PC-SSL: Peer-Coordinated Sequential Split Learning
for Intelligent Traffic Analysis in mmWave 5G
Networks

Khaled Bedda*!, Mostafa M. Fouda}$2, and Zubair Md Fadlullah¥3.
*Department of Computer Science, Lakehead University, Thunder Bay, ON, Canada.
iDepartment of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, USA.
§Center for Advanced Energy Studies (CAES), Idaho Falls, ID, USA.
11Department of Computer Science, Western University, Ontario, London, ON, Canada.
Emails: 'kbedda@Ilakeheadu.ca, 2mfouda@ieee.org, 3zfadlullah@ieee.org.

Abstract—Fifth Generation (5G) networks operating on
mmWave frequency bands are anticipated to provide an ultra-
high capacity with low latency to serve mobile users requiring
high-end cellular services and emerging metaverse applications.
Managing and coordinating the high data rate and throughput
among the mmWave 5G Base Stations (BSs) is a challenging
task, and it requires intelligent network traffic analysis. While
BSs coordination has been traditionally treated as a centralized
task, this involves higher latency that may adversely impact the
user’s Quality of Service (QoS). In this paper, we address this
issue by considering the need for distributed coordination among
BSs to maximize spectral efficiency and improve the data rate
provided to their users via embedded AI. We present Peer-
Coordinated Sequential Split Learning dubbed PC-SSL, which
is a distributed learning approach whereby multiple 5G BSs
collaborate to train and update deep learning models without
disclosing their associated mobile users data, i.e., without privacy
leakage. Our proposed PC-SSL minimizes the data transmitted
between the client BSs and a server by processing data locally on
the clients. This results in low latency and computation overhead
in making handoff decisions and other networking operations.
We evaluate the performance of our proposed PC-SSL in the
mmWave 5G throughput prediction use-case based on a real
dataset. The results demonstrate that our proposal outperforms
conventional approaches and achieves a comparable performance
to centralized, vanilla split learning.

Index Terms—Throughput prediction, mmWave 5G networks,
split learning.

I. INTRODUCTION

Recently, Fifth generation (5G) cellular networks emerged
to support Ultra-Reliable Low-Latency Communication
(URLLC), massive Machine Type Communication (mMTC),
and enhanced Mobile Broadband (eMBB) services. The
high bandwidth in 5G networks can be attributed to the
new radio (NR) specifications, which encompass a wide
range of frequencies, including low-band through mid-band
to high-band, particularly mmWave frequency spectrum.
These services open the way for a wide range of intriguing
applications, including Internet of Things (IoT), autonomous
driving, Augmented/Virtual Reality (AR/VR), and ultra-high
resolution and high-responsive metaverse applications. While
the majority of commercial 5G services deployed globally
in 2019 utilized mid-band and low-band frequencies for 5G
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Fig. 1. A typical scenario of the netwrok traffic analysis problem based on
user’s mobility and location in mmWave 5G networks.

systems, mmWave-enabled 5G BSs started to be commercially
deployed [1].

5G mmWave technology offers higher data transfer rates
and lower latency, opening up a plethora of new application
fields and use-cases. However, The signal intensity, signal-to-
noise ratio (SNR), the distance between the device and the base
station, and the number of devices connected to the network are
all essential variables that affect the throughput of 5G mmWave
networks, making it challenging to estimate [2], [3]. Conven-
tional, centralized traffic analysis methods for forecasting 5G
mmWave throughput include gathering and analyzing network
data, which may be both time-consuming and privacy-violating.

The ultra-high bandwidth of mmWave 5G, which may the-
oretically reach up to 20 Gbps, opens up interesting new
possibilities for supporting a wide range of current and future
applications that require high bandwidth. However, many tech-
nical challenges exist involving mmWave radios that include
directionality, limited range, and high sensitivity to obstruc-
tions, making the design and management of 5G services based
on mmWave radio difficult. Also, it might be challenging to
establish and maintain a solid communication link with user
equipment (UE), especially when the UE moves around, as
depicted in Fig. 1. Given these challenges, it is hard to carry
out a real-time network traffic analysis and make proactive
decisions regarding bandwidth allocation, load balancing, user



handoff, and so forth in a seamless manner. In other words,
even though the development of mmWave 5G networks has the
potential to transform the telecommunications sector, adopting
the mmWave frequencies confronts significant barriers, such
as limited coverage area and increased path loss [3]-[5]. As a
consequence, a key challenge in mmWave 5G network design
is how to accurately predict the network throughput [6]. While
conventional machine learning models have been employed to
address this issue, they typically demand the exchange of vast
amounts of data between devices and Base Stations (BSs),
posing privacy and security concerns.

