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Abstract—Fifth Generation (5G) networks operating on
mmWave frequency bands are anticipated to provide an ultra-
high capacity with low latency to serve mobile users requiring
high-end cellular services and emerging metaverse applications.
Managing and coordinating the high data rate and throughput
among the mmWave 5G Base Stations (BSs) is a challenging
task, and it requires intelligent network traffic analysis. While
BSs coordination has been traditionally treated as a centralized
task, this involves higher latency that may adversely impact the
user’s Quality of Service (QoS). In this paper, we address this
issue by considering the need for distributed coordination among
BSs to maximize spectral efficiency and improve the data rate
provided to their users via embedded AI. We present Peer-
Coordinated Sequential Split Learning dubbed PC-SSL, which
is a distributed learning approach whereby multiple 5G BSs
collaborate to train and update deep learning models without
disclosing their associated mobile users data, i.e., without privacy
leakage. Our proposed PC-SSL minimizes the data transmitted
between the client BSs and a server by processing data locally on
the clients. This results in low latency and computation overhead
in making handoff decisions and other networking operations.
We evaluate the performance of our proposed PC-SSL in the
mmWave 5G throughput prediction use-case based on a real
dataset. The results demonstrate that our proposal outperforms
conventional approaches and achieves a comparable performance
to centralized, vanilla split learning.

Index Terms—Throughput prediction, mmWave 5G networks,
split learning.

I. INTRODUCTION

Recently, Fifth generation (5G) cellular networks emerged

to support Ultra-Reliable Low-Latency Communication

(URLLC), massive Machine Type Communication (mMTC),

and enhanced Mobile Broadband (eMBB) services. The

high bandwidth in 5G networks can be attributed to the

new radio (NR) specifications, which encompass a wide

range of frequencies, including low-band through mid-band

to high-band, particularly mmWave frequency spectrum.

These services open the way for a wide range of intriguing

applications, including Internet of Things (IoT), autonomous

driving, Augmented/Virtual Reality (AR/VR), and ultra-high

resolution and high-responsive metaverse applications. While

the majority of commercial 5G services deployed globally

in 2019 utilized mid-band and low-band frequencies for 5G
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Fig. 1. A typical scenario of the netwrok traffic analysis problem based on
user’s mobility and location in mmWave 5G networks.

systems, mmWave-enabled 5G BSs started to be commercially

deployed [1].

5G mmWave technology offers higher data transfer rates

and lower latency, opening up a plethora of new application

fields and use-cases. However, The signal intensity, signal-to-

noise ratio (SNR), the distance between the device and the base

station, and the number of devices connected to the network are

all essential variables that affect the throughput of 5G mmWave

networks, making it challenging to estimate [2], [3]. Conven-

tional, centralized traffic analysis methods for forecasting 5G

mmWave throughput include gathering and analyzing network

data, which may be both time-consuming and privacy-violating.

The ultra-high bandwidth of mmWave 5G, which may the-

oretically reach up to 20 Gbps, opens up interesting new

possibilities for supporting a wide range of current and future

applications that require high bandwidth. However, many tech-

nical challenges exist involving mmWave radios that include

directionality, limited range, and high sensitivity to obstruc-

tions, making the design and management of 5G services based

on mmWave radio difficult. Also, it might be challenging to

establish and maintain a solid communication link with user

equipment (UE), especially when the UE moves around, as

depicted in Fig. 1. Given these challenges, it is hard to carry

out a real-time network traffic analysis and make proactive

decisions regarding bandwidth allocation, load balancing, user



handoff, and so forth in a seamless manner. In other words,

even though the development of mmWave 5G networks has the

potential to transform the telecommunications sector, adopting

the mmWave frequencies confronts significant barriers, such

as limited coverage area and increased path loss [3]–[5]. As a

consequence, a key challenge in mmWave 5G network design

is how to accurately predict the network throughput [6]. While

conventional machine learning models have been employed to

address this issue, they typically demand the exchange of vast

amounts of data between devices and Base Stations (BSs),

posing privacy and security concerns.

