection
scheme, accordingly.

Next, Fig. 3(b) exhibits the EE performance evaluation ver-
sus varied hotspot numbers. The proposed Lin-RUCB scheme
delivers a superior EE performance due to valuable side in-
formation (context). Furthermore, note that the nearby election
technique outperforms the random one because of its policy of
drawing the closest hotspot, hence minimizing the energy cost.
At 300 hotspots, the envisioned Lin-RUCB, UCB, nearby and
random techniques achieve EE of around 16.7, 2.19, 0.032, and
0.42 Gbps/ml], respectively.

Furthermore, the data rate and EE performances of various
methods versus the utilized number of RIS antenna elements Q
via 200 randomly spread hotspots within 16Km? are presented
in Figs. 4(a) and 4(b), respectively. As Q increases, both data
rate and EE performances slightly improve because of the
major effect of the LoS link between the WGBS and UD.
However, at large numbers of antenna elements 256, 512, the
performance is improved due to the increased effect of the
UAV-UD path. The proposed Lin-RUCB delivers near-optimal
rate performance and the best EE followed by the UCB
scheme. At 512 elements, the data rate performance of Lin-
RUCB, UCB, nearby, and random techniques attained 88.6%,
40.5%, 2.7%, and 2.6% of the optimum rate performance.
Also, they attained EE performance of 16.3, 2.5,0.88, and 0.06
Gbps/mlJ, respectively.

The data rate and EE performances of various methods,
when simulated across a range of areas from 1 to 100 Km?
with 128 RIS antenna elements and 200 randomly distributed
hotspots, are evaluated in Figs. VI and VI, respectively. In
small areas, the high density of UDs leads to increased data
rates and, consequently, elevated EEs. The opposite is true for
large areas. The proposed Lin-RUCB experiences a superior
data rate and EE performances, followed by the classical UCB.
Also, the random scheme’s data rate exceeds that of the nearby
method, and the opposite observation is made regarding the
EE performance. This also can be attributed to the previously
presented rationale. In a simulated area of 1 km?, 78.6%,
14%, 4.8%, and 4.7% of the optimum rate performance were
achieved using the proposed Lin-RUCB, UCB, nearby, and
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random methods, respectively. When the simulated area was
increased to 81 km?, these rates became 90%, 77%, 1.3%, and
1.7%, respectively.

In an area of 1 Km?, the EE of the proposed Lin-RUCB
algorithm was superior to that achieved by UCB, nearby, and
random selection methods by a factor of 26, 44, and 97,
respectively. Furthermore, these values changed to 10.3,41.5,
and 520 when the simulation area was set to 81 Km?.

The computational complexity of the proposed in-RUCB
scheme is analogous to the traditional UCB since its major
complexity arises from the size of the context vector and the
number of probed hotspots/arms as it is in the order of O (de )
[29]. Since d is fixed to 2, the complexity depends mainly on
the number of hotspots.

VII. CONCLUSION

This work investigated the utilization of UAV-mounted RIS
to enhance the coverage of WGBS in high-traffic areas. It
also presented the rationale behind optimizing the UAV route
to serve a large number of hotspots, hence maximizing the
data rate and concurrently prolonging the UAV flight time
by minimizing the UAV’s travel cost in terms of energy
expenditure. The optimization problem was reformulated into
a contextual multi-armed bandit (CMAB) game, and the Lin-
RUCB algorithm was proposed to find a real-time solution
to this problem by choosing and serving the appropriate UD-
hotspots along the UAV route. Performance evaluations verified
the superior performance of the proposed algorithm over bench-
mark solutions. Future work may include embedding CSI as a
context and multiplayer bandit formulation.
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