To address the 5G mmWave BSs distributed coordination [7],
in this paper, we present a split learning approach since this
concept allows data to be incorporated into the deep learning
models locally on BSs without violating privacy of the mobile
users that they serve. In particular, we explore the use of split
learning for throughput prediction in mmWave 5G networks,
and demonstrate its potential to improve network performance
while maintaining user-privacy. Split learning is an emerging
machine learning technique allowing multiple parties to train
deep learning models to allow them to learn cooperatively
without granting access to data [8]. By keeping the client
data on the device and processing it locally, split learning can
preserve the privacy of sensitive data while enabling efficient
model training. This approach significantly reduces the amount
of data that needs to be shared between the user device and the
central server, making it ideal for applications in which data
privacy is a concern. In the context of mmWave 5G networks,
split learning can be leveraged to predict network throughput
while maintaining user-privacy, as the data remains on the
device and is not shared with the network operator or other
users. By enabling network operators to predict throughput
more accurately and allocate resources more efficiently, we
envision a peer-coordinated sequential split learning technique,
referred to as PC-SSL, in this paper. Also, we evaluate the
performance of PC-SSL that indicates its ability to help opti-
mize the performance of 5G mmWave networks and support
the deployment of new and innovative applications by means
of effective throughput prediction without privacy-outage and
with low communication overheads.

The remainder of this paper is structured as follows. The
recent, related reseach work are surveyed in section II. Our con-
sidered system model is presented in section III. This section
also contains a formal description of the research problem we
address in this work. Next, our proposed method is presented in
section IV followed by its performance evaluation in section V.
Section VI provides concluding remarks and future research
directions.

II. RELATED WORK

Several research work on throughput prediction in 5G net-
works have appeared in the recent literature that employed
machine learning and deep learning methodologies [9]. Re-
searchers in [10] established a technique for estimating the
cellular link throughput for end-users and evaluating the ef-
ficacy of network slices [11]. To achieve this, they con-

ducted a measurement study to investigate real-world scenarios,
including driving in urban, suburban, and rural areas and
experiments in crowded/congested environments. Then, they
developed machine learning models that utilize lower-level
metrics (which portray the radio environment) to forecast the
attainable throughput. On the other hand, the work in [12] de-
signed a deep-learning-based Transport Control Protocol (TCP)
approach for a disaster 5G mmWave network. Their model
learns about the node’s mobility and signal strength and predicts
the network is disconnected and reconnected, which helps
adjust the TCP congestion window. Their work aims to provide
network stability and higher network throughput. Next, in [13],
researchers designed a deep learning-based framework to de-
sign and optimize a 5G air-to-ground network. They deployed
two deep neural networks, to predict the user throughput and to
optimize the throughput deployment parameters, respectively.

While conducting research on intelligent 5G throughput
prediction using deep learning models, other researchers have
also focused on the development of distributed 5G intelligent
systems that prioritize privacy preservation. Several research
works were carried out by employing split learning and Fed-
erated Learning (FL) in 5G intelligent applications [14], [15].
The work in [16] conceptualized a secure framework based on
blockchain and FL that leverages smart contracts to prevent un-
reliable and malicious participants from participating in the FL.
process. The system automatically identifies such participants
through the execution of smart contracts, and thus mitigates the
risk of poisoning attacks. Additionally, they incorporated local
differential privacy techniques to safeguard against membership
inference attacks. In [17], researchers introduced a novel hybrid
threat detection approach using split-machine learning that
leverages both machine learning and human intelligence to de-
tect cyber threats. Their work focused on analyzing Distributed
Denial of Service (DDoS) attacks based on their temporal
and threshold behavior across various network communication
protocols.

While machine and deep learning models have been used in
distributed frameworks in the aforementioned research work,
there remains an open area for coordinating 5G mmWave BSs
in a distributed yet intelligent manner to carry out network traf-
fic analysis to forecast throughput prediction while preserving
the desired privacy of the network traffic data.

III. PROBLEM DESCRIPTION AND SYSTEM MODEL

In this section, we present our motivation and a formal
description of the research problem, followed by our considered
system model.