To address the 5G mmWave BSs distributed coordination [7],

in this paper, we present a split learning approach since this

concept allows data to be incorporated into the deep learning

models locally on BSs without violating privacy of the mobile

users that they serve. In particular, we explore the use of split

learning for throughput prediction in mmWave 5G networks,

and demonstrate its potential to improve network performance

while maintaining user-privacy. Split learning is an emerging

machine learning technique allowing multiple parties to train

deep learning models to allow them to learn cooperatively

without granting access to data [8]. By keeping the client

data on the device and processing it locally, split learning can

preserve the privacy of sensitive data while enabling efficient

model training. This approach significantly reduces the amount

of data that needs to be shared between the user device and the

central server, making it ideal for applications in which data

privacy is a concern. In the context of mmWave 5G networks,

split learning can be leveraged to predict network throughput

while maintaining user-privacy, as the data remains on the

device and is not shared with the network operator or other

users. By enabling network operators to predict throughput

more accurately and allocate resources more efficiently, we

envision a peer-coordinated sequential split learning technique,

referred to as PC-SSL, in this paper. Also, we evaluate the

performance of PC-SSL that indicates its ability to help opti-

mize the performance of 5G mmWave networks and support

the deployment of new and innovative applications by means

of effective throughput prediction without privacy-outage and

with low communication overheads.

The remainder of this paper is structured as follows. The

recent, related reseach work are surveyed in section II. Our con-

sidered system model is presented in section III. This section

also contains a formal description of the research problem we

address in this work. Next, our proposed method is presented in

section IV followed by its performance evaluation in section V.

Section VI provides concluding remarks and future research

directions.

II. RELATED WORK

Several research work on throughput prediction in 5G net-

works have appeared in the recent literature that employed

machine learning and deep learning methodologies [9]. Re-

searchers in [10] established a technique for estimating the

cellular link throughput for end-users and evaluating the ef-

ficacy of network slices [11]. To achieve this, they con-

ducted a measurement study to investigate real-world scenarios,

including driving in urban, suburban, and rural areas and

experiments in crowded/congested environments. Then, they

developed machine learning models that utilize lower-level

metrics (which portray the radio environment) to forecast the

attainable throughput. On the other hand, the work in [12] de-

signed a deep-learning-based Transport Control Protocol (TCP)

approach for a disaster 5G mmWave network. Their model

learns about the node’s mobility and signal strength and predicts

the network is disconnected and reconnected, which helps

adjust the TCP congestion window. Their work aims to provide

network stability and higher network throughput. Next, in [13],

researchers designed a deep learning-based framework to de-

sign and optimize a 5G air-to-ground network. They deployed

two deep neural networks, to predict the user throughput and to

optimize the throughput deployment parameters, respectively.

While conducting research on intelligent 5G throughput

prediction using deep learning models, other researchers have

also focused on the development of distributed 5G intelligent

systems that prioritize privacy preservation. Several research

works were carried out by employing split learning and Fed-

erated Learning (FL) in 5G intelligent applications [14], [15].

The work in [16] conceptualized a secure framework based on

blockchain and FL that leverages smart contracts to prevent un-

reliable and malicious participants from participating in the FL

process. The system automatically identifies such participants

through the execution of smart contracts, and thus mitigates the

risk of poisoning attacks. Additionally, they incorporated local

differential privacy techniques to safeguard against membership

inference attacks. In [17], researchers introduced a novel hybrid

threat detection approach using split-machine learning that

leverages both machine learning and human intelligence to de-

tect cyber threats. Their work focused on analyzing Distributed

Denial of Service (DDoS) attacks based on their temporal

and threshold behavior across various network communication

protocols.

While machine and deep learning models have been used in

distributed frameworks in the aforementioned research work,

there remains an open area for coordinating 5G mmWave BSs

in a distributed yet intelligent manner to carry out network traf-

fic analysis to forecast throughput prediction while preserving

the desired privacy of the network traffic data.

III. PROBLEM DESCRIPTION AND SYSTEM MODEL

In this section, we present our motivation and a formal

description of the research problem, followed by our considered

system model.

The motivation behind our work is to introduce a decen-

tralized technique of split learning to make every client (i.e.,

5G BS) capable of making accurate generalized decisions

without the need for communication with a centralized server.