The motivation behind our work is to introduce a decen-
tralized technique of split learning to make every client (i.e.,
5G BS) capable of making accurate generalized decisions
without the need for communication with a centralized server.
Furthermore, we may conclude from the relevant work dis-
cussed in section II that there is a research gap in distributed
learning systems in terms of throughput prediction in a 5G
network system choosing a use-case based on traffic analysis
of mmWave 5G networks. Moreover, previous studies did not
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Fig. 2. Peer-coordinted Split learning architecture. Note that during a time-
round, a BS assumes the role of a server while other BSs serve as a client,
and this is repeated for all the BSs in the considered 5G network. Also, note
that the users refer to the participating BSs which aim to perform decentralized
coordination for analyzing the network traffic with privacy-preservation. This
simple yet powerful concept lays the foundation for a peer BS-coordinated split
learning mechanism.

take into account user-privacy while developing optimization
models for traffic analysis in 5G networks. In Fig. 1, we depict a
typical scenario of our use case. The BSs perform the sequential
split learning training process to be up-to-date in terms of deep
learning model weights. The deep learning model at each BS
analyzes every connected user’s data based on the location and
mobility, and then predicts the throughput for that user. Based
on the throughput, an intelligent decision could be made. For
example, in the figure, the pedestrian is shown to suffer from
low throughput due to obstacles, a scenario in which the user-
device could change the BS it is connected to based on its
location and mobility.

Based on the described scenario and problem setting, Fig. 2
illustrates the architecture of our peer-coordinated split learning
system model. The training flows sequentially till the last user,
and then the last user closes the circle by making the first
user the next user. Every process between the user’s client
and its server indicates a conventional local training process.
On the other hand, every process between the user’s server
and the next user’s client represents a vanilla peer-to-peer
split learning process. This process is described as follows.
Assume that we have the neural network model denoted by
M(z : 0), where x refers to the input and 6 refers to the
model parameters. In a peer-to-peer paradigm, the L layers of
the model are split into Ly and L4 layers, denoting shallow
and deep layers, respectively. The client-end has the sub-model
of Lg, and the server-side comprises the submodel L — L.
Then, a process called data smashing takes place at the client-
end, which transfers the input x into the feature representation
H = h(x), where H denotes the features vector represented
by A(F(x : 05)). Here, A refers to the activation function of
the last layer in the L, layers, and F' represents the submodel
of M. Then, the feature vector is sent to the server, where
the output of the server is represented by Y = A(F(H : 04))
such that Y in our aforementioned problem setting denotes the
throughput of the considered 5G network system.

IV. PROPOSED METHOD

In this section, we introduce our suggested decentralized
technique, which is based on the network system model spatial
parameters, along with user traffic and mobility, for commercial
5G mmWave networks. For further information on the commu-
nication setup and system under consideration, readers should
refer to the work in [6]. We explain the dataset processing, the
deep learning model used for training, and our proposed peer-
coordinated sequential split learning architecture, referred to as
PC-SSL, in the remainder of this section.

A. Dataset Preparation

Before delving into the technicalities of the deep learning
approach for networks, we introduce the data set adopted for
our considered use-case. We consider the Lumos5G dataset,
which is a collection of network performance data for over
100 commercial mmWave 5G BSs in the United States [6].
The dataset includes a range of features related to network
performance, including signal strength, signal-to-noise ratio,
channel quality, and network load. The dataset was collected
using a custom data collection framework developed by Lumos
Networks that includes a set of mobile measurement units to
verify the network performance at various locations around
each BS. Table I describes the locations from which data are
collected. The dataset covers a range of different scenarios and
use cases, including indoor and outdoor environments, static
and mobile devices, and different levels of network congestion.
Overall, the Lumos5G dataset represents a valuable resource for
researchers and practitioners interested in studying mmWave
5G network performance and developing new approaches for
network performance prediction. Table II summarizes the data
statistics while Table III presents the data attributes. In the data
processing phase, we cleaned the data and applied preliminary
processing (normalization and discretization) alongside feature
selection. For our classification task, we selected the thresholds
for the achievable throughput as follows: 0-150 Mbps as low
throughput, 150-700 Mbps as medium throughput, and above
700 Mbps as high throughput.

B. Selection of Deep Learning Model for Throughput Predic-
tion

Next, we provide the details of our choice of the central-
ized deep learning model for throughput prediction given the
system model described in Section III. We selected a deep
neural network (DNN), from a variety of potential machine
and deep learning models, due to its current adoption in the
communication networks intelligence field with lightweight
performance characteristics. A DNN is a feed-forward neural
network architecture comprising dense layers which are fully
connected. For details of the considered DNN, readers are
recommended to refer to the coauthors’ earlier work [18].