Furthermore, we may conclude from the relevant work dis-

cussed in section II that there is a research gap in distributed

learning systems in terms of throughput prediction in a 5G

network system choosing a use-case based on traffic analysis

of mmWave 5G networks. Moreover, previous studies did not
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Fig. 2. Peer-coordinted Split learning architecture. Note that during a time-
round, a BS assumes the role of a server while other BSs serve as a client,
and this is repeated for all the BSs in the considered 5G network. Also, note
that the users refer to the participating BSs which aim to perform decentralized
coordination for analyzing the network traffic with privacy-preservation. This
simple yet powerful concept lays the foundation for a peer BS-coordinated split
learning mechanism.

take into account user-privacy while developing optimization

models for traffic analysis in 5G networks. In Fig. 1, we depict a

typical scenario of our use case. The BSs perform the sequential

split learning training process to be up-to-date in terms of deep

learning model weights. The deep learning model at each BS

analyzes every connected user’s data based on the location and

mobility, and then predicts the throughput for that user. Based

on the throughput, an intelligent decision could be made. For

example, in the figure, the pedestrian is shown to suffer from

low throughput due to obstacles, a scenario in which the user-

device could change the BS it is connected to based on its

location and mobility.

Based on the described scenario and problem setting, Fig. 2

illustrates the architecture of our peer-coordinated split learning

system model. The training flows sequentially till the last user,

and then the last user closes the circle by making the first

user the next user. Every process between the user’s client

and its server indicates a conventional local training process.

On the other hand, every process between the user’s server

and the next user’s client represents a vanilla peer-to-peer

split learning process. This process is described as follows.

Assume that we have the neural network model denoted by

M(x : θ), where x refers to the input and θ refers to the

model parameters. In a peer-to-peer paradigm, the L layers of

the model are split into Ls and Ld layers, denoting shallow

and deep layers, respectively. The client-end has the sub-model

of Ls, and the server-side comprises the submodel L − Ld.

Then, a process called data smashing takes place at the client-

end, which transfers the input x into the feature representation

H = h(x), where H denotes the features vector represented

by A(F (x : θs)). Here, A refers to the activation function of

the last layer in the Ls layers, and F represents the submodel

of M . Then, the feature vector is sent to the server, where

the output of the server is represented by Y = A(F (H : θd))
such that Y in our aforementioned problem setting denotes the

throughput of the considered 5G network system.

IV. PROPOSED METHOD

In this section, we introduce our suggested decentralized

technique, which is based on the network system model spatial

parameters, along with user traffic and mobility, for commercial

5G mmWave networks. For further information on the commu-

nication setup and system under consideration, readers should

refer to the work in [6]. We explain the dataset processing, the

deep learning model used for training, and our proposed peer-

coordinated sequential split learning architecture, referred to as

PC-SSL, in the remainder of this section.

A. Dataset Preparation

Before delving into the technicalities of the deep learning

approach for networks, we introduce the data set adopted for

our considered use-case. We consider the Lumos5G dataset,

which is a collection of network performance data for over

100 commercial mmWave 5G BSs in the United States [6].

The dataset includes a range of features related to network

performance, including signal strength, signal-to-noise ratio,

channel quality, and network load. The dataset was collected

using a custom data collection framework developed by Lumos

Networks that includes a set of mobile measurement units to

verify the network performance at various locations around

each BS. Table I describes the locations from which data are

collected. The dataset covers a range of different scenarios and

use cases, including indoor and outdoor environments, static

and mobile devices, and different levels of network congestion.

Overall, the Lumos5G dataset represents a valuable resource for

researchers and practitioners interested in studying mmWave

5G network performance and developing new approaches for

network performance prediction. Table II summarizes the data

statistics while Table III presents the data attributes. In the data

processing phase, we cleaned the data and applied preliminary

processing (normalization and discretization) alongside feature

selection. For our classification task, we selected the thresholds

for the achievable throughput as follows: 0-150 Mbps as low

throughput, 150-700 Mbps as medium throughput, and above

700 Mbps as high throughput.

B. Selection of Deep Learning Model for Throughput Predic-

tion

Next, we provide the details of our choice of the central-

ized deep learning model for throughput prediction given the

system model described in Section III. We selected a deep

neural network (DNN), from a variety of potential machine

and deep learning models, due to its current adoption in the

communication networks intelligence field with lightweight

performance characteristics. A DNN is a feed-forward neural

network architecture comprising dense layers which are fully

connected. For details of the considered DNN, readers are

recommended to refer to the coauthors’ earlier work [18].

C. Vanilla Split Learning Baseline vs Proposed Sequential Split

Learning Algorithm

Split learning was first introduced in [8]. Algorithm 1 shows

the stages of updating and training the neural network in



TABLE I
INFORMATION ABOUT THE DATA COLLECTION AREAS.