C. Vanilla Split Learning Baseline vs Proposed Sequential Split
Learning Algorithm

Split learning was first introduced in [8]. Algorithm 1 shows
the stages of updating and training the neural network in



TABLE 1
INFORMATION ABOUT THE DATA COLLECTION AREAS.

Area The intersection Airport Bank Stadium Loop

Description Outdoor 4-way traffic intersection | Indoor mall-area with shopping booths qup with railroad crossings, traffic
signals, and open park restaurants

Num. of Trajectories 12 2 2

Trajectory Length 232 to 274 m 324 to 369 m 1300 m

TABLE II
SUMMARY OF THE DATA STATISTICS USED IN THE STUDY.

Data Points

563,840 (per-sec. throughput w/ feature) samples

Mobility Modes

Walking (331 km), Driving (132 km), Stationary

Data 38,632 GBs of data downloaded over 5G
Duration 6 months
TABLE III
DATA FIELDS AND DESCRIPTIONS.
Field Description

Raw values

Latitude & longitude

UE’s spatial coordinates

User’s mobility/activity

Indicates whether the user is walking, standing, or driving.

Moving speed

UE’s moving speed reported by Android API

Compass direction

The horizontal direction of travel of the UE with respect to the North Pole (also referred
to as azimuth bearing) and its accuracy

Post-processed values

Throughput Downlink throughput reported by iPerf 3.7
Radio type Indicates whether the UE is connected to 5G or 4G
Cell ID Identifies the tower the user is connected to

Signal strength

Signal strength of LTE (rsrp, rsrq, rssi) and 5G (ssrsrp, ssrsrq, ssrssi)

Horizontal handoff

UE switches from one 5G panel (cell ID) to another

Vertical handoff

UE switches between radio types (e.g., 4G to 5G)

UE-Panel distance

Distance between the UE and the panel it is connected to

Positional angle (6,)

Angle between UE’s position relative to the line normal to the front-face of the 5G
panel

Mobility angle (6,,)

Angle between the line normal to the front-face of the 5G panel and UE’s trajectory

the vanilla split learning approach. The algorithm works by
splitting the model between the server and user-devices (i.e.,
BSs in our case), where the server holds the global model
parameters and user-devices hold their own local model param-
eters. The algorithm iterates over a fixed number of iterations
T, and for each iteration, it randomly selects a subset of user-
devices to update their local model parameters. The split ratio r
determines the proportion of user-devices that will update their
local model parameters during each iteration. If a user-device is
selected to update its local model parameters, it computes the
local gradient of the loss function with respect to the model
parameters based on its own data and sends the gradient to the
server. The server updates the global model parameters using
the received gradients and transmits the updated parameters
back to the user-device. If a user-device is not selected to update
its local model parameters, it sends a random batch of its data to
the server to be used for updating the global model parameters.
The algorithm combines the updated model parameters from
all user-devices using the average function to obtain the final
global model parameters.

Next, we present our proposed PC-SSL, i.e., the unique split
learning algorithm where the peer BSs engage in distributed
coordination. The steps of Algorithm 2 elucidate the main

differences between our proposal and the vanilla algorithm
(i.e., the baseline). Looking into the proposed PC-SSL in
Algorithm 2, we observe that in every iteration, we loop on
the number of BSs, and every BS is considered a server and
client. During the learning process, every BS updates its server
from its client and then commences a peer-to-peer split learning
process with the next BS client in the stack. After that, the BS
acting as the server updates its server weights and its client
BSs’ weights; then the next BS’s server weights are updated
and this process is repeated. The learning process is carried out
sequentially in a closed loop where every BS receives updates
from the previous one and starts the peer-to-peer mechanism
with the subsequent BS.

V. PERFORMANCE EVALUATION

To evaluate the performance of our proposed PC-SSL, we
present two comparisons between every BS’s model in the two
approaches of standalone (every BS trains on its own data
only in a centralized manner) and sequential learning. First,
we compare the accuracy of every BS in the two approaches as
illustrated in Figs. 3, 4, and 5. As shown in the figures, the split
learning models yield better performance than the centralized
ones.



Algorithm 1: Vanilla SplitNN Algorithm (baseline).