Area The intersection Airport Bank Stadium Loop

Description Outdoor 4-way traffic intersection Indoor mall-area with shopping booths
Loop with railroad crossings, traffic
signals, and open park restaurants

Num. of Trajectories 12 2 2

Trajectory Length 232 to 274 m 324 to 369 m 1300 m

TABLE II
SUMMARY OF THE DATA STATISTICS USED IN THE STUDY.

Data Points 563,840 (per-sec. throughput w/ feature) samples

Mobility Modes Walking (331 km), Driving (132 km), Stationary

Data 38, 632 GBs of data downloaded over 5G

Duration 6 months

TABLE III
DATA FIELDS AND DESCRIPTIONS.

Field Description

Raw values

Latitude & longitude UE’s spatial coordinates

User’s mobility/activity Indicates whether the user is walking, standing, or driving.

Moving speed UE’s moving speed reported by Android API

Compass direction The horizontal direction of travel of the UE with respect to the North Pole (also referred
to as azimuth bearing) and its accuracy

Post-processed values

Throughput Downlink throughput reported by iPerf 3.7

Radio type Indicates whether the UE is connected to 5G or 4G

Cell ID Identifies the tower the user is connected to

Signal strength Signal strength of LTE (rsrp, rsrq, rssi) and 5G (ssrsrp, ssrsrq, ssrssi)

Horizontal handoff UE switches from one 5G panel (cell ID) to another

Vertical handoff UE switches between radio types (e.g., 4G to 5G)

UE-Panel distance Distance between the UE and the panel it is connected to

Positional angle (θp) Angle between UE’s position relative to the line normal to the front-face of the 5G
panel

Mobility angle (θm) Angle between the line normal to the front-face of the 5G panel and UE’s trajectory

the vanilla split learning approach. The algorithm works by

splitting the model between the server and user-devices (i.e.,

BSs in our case), where the server holds the global model

parameters and user-devices hold their own local model param-

eters. The algorithm iterates over a fixed number of iterations

T , and for each iteration, it randomly selects a subset of user-

devices to update their local model parameters. The split ratio r

determines the proportion of user-devices that will update their

local model parameters during each iteration. If a user-device is

selected to update its local model parameters, it computes the

local gradient of the loss function with respect to the model

parameters based on its own data and sends the gradient to the

server. The server updates the global model parameters using

the received gradients and transmits the updated parameters

back to the user-device. If a user-device is not selected to update

its local model parameters, it sends a random batch of its data to

the server to be used for updating the global model parameters.

The algorithm combines the updated model parameters from

all user-devices using the average function to obtain the final

global model parameters.

Next, we present our proposed PC-SSL, i.e., the unique split

learning algorithm where the peer BSs engage in distributed

coordination. The steps of Algorithm 2 elucidate the main

differences between our proposal and the vanilla algorithm

(i.e., the baseline). Looking into the proposed PC-SSL in

Algorithm 2, we observe that in every iteration, we loop on

the number of BSs, and every BS is considered a server and

client. During the learning process, every BS updates its server

from its client and then commences a peer-to-peer split learning

process with the next BS client in the stack. After that, the BS

acting as the server updates its server weights and its client

BSs’ weights; then the next BS’s server weights are updated

and this process is repeated. The learning process is carried out

sequentially in a closed loop where every BS receives updates

from the previous one and starts the peer-to-peer mechanism

with the subsequent BS.

V. PERFORMANCE EVALUATION

To evaluate the performance of our proposed PC-SSL, we

present two comparisons between every BS’s model in the two

approaches of standalone (every BS trains on its own data

only in a centralized manner) and sequential learning. First,

we compare the accuracy of every BS in the two approaches as

illustrated in Figs. 3, 4, and 5. As shown in the figures, the split

learning models yield better performance than the centralized

ones.



Algorithm 1: Vanilla SplitNN Algorithm (baseline).

Input : (x, y) ∈ D, batch size B, number of epochs

E, learning rates αc, αs

Output: Trained client and server models

Initialize client and server models fc and fs randomly;

for each epoch e ∈ [1, E] do

Divide the data into batches D1, D2, ..., D|D|/B ;

for each batch Di ∈ D do
The client computes the gradients

∇cL(fc(xi; θc), yi) and sends them to the

server;

The server aggregates the gradients from all

clients, updates the server model parameters,

and sends the updated model parameters to the

clients;

The client updates its own model parameters

using the server’s updated model parameters;

end

The server updates its own model parameters using

the updated model parameters from the clients;

end

return Trained client and server models fc and fs;

Fig. 3. Comparison of the first tower model in the standalone and sequential
learning approaches.

Fig. 4. Comparison of the second tower model in the standalone and sequential
learning approaches.

Then, we illustrate the accuracy performance of every BS in

the sequential model and the server performance of the vanilla

split learning model as depicted in Fig. 6. According to these

Algorithm 2: Proposed Peer-Coordinated Sequential

Split Learning (PC-SSL) Algorithm.

Input : (x, y) ∈ D, batch size B, number of epochs

E, learning rates αc, αs , Stack of BSs or

Towers T[Servers, Clients], number of BSs n

Output: Trained client and server models

Initialize client and server models fc and fs randomly;

for each epoch e ∈ [1, E] do

Divide the data into batches D1, D2, ..., D|D|/B ;

for each batch Di ∈ D do

for each BS/tower t in T[Servers, Clients] do
Clienti computes the gradients

∇cL(fc(xi; θc), yi) and sends them to the

server;

Serveri completes the forward pass and

compute the gradients;

Clienti updates its model parameters.;

Serveri+1 updates its model parameters.;

Clienti+1 updates its model parameters.;

end

end

end

return Trained stack of clients and servers models fc
and fs;

Fig. 5. Comparison of the third tower model in the standalone and sequential
learning approaches.

results, the performance of our proposed split learning model

is close to the vanilla model.

We then evaluate each model of the BSs in both standalone

and PC-SSL scenarios alongside the centralized model with the

baseline, vanilla split learning. We employ accuracy, precision,

and F1-score as evaluation metrics. Table IV presents the

results of these metrics in a micro-analysis methodology for all

three classes. The results demonstrate the same findings in the

comparison figures aside that the results for the low throughput

class are higher than the other classes which helps the system

to be more accurate in predicting the low throughput scenarios

and make an intelligent decision to avoid the low throughput

in high-throughput applications, such as high-resolution video

streaming.



TABLE IV
METRICS RESULTS SUMMARY OF ALL MODELS.

Models
Metrics

Accuracy Precision F1-score

SSL models

BS1 0.825 0.749 0.756 0.802 0.5 0.624 0.778 0.462 0.674

BS2 0.822 0.778 0.753 .795 0.581 0.612 0.776 0.48 0.682

BS3 0.823 0.759 0.757 0.787 0.526 0.622 0.779 0.454 0.679

Standalone models

BS1 0.820 0.733 0.747 0.825 0.467 0.614 0.761 0.468 0.66

BS2 0.809 0.747 0.743 0.777 0.493 0.60 0.759 0.415 0.668

BS3 0.8 0.742 0.738 0.77 0.483 0.60 0.747 0.448 0.649

Central 0.823 0.77 0.78 0.78 0.549 0.666 0.783 0.506 0.699

Fig. 6. Comparison of the central model in the standalone approach and all
BSs in the sequential learning approach.

VI. CONCLUSION AND FUTURE WORK

This work presented a novel approach for a decentralized

split learning method with a use-case of mmWave 5G net-

work throughput prediction that is both privacy-preserving and

distributed. The proposed sequential split learning framework

enables each 5G base station to learn from a larger pool

of user data (e.g., user location, mobility, traffic patterns,

application types, and so forth), leading to more accurate and

generalized decisions based on data-driven techniques with

minimal need to establish communication with a central base

station. This approach also ensures that the user-privacy is not

compromised. The key contribution of this work is develop-

ing a decentralized methodology of split learning which is a

self-contained decision-making system that does not rely on

a centralized server, allowing for intelligent decisions based

on user-mobility and traffic analysis in the considered 5G

network. Our research findings indicate the efficacy of data-

driven models in a spatial, multi-tenant system without the

need for additional computation and processing at a central

node. Future research directions may include expanding the

dataset to include more devices and signal types for broader

IoT and metaverse applications. Additionally, the work could

be extended beyond traffic analysis and, depending on user-

mobility and positional parameters to temporal analysis based

on user’s history.
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