: (z,y) € D, batch size B, number of epochs
FE, learning rates o, o
Output: Trained client and server models

Input

Initialize client and server models f. and f, randomly;
for each epoch e € [1, E| do
Divide the data into batches D+, Do, ...,

for each batch D; € D do
The client computes the gradients

VeL(fe(xi;0.),y;) and sends them to the
server;

The server aggregates the gradients from all
clients, updates the server model parameters,
and sends the updated model parameters to the
clients;

The client updates its own model parameters
using the server’s updated model parameters;

Dipy/B;

end
The server updates its own model parameters using
the updated model parameters from the clients;

end
return Trained client and server models f. and f;

Algorithm 2: Proposed Peer-Coordinated Sequential
Split Learning (PC-SSL) Algorithm.

: (z,y) € D, batch size B, number of epochs
FE, learning rates ., as , Stack of BSs or
Towers T[Servers, Clients], number of BSs n

Output: Trained client and server models

Input

Initialize client and server models f. and f; randomly;
for each epoch e € [1, E] do

Divide the data into batches D1, Ds, ...,
for each batch D; € D do

for each BS/tower t in T[Servers, Clients] do
Client; computes the gradients

VeL(fe(zi;0.),y;) and sends them to the
server;
Server; completes the forward pass and
compute the gradients;
Client; updates its model parameters.;
Server; 1 updates its model parameters.;
Client; 1 updates its model parameters.;

Dipy;B;

end

end

end

return Trained stack of clients and servers models f.
and fs;
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Fig. 3. Comparison of the first tower model in the standalone and sequential
learning approaches.
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Then, we illustrate the accuracy performance of every BS in
the sequential model and the server performance of the vanilla
split learning model as depicted in Fig. 6. According to these
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Fig. 5. Comparison of the third tower model in the standalone and sequential
learning approaches.

results, the performance of our proposed split learning model
is close to the vanilla model.

We then evaluate each model of the BSs in both standalone
and PC-SSL scenarios alongside the centralized model with the
baseline, vanilla split learning. We employ accuracy, precision,
and Fl-score as evaluation metrics. Table IV presents the
results of these metrics in a micro-analysis methodology for all
three classes. The results demonstrate the same findings in the
comparison figures aside that the results for the low throughput
class are higher than the other classes which helps the system
to be more accurate in predicting the low throughput scenarios
and make an intelligent decision to avoid the low throughput
in high-throughput applications, such as high-resolution video
streaming.



TABLE IV
METRICS RESULTS SUMMARY OF ALL MODELS.

Models Metrics
Accuracy Precision Fl-score
BS1 0.825 0.749 0.756 0.802 0.5 0.624 0.778 0.462 0.674
SSL models BS2 0.822 0.778 0.753 795 0.581 0.612 0.776 0.48 0.682
BS3 0.823 0.759 0.757 0.787 0.526 0.622 0.779 0.454 0.679
BS1 0.820 0.733 0.747 0.825 0.467 0.614 0.761 0.468 0.66
Standalone models BS2 0.809 0.747 0.743 0.777 0.493 0.60 0.759 0.415 0.668
BS3 0.8 0.742 0.738 0.77 0.483 0.60 0.747 0.448 0.649
Central ~ 0.823 0.77 0.78 0.78 0.549 0.666 0.783 0.506 0.699
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VI. CONCLUSION AND FUTURE WORK

This work presented a novel approach for a decentralized
split learning method with a use-case of mmWave 5G net-
work throughput prediction that is both privacy-preserving and
distributed. The proposed sequential split learning framework
enables each 5G base station to learn from a larger pool
of user data (e.g., user location, mobility, traffic patterns,
application types, and so forth), leading to more accurate and
generalized decisions based on data-driven techniques with
minimal need to establish communication with a central base
station. This approach also ensures that the user-privacy is not
compromised. The key contribution of this work is develop-
ing a decentralized methodology of split learning which is a
self-contained decision-making system that does not rely on
a centralized server, allowing for intelligent decisions based
on user-mobility and traffic analysis in the considered 5G
network. Our research findings indicate the efficacy of data-
driven models in a spatial, multi-tenant system without the
need for additional computation and processing at a central
node. Future research directions may include expanding the
dataset to include more devices and signal types for broader
IoT and metaverse applications. Additionally, the work could
be extended beyond traffic analysis and, depending on user-
mobility and positional parameters to temporal analysis based
on user’s history.
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